
A Model-Driven Approach for Code Generation for Web-based
Information Systems Built with Frameworks

Nilber Vittorazzi de Almeida
Ontology and Conceptual Modeling

Research Group (NEMO)
Department of Computer Science,
Federal University of Espírito Santo

(UFES), Brazil
nilber@vittorazzi.com

Silas Louzada Campos
Ontology and Conceptual Modeling

Research Group (NEMO)
Department of Computer Science,
Federal University of Espírito Santo

(UFES), Brazil
slcampos@inf.ufes.br

Vítor E. Silva Souza
Ontology and Conceptual Modeling

Research Group (NEMO)
Department of Computer Science,
Federal University of Espírito Santo

(UFES), Brazil
vitorsouza@inf.ufes.br

ABSTRACT
In the field of Web Engineering, there are several methods proposed
for the development of Web-based information systems (WISs).
FrameWeb is a method that aims to develop WISs that use certain
types of frameworks in their architecture, proposing models that
incorporate concepts of these frameworks during system design.
The method’s modeling language is based on Model-Driven De-
velopment techniques, making it extensible to support different
frameworks and development platforms. In this paper, we present a
code generation tool for FrameWeb which harnesses the method’s
extensibility by being based on its language’s meta-models. The
tool works with an associated visual editor for FrameWeb models
and showed promising results in initial evaluation efforts.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Object oriented frameworks; • Information systems → Web
applications;

KEYWORDS
Web Engineering; Frameworks; Model-Driven Development; Code
Generation; FrameWeb

1 INTRODUCTION
Every year, there are new demands for the development of bigger
and more complex software systems [11]. As consequence, there
is an increasing need to create or improve tools and methods for
software reuse, such as, e.g., frameworks [4], to reduce development
time, keeping, however, the control and organization expected from
the application of Software Engineering techniques.

In this context, the FrameWeb method [12] was proposed to
aid a particular niche of developers, working on the construction
of Web-based information systems (WISs) which include, in their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WebMedia ’17, October 17–20, 2017, Gramado, Brazil
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5096-9/17/10. . . $15.00
https://doi.org/10.1145/3126858.3126863

architecture, certain types of frameworks which are very popular in
Web development, namely: front controller, dependency injection
and object/relational mapping frameworks. The models proposed
by the method incorporate concepts used by these frameworks,
bringing them to the architectural design phase of the software
process, helping manage the complexity behind the implementation
of the WIS and improving the communication between software
architects and programmers.

By explicitly representing concepts from the frameworks in these
models, programmers know exactly how to implement the various
code artifacts to work with their respective frameworks. Many
of these codification tasks, however, could be automated by code
generation, relieving programmers from most of the coding effort
and allowing them to concentrate more on business logic and less
on infrastructure. There are many commercial code generation
tools available, even free of charge, for Web applications based on
frameworks. However, these tools are generally limited to one or a
few specific frameworks and cannot be easily extended to support
new frameworks or platforms. Existing research (cf. Section 5)
makes use of the same techniques used by FrameWeb to promote
extensibility but, unlike FrameWeb, are not focused on the role of
frameworks in the system’s architecture.

In this paper, we propose a code generation tool for FrameWeb,
which generates code artifacts integrated with the set of frame-
works selected by developers based on the WIS’s architectural
models. Just like FrameWeb, the code generator can be extended
to support other frameworks and platforms, keeping the unified
language proposed by the method, thanks to the meta-models that
specify its modeling language. The code generator is an important
step in the evolution of the approach, as it makes it possible to con-
vert high-level Software Engineering artifacts (models) into code,
contributing to an important phase of the software process.

The rest of the paper is divided as follows: Section 2 intro-
duces research used as baseline in our work; Section 3 presents the
FrameWeb code generation tool (and the associated visual editor
for FrameWeb models), explaining how it works and how it can
be extended; Section 4 reports on the tool’s evaluation efforts; Sec-
tion 5 compares our proposal with related work; finally, Section 6
presents the conclusions.

2 BASELINE
This section summarizes the FrameWeb method and the basic con-
cepts of Model-Driven Development, on top of which we built our
proposals in this paper.

https://doi.org/10.1145/3126858.3126863

2.1 Model-Driven Development
Model-Driven Development (MDD) [8] is an approach that pro-
poses that software development, maintenance and evolution be
conducted using models, which can be validated and transformed
from one stage to another, until the level of code.

In an MDD process, models are specified with a clear abstract
syntax, with well-defined rules for its interpretation, given by meta-
models. MDD models are, thus, more easily processed by machines;
are independent of software (as code written in high-level program-
ming languages is independent from hardware); can be transformed
into code in several different programming languages; and can be
partially or completely reused in different contexts.

MDD allows developers with different levels of individual expe-
rience to work together in a project; maximizes the work effectively
done in the process; minimizes the workload needed to produce soft-
ware, which can be validated by end users in shorter time-frames
(i.e., they validate the models which generate the system); among
other advantages. For these reasons, the FrameWeb method has
been evolved from its original proposal [12] to use model-driven
tools and techniques [6].

2.2 FrameWeb
FrameWeb [6, 12] is a method for the development of Web-based
information systems (WISs) which use frameworks in their architec-
ture. The approach proposes a basic architecture which divides the
system into three main tiers (Presentation, Business Logic, and Data
Access) for better integration with three types of frameworks: Front
Controller (e.g., JavaServer Faces1), dependency Injection (e.g., Con-
texts and Dependency Injection for Java2) and Object/Relational
Mapping frameworks (e.g., Java Persistence API3).

Moreover, the method proposes a UML-based modeling language
for the construction of four different types of models (all of them
based on UML’s Class Diagram), which bring concepts used by the
aforementioned frameworks during software implementation to
the architectural design phase:

• Persistence Model: represents Data Access Objects (c.f.
the DAO design pattern [1]), responsible for the persistence
of domain objects (Data Access tier);

• Entity Model: represents domain classes and their meta-
data for object/relational mapping (Business Logic tier);

• ApplicationModel: represents the classes responsible for
the implementation of the system’s functionality (Business
Logic tier) and their relation with classes from other tiers
(i.e., the specification of dependency injections);

• Navigation Model: represent the artifacts that compose
the user interface, such as Web pages, forms, etc. and their
integration with the Front Controller (Presentation tier).

Following anMDD approach, the abstract syntax of the method’s
Domain Specific Language (DSL) is specified bymeta-models, which
are based on parts of the UML meta-model, as shown in Figure 1.
Each FrameWeb model has its syntax defined by a meta-model, e.g.,
the Persistence Model is an intance of the Persistence Meta-model,
the Entity Model is an instance of the Entity Meta-model, etc.
1JSF, http://jcp.org/en/jsr/detail?id=344
2CDI, http://jcp.org/en/jsr/detail?id=346
3JPA, http://jcp.org/en/jsr/detail?id=338

Figure 1: M1 and M2 abstraction levels for FrameWeb [6].

The meta-models corresponding to these four models are frame-
work-independent, meaning that the models at level M1 follow a
set of generic rules independent of the implementation platform
chosen (e.g., regardless if the Front Controller framework used in
the architecture is JSF or VRaptor4). The Framework Meta-model,
then, allows developers to specify the Framework Definitions, which
add to the models all the framework-dependent elements and rules.
Hence, FrameWeb’s modeling language is extensible, allowing de-
velopers to add support to new framework instances by creating
new Framework Definitions.

4http://www.vraptor.org.

http://jcp.org/en/jsr/detail?id=344
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=338
http://www.vraptor.org

Figure 2: A fragment of FrameWeb’s Navigation Meta-model.

Figure 3: FrameWeb Navigation Model using JSF.

Figure 2 displays a fragment of theNavigationMeta-model, which
defines the syntax of Navigation Models. Its meta-classes represent
components of the Presentation tier. For instance, meta-classes
Page, UIComponent and FrontControllerClass represent, respec-
tively, a dynamic Web page, an HTML form and a controller class
that mediates the communication between the page/form and the
classes in the Business Logic tier.

An instance of this meta-model (i.e., a Navigation Model) is pre-
sented in Figure 3 and is used as a running example in this pa-
per. The model represents a system that uses JSF as Front Con-
troller framework,5 i.e., the Framework Definitions for JSF have
5This model was built based on an example extracted from the tutorial found at the
website http://www.thejavageek.com/2013/12/18/login-application-jsf/.

been imported here. Stereotypes are used to identify the meta-
class of each class in the model, e.g., Page (<<page>> stereotype),
UIComponent (<<form>> stereotype), and FrontControllerClass
(no stereotype).

Themodel represents twoWeb pages (index.xhtml and success-
.xhtml), their forms (loginForm and adminForm, connected to
their respective pages by a composition association) and one con-
troller class (LoginController). The meta-model (M2) specifies
how these components (in M1) can relate to one another, allowing
some specific dependency and composition associations among
them, with well-defined meanings.

This and the other models proposed by FrameWeb specify ex-
actly how programmers should implement the interactions among
these artifacts and their relation with the framework (in the case
of Figure 3, the Front Controller framework). One could, however,
relieve programmers from most of the coding effort by generating
code based on these models. We present such a proposal next.

3 PROPOSAL
In this section, we present a visual editor and a code generator for
FrameWeb, both of them based on the same Model-Driven Develop-
ment techniques proposed by themethod [6] and, thus, extensible to
different frameworks and platforms. Interested readers can obtain
their source code and meta-models at the project’s website6.

Subsection 3.1 introduces the graphical editor capable of draw-
ing models following the languaged defined by FrameWeb. Subsec-
tion 3.2 presents the tool that generates code using such models
as input. Finally, Subsection 3.3 describes the changes made in the
meta-models proposed in [6] which allowed the development of
these tools.

6http://nemo.inf.ufes.br/projects/frameweb/.

http://www.thejavageek.com/2013/12/18/login-application-jsf/
http://nemo.inf.ufes.br/projects/frameweb/

Figure 4: Project-level view for a WIS in FrameWeb Editor.

3.1 The FrameWeb Editor
In its original proposal [12], FrameWeb models were created using
any UML editor, by using the UML Profile proposed by the method.
The main limitation of this approach is the fact that a UML Profile
is not rigorous, therefore UML modeling tools cannot prevent mod-
elers from including elements that do not belong to the (FrameWeb)
models and the fact that components of the model are not related
to a specific syntax proposed by the method, hence they cannot be
processed and interpreted by tools to provide useful features such
as, e.g., code generation.

Using MDD techniques and tools, the FrameWeb meta-models
presented in Section 2 served as basis for the development of a tool
called FrameWeb Editor, which provides a graphical editor for the
creation of valid models in this language. Such models are then used
as input for the code generator proposed in this paper. Therefore,
the FrameWeb Editor provides what is lacking in general-purpose
UML tools in the context of FrameWeb, only allowing components
to be created if they belong to the FrameWeb language and relating
the constructs of the diagram directly to the language’s syntax.

The FrameWeb Editor supports the creation of the four basic
models proposed by the method: Entity, Persistence, Application and
Navigation models, plus a project-level diagram that aggregates
these four parts as well as Framework Definitions imported to the
project. Figure 4 shows the main user interface of the tool, with
the project-level view for the login application illustrated earlier in
Figure 3 at the center of the editor. At the right-hand side, a panel
shows the different components that can be added to the diagram
at hand. At the bottom, there is a list of properties of the selected
component in the diagram, allowing the user to view and change
its attribute values. Finally, at the left-hand side, the Project Explorer
displays an overview of the project, which, in the case of Figure 4,
uses the Java platform and JSF as Front Controller framework.

Models created with the tool are saved in XML format with
.frameweb extension and can be fed to the code generator proposed
in this paper. Listing 1 displays a fragment of the XML code for
our running example, shown earlier in Figure 3. In the code, we
can identify different elements of the model shown in the figure,
such as, e.g., the packagedElement tag with name index.xhtml
and type frameweb:Page, corresponding to one of the Web pages
in the model. The reader can relate other tags in the listing with
elements of Figure 3 by looking at the name attribute of each tag
and matching with components of the figure.

Listing 1: Fragment of .frameweb file created by the
FrameWeb Editor, used as input for code generation.
<compose xsi:type="frameweb:NavigationModel" name="

↪→ Navigation Model">
<packagedElement xsi:type="frameweb:ViewPackage"

↪→ name="View Package">
<packagedElement xsi:type="frameweb:Page" name="

↪→ index.xhtml">
<ownedAttribute xsi:type="frameweb:

↪→ UIComponentField" name="info">
<type xsi:type="frameweb:Tag" href="MVC_JSF_v1.1.

↪→ frameweb#//@configures.0/JSFhtml/message"/
↪→ >

</ownedAttribute>
<ownedAttribute xsi:type="frameweb:

↪→ NavigationCompositionWhole" type="//
↪→ @compose.0/View%20Package/loginForm"
↪→ association="//@compose.0/View%20Package/
↪→ @packagedElement.5"/>

</packagedElement>
<packagedElement xsi:type="frameweb:Page" name="

↪→ success.xhtml">
<ownedAttribute xsi:type="frameweb:

↪→ NavigationCompositionWhole" type="//
↪→ @compose.0/View%20Package/adminForm"
↪→ association="//@compose.0/View%20Package/
↪→ @packagedElement.3"/>

</packagedElement>
<packagedElement xsi:type="frameweb:UIComponent"

↪→ name="adminForm">
<ownedAttribute xsi:type="frameweb:

↪→ UIComponentField" name="userName"
↪→ visibility="private">

<type xsi:type="frameweb:Tag" href="MVC_JSF_v1.1.
↪→ frameweb#//@configures.0/JSFhtml/
↪→ outputText"/>

</ownedAttribute>
<ownedAttribute xsi:type="frameweb:

↪→ UIComponentField" name="login.logout"
↪→ visibility="private">

<type xsi:type="frameweb:Tag" href="MVC_JSF_v1.1.
↪→ frameweb#//@configures.0/JSFhtml/
↪→ commandLink"/>

</ownedAttribute>
</packagedElement>

Listing 2: Fragment of the App.Config configuration file.
<appSettings>
<add key="dir_template" value="template\"/>
<add key="project" value="java_jsf"/>
<add key="lang" value="java"/>
<add key="dir_output_web" value="WebContent"/>
<add key="dir_output_class" value="src\java\"/>
<add key="ext_class" value=".java"/>
<add key="dir_profiles" value="profiles"/>

</appSettings>

The FrameWeb Editor was built on top of Eclipse Modeling Tools,7
a set of plug-ins for the Eclipse platform (which is Java-based) that
offer MDD tools such as meta-modeling, model transformation, ver-
ification, etc. FrameWeb meta-models were specified in the Eclipse
Modeling Framework (EMF) [5] and the editor developed based on
Sirius [14], which offers support for the definition of graphical rep-
resentations for meta-model elements and provides several features
that are common in graphical editors.

The interested reader can obtain detailed instructions on how to
install and use the FrameWeb Editor at the project’s repository.8

3.2 The FrameWeb Code Generator
A code generator was created to performmodel transformation into
code. This process is responsible for creating actual files (artifacts
of code) for a WIS modeled in the FrameWeb Editor. In this process,
we have as input the .frameweb file produced by the editor and as
output source code files for the system.

The code generator was built in CSharp (in the .NET platform)
due to pragmatic reasons (being the language in which the author
of this tool is most skilled). However, our short-term future plans
include rewriting it in Java in order to integrate it to the FrameWeb
Editor. It is worth mentioning that the language in which the code
generator is built in does not prevent it from generating code in
other programming languages, which depend solely on the choice
of platform for the WIS being developed (and the existence of
Framework Definitions for such platform in FrameWeb).

In order to create a flexible tool that can generate code for dif-
ferent languages and frameworks, a few configuration keys were
defined, which allow the user to set the paths (folders) in which
necessary files for the proper functioning of the generator can be
found. This allows one to include support for new platforms and
frameworks more easily. Such configuration should be done in the
App.Config file, a standard configuration file for console-based
.NET applications, illustrated in Listing 2. The meaning of each
configuration key is explained in Table 1.

As explained in Subsection 3.1, Framework Definitions can be
imported into a project in FrameWeb Editor, allowing developers
to incorporate in their models components that are specific for
a given framework or platform. Being instances of the Frame-
work Meta-model, which is part of FrameWeb’s meta-model, such
definitions are also saved in .frameweb XML files, such as the

7http://www.eclipse.org/modeling/tools.php
8https://github.com/nemo-ufes/FrameWeb.

Table 1: Description of available configuration keys.

Key Description

dir_template Root folder in which to find project and
language templates.

project The base project, which will be copied to
the output folder at the beginning of the
code generation process.

lang Folder inwhich are stored files that are spe-
cific to the chosen language, which match
the meta-classes from FrameWeb’s meta-
models.

dir_output_web Subfolder of the project’s folder in which
to generate the Web-based user interface
(e.g., Web pages).

dir_output_class Subfolder of the project’s folder in which
artifacts of the chosen programming lan-
guage are generated (e.g., classes).

ext_class File extension for the chosen programming
language.

dir_profiles Folder in which Framework Definition files
can be found.

Listing 3: Fragment of the MVC_JSF.frameweb file, which con-
tains the definition (profile) of the JSF framework.
<packagedElement xsi:type="frameweb:TagLib" name="

↪→ JSFhtml" URI="http://java.sun.com/jsf/html"
↪→ prefix="h">

<packagedElement xsi:type="frameweb:Tag"
↪→ codeGenerationTemplate="inputText.txt" name="
↪→ inputText"/>

<packagedElement xsi:type="frameweb:Tag"
↪→ codeGenerationTemplate="commandButton.txt"
↪→ name="commandButton"/>

one shown in Listing 3 for our JSF-based running example. The
MVC_JSF.frameweb file defines the HTML tags used by this particu-
lar Front Controller framework, allowing such tags to be referenced
in Navigation Models built using the tool. Listing 3 shows two JSF
components, inputText and commandButton, which were used as
types for the attributes of loginForm in Figure 3.

As we can see in Listing 3, there is an attribute named codeGene-
rationTemplate for each instance of Tag, which indicates the
name of the template file that represents that particular component
(which can be found in the folder specified in the dir_template
key in App.Config). For instance, the template contents for the
inputText tag is as follows:

<h:inputText id="FW_ID" value="#{FW_VALUE}" />

These templates include variables which are replaced by the code
generator during the model transformation process, such as FW_ID
and FW_VALUE for the inputText tag, above. These variables are
replaced by values that are read from the .frameweb files which

http://www.eclipse.org/modeling/tools.php
https://github.com/nemo-ufes/FrameWeb

Figure 5: A simple user interface for the code generator.

represent FrameWeb models. Take, for instance, the login.user
attribute from the loginForm class in Figure 3, which is defined as
being of type inputText. The result of the transformation process
for this particular model element would be as follows:

<h:inputText id="login_user"
value="#{loginController.login.user}" />

In this example, it is possible to observe that the values ob-
tained from the model of Figure 3 replaced the variables FW_ID and
FW_VALUE in the template, after being adapted to the format of each
attribute.

When executed, the code generator loads the meta-model files
for the platform and frameworks, which are found in the folder
determined by the dir_profiles key in the App.Config file. This
way, support for other platforms and frameworks can be added
to the generator in a straightforward manner, by creating a new
Framework Definition file (also in .frameweb format) and the corre-
sponding template files.

Table 2 lists the main variables used by the code generator and
their respective meta-classes. When an instance of a given meta-
class is found in the FrameWeb model, the generator processes
the appropriate template, replacing the variables listed in the table
for the given meta-class with the corresponding value used in the
model.

While our running example focuses on the Navigation Model,
the code generator also supports Entity and Application models,
creating source code files for each class in these models. The gener-
ation process is analogous to the one described in this subsection,
with templates containing the skeleton code for each different class,
according to the chosen frameworks and platforms. Support for the
Peristence Model is currently under development.

To facilitate the use of the code generator, a very simple desktop
application was created, as shown in Figure 5. By clicking in its
buttons, the user can specify the .frameweb file created with the
FrameWeb Editor and generate code for its models.

3.3 Evolution of the FrameWeb Meta-model
During the development of the FrameWeb Editor and the code gen-
erator, the original FrameWeb meta-models proposed in [6] had to

Table 2: Main variables and respective meta-classes.

Meta-class: FrontControllerClass
Template variable Value captured from the model

FW_CLASS_NAME Name of the class.
FW_BEAN_NAME Name of the bean, i.e., name used to

refer to the class in Web pages.
FW_FRONT_CONTRO-
LLER_PARAMETERS Attributes of the controller class.
FW_FRONT_CONTRO-
LLER_METHOD Methods of the controller class.

Meta-class: FrontControllerMethod

Template variable Value captured from the model

FW_METHOD_RET-
URN_TYPE Return type of the method.
FW_METHOD_NAME Name of the method.

Meta-class: IOParameter

Template variable Value captured from the model

FW_PARAMETER_TYPE Type fo the parameter.
FW_PARAMETER Name of the parameter.
FW_PARAMETER_FIRST-
_UPPER Same as above, but with first letter in

upper case.

Meta-class: UIComponent

Template variable Value captured from the model

FW_BODY Entire contents of the generated page.
FW_ID Name of the component.
FW_VALUE Name of the controller and name of

the component, separated by a dot.

Meta-class: ServiceInterface
Template variable Value captured from the model

FW_INTERFACE-
_NAME Name of interface.
FW_INTERFACE-
_METHOD Public methods of the interface, cap-

tured automatically from the classes
taht implement it.

go through a few corrections and improvements to suit the needs
of these tools, namely:

(1) The new attribute versionwas added to meta-class Frame-
workProfile, in order to account for the version of the
framework being defined;

(2) Themeta-class Resultwas removed and replaced by a new
attribute of type String in themeta-class ResultConstraint,
as the value set to the result is always a simple string;

(3) The meta-class DomainAttribute was changed from ab-
stract to concrete to allow the creation of domain attributes
without any special object/relational mapping (i.e., they
assume the default mapping);

Table 3: Comparison between a real project (course assign-
ment) and generated code from our tool.

Files (xhtml) Original Generated Coverage (%)

formNovoUsuario 68/162 52/66 76% / 40%
formUsuario 69/154 55/66 79% / 42%
listUsuario 32/77 23/31 71% / 40%

(4) The new attribute codeGenerationTemplate was added to
the meta-class Tag, in order to specify the name of the tem-
plate file for each tag of the Front Controller framework;

(5) The attributes collection, fetch, order e cascade were added
to meta-class DomainConstraints in order to represent
Object/Relational mappings that were missing;

(6) The attributemethodTypewas added tometa-classes Servi-
ceMethod, FrontControllerMethod, DAOMethod and Do-
mainMethod in order to represent these method’s return
types.

4 EVALUATION
The main purpose of FrameWeb’s code generator is to decrease the
manual effort during the development of Web-based information
systems (WISs). Therefore, to evaluate our proposal, we used a
course assignment developed by graduate students from our uni-
versity in the context of a Web Development course,9 regenerating
their code based on FrameWeb models and comparing with the
original, to see how much coding effort can be automated.

As done with our running example, we also focused here on
the Navigation Model for the evaluation, adopting the following
methodology: (1) the artifacts related to a given functionality of the
systemwere identified; (2) based on the codewritten by the students,
FrameWeb models were created using the FrameWeb Editor; (3)
code was generated from the models; (4) the results of the code
generation process were compared with the original code by the
students. The metrics for evaluation were based on the amount of
tags and tag attributes generated versus the actual number of tags
(and their attributes) written by the students. Tags that are used
for particular purposes (such as
 e <hr />, for page layout)
were not included in the count.

Table 3 shows the result of the evaluation using one of the course
assignments. The Original column displays the amount of tags/at-
tributes found in the original files. The Generated column con-
tains the amount of tags/attributes generated automatically by
FrameWeb’s code generator. The last column shows the percentage
of coverage of generated tags/attributes, compared to the original
files.

We can observe in Table 3 results above 70% for all generated
Web pages with respect to tags, with around 40% of their attributes
included, with no effort from the programmer. The low count for
attributes was expected, given that FrameWeb models do not in-
clude the same level of details as the Web pages themselves. This
evaluation, however, can be used as input for further evolutions of
the method’s meta-models, allowing for new tag attributes to be
9The source code of the assignment is available at https://github.com/dwws-ufes/
2015-searchpapers.

Table 4: Comparison between a real project (running exam-
ple) and generated code from our tool.

Files (xhtml) Original Generated Coverage (%)

index 6/7 6/7 100% / 100%
success 1/1 1/1 100% / 100%

specified using the FrameWeb Editor and, thus, generated automati-
cally.

It is also important to note that some of the course assignments
produced by students used container tags, such as panelGroup
or panelGrid, which are not yet supported by the code genera-
tor (only forms are containers of components). In this sense, the
Web Development course is used as an experimentation lab for
FrameWeb-related proposals and adding support for container com-
ponents within forms (multiple-level containment) is on our plans
for future work.

The same evaluation was conducted with the running example
presented along this paper (cf. Figure 3), the results of which are
shown in Table 4. Being a simpler example, all tags and attributes
were successfully generated by our tool.

Similar results can also be obtained using other frameworks, for
the Java platform or even for a different programming language,
as long as they belong to the same framework category (in the
case reported here, a front controller framework). For instance, if
the above scenarios were to be implemented using CSharp classes
as controllers and ASP.NET WebForms for the view, this would
be perfectly possible, as long as templates were provided for each
component (tags, classes, etc.) in this new platform.

Still, further evaluation efforts using different frameworks/plat-
forms and more examples from course assignments implemented
by students are in our plans for future work, in order to evaluate
the code generator more thoroughly and identify opportunities for
further evolutions of the FrameWeb meta-models. We also intend
to evaluate other types of FrameWeb models (Entity, Persistence,
Application).

5 RELATEDWORK
As mentioned in Section 1, the code generator is an important piece
in the evolution of the FrameWeb approach. Previous work in the
context of FrameWeb [6, 10, 12], have not proposed any form of
automatic model transformation to code, a task which had to be con-
ducted by programmers by interpreting the models and manually
writing the code. This paper fills this gap in the FrameWeb method.
Below, we discuss related work which also perform automatic code
generation, comparing them to our proposal.

MERLIN [7] is an approach focused on the generation of CRUD
interfaces (in which users can Create, Retrieve, Update and Delete
data from a given entity of the system). The main features of the
approach are: (i) generation of screens at runtime; (ii) configuration
guided by assisted textual edition of models; (iii) foundations build
from standards and languages used by industry; (iv) transparent
and managed configuration reuse; and (v) modeling centered on
the application’s Domain Model. Although similar, FrameWeb is

https://github.com/dwws-ufes/2015-searchpapers
https://github.com/dwws-ufes/2015-searchpapers

focused on WIS that use frameworks in their architecture and al-
low modeling of any kind of feature, not only CRUDs. Moreover,
MERLIN produces a running system, whereas FrameWeb’s code gen-
erator outputs source code, which can then be further customized
by developers, enhancing it as needed.

MVCASE [9] is an Object-Oriented approach for the develop-
ment of software that use the Catalysis method and generates code
for a distributed platform, based on Enterprise Java Beans (EJB)
technology. By using Object-Oriented Programming, MVCASE al-
lows models to be reused, just like the FrameWeb Editor. The main
advantage of FrameWeb and its meta-model over MVCASE is its
extensibility, allowing code to be generated in different frameworks
and platforms, as long as they are previously defined and imported
into the model.

GeCA [13] allows developers to perform reverse engineering
and facilitates system maintenance, as models can be manipulated
and the system generated again. Although FrameWeb does not
currently support reverse engineering, it does offer support for
code generation from its models and based on template files, which
allows developers to customize these templates to their needs.

GenERTiCA [15] is a code generation tool that uses UML models
together with mapping rules (described in XML). Its goals include
the generation of source code as complete as possible (not only
skeletons of code, as most code generation tools). This work focuses
on automatic code generation for distributed embedded real-time
systems, focusing on functional and non-functional requirements
and using concepts fromAspect-Oriented Programming. FrameWeb
does not currently consider requirements directly in its models and
focuses on WIS whose architectures are based on frameworks.

WebML [2] is a modeling notation to visually specify complex
websites at the conceptual level, including data input and opera-
tion units. WebML is also based in XML and allows the automatic
code generation of HTML. In comparison with FrameWeb, its user
interfaces are more precise, since its models provide details on
the organization of components in Web pages, differently from
FrameWeb, which only models which are the components of a page,
but not their arrangement. However, FrameWeb models the entire
WIS, not only Web pages, allowing the generation of code for all
system tiers (from Presentation to Data Access).

6 CONCLUSIONS
In this paper, we propose a solution for code generation based on
the FrameWeb method and language, which includes a graphical
editor for creating the models and evolutions to the original meta-
models in order to support both tools. We believe this contribution
can motivate the development of WISs based on models by guiding
the steps of the development and relieving programmers frommuch
of the coding effort.

The code generator is available for use and show promising re-
sults in its initial evaluations. Nonetheless, this is a work in progress.
Future work includes its seamless integration with the FrameWeb
Editor ; the evolution of the meta-model and code generator in or-
der to support the generation of CRUD features; and support for
FrameWeb-LD [10], an extension that models linked data mappings
in FrameWeb Entity Models.

We also intend to further evaluate FrameWeb related tools by
having students from the Web Development course at our univer-
sity use them in the context of their course assignments, gathering
feedback from practitioners. In the long term, we also intend to
evaluate the use of software product lines and generative program-
ming techniques [3] in order to generate families of applications in
the same problem domain.

Finally, as the FrameWeb method itself evolves, the code genera-
tor should evolve accordingly, with added support to new types of
frameworks (e.g., authentication frameworks) or platforms (mobile
devices, use of Web APIs, etc.).

ACKNOWLEDGMENTS
NEMO (http://nemo.inf.ufes.br) is currently supported by Brazilian
research agencies FAPES (# 0969/2015), CNPq (# 485368/2013-7,
461777/2014-2), and by UFES’ FAP (# 6166/2015).

REFERENCES
[1] Deepak Alur, John Crupi, and Dan Malks. 2003. Core J2EE Patterns: Best Practices

and Design Strategies (2nd ed.). Prentice Hall / Sun Microsystems Press.
[2] A. Bongio, S. Ceri, P. Fraternali, and Mauhino. 2000. Web Modeling Language

(WebML): a modeling language for designing Web sites. (2000).
[3] Krzysztof Czarnecki, Kasper Østerbye, and Markus Völter. 2002. Generative

Programming. In Proceedings of the Workshops and Posters on Object-Oriented
Technology (ECOOP ’02). Springer-Verlag, 15–29.

[4] William B. Frakes and Kyo Kang. 2005. Software reuse research: Status and
future. IEEE Transactions on Software Engineering 31, 7 (2005), 529–536.

[5] Richard C. Gronback. 2009. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit (1 ed.). Addison-Wesley Professional.

[6] Beatriz Franco Martins and Vítor E. Silva Souza. 2015. A Model-Driven Approach
for the Design of Web Information Systems based on Frameworks. In Proc. of the
21st Brazilian Symposium on Multimedia and the Web. ACM, 41–48.

[7] Marcelo Mrack. 2009. Geração Automática e Assistida de Interfaces de Usuário.
Technical Report. Dissertação apresentada como requisito parcial para a obtenção
do grau de Mestre em Ciência da Computação, Universidade Federal Do Rio
Grande Do Sul.

[8] Oscar Pastor, Sergio España, José Ignacio Panach, and Nathalie Aquino. 2008.
Model-driven development. Informatik-Spektrum 31 (2008), 394–407.

[9] Antônio Francisco Prado and Daniel Lucrédio. 2001. Ferramenta MVCASE -
Estágio Atual: Especificação, Projeto e Construção de Componentes. (2001).

[10] removed for doubleblind review. 2016. A Framework-based Approach for the
Integration of Web-based Information Systems on the Semantic Web. In Proc. of
the 22nd Brazilian Symposium on Multimedia and the Web. ACM, 231–238.

[11] Ian Sommerville. 2010. Software Engineering (9th ed.). Addison-Wesley Publishing
Company, USA.

[12] Vítor E. S. Souza, Ricardo A. Falbo, and Giancarlo Guizzardi. 2009. Designing
Web Information Systems for a Framework-based Construction. In Innovations
in Information Systems Modeling: Methods and Best Practices (1 ed.), Terry Halpin,
Eric Proper, and John Krogstie (Eds.). IGI Global, Chapter 11, 203–237.

[13] Igor Steinmacher, Éderson Fernando Amorim, Flávio Luiz Schiavoni, and Elisa
Hatsue Moriya Huzita. 2006. GeCA: Uma Ferramenta de Engenharia Reversa e
Geração Automática de Código. (2006).

[14] Vladimir Viyovic, Milan Maksimovic, and Branko Perisic. 2014. Sirius: A rapid
development of DSM graphical editor. In Intelligent Engineering Systems (INES),
2014 18th International Conference on. IEEE, 233–238.

[15] Marco A. Wehrmeister, Edison P. Freitas, Carlos E. Pereira, and Franz Rammig.
2008. GenERTiCA: A Tool for Code Generation and Aspects Weaving. (2008).

http://nemo.inf.ufes.br

	Abstract
	1 Introduction
	2 Baseline
	2.1 Model-Driven Development
	2.2 FrameWeb

	3 Proposal
	3.1 The FrameWeb Editor
	3.2 The FrameWeb Code Generator
	3.3 Evolution of the FrameWeb Meta-model

	4 Evaluation
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

