
Requirements Evolution: From Assumptions to Reality

Raian Ali1,2 and Fabiano Dalpiaz1, Paolo Giorgini1, and Vı́tor E. Silva Souza1

1 DISI, University of Trento, Italy
2 LERO - The Irish Software Engineering Research Centre

{raian.ali,dalpiaz,paolo.giorgini,vitorsouza}@disi.unitn.it

Abstract. Requirements evolution is a main driver for systems evolution. Tradi-
tionally, requirements evolution is associated to changes in the users’ needs and
environments. In this paper, we explore another cause for requirements evolu-
tion: assumptions. Requirements engineers often make assumptions stating, for
example, that satisfying certain sub-requirements and/or correctly executing cer-
tain system functionalities would lead to reach a certain requirement. However,
assumptions might be, or eventually become, invalid. We outline an approach to
monitor, at runtime, the assumptions in a requirements model and to evolve the
model to reflect the validity level of such assumptions. We introduce two types
of requirements evolution: autonomic (which evolves the priorities of system al-
ternatives based on their success/failure in meeting requirements) and designer-
supported (which detects loci in the requirements model containing invalid as-
sumptions and recommends designers to take evolutionary actions).

Key words: Requirements Engineering, Requirements Evolution, Contextual
Requirements, Requirements at Runtime

1 Introduction

The satisfaction of users’ requirements through a developed system is inherently un-
certain. Indeed, requirements evolve, and the original system might become inadequate
to meet the evolved requirements. Since such evolution is unavoidable, system neces-
sarily has to evolve in order to keep requirements satisfied. Traditionally (e.g., [1, 2]),
requirements evolution is driven by changes in the users’ needs, the operational envi-
ronment (laws, policies, economical situation), the co-operative systems, and the un-
derlying technology. We explore a new and primitive driver for requirements evolution
which is the uncertain validity of the assumptions included in a requirements model.

Requirements are expressed via requirements models. These models contain as-
sumptions, rather than certainties, made by designers about the relation between the
system, the requirements, and the environment where the system is to operate. The
model may state that a certain requirement will be met by correctly developing and
executing specific software functionalities and/or by meeting other sub-requirements.
Such assumptions could turn out to be invalid when the system operates. The operation
could reveal that some assumptions were initially, or eventually become, invalid. The
detection of invalid assumptions necessitates evolutionary actions, which result in a re-
vision of the requirements model to reflect reality. Desirably, these actions are done by
the system autonomously. However, the designers’ intervention could be often required.



2 Raian Ali et al.

Our goal in this paper is to enable monitoring the runtime system operation and
exploiting it to evolve the requirements models in a lifelong style. We intend to develop
systems that support requirements evolution either autonomously or by recommending
designers to take evolutionary actions. For example, a shopping mall adminstration in-
tends to build a system to interact with customers’ via their PDAs in order to meet the
requirement R= “customers head to cash desk when closing time is approaching”:

– Assumptions. An analyst develops a requirements model stating that R is reached if
“customer is notified to leave” (R1) and “customer is instructed how to leave” (R2).
The model states also that R2 is reached by one of two software variants: “digital
map is shown on customer’s PDA” (SV2.1) and “customer is tracked and given voice
commands via his PDA” (SV2.2). These are just assumptions made by the analyst.

– Autonomic evolution. As software is deployed, the analyst assumes that SV2.1 and
SV2.2 are equally able to meet R2. After two months, the operation reveals that SV2.2

succeeded in meeting R2 less often than SV2.1. Thus, software should autonomously
evolve the requirements model by giving SV2.1 higher priority than SV2.2 for R2.

– Designer-supported evolution. Software operation could also reveal that reaching R1

and R2 does not always lead to reach R. Customers, even if notified and guided on
how to leave, still don’t leave the mall on time. If such assumption is often invalid,
software will ask designers to revise the requirements model and fix it.

We focus on the evolution of contextual requirements models which capture the
relation between the state of the environment where the system operates (context [3])
and requirements. Some contexts activate a requirement and others represent precon-
ditions for applying software variants aiming to meet certain requirement. Recently,
several contextual requirements models have been proposed to capture such a relation-
ship [4, 5, 6]. However, modeling contextual requirements is a hard task in which de-
signers need to make assumptions with high uncertainty, such as stating that executing
a certain software variant in a specific context will lead to reach a certain requirement.

In this paper, we discuss the evolution of contextual requirements. We articulate the
problem of requirements evolution that originates from the invalidity of the assump-
tions included in contextual requirements (Sec. 2) represented via contextual goal mod-
els [5, 7] (Sec. 3). We address the two kinds of evolution introduced earlier (autonomic
and designer-supported), specifying what information the system has to monitor at run-
time and showing how to use this information for evolving the contextual requirements
model (Sec. 4). We end the paper with conclusions and future work directions (Sec.5).

2 Requirements Evolution: a Viewpoint

Software systems operate in an environment. The state of such environment, denoted by
the notion of context [3], is variable. There is a strong mutual influence between context
and requirements. This is particularly true in emerging computing paradigms such as
ubiquitous and mobile computing, where context-awareness is fundamental for success-
ful software operation. On the one hand, a certain context might activate a requirement
or be a required precondition for the execution of a software variant designed to reach
activated requirements. On the other hand, a requirement corresponds to a target con-
text, i.e. the desired state of the environment associated to requirement satisfaction.



Requirements Evolution: From Assumptions to Reality 3

In Fig. 1a we depict our general picture about the relation between requirements,
software, and context. In Fig. 1b we exemplify it through one specific requirement
for a mobile software meant to advertise products to customers in shopping malls. A
requirement R is activated—software has to meet it—if its activation context holds. In
turn, a context holds if one of its variants holds. A context variant is a conjunction of
atomic environmental facts the system can verify. Thus, R is activated if any activation
context variant ACVi is true. R is reached if any of its target context variants TCVj

holds. In order to reach a requirement, a software variant SVk should be executed. A
certain variant is adoptable if any of its required context variants RCVk.j holds.

Fig. 1. The relation between Requirements, Context, and Software.

Requirements models contain statements that might be, or become, invalid in prac-
tice. Thus, a requirements model contains a set of assumptions. These assumptions
should be continuously monitored and, if invalid, requirements models should evolve
to reflect reality. We list now some types of assumptions that a requirements model
could contain. These assumption types are illustrated via examples taken from Fig. 1b:

1. Activation assumption. It concerns the hypothesis that a certain context variant acti-
vates a requirement. In practice, a requirement might not need to be activated when
one of its activation context variants holds. For example, ACV1 is presumed suffi-
cient to activate R1, while in practice ACV1 could miss some additional contextual
conditions, and the promotion might lead to a negative customer reaction if those
missing conditions are not considered.

2. Adoptability assumption. It concerns the hypothesis that a requirement is met by
a software variant which is adoptable in a certain set of required context variants.
However, a certain software variant might fail to meet the requirement no matter if
one of its required context variants holds. Also, the ability of a software variant to
meet a requirement could vary according to each of its required context variants.
For example, SV2 (when RCV2.2 holds) could lead to meet R1 more often than
SV1 (in both of its required context variants RCV1.2 and RCV1.1).



4 Raian Ali et al.

3. Refinement assumptions. It concerns the hypotheses related to the requirements re-
finements stating that (i) a decomposed requirement is met if all sub-requirements
are met; and (ii) a specialized requirement is met if any sub-requirement is met.
Suppose R1 is decomposed into “promote by PDA” (R1.1) and “a staff is available
for further information” (R1.2). Meeting both R1.1 and R1.2 may not lead to a suc-
cessful promotion (R1 is not met). Suppose now a requirements model where R1

is specialized into “PDA-based promotion” (R1.1′) and “staff-based promotion”
(R1.2′). Meeting R1.1′ (e.g. the customer reads the information sent to his PDA)
might not lead to a successful promotion (R1 is not met).

4. Requirements achievement assumptions. It concerns the hypothesis that a require-
ment is satisfied if any of its target context variants holds. In practice, reaching one
of these variants may not imply that the requirement is really met. For example,
upon executing SV1 or SV2, a customer may investigate the product (TCV1 holds),
but this does not necessarily mean he becomes interested in the product.

We view requirements evolution as a continuous movement from assumptions-based
requirement to reality-based ones. The system has to continuously monitor assump-
tions at runtime and, when an invalid assumption is identified, it is fixed by evolving
the requirements model in one of 2 styles; autonomous or designer-supported. Out of
the possible combinations between the 4 assumption types and the 2 evolution styles,
explained above, we explore 2 combinations; (i) autonomic evolution of adoptability
assumptions and (ii) designer-supported evolution of refinement assumptions.

3 Background: Contextual Goal Model

Goal models provide a systematic refinement of user requirements, understood as
goals, to derive alternative sets of functionalities software has to support [8, 9]. Goals
(graphically represented by ovals) can be refined via AND-decomposition or OR-
decomposition. In an AND-decomposition, all subgoals should be achieved to reach the
decomposed goal. In an OR-decomposition, the achievement of one subgoal is enough
to reach the decomposed goal. Goals are ultimately reached by means of executable
processes called tasks (represented by hexagons).

Contextual goal models weave together the variabilities of both goal achievement
and context [5, 7]. Context is specified at a set of goal model variation points. The
semantics of context influence differs according to each point. The contexts speci-
fied at the variation points Root-goal and AND-decomposition are activation contexts;
they represent stimulating conditions for goals/tasks. The contexts specified at OR-
decomposition, Means-end, and Delegation are required contexts; they represent adopt-
ability preconditions for alternatives means to reach/execute goals/tasks.

In this work, we also interpret the satisfaction criteria of a goal as a target context,
i.e., a state of the world to reach. In Fig. 2a, we depict a contextual goal model example.
We have refined the contexts C1 . . . C8 and G1.TC using our context analysis technique
(for details see [5, 7]), which led to the specifications shown in the table in the bottom
of the figure. In Fig. 2b, we show a contextual goal model variant together with its
activation and required contexts constructed by accumulating the individual contexts
specified at the variation points of each type. Finally, in Fig. 2c, we map the variant
shown in Fig. 2b to our view explained in Sec. 2.



Requirements Evolution: From Assumptions to Reality 5

Contexts:
Activation: C1 ∧ C4

Required: C2 ∧ C5 ∧ C7

Targeted: G1.TC

Mapping (b) to Fig. 1:

R1 : G1

ACV1=F1 ∧F2 ∧F3 ∧F11 ∧F12

ACV2=F1 ∧F2 ∧F4 ∧F11 ∧F12

TCV1=F32 ∧ F33 ∧ F34

TCV2=F32 ∧ F33 ∧ F35 ∧ F36

SV1 : T1, T3

RCV1.1=F5∧F6∧F13∧F22∧F23

RCV1.2=F5∧F6∧F13∧F22∧F24

RCV1.3=F5 ∧ F6 ∧ F14 ∧ F15 ∧
F22 ∧ F23

RCV1.4=F5 ∧ F6 ∧ F14 ∧ F15 ∧
F22 ∧ F24

. . .
RCV1.12=F6 ∧F7 ∧F16 ∧F17 ∧
F22 ∧ F24

(a) (b) (c)
C1 = (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F4). F1: closing time is approaching, F2: customer is far away from all cash
desks, F3: customer is still shopping, F4: customer is heading far from cash desk
C2 = (F5 ∧F6)∨ (F6 ∧F7). F5: customer is using his PDA for different services from time to time recently, F6: his
language is supported currently, F7: he is familiar with PDA as he stated in the registration form
C3 = (F8 ∧ F9 ∧ F10). F8: staff is close to customer, F9: staff is free, F10: staff knows a language common to
customer
C4 = (F11 ∧F12). F11: customer is visiting the mall for the first times, F12: customer is not familiar with similar mall
branches architectures
C5 = (F13) ∨ (F14 ∧ F15) ∨ (F16 ∧ F17). F13: customer is often doing some actions on his PDA, F14: customer
PDA is not on silent, F15: customer is in a place where ring tone is noticeable with respect to noise level, F16: customer
is holding PDA with him, F17: customer PDA vibration is turned on
C6 = (F18 ∧ F19) ∨ (F20 ∧ F21). F18: customer is putting headphones, F19: customer is not listening to loud
music/voice on headphones, F20: customer is not making a phone call, F21: customer is not talking to someone
C7 = (F22 ∧ F23) ∨ (F22 ∧ F24). F22: customer has good expertise in navigating e-map, F23: customer’s PDA
screen is wide enough, F24: the route to a cash desk is simple
C8 = (F18 ∧ F19 ∧ F20 ∧ F21 ∧ F25). F25: customer is familiar with direction instructions

G1.TC = (F26 ∧ F27 ∧ F28) ∨ (F26 ∧ F27 ∧ F29 ∧ F30). F26: customer is heading closer to one of the cash
desks, F27: customer is not stopping much while heading, F28: customer has not picked a cart, F29: customer has picked
a trolley, F30: customer cart is with him.

Fig. 2. An example of a Contextual Goal Model

4 Evolving Contextual Goal Models

We detail now our viewpoint on contextual requirements evolution by showing how
contextual goal models are subject to evolution. First, we describe how to monitor the
execution of contextual goal model variants (Sec. 4.1). Second, we explain the basic
mechanisms to enact autonomic evolution of adoptability assumptions (Sec. 4.2) and
designer-supported evolution of refinement assumptions (Sec. 4.3).

4.1 Monitoring Contextual Goal Models

Monitoring requirements is an essential activity to identify the necessity to evolve the
system. Evolution is needed whenever some requirements assumptions prove to be in-
valid in practice. Monitoring means keeping track of the execution of each software
variants and the impact it has on requirements (i.e., are requirements met?). Specifi-
cally, we focus on requirements expressed in terms of goals in a contextual goal model.
Table 1 exemplifies monitoring of adoptability and refinement assumptions for Fig. 2.



6 Raian Ali et al.

Operation Enacted RCV G4

Variant A1 A2 A3 B1 B2

I1 SVA T F F F T ×
I2 SVA F T F T T ×
I3 SVB F T F T T X
I4 SVA F F T T F X
I5 SVB F T T F T X
I6 SVA T T F F T ×

Operation G4 G5 G2 G6 G7 G3 G1

J1 X X X X
J2 × X × ×
J3 X X × ×
J4 X X X ×
J5 X X X ×
J6 X × X X
J7 X X X X

(a) (b)

Table 1. Monitoring assumptions: (a) adoptability (b) refinement.

In Table 1a, we consider adoptability assumptions taking only the goal G4 from
Fig. 2 (due to space limitations we did not choose the root goal). The goal has two
variants; VA={T1} and VB= {T2}. Both variants are means to achieve G4= “customer is
notified to leave”. There are five required context variants: RCVA1 = F13, RCVA2 = F14

∧ F15, and RCVA3
= F16 ∧ F17 for VA, RCVB1

= F18 ∧ F19 and RCVB2
= F20 ∧ F21

for VB . Every row represents the data collected—via monitoring—during the operation
of a specific variant. The columns in the table are an identifier for the operation, an
identifier for the enacted variant, the validity of the required context variants, and the
satisfaction of the goal the variant should achieve.

In Table 1b, we show refinement assumptions monitoring for the goals in Fig. 2.
In line with the characterization of requirements we gave in Fig. 1, every goal has a
target context that interprets its satisfaction criteria concretely. Monitoring refinement
assumptions means monitoring if the target contexts for root and intermediate goals are
reached or not in each operation. In the table, the first column is an identifier for each
operation, whereas the following columns reflect the satisfaction of the goals.

4.2 Autonomic Evolution of Adoptability Assumptions

Traditionally, software selects the variant to achieve its current goals based on the poli-
cies defined by its designers. However, the variant the system would choose accord-
ing to such policies might include adoptability assumptions that the operation experi-
ence proved to be invalid. When this is the case, the system can adjust its behaviour
autonomically—without human intervention—and choose an alternative variant that
contains adoptability assumptions proven more valid in the current context. In a con-
textual goal model, suppose that the root goal is activated (and some subgoals as well),
and there exist more than one adoptable goal model variant (hereafter GMV) for meet-
ing the root goal. In autonomous evolution, the selection between GMVs is based on the
operation experience the system has. The system will use such experience (exemplified
in Table 1a) and select the GMV that demonstrated to be the most successful.

In the following, the decision taken by the system is based on the history of each
GMVi in each of its required context variants (RCVi.j). Each pair ⟨GMVi, RCVi.j⟩
defines one adoptability assumption saying that variant GMVi is a valid means to
achieve the root goal if the required context RCVi.j holds. We exploit now simple
statistical functions to define basic metrics that can be used by a system to select the
best GMV based on the operation experience the system has:



Requirements Evolution: From Assumptions to Reality 7

– Assumption Validity (AV ): this factor represents the statistical evidence concern-
ing the capability of GMVi to reach the root goal when a specific required context
RCVi.j holds. Assumption validity uses the monitored data collected in Table 1a.
Suppose GMVi was enacted m times, out of which required context RCVi.j was
true n times, out of which the GMVi led to reach the root goal o times. AV is com-
puted as the ration between the successful executions of GMVi over all executions
in which RCVi.j was true: AV (GMVi, RCVi.j) = o/n

– Assumption Criticality (AC): this metric represents the extent to which the falsity
of a required context variant RCVi.j prevents GMVi from achieving the root goal
(though some other RCVi.k holds). Suppose GMVi was enacted p times, out of
which RCVi.j was false q times, out of which the GMVi.j did not lead to reach the
root goal r times, then AC(GMVi, RCVi.j) = r/q

Fig. 3. Three different autonomic evolution scenarios involving the computation of AV and AC.

Fig. 3 shows that currently, RCVa.1, RCVa.2, and RCVb.1 hold, whereas RCVa.3

and RCVb.2 do not hold. It also shows three different cases for the values of AV and
AC. The first (Case 1) is computed on the basis of the operation history shown in Ta-
ble 1a, whereas the other two reflect other operation histories. Upon that, the system will
select the goal model variant that is the most likely to reach the root goal. Such like-
lihood is determined by considering both AV and AC of each pair ⟨GMVi, RCVi.j⟩.
Instead of giving one algorithm to elect the GMV to enact, we here outline several
policies that the designer could adopt, and probably change over time, that guide the
decision making algorithm.

– Optimistic: this policy selects a GMV to enact on the basis of on the hold-
ing RCV s having the highest AV metric. This policy is optimistic because it ig-
nores that the very same GMVi might currently have a false RCVi.j with a high
AC(GMVi, RCVi.j) factor. In other words, this policy gives more importance to the
positive evidence from the holding RCV s than the negative impact from not-holding
ones on the satisfaction of goals. For example, in Case 1 of Fig. 3, the selected vari-
ant will be Vb, given that its required context variant RCVb.1 is the holding context
having maximum AV value (0.5).



8 Raian Ali et al.

– Sceptical: this policy selects the goal model variant based on the lowest AC metric.
This policy is sceptical because, irrespective of the likelihood of success of a GMV ,
it will choose a variant that, in the given context, is less likely to fail. The policy gives
more importance to the negative impact the false RCV s have on a GMV that the
positive evidence the true RCV s give. For example, in Case 2 of Fig. 3, the selected
variant will be Vb, because its required context variant RCVb.2 is that, among not-
holding ones, having lowest AC value (0.1).

– Balanced: the selection according to this policy considers both the AV and the AC
metrics. It is often the case that, considering AV and AC alone, the selected variant
would be different. This is true, for instance, in Case 3 of Fig. 3, where the optimistic
policy would choose Vb (due to the high AV (Va, RCVb.1) value which is 0.9), while
the sceptical policy would choose Va (due to the low AC(Va, RCVa.3) value which
is 0.3). The balanced policy gives different weights to the two metrics, for instance
50% each. So, the balanced view will choose Va, due to the AV (Va, RCVa.2) value
which is 0.6 and AC(Va, RCVa.3) value which is 0.3.

4.3 Designer-supported Evolution of Refinement Assumptions

Many types of evolutionary actions concerning requirements models cannot be taken
autonomously by software. This happens when evolution requires to apply substantial
changes in the model, changes that are more radical than updating the rank of software
variants which we described in Sec. 4.2. We focus here on evolutionary actions a de-
signer can carry out on the basis of the operation experience history the system has
gathered at runtime (Table 1b). We outline two primitive types of evolutionary actions
that apply to requirements refinement (decomposition and specialization) assumptions,
and explain when these actions should be applied. We illustrate them with the aid of the
examples in Table 2.

Add to decomposition. G8 is added when op-
erations like J3 (Table 1b) occur often.

Add to specialization. G9 is added when oper-
ations like J4 and J5 occur often.

AND

G4: [c] is
notified to leave

G5: [c] knows
how to leave

G2: [c] is guided via
PDA-based
interaction

G8: [c] is
reminded to

leave

G1: customer [c]
heads to cash desk

G2: [c] is guided
via PDA-based
interaction

G3: [c] is guided
via staff [s]

OR

G9: speakers
notification

Remove from decomposition. G5 is removed
when operations like J7 rarely occur, while op-
erations like J6 occur often.

Remove from specialization. G2 is removed
when operations like J1 rarely occur, while op-
erations like J4 occur often.

AND
G4: [c] is
notified to
leave

G5: [c] knows
how to leave

G2: [c] is guided via
PDA-based interaction

G1: customer [c]
heads to cash desk

G2: [c] is guided via
PDA-based
interaction

G3: [c] is guided via
staff [s]

OR

Table 2. Designer-supported evolution illustrated on the refinement of goal G2 in Fig. 2.



Requirements Evolution: From Assumptions to Reality 9

Add sub-requirements: the refinement of a requirement is changed by adding a new
sub-requirement. In a contextual goal model, a new sub-goal is added either to an AND-
decomposition or to an OR-decomposition. The first case means that an additional sub-
goal should be achieved to reach the parent goal. The second case corresponds to adding
a new option to achieve the parent goal:

– Additions to AND-decompositions are needed when the operation history shows that,
in many software operations, the achievement of the subgoals was not enough to
achieve the parent goal. For example, operation J3 means that a customer was suc-
cessfully notified (G4 was reached), he was informed about the way to leave (G5 was
reached), but still he did not leave on time (G2 and G1 were not reached). The system
is supposed to continuously analyse the operation history (Table 1b) and, if opera-
tions like J3 occur often, then it will ask the designer to take an addition evolutionary
action. The designer could add a subgoal like “customer is reminded to leave” (G8).

– Additions to OR-decompositions are required if the operation history shows that the
achievement of alternative sub-goals, even after autonomous evolution, is typically
not sufficient to reach the parent goal. For example, operation J4 means that a cus-
tomer was successfully guided by his PDA (he read the notification to leave and
instructions about the way to leave, reaching therefore G2), but he did not eventually
leave on time (G1 was not reached). J5 represents a similar experience with respect
to G3. If operations like J4 and J5 occur often, then the system informs the designer
asking him to add a new alternative. The designer could add a sub-goal such as “make
announcement via the shopping mall public speakers” (G9).

Remove sub-requirements: the refinement of a requirement is modified by removing
a sub-requirement. In an AND-decomposition, a sub-goal is removed, meaning that to
achieve the parent goal fewer sub-goals have to be achieved. In an OR-decomposition,
removing a sub-goal means deleting an alternative way to achieve the parent goal.

– Removing a sub-goal from an AND-decomposition is applied when that sub-goal is
typically unnecessary for the satisfaction of the parent goal. For example, in software
operation J6 the customer was successfully notified (G4 was reached) but he did not
read/receive instructions to leave (G5 was not met), and still he moved towards the
cash desk (G2 and G1 were reached). If the parent goal is often satisfied without G5

being satisfied, the system will inform the designer suggesting to remove it. This will
imply removing or disabling all software variants that support such goal from the
implemented system.

– Removing a sub-goal from an OR-decomposition is applied when that sub-goal does
not usually lead to the satisfaction of its parent goal. For example, if operations like
J4 (explained above) happen very often, this means that notifying customers and
leading them by PDAs is an inapplicable alternative (for the root goal is not met)
that need not be supported. Thus, the system will suggest the designer to remove this
alternative and the corresponding software functionalities.



10 Raian Ali et al.

5 Conclusions and Future work

Requirements evolution is a main driver for software evolution. Requirements evolve
due to many reasons. So far, literature focused mainly on changes in stakeholders’
needs. Here, we advocated for and illustrated another main reason for requirements
evolution; the assumptions in a requirements model. Assumptions validity is not pre-
dictable at design time and, moreover, changes over time. We conceive evolution as
a lifelong process that moves software towards a behaviour based on the assumptions
proven more valid. Evolution is desirably enacted by the system itself as an autonomic
activity. However, certain kinds of evolution are not possible autonomously, and in this
case the system can only announce problematic assumptions to designers, asking them
to take an appropriate evolutionary action. To support these evolutions, software should
monitor runtime operation and diagnose if the assumptions hold. We illustrated our
view using contextual goal models as requirements models.

Future work involves mainly three threads. First, we will develop and implement al-
gorithms that enact the principles we introduced in this paper and enable contextual re-
quirements evolution. A crucial role will be played by the decision-making algorithm to
evolve the rank of goal model variants. This should be a multi-factor algorithm that con-
siders different dimensions such as operation history, qualities, preferences, timeliness,
etc. Second, we will devise and investigate principles to adopt, compose, and switch
between policies to select variants. Third, we will define automated reasoning tech-
niques to identify the evolutionary actions suggested to designers and to select which is
the best set of evolutionary actions that maximizes positive impact and minimizes costs.

Acknowledgments This work has been partially funded by the EU Commission,
through the ANIKETOS, FastFix, SecureChange, and NESSOS projects and by Sci-
ence Foundation Ireland grant 03/CE2/I303 1.

References
1. Lam, W., Loomes, M.: Requirements evolution in the midst of environmental change: a man-

aged approach. In: Proceedings of CSMR 98. (1998) 121 –127
2. Harker, S., Eason, K., Dobson, J.: The change and evolution of requirements as a challenge

to the practice of software engineering. In: Proceedings of RE ’03. (1993) 266 –272
3. Finkelstein, A., Savigni, A.: A framework for requirements engineering for context-aware

services. In: Proceedings of STRAW’01. (2001)
4. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in context.

In: Proceedings of RE ’07. (2007) 211–220
5. Ali, R., Dalpiaz, F., Giorgini., P.: A goal modeling framework for self-contextualizable soft-

ware. In: Proceedings of EMMSAD’09. (2009) 326–338
6. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model multiple

product lines for software supply chains. In: Proceedings of SPLC ’08. (2008) 12–21
7. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements mod-

eling and analysis. Requirements Engineering 15 (2010) 439–458
8. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8(3) (2004) 203–236

9. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis, University
of Toronto (1995)


