

Universidade Federal do Espírito Santo

Programa de Pós-Graduação em
Informática

Desenvolvimento Web
e Web Semântica

Prof. Vítor E. Silva Souza
0

Exercise	
 on	
 FrameWeb	
 –	
 Language	
 School	

A language school wants an information system to manage their activities. It offers courses on
many different languages and each course is organized into levels (A1, A2, B1, etc.). Because
there could be special levels such as “Technical English” or “Italian for Tourists” the system
should explicitly register which level is a prerequisite of another (but prerequisites are always of
the same language).
Each semester, the school opens classes for each level and language. Each class is identified by
a YEAR/SEMESTER code (e.g. 2011/1) and class number because more than one class can be
opened in the same semester for the same language and level. Classes take place regularly on
the same day(s) of the week at a specified time during the whole school-semester, which has
different start/end dates than normal semesters (01/01–30/06, 01/07– 31/12). The school also
specifies the minimum and maximum numbers of students that a class can take.
Once a class is open, students can register themselves for classes. A class is considered
enabled if it has the minimum number of students and full if it has reached the maximum, at
which point new registrations are not accepted unless someone forfeits their place. On the
week before the beginning of the school-semester, teachers are allocated to classes that are
enabled and at this point the class is considered started. On the other hand, classes that are
not enabled at this point are canceled. Once classes are started, no new students can register,
even if there are places available and in this state a class is canceled only if all students cancel
their registrations. Once the school-semester ends, each class is considered finished.
As stated before, teachers are allocated to classes the week before the school-semester starts.
The system should have all teachers registered before that point and, in order to avoid
problems of allocation, it should also have the information of which languages a teacher is able
to teach. After teachers are allocated to classes they can be replaced and the administration
would like to know during which period of time each teacher was responsible for the class.
Once the school-semester is over, teachers should insert into the system the mark for each
student, so it will be known if they passed the class and can move on to the next level. For
billing purposes, the system should store the full name, address and fiscal code of each
student. Proficiency tests (students that want to skip the initial levels of a language) and
management of payment of school fees are out of the scope of this system.

Given the above description:

1. Produce a FrameWeb domain model for this system;

Considering a use case for registering the marks of the students:

2. Produce a FrameWeb navigation model for this use case;

3. Produce a FrameWeb application model considering only this use case;

4. Produce a FrameWeb persistence model considering only this use case and assuming
nemo-utils was used.

Universidade Federal do Espírito Santo

Programa de Pós-Graduação em
Informática

Desenvolvimento Web
e Web Semântica

Prof. Vítor E. Silva Souza
0

Exercise	
 on	
 FrameWeb	
 –	
 Language	
 School	
 –	
 Solution	

1. Domain model

Utility package (nemo-utils):

The domain model shows classes from the domain
package and their O/R mapping. It uses all default
mapping values (all classes are persistent, mapped
to tables with the same name as the classes,
columns with same names as the attributes, etc.).
Moreover, all classes extend from
PersistentObjectSupport from nemo-utils,
shown in the diagram to the left. This inheritance
is not shown in the above diagram in order not to
pollute it with so many inheritance associations.
Finally, the above diagram repeats the {not
null} constraint to almost every attribute,
showing that maybe it should be the default value
instead of {null}. This change could be proposed
to FrameWeb 2.0.

Universidade Federal do Espírito Santo

Programa de Pós-Graduação em
Informática

Desenvolvimento Web
e Web Semântica

Prof. Vítor E. Silva Souza
0

2. Navigation model, using AJAX and PrimeFaces:

The Register Marks use case is
implemented with a single
index.xhtml page that contains
2 forms and a dialog, loaded via
AJAX instead of a full request. For
this reason, this model is quite
different from the original
FrameWeb syntax proposed in
2007.
We assume the use case follows
the sequence of interactions
shown in the diagram to the right.
The first difference here, then, is
that in 2007, using Struts2, the
use case would begin by calling
the controller (action class) and
asking it to show the index web
page. In JSF, on the other hand,
we can access directly
index.faces in the appropriate path and JSF will take care of the binding. The list of classes
the teacher is currently responsible for doesn’t have to be pre-loaded by a method like before,
in Struts2. The developer just needs to make sure that the controller is properly initialized (via
CDI) or that the accessor method (getCollection()) loads the data lazily.
Hence, step 2 of the sequence diagram consists in showing the index.xhtml page and
loading the classes in the data table component, which is part of classesForm. The p. prefix

Universidade Federal do Espírito Santo

Programa de Pós-Graduação em
Informática

Desenvolvimento Web
e Web Semântica

Prof. Vítor E. Silva Souza
0

in the components’ types indicates we are using PrimeFaces1 as JSF component library. Having
the same name as an attribute of the controller (myClasses) indicates that this is the binding
that should be set at the value="" property of the <p:dataTable /> tag. Other attributes
are shown using constraints: selectionMode=single indicates that the data table should be
configured for row selection, whereas selection=selectedClass indicates that the
instance represented by the selected row should be bound to the selectedClass attribute of
the controller. The key/value pairs at the constraints correspond almost exactly to the key/value
pairs that should be present at the tag:

<p:dataTable value="#{registerMarksController.myClasses}"
 selection="#{registerMarksController.selectedClass}"
 selectionMode="single" />

The dependency association between classesForm and the controller class represents step 3
of the use case. Constraints on this dependency indicate that: (a) the request should be done
using AJAX – ajax=true; (b) there’s no need to submit data to the controller –
process=@none; (c) the request should be triggered by the event of selecting a row of the
data table – event=rowSelect; (d) there’s a listener method to be called at the controller –
method=loadStudents; and (e) as a response for this AJAX request, only the form with the
students data table should be rendered – render=studentsForm. Such response
corresponds to step 4 of the sequence diagram.
The studentsForm.students data table shows the data loaded in the homonymous
attribute of the controller and is configured to be an editable table, with editors attached to the
cells of the mark column. This is implicit, given what this use case does, but this is a possible
point of discussion about FrameWeb: should it be implicit?
The data from the data table is sent to the controller again via AJAX (representing step 5), but
this time no event is specified, indicating that there should be a button to trigger this request.
Once it’s processed, the studentsForm.outcome modal dialog is shown with a message
indicating the result of the operation. The fact that this dialog was hidden
(rendered="false") up to this point is also implicit in the diagram, which is also another
point of discussion. The dialog concludes the use case with step 6.
Note that, this way, the teacher can go back to step 3 and select another class, which will re-
render the students data table and so on.

1 http://www.primefaces.org

Universidade Federal do Espírito Santo

Programa de Pós-Graduação em
Informática

Desenvolvimento Web
e Web Semântica

Prof. Vítor E. Silva Souza
0

3. Application model, considering only the use case “Register Marks”

The application model follows the original FrameWeb 2007 syntax. No changes are needed
here, as advanced CDI features have not been used. Considering these features is subject to
future work on FrameWeb.

Universidade Federal do Espírito Santo

Programa de Pós-Graduação em
Informática

Desenvolvimento Web
e Web Semântica

Prof. Vítor E. Silva Souza
0

4. Persistence model, considering nemo-utils and only the use case “Register Marks”

This diagram also follows standard FrameWeb 2007 syntax. Note that LangaugeClassDAO is
not shown, as it has no specific queries related to the “Register Marks” use case (only basic
DAO operations are used).

