
Monitoring and Diagnosing Malicious Attacks

with Autonomic Software�

Vı́tor E. Silva Souza and John Mylopoulos

Department of Information Engineering and Computer Science,
University of Trento, Italy

{vitorsouza,jm}@disi.unitn.it

Abstract. Monitoring and diagnosing (M&D) software based on re-
quirement models is a problem that has recently received a lot of at-
tention in field of Requirement Engineering. In this context, Wang et al.
[1] propose a M&D framework that uses goal models to diagnose fail-
ures in software at different levels of granularity. In this paper we extend
Wang’s framework to monitor and diagnose malicious attacks. Our ex-
tensions include the addition of anti-goals to model attacker intentions,
as well as context-based modeling of the domain within which our system
operates. The extended framework has been implemented and evaluated
through a series of experiments intended to test its scalability.

1 Introduction

Monitoring requirements for a software system during runtime and diagnosing
failures is an old problem in Requirements Engineering (e.g., [2]). The prob-
lem has received considerable attention recently because of the importance that
Industry and Academia are placing on adaptive/autonomic software systems.
Such systems monitor their environment, diagnose problems (such as failures,
sub-optimal behaviour, malicious attacks) and resolve them through some sort
of a compensation mechanism. Our work addresses problems in this general area.

Wang et al. have proposed a general monitoring framework, paired with a
SAT-based diagnostic reasoner adapted from Artificial Intelligence (AI) theo-
ries of action and diagnosis [1]. In this framework, software requirements are
represented as goal models [3], and they determine what data to monitor for.
At run-time, log data along with system requirements are coded into a propo-
sitional formula that is fed into a SAT solver. If the formula is unsatisfiable,
then log data are consistent with the requirements model. If not, every possible
interpretation that satisfies the formula represents a possible diagnosis of system
failure(s). The proposed framework is able to diagnose failures at different lev-
els of granularity. For instance, the diagnosis may be simply that the root-level
goal failed, or it may detail which lower-level goal actually failed. Unfortunately,

� We are grateful to Yiqiao Wang for providing us with the implementation of her
system and helping us understand it while designing its extensions.

A.H.F. Laender et al. (Eds.): ER 2009, LNCS 5829, pp. 84–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Monitoring and Diagnosing Malicious Attacks with Autonomic Software 85

Wang’s framework is limited to monitoring and diagnosing system requirements-
related failures, such as system function failures. This means that the framework
does not diagnose failures caused by unanticipated changes in the environment
(for example, a system that was built to handle up to 10 users and fails when
20+ users log in concurrently). Nor can the system deal with malicious attacks,
or failures caused by discrepancies between design models and the system’s
operations.

The main objective of this work is to extend Wang’s framework with the
purpose of monitoring and diagnosing malicious attacks. To this end, we have
added support for a richer goal model that can represent not only stakeholder
needs (goals), but also attacker intentions (anti-goals). Since the relationship
between anti-goals and attacks (the plans by which an attacker attempts to
fulfill his intentions) is notoriously context-dependent, we have also extended
Wang’s framework to represent and reason with contextual variability.

Anti-goals were proposed by van Lamsweerde et al. [4] to model security con-
cerns during requirements elicitation. They are goals that belong to external
malicious agents, whose purpose is to prevent the system from working by tar-
geting one or more of its goals or tasks. By proposing this extension to Wang’s
framework and integrating it with the diagnostic reasoning, we cover the case
in which all system components are working properly, but an external agent is
preventing the system from functioning correctly.

Contextual variability in goal models was proposed by Lapouchnian [5] as a
way to explicitly specify in the modeling notation how domain variability affects
requirements. In this work we integrate this idea in the diagnostic framework,
allowing for it to verify which goals and tasks of the model have an active
context at any given time. This mechanism fits well in the architecture of systems
that have a monitoring capability, and offers additional requirements for the
monitoring component of such systems.

The rest of the paper is divided into the following sections: section 2 presents
an overview of Wang’s framework proposed in [1]; section 3 describes our ex-
tensions to Wang’s framework. Section 4 details the implementation of these
extensions, while section 5 presents the results of the evaluation experiments for
the extended framework. Section 6 compares our proposal with related work.
Finally, section 7 concludes and sketches ideas for future work.

2 The Diagnostic Framework

Wang et al. propose a framework to monitor the satisfaction of software re-
quirements and diagnose what goes wrong in its execution in case of failure [1].
Figure 1 shows an overview of the framework’s architecture.

The framework receives as input a goal model representing system require-
ments, a common use for goal models in the past decade [3]. Goal models rep-
resent requirements in a tree-like structure that starts at the main goal of the
system and is decomposed (using AND or OR decomposition) in subgoals and
tasks, which are the monitorable leaves of the tree. Functional and non-functional

86 V.E. Silva Souza and J. Mylopoulos

Fig. 1. Overview of the monitoring and diagnostic framework [1]

requirements are modeled as hard and soft goals respectively. Tasks and goals
can also affect one another through contribution links: graph-like edges that
indicate how the satisfiability or deniability of an element can affect another
element.

Figure 2 shows the decomposition of one of the goals of the webmail system
SquirrelMail [6]. To send an e-mail, one must fulfill all the sub-goals and tasks of
goal g1’s AND-decomposition, namely, load the login form, process the send mail
request and send the message. To process the send mail request, on the other
hand, it’s enough to accomplish one of the OR-decomposed children of goal
g1.2 : either you get the compose page or you report an IMAP error. The latter
contributes positively to the non-functional requirement of usability. Possible
contributions are helps (+), hurts (−), makes (++) and breaks (−−) [3].

Fig. 2. Goal model of SquirrelMail [6] adapted from [7]

Monitoring and Diagnosing Malicious Attacks with Autonomic Software 87

Each goal and task is given a precondition, an effect and a monitor status.
Preconditions and effects are propositional formulas representing conditions that
must be true before and after, respectively, a goal is satisfied or a task is ex-
ecuted [1]. The monitor status indicates if a task or goal should be monitored
or not, making it possible to control the desired granularity level of diagnostics.
Preconditions and effects for the SquirrelMail example can be seen in [1].

The monitoring layer instruments the source code of the program in order to
provide the diagnostic layer a log, i.e., a set of truth values for an observed literal
(preconditions and effects) or the occurrence of a task at a specific time-step [1].
The diagnostic layer can then produce axioms for three main purposes:

– Deniability axioms: if, according to the log, a task or goal occurred but
either its precondition or its effect were not true before or after its occurrence,
respectively, it’s deemed denied, meaning there has been a problem with it;

– Label propagation axioms: propagate satisfiability and deniability be-
tween tasks and subgoals towards their parent goals, respecting the type of
boolean decomposition (and or or) of the ancestors;

– Contribution axioms: calculate the effect that contribution links have on
their targets based on the satisfiability or deniability of the source goal/task.

Together with the information from the log, the framework encodes all axioms
in CNF and passes them to the SAT solver. The satisfying assignments are given
to the SAT decoder, which translates them into diagnoses, i.e., information on
task/goal satisfiability/deniability. Complete formalism on the axioms produced
and algorithms used by the framework can be found in [1].

We have extended this framework in order to support contextual variability
on goals and tasks and to take into account possible anti-goals that could be
successfully preventing the system from working properly. These extensions and
the changes in the goal meta-model that were necessary to accommodate them
are presented in the following section.

3 The Proposed Extensions

In this work we propose two extensions to the framework described in section 2:

– Anti-goals: by supporting the inclusion of anti-goals in the requirements
model, the framework can correctly diagnose the case in which none of the
software components are faulty, but an external agent is preventing the sys-
tem from working properly;

– Contextual variability: by supporting contextual variability in goal mod-
els, we allow for much richer requirement models “that will in turn lead to
software systems that will deliver functionality closely matching customer
expectations under many different circumstances” [5].

These extensions not only change the implementation of the framework, but
also the format of the goal model input files, meaning they affect the goal meta-
model, which describes how goal models are built. The goal meta-model for the

88 V.E. Silva Souza and J. Mylopoulos

Fig. 3. The goal meta-model and its relationship with the Tropos meta-model in [8]

diagnostic framework extends the Tropos meta-model [8]. Figure 3 shows the
goal meta-model and its relationship with the Tropos meta-model of [8].

Starting from the GoalModel class, we can see that a goal model has a root
goal, which represents the objective of the system as a whole (in figure 2, “Sup-
port E-mail Services”). The root goal has a set of goal decompositions – and or
or, depending on the type attribute –, which allows us to define complex goals
in terms of sub-goals and tasks. Goals and tasks receive ID, name, precondition,
effect and monitor status, which can be either on or off. Goals can contribute to
other goals, specifying the metric – helps, hurts, makes, breaks – and the type: s
(propagate satisfiability), d (propagate deniability) or dual (propagate both).

Next, we detail the changes in this meta-model and in the diagnostic frame-
work for the inclusion of support for anti-goals and contextual variability.

3.1 Support for Anti-goals

Van Lamsweerde et al. propose a methodology for anti-goal analysis and their
inclusion in requirement models in order to ensure the system satisfies critical
properties such as safety, security, fault-tolerance and survivability [4]. Assuming
the use of this methodology for the elicitation of anti-goals, we’d like to support
them in the diagnostic framework.

The first step is the inclusion of the AntiGoal class and the antiGoalTrees
association in the meta-model, as shown in figure 4 (affected classes are shaded).
This allows for the inclusion of anti-goals in our goal models.

Next, we change the framework to consider the success of an anti-goal as a
diagnosis. We assume the monitoring framework is capable of instrumenting the

Monitoring and Diagnosing Malicious Attacks with Autonomic Software 89

Fig. 4. New goal meta-model with support for anti-goals

source code of the system in a way it can detect when the tasks of the anti-goal
tree successfully occur, as it already does with the tasks below the root goal. The
current diagnostic framework is then capable of telling if an anti-goal occurred.
To produce a SAT-based diagnosis we include axiom 1 in the encoded axioms.
Axiom 1. (Anti-goal satisfiability axioms) Given an anti-goal a, with start-
ing and ending time-steps ts and te and a set of target elements (goals or tasks)
{e1, e2, . . . , en}, the following axiom is produced :

∀e ∈ {e1, e2, . . . , en} : occ(a, ts, te) ∧ fd(e, s)→ fs(a, s) (1)

Intuitively, if a goal or task e is one of the targets of anti-goal a and we know
that a has been attempted and that e has been denied, we can propose as a
diagnose that a has been satisfied, meaning that there is a probability that e
is not faulty1, but a successfully prevented it from working properly. In other
words, if it weren’t for the anti-goal’s success, e would also have been successful.
As we cannot be sure the target goal/task hasn’t failed by itself, both fd(e, s)
and fs(a, s) diagnoses are proposed.

Figure 5 shows an example of an anti-goal for the SquirrelMail example of
figure 2. The anti-goal ag1 targets the goal g1 and task t1.3.

The example below shows the log for an execution of the system under a
Denial of Service (DoS) attack. Preconditions and effects for the anti-goal and
its tasks can be inferred from the log:

1 We use fault in the sense proposed by ISO/CD 10303-226: an abnormal condition or
defect at the component, equipment, or sub-system level which may lead to a failure.

90 V.E. Silva Souza and J. Mylopoulos

Fig. 5. Example anti-goal for the SquirrelMail goal model

connection available(1); occ(at1.1, 2); connection established(3);
occ(at1.2, 4); breach found(5); occ(at1.3, 6); dos attack performed(7);

url entered(8); occ(t1.1, 9); correct form(10); ∼wrong imap(11);
occ(t1.2.1.1, 12); correct key(13); occ(t1.2.1.2.1, 14); occ(t1.2.1.2.2, 15);
occ(t1.2.1.2.3, 16); webmail started(17); occ(t1.3, 18); ∼ email sent(19);

The proposed diagnoses for the example are fd(t1.3, s); fs(ag1, s), i.e., either task
t1.3 is faulty or the anti-goal ag1 prevented it from working.

3.2 Support for Contextual Variability

Lapouchnian believes that taking domain variability into consideration during
requirements modeling will lead to software systems that match more closely
customer expectations under many different circumstances. High-variability goal
models attempt to capture many different ways goals can be met in order to
facilitate in designing flexible, adaptive or customizable software [5].

Take, for instance, the example of figure 6. In this example, we extended the
SquirrelMail example of figure 2 to capture the possibility of serving Web Ser-
vices requests and performing auto-login in case the user has been authenticated
before. New elements added to the goal model are shaded and, for reasons of
space, only the subtree of goal g1.2 is shown.

This causes a problem in our diagnostic framework: for goal g1.2.1 to occur,
since it’s AND-decomposed, both login and auto-login tasks must occur, which
is redundant. With support for contexts, all we have to say is that these tasks
occur in different contexts. Furthermore, contexts can help decide which route
to take to fulfill a goal in case of an OR-decomposition, such as goal g1.2 : when
a Web Services request is detected, follow goal g1.2.3, otherwise try goal g1.2.1.

To define contexts and annotate goal model elements with them, changes in
the goal meta-model are necessary. Figure 7 shows the new classes added to the
meta-model (shaded) and their relationship with the existing ones.

Goal models can now define context dimensions and organize them in hierar-
chies: a context dimension is either defined by sub-dimensions or by a formula in
propositional logic. Then, goals, tasks and links can be annotated with context
to indicate it only makes sense for them to occur if the context is active.

Figure 8 presents the context hierarchies for the new SquirrelMail example
shown in figure 6. The formulas that define each leaf-level context dimension are

Monitoring and Diagnosing Malicious Attacks with Autonomic Software 91

Fig. 6. Example of a contextual goal-model based on the SquirrelMail example

shown in the diagram. Tasks t1.2.1.1 and t1.2.1.3 are annotated with dimensions
User Not Authenticated and User Authenticated, respectively, while goals g1.2.1
and g1.2.3 are annotated with Web Client and Web Services Client respectively.

Contexts are deemed inactive at time-step 0 and considered active in a given
time-step if any of their sub-contexts are active or, in the case of leaf-level dimen-
sions, if the formula is true at that time-step, considering the latest information
on the log. This means that the program code instrumented by the monitoring
framework must be capable of logging information related to these formulas.

Moreover, we’d also like to know when a goal or task has occurred outside its
context. This could mean the instrumented program code isn’t able to detect
context change or that the software is not following the specifications. For this
purpose, we also encode axioms so the result is provided as a diagnosis:
Axioms 2 and 3. (Invalid occurrence axioms) Given a goal g, with start-
ing and ending time-steps ts and te or a task a, with occurring time-step tocc.
Suppose the function context formula(e, t) that calculates the truth value of the
conjunction of all the context formulas of the annotations of element e in a given
time-step t. The following axioms are produced :

Fig. 7. Additions to the goal meta-model to deal with contextual variability

92 V.E. Silva Souza and J. Mylopoulos

Fig. 8. Contexts for the new SquirrelMail example of figure 6

occ(g, ts, te) ∧ ¬context formula(g, ts)→ iocc(g, s) (2)

occ(a, tocc) ∧ ¬context formula(a, tocc)→ iocc(a, s) (3)

Intuitively, a goal or task has an active context at a given time-step t if all of its
annotated context dimensions are active at that moment. A dimension is active
if its context formula is true. If non-leaf, its context formula is the disjunction of
the context formulas of its sub-dimensions (a non-leaf dimension is active if any
of its sub-dimensions is). Thus, axioms 2 and 3 state that if any of the contexts
annotated in the goal or task isn’t active but the goal or task occurred anyhow,
an invalid occurrence (iocc()) diagnosis should be produced.

The example below shows an execution log for the case where the auto-login
task has occurred because a cookie was detected in the user’s computer. No
diagnoses are produced, as no errors occurred.

url entered(1); http header detected(2); auth cookie detected(3);
∼ wrong imap(4); occ(t1.2.1.3, 5); correct key(6); occ(t1.2.1.2.1, 7);

occ(t1.2.1.2.2, 8); occ(t1.2.1.2.3, 9); webmail started(10); occ(t1.3, 11);
email sent(12);

4 Implementation

Wang et al. [1] describe the main algorithms used by the diagnostic framework.
In this section, we present the new algorithms that were included in order to
produce new axioms that allow the SAT solver to diagnose malicious attacks
and consider contextual information.

The encode anti goal axioms algorithm analyzes all anti-goals in the goal
model that occurred according to the log. For every target of the occurring
anti-goals, it encodes an anti-goal success axiom in the form occ(ag, ts, te) ∧
fd(e, s)→ fs(ag, s).

encode anti goal axioms(goal model, log) {
for each occurring anti goal ag

Monitoring and Diagnosing Malicious Attacks with Autonomic Software 93

if (precond(ag) �= null) ∨ (effect(ag) �= null)
for each element e in targets(ag)

Φ← Φ ∧ encodeAntiGoalSuccessAxiom(ag, e)
return Φ

}

To produce invalid occurrence axioms such as occ(g, ts, te) ∧ ¬context formula
(g, ts) → iocc(g, s) (for goals) and occ(a, tocc) ∧ ¬context formula(a, tocc) →
iocc(a, s) (for tasks), the algorithm encode invalid occurrence axioms was im-
plemented. This algorithm analyzes every goal and task that has occurred and is
annotated with contextual information. For each context dimension annotated
in the element, it builds the contexts formula and encodes the invalid occurrence
axiom.

encode invalid occurrence axioms(goal model, log) {
for each occurring goal and task e

if (context annotations(e) �= null)
for each context dimension c in annotations(e)

Δ← Δ ∧ build context formula(c, log)
Φ← Φ ∧ encodeInvalidOccurrenceAxiom(e, Δ)

return Φ
}

Each context dimension’s formula is built with algorithm build context formula,
which recursively navigates the context hierarchy depth-first, joining the leaf-
dimensions’ formulas in a disjunction.

build context formula(c, log) {
if (hasSubDimension(c))

for each context sub dimension sc of c
δ ← δ ∨ build context formula(sc, log)

return δ
else

return formula(c)
}

Last, but not least, changes on how the framework decides if a goal has or hasn’t
occurred were made due to the new contexts support. After defining any goal
with a descendant occurring task as having occurred, confirm goal occurrence
navigates each goal sub-tree from bottom-up, canceling the goal occurrence if
any non-occurring sub-goal or task is found with an active context.

confirm goal occurrence(goal model, log, g) {
for each sub goal sg

confirm goal occurrence(goal model, log, sg)
if (decompositionType(g) = AND)

for each sub goal and task e of g

94 V.E. Silva Souza and J. Mylopoulos

if (hasNotOccurred(e) ∧ isContextActive(e))
return false

return true
}

A prototype of the diagnosing framework was developed in Java.

5 Evaluation of the Proposed Extensions

As done previously in [1], we used the SquirrelMail example to illustrate the
characteristics of the framework and evaluated its scalability using the Auto-
mated Teller Machine (ATM) simulation example [9]. The experiments were run
in a computer with an Intel Core 2 Duo P8400 2.26GHz with 3Mb L2 1066MHz
cache and 2GB DDRII 800MHz RAM.

5.1 The SquirrelMail Example

The SquirrelMail example used in [1] has been adapted to demonstrate through-
out the paper the new features of the framework.

The log data in section 3.1 shows an error in task t1.3 (and, consequently, on
goal g1), since the task has occurred but its effect (email sent) wasn’t true in the
subsequent time-step. This would usually mean task t1.3 is faulty. However, with
new support for malicious attacks diagnosis, the system also monitors for the
successful occurrence of tasks at1.1, at1.2 and at1.3, shown in figure 5, meaning
anti-goal ag1 might have been successful in stopping task t1.3 from working.
Therefore, fs(ag1, s) is included as diagnosis alongside fd(t1.3, s).

Another log is shown in section 3.2, referring to the extended SquirrelMail
example of figure 8. The log shows the case in which task t1.2.1.3 occurs in-
stead of t1.2.1.1, as the former has an active context (cookie detected on time-
step 3) and the latter doesn’t. The result is no diagnosis produced and the
goal g1.2.1 occurs normally even though it’s AND-decomposed and t1.2.1.1
doesn’t occur, as that child has an inactive context. The exact same log with-
out auth cookie detected(3) produces iocc(t1.2.1.3, s) as diagnosis, as a task (or
goal) should not occur with an inactive context.

5.2 Performance Evaluation with the ATM Example

Tests with the ATM case study were based in the goal model obtained in [1] by
reverse-engineering its OO design [9] and were also adapted to include malicious
attacks and contextual information.

The base test set is composed of 20 goal models and their respective logs. The
first model contains 50 goal model elements extracted from the ATM simulation
requirements. The other models repeat these elements to produce goal models
of sizes varying from 100 to 1000. Two new test sets were generated, one with
anti-goals and another with contextual information.

Monitoring and Diagnosing Malicious Attacks with Autonomic Software 95

Fig. 9. Performance evaluation of the ATM Simulation case study

Figure 9 shows the time in seconds (y-axis) taken to execute the diagnose in
each test set (x-axis). The lines are very close together, which shows the inclusion
of anti-goals and contextual information hasn’t changed the performance of the
diagnosing framework. The base test set starts with 0,39s in the 50-elements
goal model and goes up to 3,30s in the 1000-elements model. The test cases for
anti-goals and contextual information have times that vary from 0,36s to 3,37s
and from 0,34s to 3,00s, respectively. When contextual information is taken into
account, processing is faster because only parts of the goal model are considered
for each active context.

6 Related Work

As related work to her proposal, Wang et al. [1] cite the ReqMon framework [10]
and the works by Fickas & Feather [2] and Winbladh et al. [11]. However, none
of these deal specifically with malicious attacks or contextual information.

There are many proposals for security requirement engineering. Haley et al.
[12] define security requirements as constraints to functions of the system and
propose a framework that explicitly includes context and determines satisfac-
tion of the security requirements. Elahi & Yu [13] incorporate security trade-off
analysis into requirements engineering and develop an i*-based, goal-oriented
framework for modeling and analyzing them, accompanied by a knowledge base
of security trade-offs. Sindre & Opdahl propose ReqSec [14], a methodology that
builds on misuse cases to integrate elicitation, specification and analysis of secu-
rity requirements with the development of functional requirements of the system.
Rodriguez et al. [15] propose M-BPSec, a UML 2.0 profile over the Activity Di-
agram which allows for the capturing of security requirements and creating of
secure business processes. Mellado et al. [16] have extended the Security Re-
quirements Engineering Process for Software Product Lines (SREPPLine) for
the management of security requirements variability. These proposals focus on
security requirements from analysis to validation, but not on runtime. Our work

96 V.E. Silva Souza and J. Mylopoulos

focuses on monitoring software at runtime, for purposes of diagnosing attacks
and the system components they might affect.

Some proposals include a monitoring component, but without an associated
diagnostic engine. Giorgini et al. [17] extend the i*/Tropos modeling framework
to define Secure Tropos, which includes the concepts of trust, ownership and
delegation of permission. Within this framework, they model certain types of se-
curity requirements (for example, access control policies) and can apply formal
reasoning techniques to determine whether a system specification violates any
security requirements. This proposal does use monitoring (by actors, who can
be system, human, or organizational) to legitimize the delegation of services to
untrusted actors. Graves & Zulkernine [18] have modified an existing Intrusion
Detection System (Snort) in order to use rules with context information trans-
lated from attack scenarios written in a software specification language (AsmL).
Snort monitors the runtime operation of a system and alerts when a security
requirement has been violated.

On the context variability side, many works on context-aware systems focus on
the requirements phase. For instance, Hong et al. [19] focus on context-awareness
for product families and use problem frames for representing variability in the
problem space, rather than the solution space. For ubiquitous computing, Salifu
et al. [20] extends the notion of context as basis of the proposed methodology for
requirement elicitation. Semmak et al. [21] extends the Kaos meta-model with
variability concepts (along similar lines to our own work) in order to specify a
requirements family model, which then derives different specifications depending
on stakeholders needs. The key difference in our approach is purpose: we model
contextual variability to be able to monitor applications that have richer goal
models, such as for autonomic systems.

Ali et al. [22] propose an extension to the Tropos framework for develop-
ing location-based software. Our proposal shares a lot of similarity with theirs
(namely, context/location-based or-decomposition, and-decomposition and con-
tribution to softgoals), but focuses on monitoring and diagnosing instead of mod-
eling and analysis. Both works can be considered complimentary, as our frame-
work could be used to monitor and diagnose location-based software
developed with location-based Tropos.

7 Conclusion

By supporting anti-goals and contextual variability in the monitoring & diag-
nosis framework, we have extended the domain of applicability of Wang’s M&D
framework, notably to support monitoring and diagnosis for failures provoked
by malicious attacks. The extensions have been evaluated for feasibility and
scalability up to medium-sized goal models.

Future work includes the study of possible compensation mechanisms. Once
our system has determined that an attack is in progress, it needs to select a
compensation that will hopefully prevent the attack from succeeding. In addition,
our diagnostic reasoner needs to be complemented with probabilistic reasoning

Monitoring and Diagnosing Malicious Attacks with Autonomic Software 97

techniques that looks for probable attacks, their chances of success and the
chances of particular compensation mechanisms thwarting such attacks.

References

1. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing
software requirements. Automated Software Engineering 16, 3–35 (2009)

2. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In:
Proceedings of the Second IEEE International Symposium on Requirements Engi-
neering, vol. 1995, pp. 140–147 (1995)

3. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 167–181. Springer, Heidelberg (2002)

4. van Lamsweerde, A., Brohez, S., De Landtsheer, R., Janssens, D.: From system
goals to intruder anti-goals: Attack generation and resolution for security require-
ments engineering. In: Workshop on Requirements for High Assurance Systems
(RHAS 2003), pre-workshop of the 11th International IEEE Conference on Re-
quirements Engineering, Software Engineering Institute Report, September 2003,
pp. 49–56 (2003)

5. Lapouchnian, A., Mylopoulos, J.: Modeling domain variability in requirements en-
gineering with contexts. In: ER 2009: Proceedings of the 28th International Con-
ference on Conceptual Modeling, Springer, Heidelberg (2009)

6. Castello, R.: Squirrelmail (2009), http://www.squirrelmail.org
7. Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., do Prado Leite, J.:

Reverse engineering goal models from legacy code. In: Proceedings of the 13th IEEE
International Conference on Requirements Engineering, 2005, August -2 September
2005, pp. 363–372 (2005)

8. Susi, A., Perini, A., Mylopoulos, J., Giorgini, P.: The tropos metamodel and its
use. Informatica 29, 401–408 (2005)

9. Bjork, R.C.: Atm simulation (2009),
http://www.cs.gordon.edu/courses/cs211/ATMExample/

10. Robinson, W.N.: Implementing rule-based monitors within a framework for con-
tinuous requirements monitoring. In: HICSS 2005: Proceedings of the 38th Annual
Hawaii International Conference on System Sciences - Track 7, p. 188a. IEEE Com-
puter Society, Los Alamitos (2005)

11. Winbladh, K., Alspaugh, T.A., Ziv, H., Richardson, D.J.: An automated approach
for goal-driven, specification-based testing. In: ASE 2006: Proceedings of the 21st
IEEE/ACM International Conference on Automated Software Engineering, Wash-
ington, DC, USA, pp. 289–292. IEEE Computer Society, Los Alamitos (2006)

12. Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: A framework for security
requirements engineering. In: SESS 2006: Proceedings of the 2006 international
workshop on Software engineering for secure systems, pp. 35–42. ACM, New York
(2006)

13. Elahi, G., Yu, E.: A goal oriented approach for modeling and analyzing security
trade-offs. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER
2007. LNCS, vol. 4801, pp. 375–390. Springer, Heidelberg (2007)

14. Sindre, G., Opdahl, A.L.: Reqsec - requirements for secure information systems,
project proposal for fritek (2007),
http://www.idi.ntnu.no/~guttors/reqsec/plan.pdf

http://www.squirrelmail.org
http://www.cs.gordon.edu/courses/cs211/ATMExample/
http://www.idi.ntnu.no/~guttors/reqsec/plan.pdf

98 V.E. Silva Souza and J. Mylopoulos

15. RodrÃguez, A., FernÃndezMedina, E., Piattini, M.: M-bpsec: A method for se-
curity requirement elicitation from a uml 2.0 business process specification. In:
Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 106–115. Springer, Heidelberg (2007)

16. Mellado, D., Fernandez-Medina, E., Piattini, M.: Security requirements variability
for software product lines, pp. 1413–1420 (March 2008)

17. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security require-
ments through ownership, permission and delegation. In: RE 2005: Proceedings of
the 13th IEEE International Conference on Requirements Engineering, Washing-
ton, DC, USA, pp. 167–176. IEEE Computer Society, Los Alamitos (2005)

18. Graves, M., Zulkernine, M.: Bridging the gap: software specification meets intru-
sion detector. In: PST 2006: Proceedings of the 2006 International Conference on
Privacy, Security and Trust, pp. 1–8. ACM, New York (2006)

19. Hong, D., Chiu, D.K.W., Shen, V.Y.: Requirements elicitation for the design of
context-aware applications in a ubiquitous environment. In: ICEC 2005: Proceed-
ings of the 7th international conference on Electronic commerce, pp. 590–596.
ACM, New York (2005)

20. Salifu, M., Nuseibeh, B., Rapanotti, L., Tun, T.T.: Using problem descriptions to
represent variability for context-aware applications. In: First International Work-
shop on Variability Modelling of Software-intensive Systems (2007)

21. Semmak, F., Gnaho, C., Laleau, R.: Extended kaos to support variability for goal
oriented requirements reuse. In: Proceedings of the International Workshop on
Model Driven Information Systems Engineering: Enterprise, User and System Mod-
els (MoDISE-EUS 2008, in conjunction with CAiSE), pp. 22–33 (2008)

22. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software modeling and analysis:
Tropos-based approach. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 169–182. Springer, Heidelberg (2008)

	Monitoring and Diagnosing Malicious Attacks with Autonomic Software
	Introduction
	The Diagnostic Framework
	The Proposed Extensions
	Support for Anti-goals
	Support for Contextual Variability

	Implementation
	Evaluation of the Proposed Extensions
	The SquirrelMail Example
	Performance Evaluation with the ATM Example

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

