
Model Predictive Control for Software Systems
with CobRA

Konstantinos
Angelopoulos

University of Trento
Trento, Italy

k.angelopoulos@unitn.it

Alessandro V.
Papadopoulos
Lund University
Lund, Sweden

alessandro@control.lth.se

Vítor E. Silva Souza
Federal University of Espírito

Santo
Vítoria, Brazil

vitorsouza@inf.ufes.br

John Mylopoulos
University of Trento

Trento, Italy
jm@disi.unitn.it

ABSTRACT

Self-adaptive software systems monitor their operation and
adapt when their requirements fail due to unexpected phe-
nomena in their environment. This paper examines the case
where the environment changes dynamically over time and
the chosen adaptation has to take into account such changes.
In control theory, this type of adaptation is known as Model
Predictive Control and comes with a well-developed theory
and myriads of successful applications. The paper focuses on
modelling the dynamic relationship between requirements
and possible adaptations. It then proposes a controller
that exploits this relationship to optimize the satisfaction
of requirements relative to a cost-function. This is accom-
plished through a model-based framework for designing self-
adaptive software systems that can guarantee a certain level
of requirements satisfaction over time, by dynamically com-
posing adaptation strategies when necessary. The proposed
framework is illustrated and evaluated through a simulation
of the Meeting-Scheduling System exemplar.

CCS Concepts

•Software and its engineering → Software creation

and management; Software verification and valida-

tion; Operational analysis;
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1. INTRODUCTION
Self-adaptive systems are expected to operate in highly

dynamic environments and fulfil multiple goals. When a
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failure is detected (i.e. a goal is not achieved) due to ex-
ternal disturbances (e.g. high workload or unexpected user
behaviour), a new configuration is adopted. Unfortunately,
composing an adaptation plan to overcome changes in the
environment is a challenging task. The main obstacle is un-
solicited interference of various parameters from the config-
uration space with multiple goals. Therefore, an adaptation
strategy A could restore the satisfaction of goal G but fail
or worsen goal G′.

Control Theory has provided prominent theoretical and
practical frameworks for dealing with systems with multiple
parameters (inputs) and assigned with multiple goals (out-
puts). Current approaches for developing self-adaptive soft-
ware either deal with each goal individually without taking
into account interferences [6, 11, 12, 32] or perform reactive
adaptation when the failure has already taken place without
any provision for the future [4,10,13,23,39] or effort for fail-
ure anticipation. For instance, when the workload grows and
a goal fails, additional resources are disposed to the system
to overcome the failure. However, if the workload is continu-
ously increasing, it would be wise to dispose more resources
than those required for satisfying the goal, in anticipation of
future failures. Other approaches [15,16,24,31] apply predic-
tive control in the domain of cloud computing to guarantee
non-functional properties. To our knowledge, despite its ef-
fectiveness, software engineers have been reluctant to adopt
predictive control for other domains, given the lack of tools
and methodologies to model, in a control theoretic context,
software requirements (functional and non-functional) and
parameters.

The main purpose of this paper is to introduce the basic
components of Model Predictive Control (MPC) for soft-
ware systems, how these are related to the requirements of
the system-to-be, and also propose a framework that sup-
ports the elicitation of the analytical models required for
MPC. We integrate MPC with previous work on require-
ments engineering for software adaptation in a framework
named CobRA 1. Then, we apply our framework to the
Meeting-Scheduler exemplar to illustrate and evaluate our
proposal.

The rest of the paper is structured as follows. Section 2
presents the research baseline for this work. Section 3 de-
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scribes the basic components of MPC. Section 4 describes
the CobRA framework. In Section 5 we evaluate CobRA us-
ing a simulation of the Meeting Scheduler and we compare
the results with those of Zanshin. Finally, in Section 6 we
compare the related work with our proposal, and Section 7
concludes the paper.

2. BASELINE
Our proposal adopts concepts from both software and sys-

tems engineering. The following provides an overview of the
baseline from each of these areas.

2.1 Goal Modeling
Goal Oriented Requirements Engineering (GORE) mod-

els elicited requirements as goals, and analyzes them accord-
ingly. Each goal is iteratively AND/OR-refined to more de-
tailed ones following Boolean semantics, until we reach goals
that are detailed enough to be operationalized (usually by
tasks). For the Meeting-Scheduler exemplar, the root goal
Schedule Meeting (see Figure 1) is refined into three sub-
goals: Collect Timetables (goal G1), Book Meeting (G2)
and Manage Meeting (G3). Goal G1 is fulfilled by either
contacting the invited participants by phone (task t1), by
email (t2) or let the system collect their timetables auto-
matically from the system’s calendar (t3). However, the last
option is available only if the domain assumption that the
participants use the system’s calendar to register their ap-
pointments holds. Next, for goal G2 to be satisfied, goal G4:
Find Room must be satisfied either by letting the meeting
organizer select a room from the list (t4) or from those sug-
gested by the system (t5). Finally, the meeting organizer
should manage the meeting (G3) by confirming its occur-
rence or cancellation (t7) and t8 respectively), by sending
reminders to the participants (t9) and notifying them about
any change concerning the scheduled meeting (t10).

While goals and tasks represent the functional require-
ments of the system, soft-goals capture desired non-
functional properties. Each of the elicited soft-goals is quan-
tified by a quality constraint that allows reasoning about
their fulfillment at runtime. For instance, soft-goal Low
Cost is satisfied when less than 500 euros is spent weekly
for organizing meetings. Good Participation is yet another
soft-goal, satisfied when 80% of the invitees show up for a
meeting.

Monitoring and evaluating requirements satisfaction is
critical for self-adaptive systems. Following the same line
of work as in [4] we use Awareness Requirements (AwReqs)
to monitor the success of other requirements. An AwReq de-
fines a constraint which triggers adaptation when violated.
For example, during an attempt to schedule a meeting, if G4
or G5 fail, a new configuration must be applied. In the same
context, if the participation is lower than what stakeholders
requested more than 25% of the times, a new adaptation is
selected. Each AwReq is associated with variables named
indicators which measure the degree of success a monitored
requirement.

Indicator values are influenced by two kinds of parame-
ters: a) environmental parameters that cannot be manip-
ulated and b) control parameters that can be adjusted at
runtime [5]. Examples of environmental parameters include
the number of meeting requests received by the system, also
participant availability and punctuality. When the number
of meeting requests is increased significantly, the value of

indicator I2 assigned to AR2 decreases, since it is harder to
find a room. Analogously, when participant punctuality or
availability decreases, the participation is lower and conse-
quently the value of I4 drops. On the other hand, control pa-
rameters are tuned by the adaptation mechanism to correct
indicator values that are out of range of prescribed thresh-
olds. For instance, from how many participants timetables
are collected FhM has an impact on how fast the meetings
are scheduled (AR5) and how good the participation is going
to be (AR4). In the same context, the maximum conflicts
allowed MCA, the number of reminders sent to the invitees
NoR, V P1 (collecting timetables by phone, e-mail or auto-
matically), V P2 (choosing to find room from a list or select
a system’s suggestion) and the numbers of local and hotel
rooms, RfM and HfM respectively, are control parame-
ters the values of which affect the outcome of the monitored
indicators.

Another kind of requirement included in our approach
is an Evolution Requirement (EvoReq) [33]. These apply
when certain conditions hold and replace temporarily or per-
manently other requirements. These changes are applied
through actions named EvoReq operations. For example,
if AR1 constantly fails, probably because the success rate
threshold is set too high, it is replaced with a new AwReq
where the threshold is 75% instead of 85%.

Apart from requirements for the system-to-be, constraints
are also imposed on the adaptation process itself, in the form
of Adaptation Requirements (AdReqs) [4]. Examples of such
constraints include how much time it should take to restore
fulfilment of a failed requirement, or how much is a control
parameter allowed to change when its value is modified.

2.2 Dynamic System Modelling
In our previous work [4,34], qualitative relations have been

used to model the relation between control parameters and
indicators. Often, using qualitative adaptation is a necessity,
given the lack of quantitative models for software systems.
However, in many cases, a sufficiently accurate quantitative
dynamic model, can be obtained through system identifi-
cation techniques [25], and can be used for control design.
Letting u(t) ∈ R

m be the vector of control parameter values
at time t, and y(t) ∈ R

p be the vector of indicators, their
respective dynamic relation is described as:

yi(t) =

p∑

j=1

ny∑

k=1

αijkyj(t− k) +
m∑

j=1

nu∑

k=1

βijkuj(t− k) (1)

for all i = 1, . . . , p, and with αijk ∈ R, βijk ∈ R. The
quantitative dynamic model (1) relates the values of the in-
dicator yi at time t with past values of all the indicators –
accounting for possible mutual influences of the indicators
– and with past values of control parameters. For example,
I1 might achieve a high value because of good management
of hotel room assignments or because of the constant failure
of I2. The reason is that if meetings fail to be scheduled,
no rooms are reserved and consequently the cost of meetings
remains low. Such implicit relationships among indicators
can be captured by model (1) to guide the adaptation pro-
cess. Notice that if some of the mentioned variables are not
influencing the value of the indicator yi(t), then the corre-
sponding parameters are simply zero. An equivalent and
more compact representation of this relation is the discrete-
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Figure 1: Meeting Scheduler goal model

time state-space dynamic model:
{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t),
(2)

where x(·) is a vector named dynamic state of the model.
While for physical systems, the state x(·) is typically asso-
ciated with meaningful physical quantities, in general the
state can be just an abstract representation of the system,
and it is not necessarily measurable. The values of the ma-
trices (A,B,C) fully describe how the inputs dynamically
affect the outputs of the system, and these matrices are the
outcome of the System Identification process.

The analytical model of Equation (1) shows that the sys-
tem’s output might be related to past outputs and control
inputs. Indicators related to aggregate AwReqs [35] express
success rates over time about the satisfaction of an associ-
ated goal and, therefore, their current values are naturally
bound to their past values and to the values of AwReqs that
produced them. These are dynamic systems in Control The-
ory. In case no relation with past behaviour of the indicators
and of the control inputs is present, A is a matrix with all
zero elements, and the system is just mapping inputs to out-
puts with the static relation:

y(t) = CBu(t− 1).

Therefore, the model of Equation (2) accounts for both dy-
namic and static systems.

Equation (2) can be used to design a control system able
to adjust the values of every control parameter, in order to
make each indicator converge to the value prescribed by an
AwReq threshold — under the assumption that the set of
chosen control parameters is able to drive the system to the
prescribed goals. In contrast to qualitative adaptation, such
quantitative models allow one to handle conflicts with pre-
cision. For example, an increase of the control parameter
MCA results in an increase of I3, as it becomes easier to

find a commonly agreed timeslot for the meeting, but the
participation might drop and consequently I4 is decreased.
The analytical model can prevent the adaptation mechanism
from decreasing I4 excessively. Performing such trade-offs
on a daily basis while taking into account priorities among
indicators based on their business value (higher priority in-
dicators should converge faster than less important ones),
and preferences among control parameters (e.g. increasing
RfM is preferred to increasing HfM) is a complex process.
In the next section we present a control-theoretic approach
in order to efficiently implement this process and maintain
an equilibrium among conflicting goals.

3. MODEL PREDICTIVE CONTROL
Based on the dynamic model of Equation (2), differ-

ent control strategies can be designed. We here extend
our previous work [3] and present a receding horizon MPC
[7, 27] that is able to manage the achievement of multiple
conflicting goals by means of multiple control parameters.
When the controller is complemented with a Kalman Filter
(KF) [25], it can learn online how to adapt the controller
to the system’s behaviour, overcoming inevitable inaccura-
cies coming from dynamics not captured from model (2) and
unknown disturbances acting on the system.

MPC is a control technique that formulates an optimiza-
tion problem to use a set u(·) of control parameters (actua-
tors) to make a set of indicators y(·) achieve a set of goals
y◦(·) over a prediction horizon H . At every control instant
t, the values of the control parameters u⋆ are obtained by
minimizing a cost function Jt, subject to given constraints.
The optimization problem includes a prediction of the future
behaviour of the system based on the dynamic model (2).
An obtained solution is therefore a plan of the future con-
trol parameter values u⋆ = [u⋆

t , u
⋆
t+1, . . . , u

⋆
t+H−1] over the

prediction horizon. This planning is especially needed in the
case of delay in the effects of changes of control parameters.



For example, increasing the number of hotel rooms requires
approval by the administration council that meets only ev-
ery 2 days. Hence, the adaptation mechanism must be aware
of when changes to control parameters impact on the indica-
tors and make look-ahead plans. According to the receding
horizon principle, only the first computed value u⋆

t is ap-
plied to the system, i.e. u(t) = u⋆

t . The reason is that for
real-world systems, it is impossible to derive perfect models
that describe their dynamic behaviour. Therefore, the plan
must be corrected at each step and the horizon recedes by
one unit. Another reason the plan might fail is a change in
the external disturbances (e.g. system workload). In other
words, the plan would have been followed as is only if a per-
fect model were available and no disturbances were present,
which in practice is impossible. To tackle this obstacle, at
the next control instant, a new plan is computed according
to the new measured values of the indicators. This accounts
for modelling uncertainties, and possible unpredictable be-
haviours of the system that are not captured by model (2).

3.1 Formal description
In order to present the underlying rationale of the MPC, it

is convenient to rewrite dynamic model (2) in an“augmented
velocity form”:

x̃(t+1)
︷ ︸︸ ︷
[
∆x(t+ 1)

y(t)

]

=

Ã
︷ ︸︸ ︷
[
A 0n×p

C Ip×p

]

x̃(t)
︷ ︸︸ ︷
[
∆x(t)
y(t− 1)

]

+

B̃
︷ ︸︸ ︷
[

B

0p×m

]

∆u(t)

y(t) =

C̃
︷ ︸︸ ︷
[
C Ip×p

]

x̃(t)
︷ ︸︸ ︷
[
∆x(t)
y(t− 1)

]

(3)

Here, ∆x(t) = x(t) − x(t − 1) is the state variation and
∆u(t) = u(t)−u(t−1) is the control increment. The output
of the system y(t) is unchanged, but is now expressed with
respect to the state variations ∆x(t) and not with respect
to the state values x(t). The new dynamic model (3) is used
as a prediction model over a finite horizon H . This means
that the controller will use it to predict what values of the
states and of the indicators are going to be after H time
steps from the current one. The MPC controller minimizes
the cost function

Jt =
H∑

i=1

[y◦

t+i − yt+i]
T
Qi [y

◦

t+i − yt+i]

+ [∆ut+i−1]
T
Pi [∆ut+i−1] ,

where Qi ∈ R
p×p and Pi ∈ R

m×m are symmetric positive
semi-definite weighting matrices, that respectively represent
the importance of the distance between the goals and the
current values and the “inertia” in changing the values of the
actuators. In particular, Qi is a diagonal matrix that con-
tains the values of the set of weights that can be obtained by
applying Analytical Hierarchy Process (AHP) [22], in which
the stakeholders perform pairwise comparisons to prioritize
the elicited goals. This means that when not all the goals are
simultaneously feasible (for example because one conflicts
with another), the controller will favour the satisfaction of
the goals with the higher weights. The matrix Pi prefer-
ences over control parameters. When a control parameter
is requested not to change frequently its value the assigned
weight must be relatively smaller than most of the weights

of the other control parameters. In the following we will
consider the weight matrix Q as Q := Q1 = Q2 = . . . = QH ,
and the weight matrix P as P := P1 = P2 = . . . = PH , i.e.,
the weight matrices are considered to be constant along the
prediction horizon.

The resulting MPC optimization problem can written as
follows:

minimize∆ut+i−1
Jt (4)

subject to umin ≤ ut+i−1 ≤ umax,

∆umin ≤ ∆ut+i−1 ≤ ∆umax,

x̃t+i = Ã · x̃t+i−1 + B̃ ·∆ut+i−1,

yt+i−1 = C̃ · x̃t+i−1,

i = 1, . . . ,H,

xt = x(t).

This formulation is equivalent to a convex Quadratic Pro-
gramming (QP) problem [27]. The problem has time com-
plexity O(H3m3) [37]. A solution to the problem consists
of a plan of optimal future ∆u⋆

t+i−1, i = 1, . . . ,H , but only
the first one is applied, i.e., ∆u(t) = ∆u⋆

t , as we explained
earlier. The new control signal is then:

u(t) = u(t− 1) + ∆u(t). (5)

The MPC strategy assumes that the state of the system is
measurable, but in many cases this is not possible. Indeed,
since there is often no correlation with physical quantities,
it is impossible to give a meaningful interpretation to x(t),
hence it is impossible to measure. However, based on the
dynamic model (2), it is possible to estimate its value mea-
suring the values of y(t) and u(t). To accomplish this, we
here use a KF that finds an estimate x̂(t + 1) of the state
x(t + 1), measuring the applied control signal u(t) and the
output y(t).

ŷ(t) = Cx̂(t)

x̂(t+ 1) = Ax̂(t) +Bu(t) +K (y(t)− ŷ(t))
(6)

Note that the variables of the KF are commonly denoted
by a “hat”, i.e., x̂(k) and ŷ(k), to distinguish them from
the variables of the dynamic model (2). Based on the state
estimate x̂(t), the KF shown in (6) computes an estimate
of the output ŷ(t), to measure the difference between the
predicted value ŷ(t) and the real value y(t). The value of
K, called Kalman gain, weights the discrepancy between the
predicted value ŷ(t) and the real value y(t), adjusting the
dynamics of the KF [25]. The estimate x̂(t) can be used, in
place of x(t), to solve the optimization problem (4).

The adopted KF has a twofold functionality. First, as
we just described, based on the dynamic model (2), it com-
putes a state estimate x̂(t) that the MPC uses to compute
the next control action. Second, it is adapting the state
estimate to the actual behaviour of the system. This is rel-
evant for a number of reasons: the controlled system may
change its behaviour over time, there might be unpredictable
disturbances acting on the system, or the system is not fol-
lowing the linear dynamics of the dynamic model (2). In
all the cases, the KF is adapting online the choice of the
estimate x̂(t), returning a value that is compatible with the
input-output behaviour of the running system, as if it was
described exactly by the dynamic model (2) [25].

The block diagram for the resulting control scheme is rep-
resented in Figure 2.
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Figure 2: Control scheme.

3.2 Formal guarantees
Applying Control Theory to software systems provides a

set of formal guarantees about the quality of the adaptation
process [14]. The MPC adopted in this work belongs to
a class of controllers named optimal controllers, since the
computation of control decisions is based on the solution of
an optimization problem. In particular, the MPC accounts
for model predictions in order to make optimal adaptation
plans with respect to system requirements, and compliance
to the requirements about the adaptation process itself [4].

The formal guarantees for the MPC have as follows. First,
it is possible to ensure that all the goals are reached, sub-
ject to actuators constraints, i.e. there exists a value of the
actuators within the given constraints specified in the op-
timization problem (4) that allow the system to reach its
goals. If this is not the case, due to the optimal nature of
the controller, the MPC finds a configuration for the actua-
tors that minimizes the distance between the indicators and
the goals. Such a distance depends on the chosen weights
for each indicator in the cost function of the optimization
problem (4).
Furthermore, since the cost function accounts for a time
horizon, it is possible to guarantee that the convergence
time is minimum. The dynamic model (2) relates control
parameters and indicators including the dimension of time.
Therefore, the adaptation mechanism is able to drive the
system to the goals as soon as possible, as specified by the
cost function of the optimization problem (4). Moreover, the
optimization problem (4) can be easily extended in order to
account for additional constraints, such as for example ones
on the indicators. AwReqs and AdReqs impose such con-
straints over the elicited goals and the adaptation process
respectively which must be taken into consideration when a
new adaptation plan is produced.

The MPC formulation is well suited for addressing also
real-time issues and have been applied to various domains,
such as aircraft control [19, 30]. Since the proposed solu-
tion requires a solution to an optimization problem at each
control instant, it is critical to discuss possible such issues.
In many cases, in fact, the time required for computing the
value of the next control action might be longer than the
time between two subsequent control actions. In order to
overcome this challenge, there is significant literature in the
control community on how to implement fast solvers [17,21],
especially for embedded systems [20], possibly co-designing
also a dedicated hardware for the solution in case of criti-
cal systems [18]. An overview on the matter can be found
in [38].

In many cases such kind of advanced algorithms are not
required when dealing with software components, and for the
most critical applications some modification to the control
problem can help in reducing the complexity. For example,

one way to reduce the complexity is to set ∆ut+1 = ∆ut+2 =
. . . = ∆ut+H−1 = 0, and let the optimization problem de-
cide only the value for ∆ut, i.e. the one that will be actually
applied to the system. This modification reduces the com-
plexity to O(m3).

Another way to deal with real-time issues is to exploit
simple properties of interior point algorithms. In fact, the
solution is obtained in a fixed amount of steps with an itera-
tive method. The current solution is always a suboptimal yet
feasible solution to the optimization problem. This means
that if the iterative method did not converge before a new
control action is required, it can be forced to stop and return
the current sub-optimal solution. This allows the controller
to fulfil real-time deadlines.

Finally, another possibility to deal with real-time dead-
lines is exploiting the proactive nature of the MPC. As we
mentioned earlier, the MPC is computing at each iteration
step a plan of future actions ∆ut+i−1, i = 1, . . . ,H , then ac-
cording to the receding horizon principle, only the first one
is applied, i.e., ∆u(t) = ∆u⋆

t . Assuming that at the next
control instant, the solver takes more time to converge and
that a new control action is required before the optimal so-
lution is found, one can store the previously computed plan
and apply the second control action, i.e., ∆u(t+1) = ∆u⋆

t+1.
This is obviously suboptimal, since it neglects the last infor-
mation about the measured output, but it is able to fulfil
the real-time deadlines.

4. APPROACH
Our approach involves two phases: a) design time phase

and b) runtime phase. During the first phase all the models
required for the MPC controller’s synthesis and tuning are
elicited, whereas during the second phase the controller is
deployed in our adaptation framework and adjusts the con-
trol parameters of the target system when required.

4.1 Design phase
Our approach starts with the elicitation of all kinds of

requirements about the target system. When all goals are
refined, AwReqs are assigned to those that are considered
most important and prone to failure. An AwReq ARi de-
fines a reference goal y◦

i (·) for the controller’s output. Ta-
ble 1 enlists all the reference goals for the Meeting-Scheduler
exemplar.

Table 1: Reference goals

AwReq y◦(·)
AR1 y◦

1(·) = 85
AR2 y◦

2(·) = 100
AR3 y◦

3(·) = 100
AR4 y◦

4(·) = 75
AR5 y◦

5(·) = 2
AR6 y◦

6(·) = 90
AR7 y◦

7(·) = 90

As we mentioned earlier, the constraints imposed by
AwReqs are not always feasible or might become infeasi-
ble in the future. For instance, the prices of hotel rooms
rise every year and consequently I1 will fail more often as
time passes. Alternatively, during summer prices are usually
higher. Hence, stakeholders could accept a lower success for
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I1 (in other words y◦

1(·) < 85). At this step of the design
phase, the domain experts, along with the stakeholders, an-
alyze and evaluate such conditions and specify EvoReqs for
the system-to-be. The EvoReqs operations defined for the
AwReqs of the Meeting-Scheduler are presented in Table 2.

Table 2: EvoReqs operations

AwReq EvoReq operation

AR1
1. Relax(AR1,AR1′ 75)
2. Strengthen(AR1,AR1′ 85)

AR2 Relax(AR2,AR2′ 90)
AR3 Relax(AR3,AR3′ 90)

AR4
1. wait(3 days)
2. Relax(AR4,AR4′ 75)

AR5 Replace(AR5,AR5′ 3)
AR6 wait(3 days)
AR7 wait(2 days)

When summer season begins and hotel prices are higher,
the first EvoReq operation is triggered relaxing the reference
goal from 85% to 75%. The second EvoReq operation is
triggered when summer season ends and the threshold is
restored to its previous value. Similarly, when AR2 and AR3
fail for more than 2 days in a row, the reference goals are
relaxed for a week2. In case of AR5, when goal G1 tends to
fail more than 2 times/week, the constraint is permanently
replaced by 3 times/week. Finally, when AR6 and AR7

2The relaxation duration and the triggering condition are
prescribed by the stakeholders.

fail for more than 2 days the adaptation mechanism ignores
them for 3 and 2 days respectively.

Next, by applying AHP, weights are elicited for each in-
dicator to capture their relative importance. As a rule
of thumb, indicators assigned to functional requirements
have higher priority compare to non-functional ones. These
weights are the values of matrix Q of the cost function. The
controller, through the optimization function, finds an equi-
librium for every goal, putting more effort on fixing the most
important ones. As for the control parameters, their weights
are empirically elicited assigning lower weights to the control
parameters we want to be tuned less often. These weights
are the values of matrix P of the cost function. In our exem-
plar, for instance, increasing the number of rooms RfM is
preferred overHfM since it is a less costly solution, does not
require any authorization and, therefore, takes effect imme-
diately. The elicited priorities for the indicators of Meeting-
Scheduler and the weights for control parameters as shown
in Table 3 and Table 4, respectively.

Table 3: Indicator Priorities

Indicator Priority
I1 0.15
I2 0.3
I3 0.3
I4 0.06
I5 0.2
I6 0.05
I7 0.04



Table 4: Control Parameter weights

Control Parameter Weight
FhM 1
MCA 1
RfM 1.2
HfM 0.6
NoR 1.2
V P1 0.8
V P2 1.4

The last set of requirements to be elicited are the AdReqs.
These requirements impose constraints to the adaptation
process itself. For the particular case of MPC, an AdReq
specifies the receding horizon of the controller and, conse-
quently, how far in the future the adaptation plan should
target. Other AdReqs might refer to the magnitude of al-
lowed change of control parameters. For instance, HfM

cannot be increase more than 5 units each time.
Finally, a quantitative model such as that in Equation 2

must be derived. Given the absence of laws of nature we ran
a long simulation of the meeting scheduler system during
which the control parameters change often and both control
input and output are recorded. With the aid of Matlab and
System Identification toolbox 3 we estimate the analytical
model of the system. Even if the system-to-be cannot be
simulated accurately, the model can be improved later on,
when the real system is deployed, by means of a learning
mechanism during the runtime phase.

4.2 Runtime phase
When the design phase is completed and the system is

implemented, the CobRA (Control-based Requirements-ori-
ented Adaptation) framework can be deployed and play the
role of the adaptation mechanism. CobRA, depicted in Fig-
ure 3, has five main components. The monitors and the
actuators that integrate CobRA with the target system are
application specific and must be implemented by the design-
ers of the system.

Requirements repository. This repository stores all
the models produced during the design phase and provides
information to the other components of the framework when
requested.

Evolution manager. This component analyzes the logs
provided by the monitors in order to identify conditions that
would trigger EvoReq operations. If a requirement is re-
placed either permanently or temporarily, it updates the re-
quirements repository.

Adaptation manager. This component translates
AdReqs to constraints for the optimization problem of Equa-
tion 4. Such constraints are related to maximum allowed de-
crease or increase of a control parameter in a single step and
the weights of all indicators and control parameters (matri-
ces Q and P ).

Learning component. Black-box system identification
does not always provide precise models about the system’s
behaviour. Therefore, we include in our framework a learn-
ing component that, based on the applied changes and the
outcome values of indicator that occurred as a result of these
changes, revises the control law to adapt to changes of the

3http://it.mathworks.com/products/sysid/
?requestedDomain=www.mathworks.com

behaviour of the system. More specifically, this component
is an implementation of the Kalman Filter as it is described
in the previous section.

MPC controller. The details of this component have
been discussed in the previous section. Summarizing its
functionalities, the MPC controller requests the require-
ments repository for the reference goal y◦(·) of each indi-
cator monitored. It then calculates the distance of each
indicator from its respective reference goal and composes an
adaptation plan that minimize every distance taking into ac-
count the indicator priorities in order to restore equilibrium,
subject to the given constraints on the control parameters.
The plan includes changes to control parameters in a prede-
fined horizon. For example, the indicators of the Meeting-
Scheduler are evaluated daily and the plan includes values
for control parameters so that indicators minimize their dis-
tance from y◦(·) for the next three days. If two days after
the plan is applied the result is not what was expected, e.g.,
because the number of meetings constantly grows, the con-
troller produces a new plan which tries to anticipated future
failures in a receding horizon fashion.

The iterative adaptation process with CobRA includes the
following steps:

1. Step 1: The monitors collect the measurements of all
the indicators of the system.

2. Step 2: The Evolution Manager examines if any event
that would trigger an EvoReq operation is present and
in that case updates the evolved requirement in the
Requirements Repository.

3. Step 3: The Adaptation Manager provides the MPC
controller with the weights for the indicators and con-
trol parameters as well as constraints for the optimiza-
tion problem.

4. Step 4: The Learning Component provides the MPC
with a corrected model of the system based on the
recent measurements.

5. Step 5: The MPC controller given the current refer-
ence goals provided by the Requirements Repository,
and the corrected model produces a revised adaptation
plan with the target each indicator value to converge
to the reference goal within the prediction horizon.

6. Step 6: The actuators apply the first step of the plan
to the system.

It is important to mention that if an a new requirement
is introduced or an older one is removed the design phase
must be repeated in order to derive a new analytical model.

5. EVALUATION
In the previous sections we provided the basic background

for the structure and functionalities of an MPC controller.
We also presented the CobRA framework that exploits stake-
holder goals and uses an MPC controller to compose dynam-
ically adaptation plans when requirements are not met. In
this section we evaluate and compare CobRA with Zanshin

that also has as its baseline for adaptation stakeholder re-
quirements and adopts concepts from Control Theory.



5.1 Methodology
We have conducted our experiments with a simulation of

the Meeting-Scheduler exemplar4 implemented in Python
and ran on a computer with an Intel i5 processor at 2.5GHz
and 16GB of RAM. We ran the simulation for 10.000 steps
while automatically modifying all the control parameters
which must cover all the range of their potential values.
The result of this process is a log file with all the values of
the inputs and outputs of the system at every step. Then,
we executed once a Matlab procedure from the Matlab Sys-
tem Identification Toolbox in order to estimate an analytical
model that describe the system’s behaviour as it is described
in Section 2.

After acquiring the system’s quantitative model, we
stress-tested the simulation by modifying various environ-
mental parameters such as the user’s availability, punctual-
ity and the number of meeting requests that must be sched-
uled every day. At this phase, we tune the controller by
modifying the weights of the outputs and the inputs. If an
indicator, especially a not very important one, constantly
overshoots, its weight must reduced. Similarly, if a control
parameter that we do not wish to change often, such as the
number of hotel rooms available, the associated weight must
be increased. As a rule of thumb the user must keep the
weight values in the same magnitude. Moreover, the order
of the modified weights of the indicators must be compli-
ant to the one the stakeholders provided. When the MPC
controller reaches a desired behaviour, the tuning phase is
completed.

Zanshin as opposed to CobRA doesn’t involve any quan-
titative models, but only qualitative relations between in-
puts and outputs based on human expertise. For example,
it is known by the domain expert that by increasing MCA

the value of I3 increases. For our experimentation we used
the default adaptation algorithm of Zanshin as described
in [32]. When a failure arrives Zanshin randomly selects
a control parameter that will improve this failure and in-
creases or decreases it by a predefined amount. Therefore,
we provided such qualitative information to Zanshin based
on a previous studies of Meeting-Scheduler [4,34].

For the evaluation and the comparison of the two frame-
works, we put the simulated system under a stress-test and
we compare the behaviour of the outputs in each case. We
also compare the values of the the cost-function described
in Section 3 through time for both frameworks, comparing
which minimizes it most. The selection of Zanshin for the
purposes of our evaluation is based on two reasons. First,
it uses the same requirements-based monitoring mechanism
using AwReqs as CobRA and therefore, customization of the
adaptation problem was required. Second, Zanshin decides
adaptation plans based on qualitative information provided
by domain experts, while CobRA uses an automatically de-
rived quantitative model that captures the dynamics of the
system.

The Meeting-Scheduler application receives daily a num-
ber of meeting requests. Once the timetables are collected,
a date for each meeting must be found. The result of the
finding date process is pseudorandom, given that it depends
on control and environmental parameters that change based
on stochastic processes we have encoded in the simulation.

4https://gitlab.com/konangelop/it.unitn.disi.konangelop.
simulations.meeting scheduler v2.git

For instance, as the availability of the participants drops,
the more often the goal Find Date will fail. Similar pseudo-
randomness has been encoded for other goals such as Find
Room and High Participation. For the purpose of our exper-
iment we run the simulation for 60 steps (simulation days),
during which the number of meeting requests gradually in-
creases and then decreases along with the participants avail-
ability. Due to space limitation, we present the results only
for indicators I1-I4.

5.2 Experimental Results
Figure 4 depicts the values of the indicators at each step

of the simulation. As the number of meetings grows the cost
for the system increases as well, resulting in the decrease of
the indicator I1. However, CobRA though manages to re-
cover by preferring local rooms over hotel rooms as it can be
seen in Figure 5, whereas Zanshin fails to restore the fail-
ure. As it concerns indicator I2, CobRA converges almost
immediately, whereas Zanshin requires considerably more
time. The reason of the delay is that Zanshin increases its
control parameters by a fixed amount rather than basing it
on the magnitude of failure as CobRA does. In the case
of I3 the human expertise provided to Zanshin matched
the identified relation we derived experimentally for CobRA,
since the two frameworks achieved almost identical values.
Finally, for indicator I4 CobRA outperforms Zanshin, by
increasing NoR more than the latter.

The last metric we use for our evaluation is the
cost-function Ĵ(t) = (y◦(t) − y(t))TQ(y◦(t) − y(t)) +
∆u(t)TP∆u(t). The value of the cost function is calcu-
lated from the measured values of the indicators and the
changes performed over the control parameters. In Fig-
ure 6 we present the individual value of the cost function
at each step the simulation, on the top and the cumulative
cost

∑

t
Ĵ(t) on the bottom. Ĵ(t) captures the magnitude

business value loss because of failing indicators and adap-
tation costs for changing control parameters. CobRA min-
imizes more at each step the cost function and by the end
of the simulation it produces more stable results. On the
other hand, Zanshin’s adaptation results in higher losses at
most steps, while the accumulated value of the cost-function
is growing monotonically. The minimization of the cost over
the simulation is highlighted in the cumulative cost showed
in the bottom graph of Figure 6.

5.3 Discussion
From the experimental results we can safely assume that

CobRA can produce adaptation plans that allow the system
to recover faster from failures while maintaining an equilib-
rium among conflicting requirements. Moreover, our frame-
work outperformed the qualitative adaptation of Zanshin in
most cases and proved that Control Theory can be applied
to generic software systems such as the Meeting-Scheduler
exemplar.

Another contribution of CobRA is that it managed to
adapt even if the underlying system has nonlinear behaviors.
The used simulator, in fact, includes also nonlinear relation-
ships between inputs and outputs, to make obtain more real-
istic behaviors. In practice most systems have input-output
relations that are nonlinear and therefore it is important for
an adaptation mechanism to handle efficiently model im-
perfections. In particular, the KF contributes to correcting
the model as the system runs, allowing MPC to make more
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accurate predictions.
For the Meeting-Scheduler exemplar a linear model was

sufficient for predicting the system’s behaviour. However,
this might not be always the case. For systems with non-
linear dynamics, either tailored models can be used [29], or
more advanced system identification techniques are avail-
able [25, 26], and nonlinear MPC formulations can be
adopted [2]. As future work we intend to evaluate further
our approach using more complex systems, identify their
particularities and apply variations of MPC to deal with
them.

A main drawback of CobRA is that it requires a simula-
tion or historical data of the system in order to derive the

analytical model it needs to operate. This is not always pos-
sible since for software systems there are no methodologies
yet, as for physical systems, to guide the system designers
simulate a model that can produce data sufficiently similar
to those of the real system. Developing such methodologies
for software engineers, as well as establishing guidelines for
tuning the MPC parameters, are part of our future research
agenda.

Finally, it is worth noting that some control parameters of
our exemplar, such the number of rooms, are discrete, but
according to the equation 1 control parameters are contin-
uous variables. In Control Theory this problem is known
as the actuation design problem. There are two different
approaches a) using rounding of the continuous variable
computed by the MPC and b) by adopting a Pulse Width
Modulation-like policy [28].

6. RELATED WORK
In the field of self adaptive systems a variety of approaches

uses optimization techniques in order to accommodate con-
flicting requirements during the adaptation process. First,
Rainbow [10], with the use of Utility Theory. The adapta-
tion strategies are defined at design time based on human
expertise and the optimal one is selected at runtime to maxi-
mize the over utility of the system. In the same line of work,
the authors of [8] propose the use of Probabilistic Model
Checking in order to compose strategies dynamically. Our
approach differs to theirs as it requires precise knowledge
of how each control parameter of the system influences the
output of the system, such as, adding one server improve
response time by one second. In systems with dynamic en-
vironments such relations might change over time and are



not always linear. CobRA’s MPC uses the derived analyti-
cal model to reason about the impact of changing a control
parameter instead of human experience and overcomes non-
linearities by applying a Kalman filter.

In [39] Zoghi et al. propose the use of Search Based Opti-
mization. This approach, similarly to ours, provides a set of
control parameters elicited using a goal model. Then con-
trol parameters that affect non-functional requirements in
the same manner are ranked by the designers of the system
and the controller uses a search algorithm to find a solution
that maximizes the total obtained utility. Human expertise
can contribute to improving software adaptation by making
optimal selections. However, the use of analytical models as
the one CobRA uses allow better precision and performance
of the adaptation process.

Sykes et al. in their work [36] assign utility properties to
all components of the system. Then based on the component
availability, the satisfaction of non-functional requirements
and the component dependencies, the adaptation mecha-
nism selects an architectural configuration. Compared to
our work, the dependencies among control parameters can
be modelled as constraints in the optimization problem that
has to be solved by the MPC controller each time the system
must adapt.

Another Requirements-based and control theoretic ap-
proach is presented in [9]. In this work the authors propose
the use of a PID controller that finds a different configu-
ration over a goal model that captures the system require-
ments. A SAT-solver is used to find the best configuration
based on goal preferences. When soft-goals are not met,
the controller tunes the values of the assigned preferences in
order the SAT-solver to find a better configuration. Even
though the approach offers an interesting way of controlling
the goal selection process, the output evaluation is limited
to a range of values Satisfied-Denied. In our approach we
monitor the success of our requirements using AwReqs and
indicators that provide measurements of higher granularity
and allow more precise adaptation.

Recently, an automated solution to introduce control in
a seamless way was proposed in [12]. This solution treats
Single Input and Single Output (SISO) systems by vary-
ing a single input and measuring the output. The solution
builds on a simple and qualitative dynamic model which is
identified online. More precise yet complicated models can
be used at the cost of a higher overhead at runtime [1].
The solution in [12] works only for SISO systems, while the
case of Multiple Inputs and Multiple Outputs (MIMO) can-
not be addressed within that framework. A possible way to
deal with MIMO systems is treated in [13] where the MIMO
control is obtained as an automated synthesis by compos-
ing SISO controllers in a hierarchical way. The approach
presented in [13] is a more modular approach with respect
to the one proposed in this paper, however it has the limi-
tation that the influence of different control parameters on
the indicators is not included in the model and it is treated
only coupling a single control parameter to a specific indi-
cator. The approach presented in this paper includes all the
mutual influences in the single model used for the control de-
sign. This can be exploited when deciding the values of the
control parameters in order to obtain a better adaptation
plan.

Finally, in the domain of Cloud Computing variations of
MPC have been applied extensively. In [15, 24] the authors

apply look-ahead control to improve the energy consump-
tion and the performance of the cloud. Similarly, in [16]
MPC is applied to improve the replica placement mechanism
and deal with multiple Service Level Objectives. These ap-
proaches offer significant improvements to their respective
applications, although are highly customized to the specific
problem they are solving. On the other hand, our approach
is more generic and therefore easier for software engineers
that have no expertise on Control Theory to use it. More-
over, in our work we integrate control design and require-
ments engineering in order to provide a guideline about to
how to integrate MPC with the development of self-adaptive
software.

7. CONCLUSIONS
The main contribution of this paper is adopt the concept

of an MPC to the design of self-adaptive software systems.
To accomplish this, we propose a framework, named CobRA,
that integrates MPC components with previous work on
software engineering for self-adaptive systems. We also pro-
vide guidelines on how to tune the variables of the MPC
controller for better results during the adaptation process.

The distinct feature of CobRA compared to other ap-
proaches is the use of an analytical model to capture the
relationship between the control parameters and the out-
put of the system. This model can accurately predict the
system’s behaviour and allows CobRA to react to environ-
mental changes and compose dynamically adaptation plans.
The analytical model is the product of an automated sys-
tem identification process, capturing relations that human
experts might not be aware of. We evaluated our framework
using an implementation of the Meeting-Scheduler exemplar
and compared the result to those of Zanshin framework.
The results of our evaluation show that control-theoretic
concepts can be very effective in producing adaptation plans
for software systems and most of the times provides better
results than human experience-based approaches.

Our approach needs to be further evaluated with more
and larger case-studies and compared with more adaptation
frameworks other than Zanshin.
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