Engineering Adaptation with Zanshin: An
Experience Report

Genci Tallabaci
Department of Information Engineering and
Computer Science, University of Trento, Italy
genci.tallabaci @studenti.unitn.it

Abstract—The Zanshin framework adopts a Requirements
Engineering perspective to the design of adaptive systems and
is centered around the idea of feedback loops. Evaluation
experiments conducted so far have used simulations, limiting the
strength of our conclusions on the viability of our proposal. In
this paper, we report on the experience of applying Zanshin to
an existing base system, a software that simulates an Automated
Teller Machine (ATM), available online, drawing conclusions
on the applicability of the framework’s potential in real-life
situations.

Index Terms—Adaptive systems, adaptation, framework, ex-
periment, case study, experience report, ATM, Zanshin

I. INTRODUCTION

Motivated by the increasing complexity of software systems
and the ever greater uncertainty of the environments within
which they operate, Software Engineering (SE) researchers
have recently taken interest in software self-adaptation as a
research topic [1].

Taking a Requirements Engineering (RE) perspective and
considering that feedback loops constitute an architectural
solution for adaptation [2], we proposed the Zanshin method
for the design of adaptive software systems, recently defended
as a PhD thesis at the University of Trento [3].

In the research conducted thus far, we have performed
simulation experiments with the purpose of evaluating the
proposal. A framework, also called Zanshin, was developed
and simulations of existing exemplars such as a Meeting
Scheduler and an Ambulance Dispatch System (cf. [3]) were
implemented and experimented with, showing that the frame-
work analyzed augmented requirements models and produced
sensible responses during simulations of system failures.

Simulations, however, are internal to the framework’s ar-
chitecture and provide limited evaluation scope. The main
objective of this paper is to evaluate the effectiveness of
the framework by applying it to an existing software system
available in the public domain. In particular, we want to answer
questions such as: Can Zanshin effectively adapt an existing
base system at runtime? What is the effort required to integrate
the managed system and the framework? In this experience
report, we describe the application of our proposal to an
existing software and its execution alongside our framework
in a few scenarios.

* Work done while in Trento as PhD student/post-doc.

978-1-4673-4401-2/13 © 2013 IEEE

93

Vitor E. Silva Souza*
Computer Science Department, Federal
University of Espirito Santo (Ufes), Brazil
vitorsouza@inf.ufes.br

The system chosen for this experiment was an Automated
Teller Machine (ATM) software publicly available on the
Internet for non-commercial use. Although the software itself
is a simulation of a real ATM (i.e., not the software of a
physical ATM), under the perspective of our experiments with
Zanshin it can be considered an external software. As shown
later, results indicate that our prototype framework, if further
developed, could well be applied to real-life situations and the
work done herein constitutes a first step towards this direction.

The rest of the paper is structured as following: Section II
describes the ATM exemplar and available requirements mod-
els that were used as baseline for the application of Zanshin;
Section III explains the methodology that was followed, illus-
trating how Zanshin works; Section IV shows the augmented
requirements models produced for an adaptive ATM, focussing
on a couple of adaptation scenarios; Section V briefly presents
our current framework implementation and the artifacts that
had to be created in order to integrate the ATM with it;
Section VI discusses the scenarios executed in this experiment,
presenting their results; finally, Section VII concludes.

II. THE ATM EXEMPLAR

In an “attempt to give a complete example of object-oriented
analysis, design, and programming applied to a moderate size
problem”, professor Russell C. Bjork of Gordon College, USA
published complete documentation on a Software Engineering
project for the development of a software that simulates an
Automated Teller Machine (ATM), from requirements (use
cases) to code (in Java™). The material is available freely for
non-commercial educational purposes at http://www.math-cs.
gordon.edu/courses/cs211/ATMExample/.

We should note that professor Bjork considers the ATM to
be of moderate size for the purposes of education in his SE
course, but one could argue that, for practitioners, the ATM is a
small system, or even a toy example, compared to distributed,
ultra-large systems that are developed nowadays. Still, we
consider the ATM a good baseline for our experiments.

As stated earlier, the software designed and developed by
professor Bjork is not a software for an actual physical ATM
and, therefore, abstracts many issues present in a real ATM
system. We therefore avoid the term “ATM system” and,
instead, use “ATM exemplar” or simply “ATM”. An exemplar
is a shared, well-defined problem adopted by researchers of a

SEAMS 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

‘[¢7] uo peseq ‘NLV Ue seje[nwils Jey) aIem)jos e J10j syuowarinbar oy Sunuesaider jopouwr eony T Sy

pedAay
AS)-0Mm} w0y
Jaquinu Jajug

ulre1jsuod Ajijen pedAay
ﬁ uien Aanend g 7 uondwnsse ujewoq 7 ysel |eo038-1j0S e W AS-0Mm3 woly
juswauey ——— <

NId 191u3

pedAsy wo.y

NId Jo3u3
. . . . 4o
NId V4
ysodaq ajepijen @

Aejdsig uLd ¥0 anv pJed pijeA

pJed SIud SHesul

Jawolsn)

JawoIsn)

d0

< ﬁ ujw 9 Jspun ui w

9UOp suoijoesuel|

79 Jaquinu
¥0 ‘ o0 pJed 399
< uonoesueln uonoesues) AaNv
woyad 1DoRS NId Yum — peopiom
1disoal ajednusyiny ojul Jawoisnd
g pied }°9 20Npay

suoijoesueln aNv

pied PNpuo)

Anua
lojelado

J0OSuass

JaWolsnd ysed asn

sueq 03

anv ejeonuaYINYy asn

94

40 W1y uo
yueq o3} < uinp
uoISSas uoI323UuU0d
W1V HO dn 195 junowe a|qe|ieae
wingp SIqejiene ysed 109319@ Wlomiau Sunjueq

WLV 3en 0] UOI}P2UU0)

anv

e

W1V Mels
Joyesadp

J0jesado

1Y
apinoid

| %] ATM Simulatio

File

lease choose transaction type

Withdrawal

Balance Inquiry

eI

2 3
4 5 6
8 9
0
(ENTER | CLEAR | [GHNGER
OFF

[=

Fig. 2. Screenshot of the running ATM implementation.

specific field for presenting and comparing proposals. We hope
that this work helps establishing the ATM as an exemplar in
the area of adaptive systems.

Being a third-party software with extensive documentation
and complete source code available made the ATM a good
choice for this experiment. However, the material available
online modeled requirements using UML Use Cases, whereas
our framework is based on Goal-Oriented Requirements En-
gineering (GORE) [5] and represents requirements using goal
models. Earlier research at the University of Toronto (see,
e.g., [4]) had already used the ATM exemplar to experiment
with GORE-based approaches, adding a goal model that
captured system requirements. This model served as a starting
point for this evaluation.

In his masters dissertation [6], Tallabaci used the ATM
goal model as input to the Zanshin method for the design
of adaptive systems (details in sections III and IV). Since
the original requirements model was limited, it was initially
extended to include also domain assumptions and quality
constraints [7] in order to demonstrate these features of the
framework. This extended model is shown in Figure 1. The
original ATM implementation was extended as well to reflect
these modifications.

The main goal of the ATM is to provide basic banking
services, along with managerial services, such as having a
bank operator turn the ATM on/off. Serving a customer means
being able to authenticate their identity, then conduct a session
of use, composed of one or more transactions. The latter can

95

be a withdraw, a deposit, a transfer or an inquiry. Triangles
with points of ellipsis under the goals that concern these four
operations represent goal subtrees that are not relevant for the
explanations contained herein and were removed to make the
diagram simpler to read. Each transaction ends by printing a
receipt.

The Java™ implementation of the ATM can be compiled
and executed, simulating an automated teller machine. Figure 2
displays a screenshot taken after authentication of the client
and before selecting the desired transaction. The green panel
represents the ATM display, whereas the white one mocks the
printing of receipts. Input is given through the keypad and an
operations log is also available.

An important observation here is that the model provided by
the University of Toronto is a high variability model, including
alternatives for many of the system’s goals that do not exist
in the original ATM implementation. Nevertheless, we have
decided to use the original code in order to be able to make
it publicly available for the readers to download and try the
experiments for themselves. The scenarios described in this
paper did not include any of these new alternatives, but future
experiments might require some of them to be reimplemented.

III. METHODOLOGY

The objective of this experiment is the production of re-
quirements models for an adaptive system based on an existing
application and the execution of such application according to
its models following a few scenarios of failure/adaptation. To

accomplish this, we follow a methodology composed of three
phases.

In the first phase, the Zanshin method for the design of
adaptive systems is carried out. It suggests a process that can
be further subdivided in three steps:

1) Elicitation of Awareness Requirements (AwReqs):
AwRegs are requirements that talk about the states
assumed by other requirements — such as their success
or failure — at runtime. AwRegs represent situations to
which stakeholders would like the system to adapt, in
case they happen. Therefore, they constitute the require-
ments for the monitoring component of the feedback
loop that implements the adaptive capabilities of the
system. In this step, 18 AwRegs were identified for the
model of Figure 1;

2) System Identification: considering that AwReqgs can be
used as indicators of requirements convergence at run-
time, a possible adaptation strategy when they fail is to
search the solution space to identify a new configuration
— 1i.e., values for system parameters — that would im-
prove the necessary indicators. The System Identification
process is concerned with discovering such parameters
and modeling the effect that changes in them have in the
satisfaction of the indicators (AwRegs). For the ATM, for
example, 10 parameters were identified in Figure 1;

3) Specification of Evolution Requirements (EvoRegs):
the third and final step of the process is the precise
specification of the adaptation strategy to be used for
each AwRegq failure. This is done via EvoRegs, which
prescribe changes to the requirements model itself in
order to adapt, representing the requirements for the
adaptation component of the feedback loop. Strategies
can consist of precise evolution instructions or use the
information modeled during System Identification to
reconfigure the system’s parameters.

As the examples later illustrate, AwRegs and EvoRegqs are
combined in an Event-Condition-Action (ECA)-based frame-
work in which AwReq failures represent the ‘E’, applicability
conditions associated to EvoRegs compose the ‘C’ and the
EvoReq itself (i.e., the adaptation strategy) is the ‘A’. AwRegs
are also associated with resolution conditions to indicate when
the problem has been solved. Later, in Section IV, we show
part of the models produced by the application of Zanshin to
the ATM exemplar. Complete models can be found in [6] and
more details about Zanshin can be seen in [3].

In the second phase, the existing ATM implementation
was integrated with the Zanshin framework, in order for the
latter to provide the former with a generic feedback loop of
adaptation based on the models produced earlier. Since up
to this point experiments had been done using simulations
alone, which were implemented as part of the framework’s
architecture, this step included the development of a module
that exposed a remote interface that allows external systems
to communicate with Zanshin. Details in Section V.

Finally, the third phase consists of artificially adding
failures that trigger a few adaptation scenarios in order to

Process
withdraw

Perform
withdrawal
transaction

Fig. 3. Section of the ATM goal model showing AwReq AR2, which prescribes
that task Check ATM has sufficient funds should never fail.

verify that Zanshin, both method and framework, is able to
provide adaptation capabilities to a base system based on its
requirements model. These scenarios are described in the next
section, whereas their output at runtime will be shown in
Section VI.

The interested reader can repeat the same methodology to
execute the ATM experiment or a new experiment with a
system of their own. Detailed instructions to obtain, install and
use the Zanshin framework to execute one’s own simulation
or integrate an external system can be found in the project’s
wiki at https://github.com/sefms-disi-unitn/Zanshin/wiki.

IV. AN ADAPTIVE ATM

In this section, we present the models produced by the
application of Zanshin to the ATM exemplar, based on the
initial goal model provided in Figure 1. For reasons of space,
we focus on a couple of scenarios that were modeled and
implemented for this experiment: ATM printer malfunction
and shortage of cash in the ATM dispenser.

A. Shortage of Cash

In Figure 1, the goals Withdraw, Deposit, Transfer and
Inquiry were not detailed in order to make the model easier
to read. Our first scenario of failure/adaptation, however,
concerns the goal Withdraw, parts of which are now shown in
Figure 3. To successfully perform a withdraw, the ATM checks
that it has sufficient funds in its cash dispenser, represented in
the model by the task Check ATM has sufficient funds. In case
the bank notes available are not enough to serve the customer’s
request, this task fails and the whole operation is canceled.

During the first step of the Zanshin method, this “failure”
scenario resulted in AR2, an AwReq that indicates we would
like to be aware of task Check ATM has sufficient funds
failures, so that the system can respond by adapting. During
System Identification, ten different parameters were identified
for the ATM, one of which concerns this particular scenario:
NOA, or Number of Operators Available. This control variable

96

Print
receipt

| Nev(erFaiI 0

Fig. 4. Section of the ATM goal model showing AwReq AR3: task Print
should also never fail.

tells the system how many employees of the bank should
currently be available around the ATMs to assist customers
in need. The following differential relation between this pa-
rameter and AwReq AR2 was identified:

A (AR2/NOA) [0, MazOp] >0 (1)

Equation (1) tells us that if we increase NOA, the success
rate of AwReq AR2 will also increase. The rationale for this
effect is that operators are allowed to refill the ATM with cash
if their dispenser becomes empty, satisfying the customer’s
withdrawal request. The landmarks [0, MaxzOp] indicate this
relation is valid only within this interval, M axzOp being the
maximum number of operators the bank can make available
simultaneously (different branches could have different values
for this variable).

Finally, in the last step of Zanshin the precise EvoReq to
be associated with AR2 is specified:

o Adaptation strategy: Reconfigure(d);

« Applicability condition: always;

« Resolution condition: simple.

The above specification determines that whenever AR?2 fails,
Zanshin should try to reconfigure system parameters in order
to adapt. The argument & indicates the default reconfiguration
algorithm should be used, which chooses randomly from the
available parameters the one that should be changed. This
adaptation strategy is set to be always applicable and with
simple resolution condition. The latter means that the problem
will be considered fixed if a subsequent evaluation of AwReq
AR?2 is satisfiable.

B. Printer Malfunction

We have already seen in Figure 1 that a session of use
(goal Conduct ATM session) is composed of one or more
transactions (goal Conduct transactions) and that each trans-
action ends with its receipt being printed (goal Print receipt).
Considering that receipts can be very important to customers,
AwRegs AR3 is included in the model, constraining the task
Print (which operationalizes the goal) to never fail. This
section of the model is shown in Figure 4.

An obvious adaptation strategy in this case is to switch
the operationalization of this goal and use the Display task
instead. In this case, the goal’s OR-refinement is considered a
variation point and its value (i.e., which task is chosen) can be
changed in one of two ways: through reconfiguration (as in the
previous scenario) or via the change-param () instruction
in an EvoReq (details in [3]).

However, as mentioned in Section II, in this experiment
we use the original ATM implementation, which does not
implement many of the variations included in the goal model
provided by the Toronto research group. One of these varia-
tions is precisely the OR-refinement of Figure 4: the Print task
is present in the ATM’s original code, whereas the Display task
is not. Figure 4 shows it dimmed down to represent the fact
that it has not been implemented. We use a different adaptation
strategy for this case, as below:

« Adaptation strategy: Retry(5 seconds);
« Applicability condition: at most twice per session;
« Resolution condition: simple.

Hence, whenever AwReq AR3 fails, Zanshin makes the ATM
wait for 5 seconds and then tries printing the receipt again. For
each session, the Retry strategy is applicable at most twice,
after which the framework aborts (the Abort strategy is by
default the last resort for every AwReq of the system). Similar
to AR2, the problem is considered solved when the AwReq
succeeds.

V. IMPLEMENTATION

After applying Zanshin to the ATM goal model, we pro-
ceed to the second phase of the methodology described in
Section III. At this point, we have the original ATM implemen-
tation, the Zanshin framework and the requirements model for
the system, augmented with AwRegs, parameters, differential
relations and EvoRegs, which specify the requirements for
adaptation.

Our objective at this phase is to integrate the ATM imple-
mentation to the Zanshin framework so the latter would use the
requirements model of the former in order to send adaptation
instructions whenever the ATM presented a monitored failure.
To accomplish this, we need to: (a) have Zanshin provide
a remote API for use by external systems; (b) instrument
the original ATM code to report failures of the monitored
requirements; and (c) add a controller module to the ATM
exemplar that would carry the adaptation instructions received
from the framework.

A. Zanshin’s Remote API

As mentioned in Section I, previous experiments with the
Zanshin framework consisted of simulations of base systems,
developed as part of the framework’s architecture (cf. [3]). To
be able to integrate the framework with external applications,
we developed a remote server using Java™ RMI' technology.
The IZanshinServer interface is shown in Figure 5.

IRemote Method Invocation, see http://www.oracle.com/technetwork/java/
javase/tech/index-jsp-136424.html.

97

I | package it.unitn.disi.zanshin.remote;

2

3 | import java.rmi.Remote;

4 | import java.rmi.RemoteException;

5

6 | public interface IZanshinServer extends Remote {

7 String RMI_NAME = "Zanshin";

8 int RMI_PORT = 1099;

9

10 String registerTargetSystem(ITargetSystem
targetSystem, String metaModel, String model)
throws RemoteException;

11

12 Boolean isTargetSystemRegistered(String
targetSystemId) throws RemoteException;

13

14 Boolean unregisterTargetSystem(String
targetSystemId) throws RemoteException;

15

16 Long createUserSession (String targetSystemId)
throws RemoteException;

17

18 Boolean disposeUserSession(String targetSystemld,
Long userSessionld) throws RemoteException;

19

20 void logRequirementStart (String targetSystemId,
Long userSessionld, String requirementsName)
throws RemoteException;

21

22 void logRequirementSuccess (String targetSystemId,
Long userSessionId, String requirementsName)
throws RemoteException;

23

24 void logRequirementFailure (String targetSystemId,
Long userSessionId, String requirementsName)
throws RemoteException;

25

26 void logRequirementCancellation (String
targetSystemId, Long userSessionIld, String
requirementsName) throws RemoteException;

27 |}

Fig. 5. Remote interface of the Zanshin server.

As the code shows, the server exposes a few services that
allow clients to: register themselves as a target (managed)
systems in Zanshin, given their requirements models (line 10);
verify if a given ID corresponds to a registered target system
(line 12); unregister a target system, given its ID (line 14);
create/dispose user sessions for a given target system (lines 16
and 18); and log a change of state in the life-cycle of a
requirement instance (start, success, failure or cancellation),
in the context of a particular target system and user session
(lines 20-26).

When registering a system, the server receives a computer-
readable version of the system’s requirements model (e.g., the
model of Figure 1 plus the adaptation elements described in
Section IV) and prepares the system for management following
a four-step process:

1) Stores the model in an internal repository;

2) Generates Java™ classes that represent each element
of the model, founded on a meta-model of goal-based
requirements;

3) Compiles these classes to bytecode;

4) Loads the classes in memory, associating them to a
session manager.

For each user of the target system (e.g., each client per-
forming transactions using an ATM), a new session should be
registered in Zanshin. Through the session manager, the server
creates new instances for the classes that were generated dur-
ing system registration for every registered session, assigning
it a unique ID.

At this point, the target system can notify Zanshin of
changes in the life-cycle of requirements instances. Whenever

the system starts pursuing a task or verifying a domain
assumption or quality constraint, it should log a requirement
start operation in the server. Likewise, when a particular
task/assumption/constraint is satisfied, the system should log
its success (failure and cancellation are analogous). Zanshin
automatically propagates state changes up the goal hierarchy
based on the type of refinement (AND or OR).

Provided with notification of changes of state in require-
ments instances, Zanshin monitors for AwReq satisfaction
or failure? and, in the latter case, determines the EvoReq
instructions to be sent back to the target system.’ Zanshin’s
internal monitoring/adaptation cycle is detailed in [3].

The Zanshin server communicates back with the target
system through a remote callback reference that implements
the interface ITargetSystem. This object is passed as
argument during registration (see Figure 5, line 10) in order to
be stored in the session manager associated with that particular
system. Figure 6 shows the code for this Java™ interface.

The target system’s controller is, therefore, supposed to
implement all the methods declared in Figure 6, which cor-
respond to all the possible primitive EvoReq commands that
compose adaptation strategies (for a detailed table, see [3]).
For instance, when reconfiguration is used, Zanshin will call
the applyConfig () method (line 10 for local, in-session,
changes; line 12 for global, from-now-on, changes), specifying
the new system configuration as an argument.

The full source code of the Zanshin framework is avail-
able at a public version control repository: https://github.com/
sefms-disi-unitn/Zanshin.

B. ATM Monitoring

With the remote API described in the previous subsection,
we integrate the ATM original implementation to the Zanshin
framework in order to build an adaptive ATM. Here, we
describe the monitoring part of this integration, i.e., registering
the ATM as a target system, creating user sessions and logging
life-cycle changes of requirements instances.

A new module (a package called zanshin) adds to the
original ATM code new components that are needed for the
integration with Zanshin. The main class of this new mod-
ule is TargetSystemController, a singleton class that
implements the remote callback interface ITargetSystem.
This class, heretofore referred to as the controller, mediates
communication between Zanshin and the ATM. A remote
reference to it is sent to the server upon registration of the
ATM as a target system.

In order to keep the changes to the original ATM code to
a minimum,* we use Aspect Oriented Programming [8] tech-

2 At the moment of this paper’s submission, however, the AwReq monitoring
infrastructure described in [3] had not been integrated with the framework,
which was limited to monitoring AwRegs of the type “requirement R should
never fail”. The list of current Zanshin limitations is also available at the
project’s wiki.

3 Adaptation strategies were implemented in an as-needed basis, thus some
of them may not be currently available. The interested reader may check the
project’s wiki and issue tracker. Contributions are welcomed.

“In the few cases one of the original classes had to be modified, we signaled
the change with a comment: // <Zanshin Modification>.

98

I | package it.unitn.disi.zanshin.remote;

2

3 | import java.rmi.Remote;

4 | import java.rmi.RemoteException;

5 | import java.util.Map;

6

7 | public interface ITargetSystem extends Remote {

8 void abort (Long sessionIld, String awregName)
throws RemoteException;

9

10 void applyConfig(Long sessionld, Map<String,
String> newConfig) throws RemoteException;

11

12 void applyConfig(Map<String, String> newConfig)
throws RemoteException;

13

14 void changeParameter (Long sessionld, String
paramName, String value) throws
RemoteException;

15

16 void changeParameter (String paramName, String
value) throws RemoteException;

17

18 void copyData(Long sessionlId, String srcReqgName,
String dstRegName) throws RemoteException;

19

20 void disable (String reqClassName) throws
RemoteException;

21

22 void enable (String reqClassName) throws
RemoteException;

23

24 void initiate (Long sessionld, String reqName)
throws RemoteException;

25

26 void resume (Long sessionld, String reqName) throws
RemoteException;

27

28 void rollback (Long sessionld, String reqName)
throws RemoteException;

29

30 void sendWarning(Long sessionld, String actorName,

String awregName) throws RemoteException;

31

32 void suspend(Long sessionId, String reqName)
throws RemoteException;

33

34 void terminate (Long sessionId, String regName)
throws RemoteException;

35

36 void waitFor (Long sessionId, Long timeInMillis)
throws RemoteException;

37

38 void waitForFix (Long sessionId, String awregName)
throws RemoteException;

39 |1}

Fig. 6. Remote interface for a target system managed by Zanshin.

niques, in particular the AspectJ framework.’ Figure 7 shows
the code for the Init aspect, responsible for initializing the
ATM-Zanshin integration.

Init defines four point-cuts (lines 6-11), each of which
with a corresponding advice. During the execution of the
ATM, single instances of classes ATM (which represents the
ATM itself) and Frame (which holds the graphical user inter-
face components) are expected to be created. Advices applied
in point-cuts atmCreation (line 13) and frameCreation
(line 18) intercept the moment in which these components are
instantiated and inject them in the controller, which needs them
for adaptation actions later. Moreover, methods switchOn ()
(line 23) and switchOff£ () (line 28) in class ATM are
also intercepted and determine, respectively, the creation and
disposal of a user session.

Another aspect, this one responsible for monitoring the Print
task for the scenario described in Section IV-B, is called
Print and is shown in Figure 8. It defines a single point-
cut (line 7) over the printReceipt () method in class
ReceiptPrinter, responsible for printing receipts at the

Shttp://www.eclipse.org/aspectj/.

| | import atm.ATM;

2 | import java.awt.Frame;

3 | import zanshin.TargetSystemController;

4

5 | public aspect Init {

6 pointcut atmCreation(): call (ATM.new(..));

7 pointcut frameCreation(): call (Frame.new(..));

8 pointcut sessionStart():

9 execution (void ATM.switchOn());

10 pointcut sessionEnd():

11 execution (void ATM.switchOff());

12

13 after () returning(ATM atm): atmCreation() {

14 TargetSystemController controller =
TargetSystemController.getInstance();

15 controller.setAtm(atm) ;

16

17

18 after () returning(Frame frame): frameCreation() {

19 TargetSystemController controller =
TargetSystemController.getInstance();

20 controller.setFrame (frame) ;

2

22

23 after () returning(): sessionStart() {

24 TargetSystemController controller =
TargetSystemController.getInstance();

25 controller.startSession();

26 }

27

28 after() returning(): sessionEnd() {

29 TargetSystemController controller =
TargetSystemController.getInstance();

30 controller.endSession();

31 }

32 |1}

Fig. 7. Init aspect, responsible for initialization.

1 | import atm.physical.ReceiptPrinter;

2 | import banking.Receipt;

3 | import zanshin.AtmRequirement;

4 | import zanshin.TargetSystemController;

5

6 | public aspect Print {

7 pointcut printReceipt (): execution

8 (void ReceiptPrinter.printReceipt (Receipt));

9

10 before () : printReceipt () {

11 TargetSystemController controller =

TargetSystemController.getInstance();
12 controller.logRequirementStart (AtmRequirement.
T PRINT RECEIPT);

13 }

14

15 after () throwing(): printReceipt () {

16 TargetSystemController controller =
TargetSystemController.getInstance();

17 controller.logRequirementFailure (AtmRequirement.
T _PRINT RECEIPT);

18 }

19

20 after () returning(): printReceipt () {

21 TargetSystemController controller =
TargetSystemController.getInstance() ;

22 controller.logRequirementSuccess (AtmRequirement.
T_PRINT RECEIPT);

23 }

24 |}

Fig. 8. Print aspect, which monitors the Print task.

end of transactions. Three advices are applied to this point-cut:
before the method executes a start is logged (line 10), if the
method throws an exception a failure is logged (line 15) and
if the method returns properly a success is logged (line 20).
Another aspect, CashDisp, responsible for monitoring the
task Check ATM has sufficient funds for the scenario described
in Section IV-A, is very similar to the Print aspect and is
thus not shown. Monitoring could be added to other tasks
of the system in the same fashion: identify the method that
implements the task, add a point-cut to its execution and apply
advices around this point-cut to identify the start, success and
failure of the task. Cancellation would probably involve a
separate method and require another point-cut and advice.

99

Locating the proper point-cuts for monitoring could be
challenging in more complex systems, but nonetheless fea-
sible if traceability to requirements exists. Moreover, previous
studies [9] have shown that Aspect] scales to large systems.

C. ATM Adaptation

As mentioned in the previous subsection, the controller class
implements the ITargetSystem interface and a reference to
it is sent to the Zanshin server during registration. It therefore
receives from the framework calls to the methods listed in
Figure 6 whenever an adaptation strategy is being executed in
response to an AwReq failure.

The controller handles adaptation using a separate thread,
implemented in class AdaptationThread. When the sin-
gleton instance of the controller is initialized, it creates and
runs an instance of this thread and both instances share a
blocking queue, on which the thread waits for adaptation
actions to process. Whenever one of the ITargetSystem
methods is called, an object representing the called method
is created and placed in this queue. Hence, EvoReq instruc-
tions are handled in a first-come, first-served basis. More so-
phisticated controllers could support prioritization, preferably
calculated by the framework itself (future work).

Parts of the source code for the AdaptationThread
class are shown in Figure 9. The method in line 13 is called
for every item taken from the queue and identifies what is the
adaptation action to be carried out. The figure shows the parts
of the code corresponding to the printer malfunction scenario
(cf. § IV-B).

The Retry strategy that is associated with this scenario
contains, among others, the instructions wait (a few sec-
onds) and initiate (the new copy of the requirement in-
stance, so we can try again). These adaptation instruc-
tions are captured, respectively, in lines 16 and 21 of the
method that processes queue items. The former calls the
displayWaitDialog () method (line 30), whereas the
latter delegates to retryPrinterReceipt () (line 43) if
the initiate instruction refers, indeed, to the Print task.

To display a wait dialog, the adaptation thread creates an
instance of a new Ul Panel with a wait message and, using
the reference to the main Ul frame injected in the controller
(as shown earlier in Figure 7), replaces the normal panel with
the new one, sleeps for the time specified in the adaptation
instruction and switches back to the normal Ul afterwards.

Retrying the printer is a bit more elaborate and also involves
a modification in the original ATM class Transaction, in
package atm.transaction. This class has been modified
to capture exceptions coming from a defective printer com-
ponent and wait (i.e., sleep under the controller’s monitor)
for Zanshin to respond with an adaptation strategy (more
precisely, the Retry strategy). The adaptation thread, therefore,
notifies (wakes up) the main ATM thread (line 50), asking the
customer using the ATM if she is ready to proceed and try
printing the receipt again.

As Figure 9 shows, adaptations were written directly in Java
code in the adaptation thread. More complex systems would

% package zanshin;

3 | import atm.ATM;

4 | import atm.physical.CustomerConsole.Cancelled;

5 | import java.awt.Component;

6 | import java.awt.Frame;

7 | import java.util.Map;

g import java.util.concurrent.BlockingQueue;

10 | class AdaptationThread extends Thread {

11 /x ... %/

12

13 private void processAdaptationAction(

AdaptationAction action)

{g switch (action.getInstruction()) {

16 case WAIT:

17 long waitTime = Long.parselong (action.
getParams () [1] .toString());

18 displayWaitDialog (waitTime) ;

19 break;

20

21 case INITIATE:

22 String reqName = "" + action.getParams () [1];

23 if (AtmRequirement.T_PRINT_ RECEIPT.matches (
regName)) retryPrintReceipt();

24 break;

25

26 /* Other cases... */

27 }

28 }

29

30 private void displayWaitDialog(long waitTime) {

31 Component guiPanel = frame.getComponent (0);

32 WaitPanel waitPanel = new WaitPanel (waitTime);

33 frame.remove (guiPanel) ;

34 frame.add (waitPanel) ;

gg frame.revalidate();

37 Thread.sleep (waitTime) ;

38 frame.remove (waitPanel);

39 frame.add (guiPanel);

40 frame.revalidate();

41 }

42

43 private void retryPrintReceipt () {

44 String question = "Ready to proceed?";

45 String menu[] = { "Yes", "No" };

46 int answer;

47 answer = atm.getCustomerConsole() .

readMenuChoice (question, menu);

48 if (answer == 0)

49 synchronized (controller) {

gO controller.notifyAll();

1 }

52 }

53

54 /* ... %/

55 1}

Fig. 9. Parts of the AdaptationThread class.

require some kind of modularization. If architectural models
are provided, one could even use special purpose adaptation
languages, such as, for instance, Stitch [10].

In the next section, we demonstrate the steps to execute
this experiment, including the shortage of cash scenario of
Section IV-A, showing the result of the adaptation actions that
have just been described.

VI. EXPERIMENTATION

With the models described in Section IV and the imple-
mented ATM—Zanshin integration presented in Section V, we
now execute the adaptation scenarios in order to see the
Zanshin framework in action. In what follows, we present
the results for the shortage of cash (cf. § IV-A) and printer
malfunction (cf. § IV-B) scenarios, concluding with a brief
discussion of evaluation results.

A. Shortage of Cash

Back in Figure 2, we can see that the main ATM user
interface offers an ON/OFF button in the bottom-right corner

100

8 00 ATM

~
Processing method call: fail / GDetectCashAm
Processing state change: AR2 -> failed
(Session: S1) Created new session for AR2
(Session: S1) The problem has not yet been solved...
(Session: S1) Selected strategy:
ReconfigurationStrategy
(Session: S1) Applying strategy
ReconfigurationStrategy(qualia; class-level)...
Parameters chosen: [NOA]
Values to increment in the chosen parameters:

VXY O UNhkWwN—

[1.0]
Produced new config. with 1 changed parameter(s)

10 (Session: S1) AR2 has been evaluated to false

11 (Session: S1) Evaluating resolution: false

12 (Session: S1) The problem has not yet been solved...

14 | Processing method call: start / GDetectCashAm

15 Processing method call: success / GDetectCashAm

16 | Processing state change: AR2 -> succeeded

17 (Session: S1) Retrieved existing session for AR2,

one event already in the timeline

18 (Session: S1) AR2 has been evaluated to true

19 (Session: S1) Evaluating resolution: true

20 | (Session: S1) Problem has been solved. S1 ended.
N\

Fig. 10. Excerpt from the Zanshin log for the shortage of cash scenario.

8006 ATM Simulation

Wwould you like to wait for an operator?
1) Yes
2) No

Would you like to wait for an operator?
1) Yes
2) No

Fig. 11. Asking the customer if she would like to wait for an operator (zoomed
in for better visualization).

of the window. When started, the ATM is initially off. When
turned on, the system simulates the sensor that would be
responsible for indicating how many bank notes there are in
the cash dispenser by asking the user to inform the amount.

Later, if a withdraw operation is selected and the amount
to withdraw is superior to the amount of bank notes informed
when the ATM was tuned on, a failure of AR2 is triggered in
Zanshin, as can be seen in the excerpt from the log shown in
Figure 10. As prescribed by the model, the framework uses
reconfiguration as adaptation strategy, incrementing the NOA
parameter in 1 unit.

Considering the ATM as a socio-technical system [11]
composed of ATM hardware, software and bank employees, in
a real deployment of this system the increase of NOA would
trigger a notification to a human operator asking them to
load a particular ATM dispenser with more cash. Instead, in
the ATM simulation a question is presented to the customer,
asking if she would like to wait for an operator, as shown
in Figure 11. If the answer is yes and the customer tries the
withdraw again, the dispenser will have the necessary amount
of bills the second time and the operation will succeed (also
shown in the log of Figure 10).

Please insert your card

mf

[2]' Defective ATM =

| I 2 N 3
=) s)L & |
S S e | S S | R
.. [Click to inser*qard - b= sememmmmaan - T"" 5]
g . | ENTER]‘[\ scear (f canceL i

¥ Defective ATM "\

orr

Fig. 12. A checkbox allows the simulation of a defective ATM (zoomed in
for better visualization).

B. Printer Malfunction

To simulate malfunctions in the ATM’s printer, the original
implementation is modified to present a checkbox under the
keypad, as displayed in Figure 12. When checked, the ATM
behaves in a defective manner and, for this particular scenario,
throws exceptions whenever its printer is requested to print a
receipt.

With defective mode on, any print request (which hap-
pens automatically after any transaction) will trigger the
monitoring—adaptation loop of the Print task via AwReq AR3,
presented as illustration of the the ATM controller’s imple-
mentation in Section V.

In particular, Section V-C showed that the Retry strategy
associated with AR3 (cf. § IV-B) includes, among others, the
instructions wait and initiate. When received by the controller,
the wait instruction results in an informational message ap-
pearing for 5 seconds.

Right afterwards, the initiate instruction makes the con-
troller ask the customer if she is ready to proceed, giving
her the opportunity to turn defective mode off before the ATM
requests the receipt to the printer one more time. If the system
is still defective, the Retry strategy will present the same
behavior the second time, but since its applicability condition
limits its use to at most twice per session, the third consecutive
error will show a different informational message and abort.

C. Discussion

The results presented earlier suggest that Zanshin can be
applied to external systems, adding adaptation features to them
through a feedback loop based on requirements models. The
presented scenarios were very simple, but already give an
indication of the framework’s potential in real-life situations.
More complex adaptation requirements can be seen in the
complete model for the ATM [6] or the models for the Meeting
Scheduler and the Ambulance Dispatch System presented
in [3].

Our experience so far with the application of Zanshin to de-
sign different adaptive systems is that the framework presents
appropriate concepts for the elicitation of the requirements for
adaptation: AwRegs define explicitly the states of requirements
of which stakeholders would like to be aware (monitoring),

101

whereas EvoRegs prescribe what should be done in response
to some of these situations (adaptation).

Given that feedback loops are in the centerpiece of any
adaptation approach, making them first-class citizens in Re-
quirements Engineering can facilitate the job of system ana-
lysts when adaptation is an important aspect of the system-
to-be. The feedback loop concepts present in the modeling
language help analysts and stakeholders to think and commu-
nicate in terms of ‘which failures should we be aware of?’ and
‘what should we do in case they happen?’

Indeed, being based on feedback loops and having its
generic functionality already implemented eased the process
of designing and developing the ATM’s adaptation scenarios.
Instead of implementing each scenario from scratch, it was
enough to provide a declarative model of the adaptation re-
quirements and integrate the ATM with the Zanshin framework
through aspects (monitoring) and a blocking queue (adapta-
tion).

The most challenging step of the process was finding the
proper point-cuts for monitoring and tweaking the original
implementation to support the adaptation actions. Our experi-
ment, however, didn’t include elicitation of requirements from
stakeholders, which is traditionally a very challenging task,
nor reverse-engineering of the requirements model from an
existing software, which is not a trivial job either. Having the
goal model provided allowed us to jump to later stages of the
process and focus on the application of our framework to the
problem at hand.

There are, however, some limitations of the proposal and
threats to validity of this evaluation. First, evaluation involving
practitioners outside our research group have not been con-
ducted. Moreover, the framework offers little tool support and
is currently a prototype under development. Also, although
scalability tests of Zanshin have been presented before (cf.
[3]), one that involves a base system as the ATM would be
necessary to evaluate the performance of the Remote API.

Nonetheless, the fact that Zanshin was successfully inte-
grated with an existing application, using an amount of effort
proportional to its size, and that it effectively augmented
such application with adaptation features can be considered
an interesting contribution to the maturity of our proposal.

VII. CONCLUSIONS

In this paper, we reported on the experience of using
Zanshin for the design of adaptive systems to an existing
application: a software that simulates an ATM. Models of the
system’s adaptation requirements were produced, the managed
system was integrated with the adaptation framework and

a few scenarios of adaptation were executed to test their
occurrence in practice. Results indicate that the approach
and framework have the potential to be applied in industrial
settings, given proper development of the prototype framework
and tool support.

Further evaluation efforts should concentrate on measuring
the ease of use of the approach by practitioners, on the
applicability of the framework in more complex scenarios and

on comparing Zanshin to other proposals for the design of
adaptive systems. Efforts regarding this last goal have already
begun in our research group.

ACKNOWLEDGMENT

This work has been supported by the ERC advanced
grant 267856 “Lucretius: Foundations for Software Evolution”
(April 2011 — March 2016, http://www.lucretius.eu) as well
as Brazilian foundation FAPES (http://www.fapes.es.gov.br)
through the PRONEX grant #52272362.

REFERENCES

[1] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap,” in Software Engineering for Self-Adaptive
Systems, ser. Lecture Notes in Computer Science, B. H. C. Cheng,
R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer,
2009, vol. 5525, pp. 1-26.

[2] Y. Brun et al., “Engineering Self-Adaptive Systems through Feedback
Loops,” in Software Engineering for Self-Adaptive Systems, ser. Lecture
Notes in Computer Science, B. H. C. Cheng, R. de Lemos, H. Giese,
P. Inverardi, and J. Magee, Eds. Springer, 2009, vol. 5525, pp. 48-70.

[3] V.E.S. Souza, “Requirements-based Software System Adaptation,” PhD
Thesis, University of Trento, Italy, 2012.

[4] Y. Wang and J. Mylopoulos, “Self-Repair through Reconfiguration: A
Requirements Engineering Approach,” in Proc. of the 2009 IEEE/ACM
International Conference on Automated Software Engineering. 1EEE,
2009, pp. 257-268.

[5]1 A. van Lamsweerde, “Goal-Oriented Requirements Engineering: A
Guided Tour,” in Proc. of the 5t IEEE International Symposium on
Requirements Engineering. 1EEE, 2001, pp. 249-262.

[6] G. Tallabaci, “System Identification for the ATM System,” Master
Thesis, University of Trento, Italy, 2012.

[7] 1. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the Core Ontology
and Problem in Requirements Engineering,” in Proc. of the 16*" IEEE
International Requirements Engineering Conference. 1EEE, 2008, pp.
71-80.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP’97
— Object-Oriented Programming, ser. Lecture Notes in Computer
Science, M. Aksit and S. Matsuoka, Eds. Springer, 1997, vol. 1241,
pp. 220-242.

[9] A. Singh, “The Scalability of Aspect],” Masters Thesis, University of
British Columbia, Canada, 2007.

[10] S.-W. Cheng and D. Garlan, “Stitch: A language for architecture-based
self-adaptation,” Journal of Systems and Software, vol. 85, no. 12, pp.
2860-2875, 2012.

[11] V. Bryl, “Supporting the Design of Socio-Technical Systems by Ex-
ploring and Evaluating Design Alternatives,” PhD Thesis, University of
Trento, 2009.

102

