
Ontological Representation of Relational Databases

Camila Zacché de Aguiar, Ricardo de Almeida Falbo, Vı́tor E. Silva Souza

Ontology & Conceptual Modeling Research Group (NEMO)
Federal University of Espı́rito Santo, Brazil

Av. Fernando Ferrari, 514 – Goiabeiras – Vitória, ES – 29075-910

camila.zacche.aguiar@gmail.com, {falbo, vitorsouza}@inf.ufes.br

Abstract. Relational database systems is a well-known domain and an essen-
tial component of life in modern society. However, a well-founded ontological
conceptualization of this domain is not yet defined and shared by the commu-
nity, nor applied as a solution to problems such as semantic interoperability,
database migration, etc. In this paper, we present RDBS-O, a well-founded
reference ontology on the relational database domain, rigorously constructed,
verified and validated according to an ontology engineering method. In addi-
tion to a reference ontology, we also implement and test its operational version,
using it to automatic instantiate the ontology from a real database sample.

1. Introduction

Recently, there has been growing interest in ontologies in the sense of compu-
tational artifacts, i.e., explicit and formal specifications of shared conceptualiza-
tions [Studer et al. 1998], as solutions for integration, interoperability, migration and
publishing of relational databases. In this context, an ontology that clearly rep-
resents the database structure becomes essential to develop an interoperability so-
lution, such as semantic interoperability between published data in the Seman-
tic Web [de Laborda and Conrad 2005], semantic interoperability between relational
database systems (RDBMSs) [Trinh et al. 2007], or semantic mapping among database
ontologies for RDBMS interoperability [Guido and Paiano 2010].

Here, we refer to the database structure (i.e., its tables, columns, rows, constraints,
etc.), not to any specific domain (e.g., government, life sciences, etc.) whose data happens
to be stored in relational databases. In this sense, a database migration task, for instance,
would consist on migrating any database schema, regardless of the data it contains, from
one RDBMS to another (e.g., from Oracle to MySQL). Although most RDBMSs support
the SQL standard, they also have their own proprietary SQL extensions and their own
way of representing schemas internally. Freely available tools to perform this type of
migration are usually tailored for a few specific RDBMSs and are not extensible. An
ontology-based solution would allow us to add support to any RDBMS by mapping its
particular concepts to those of the ontology.

In this paper, we present the Relational Database System Ontology (RDBS-O),
a reference ontology for the relational database domain that represents the structure of
a database model. Again, it is important to say that the domain of the information
described in the data is not part of the scope of RDBS-O. The reference ontology is
based on UFO [Guizzardi and Wagner 2004] and was developed according to the SABiO



method [Falbo 2014], in a modular way to foster its reuse. Validation and verifica-
tion were performed in the reference ontology, which had its operational version, called
RDBS-OWL, implemented and tested. Although such an ontology is useful in itself (as il-
lustrated in the database migration scenario above), RDBS-O is being built in the context
of a larger effort of building a network of ontologies on software development frame-
works, in particular for object/relational frameworks [Bauer and King 2004]. Such on-
tologies will allow us to automate tasks such as migrating code from one framework to
another or defining and detecting architectural smells in software projects.

The remainder of this paper is organized as follows. Section 2 discusses the onto-
logical foundations used for developing RDBS-O. Section 3 presents RDBS-O. Section 4
addresses ontology verification, validation and testing. Section 5 discusses related works.
Finally, Section 6 concludes the paper.

2. Baseline
Database systems (DBSs) are an essential component of life in modern society, since
many of our activities involve some computer program accessing a database (e.g.,
buying something in a store, using a bank account, etc.). A database is a collec-
tion of logically related data that has some meaning, accessed through a set of pro-
grams that constitute a database management system (DBMS). A DBMS is a general-
purpose software system that facilitates the processes of definition, specifying the data
types, structures, and constraints of the data to be stored; manipulation, executing
queries to retrieve and change stored data; and sharing, allowing simultaneous access
to databases [Elmasri and Navathe 2011].

This representation provides data independence through data abstraction such that
changes in the physical level are not propagated to the conceptual level and vice-versa.
Futhermore, DBSs allows data to be perceived at different levels of detail from data mod-
els. Such a model describes the structure of the database as data types, relationships, and
constraints that apply to the data [Elmasri and Navathe 2011].

The most widely used representational data model in commercial DBMSs is the
relational model, the basis of relational database technology [Date 2004]. The relational
model uses the concept of mathematical relation as basic structure and has its theoreti-
cal basis in set theory and first-order predicate logic [Elmasri and Navathe 2011]. In the
model, relations are used to represent both data and the relationships among data, tuples
represents facts that typically correspond to real-world entities or relationships, and at-
tributes specify how to interpret the data values in each tuple adopting a unique type. In
a relational database, relations are perceived as tables, tuples as rows, and attributes as
columns. The collection of data stored in the database at a particular moment is called an
instance [Elmasri and Navathe 2011].

As discussed in the previous section, in this work we propose a reference
ontology on relational database systems. Our proposed ontology was built us-
ing the SABiO method [Falbo 2014], representing its reference version using On-
toUML [Guizzardi 2005], and its operational version in OWL. We anchored our on-
tology in more general concepts reused from a Software Engineering Ontology Net-
work [Ruy et al. 2016] which, in its turn, is based on the foundational ontology
UFO [Guizzardi and Wagner 2004]. The use of a foundational ontology mainly re-



Table 1. OntoUML stereotypes and their ontological distinctions.
Stereotype Ontological distinction Example

<<category>> A concept whose instances share common properties but obey different principles of
identity. DBMS Item

<<collective>> A functional complex formed by equal parts, with owner identity principle that is kept
both for its instances and in all possible worlds. Database

<<kind>> A functional complex formed by distinct parts, with owner identity principle that is
kept both for its instances and in all possible worlds. Schema

<<mode>> A concept whose instances represent intrinsic properties of an individual. Loaded DBMS
Copy

<<role>> A concept whose instances do not hold the same principle of identity in all possible
worlds, becoming relationally dependent of a rigid identity principle.

Primary Key
Column

<<subkind>> A concept whose instances inherit an identity principle from a kind. Informational
Schema

duces semantic interoperability problems shown in open and dynamic scenarios, such
as databases; allows integrating different ontological portions to compose an extensive
domain and facilitates reuse since new ontologies can appropriate well-founded concepts
defined in these ontologies. We briefly summarize this baseline here.

SABiO [Falbo 2014] is a systematic approach for building operational and ref-
erence ontologies comprised of five main phases. In Purpose Identification and Re-
quirements Elicitation we identify the purpose and intended uses of the ontology, define
its functional (Competency Questions) and non-functional requirements (NFRs), and de-
compose the ontology into independent and interconnected parts to facilitate maintenance
and development. Ontology Capture and Formalization aims to objectively record the
domain conceptualization based on an ontological analysis using a foundation ontology,
suggesting the adoption of a graphic model to represent the reference ontology. In De-
sign, we define the implementation environment and technological NFRs for the codifica-
tion of the reference ontology in a machine-readable language. Implementation follows,
with the codification of the ontology in the chosen operational language. Finally, Testing
verifies the operational ontology using queries in the implementation environment and
validates the ontology on software applications according to its intended uses.

SABiO suggests the use of OntoUML [Guizzardi 2005], an ontology mod-
eling language based on a version of UML 2.0 class diagrams that incorporates
important foundational distinctions made by the Unified Foundational Ontology
(UFO) [Guizzardi and Wagner 2004], both adopted in this research. Such distinctions are
made explicit in the model by means of UML class stereotypes, summarized in Table 1.

Since a database system is a software, we also reuse two ontologies from the
Software Engineering Ontology Network (SEON) [Ruy et al. 2016]: the Software Pro-
cess Ontology (SPO) [de Oliveira Bringuente et al. 2011] and the Software Ontology
(SwO) [Duarte et al. 2018]. Figure 1 shows fragments from these ontologies used in this
paper.

SPO aims at establishing a common conceptualization on the software process
domain, including processes, activities, resources, people, artifacts and procedures. In this
paper we are interested in the Artifacts and Resources sub-ontologies. In the first, we reuse
the concept of Software Artifacts, objects consumed or produced during the software
process, which are described by a Language, a set of symbols used for encoding and
decoding information. Software Artifacts can be, among other things, a Software Item,



Figure 1. Fragment of SPO and SwO ontologies.

a piece of software, considered an intermediary result, such as the front page of a Web
application. In the second sub-ontology, we reuse the concept of Hardware Equipment,
a physical object used for running software programs or to support some related action,
such as a computer on which Web applications are deployed.

SwO captures that software products are constituted of software artifacts of differ-
ent natures, including software systems, data file, programs and code. Software System
is a Software Item that aims at satisfying a specification, concerning a desired change in
a data structure inside a computer, abstracting away from the behavior. A Loaded Soft-
ware System Copy is the materialization of a Software System, inhering in a Computer
Machine and associated to a Computer System, which is a system composed of one or
more Computer Machines, and other Hardware Equipments. Data File is a computer file
which stores data in a Hardware Equipment.

3. The Relational Database System Ontology (RDBS-O)
The Relational Database System Ontology (RDBS-O) aims to identify and represent key
concepts of the relational database domain in the architectural scope, not covering control
and execution details. The non-functional requirements of RDBS-O are: be comprehen-
sible and extensible, mainly because the ontology will be used for different purposes;
have an operational version of the reference ontology that can be used in applications;
be modular or embedded in a modular framework to facilitate reuse of other ontologies
and subsequent reuse of this ontology; and be based on well-known sources from the
literature. Its functional requirements, i.e., the knowledge the ontology is supposed to
represent, are presented in the following subsections.

Ontology capture was supported by a process of knowledge acquisition
that used consolidated sources of knowledge, including books [Abbey et al. 2002,
Date 2004, Elmasri and Navathe 2011, Melton and Simon 2001] and stan-
dards [ISO/IEC9075-1 2008, ISO/IEC9075-2 2003]. Therefore, concepts and rela-
tionships were identified and defined in a dictionary of terms [Aguiar 2018] to define
and ensure consensual understanding of the domain. The process of formalizing the
ontology happened iteratively, in order to address different aspects/refinements at each
iteration, and interactively, so domain experts and ontology engineers could discuss the
conceptualization of the domain modeled in OntoUML.

Given its scope, we decided to integrate RDBS-O into SEON, in order to reuse
relevant concepts, as well as SEON’s grounding in UFO. As mentioned in Section 2,
two ontologies from SEON were reused: the Software Process Ontology (SPO) and the
Software Ontology (SwO). Moreover, we decided to develop a more general ontology



Figure 2. Database System and Relational Database System ontologies.

representing database systems in general, called DBS-O. DBS-O is not limited to re-
lational databases, and thus it can be easily reused as basis for defining ontologies for
database systems of other types. RDBS-O, in turn, extends DBS-O, focusing on rela-
tional databases. Figure 2 shows the conceptual model of both DBS-O and RDBS-O. In
this figure, concepts reused from the Software Processes Ontology and from the Software
Ontology are preceded by the corresponding acronyms (SPO:: and SwO::, respectivelly).
Next, we describe these ontologies in details and a more detailed specification is available
in a technical report [Aguiar 2018]

3.1. The Database System ontology (DBS-O)

The purpose of DBS-O is to represent the concepts relevant to the database system domain
in general. However, given how extensive this domain is, this ontology requires further
study to properly assess its generalizability. The functional requirements are defined in
the following Competency Questions (CQs): CQ1: What is the DBMS of a database
system? CQ2: What are the languages used by a database system? CQ3: What is the
database of a database system? CQ4: What are the schemas of a database? CQ5: What
is the default schema of a database? CQ6: What are the files of a database?

A Database System (DBS) is a Computer System whose main purpose is
to store information and allow users to seek and update such information when re-
quested [Date 2004]. The advantage of a DBS is data independence, i.e., the file structure



is stored in the DBMS (Database Management System), a Software System which en-
sures that any change in the data physical representation does not drastically affect the
programs that use them [Elmasri and Navathe 2011]. The DBMS adopts a Data Lan-
guage, a declarative Language that describes the problem rather than the solution and
specifies what should be done (but not how), to manipulate the data in a Database.

The Database System has one or more Loaded DBMS Copies inhering in a com-
puter machine as part of the Database System. Each Loaded DBMS Copy manages DBMS
Items, such as Database and Dictionary. A Database is a collection of organized Data
Files so that its content can be easily accessed and managed [Date 2004]. A Dictionary
describes items of system interest [Date 2004], i.e., it records the primary structure of the
Database [Elmasri and Navathe 2011] such as Schemas and DBMS Accounts. Each Dic-
tionary must record at least one DBMS Account, physical or computational user making
requests to the database, and any number of Schemas, a persistent named collection of de-
scriptors [ISO/IEC9075-1 2008]. There is exactly one Informational Schema which ef-
fectively and accurately defines all the settings of all other Schemas (said Data Schemas)
in the Dictionary [Date 2004]. Collectively, the Schemas describe the Database.

3.2. The Relational Database System ontology (RDBS-O)

RDBS-O specializes the concepts of DBS-O for the relational databases domain. The
functional requirements are defined the following Competency Questions (CQs): CQ1:
What are the tables of a database system? CQ2: What data does a table hold? CQ3:
What are the columns of a table? CQ4: What is the data type of a column? CQ5: What
is the primary key of a table? CQ6: Which columns refer to a primary key? CQ7: What
is the foreign key of a table? CQ8: Which columns refer to a foreign key? CQ9: Which
tables are related by means of a foreign key? CQ10: Which constraint specify a data
type? CQ11: Which constraints specifies a column? CQ12: What are the base tables of
a database system? CQ13: What are the derived tables of a database system?

Relational Database Management System (RDBMS) is a specialization of a
Database Management System (DBMS) whose data abstraction is based on the rela-
tional model [Date 2004] and, therefore, its main RDBMS Item is the Table. In an
RDBMS, a Data File is represented as Tables, defined by a Line Type that is instan-
tiated as Lines, which are true propositions. A Line Type is the most specific type
of a line [ISO/IEC9075-2 2003], such that all lines in a table have an unique line
type [ISO/IEC9075-1 2008]. Each Line Type is constituted of a set of Columns that
represent a table field [ISO/IEC9075-1 2008]. In an RDBMS the Line is the small-
est data unit that can be inserted and deleted from a Table [ISO/IEC9075-2 2003]. A
Table is either a Base Table, which represents data stored in the database in an au-
tonomous and independent way, such as persistent, global temporary, or local temporary
tables [Melton and Simon 2001]; or a Derived Table, non-base table which can be ob-
tained by means of relational expression on one or more Base Tables in a non-autonomous
and dependent way [Date 2004] (e.g., a view).

A Column is specified by Column Constraints, being exactly one Column Type
Constraint in order to restrict the values that a Column can take [Date 2004] with re-
spect to a Data Type [Abbey et al. 2002, ISO/IEC9075-2 2003, Melton and Simon 2001],
which in turn is a set of representable values specifying the information type maintained



in a Column [ISO/IEC9075-2 2003, Abbey et al. 2002]. The Data Type can be either an
Internal Data Type, defined by the RDBMS, or an External Data Type, defined by the
user based on existing Data Types [Date 2004]. In addition, a Data Type T is specified by
a Data Type Constraint that defines the set of valid values for T . However, a Column Type
Constraint may never be violated if the Data Type Constraints are checked [Date 2004].

Furthermore, a Column Constraint can be a Check Constraint, a Primary Key
Constraint or a Foreign Key Constraint. A Check Constraint specifies a condition that
must be satisfied for any Line of the Table [ISO/IEC9075-1 2008, ISO/IEC9075-2 2003],
such as a condition of values, a null value, a special value used to indicate the absence
of any data value in a column, a unique value (i.e, a Column should not have two equal
non-null values), a default value, etc. A Primary Key Constraint is an integrity constraint
that satisfies both uniqueness and irreducibility properties, i.e., it defines what makes a
data line exclusive within a table [Date 2004, Abbey et al. 2002]. It is the combination of
the unique and the null value Check Constraints, however, a Table can have at most one
Primary Key Constraint and any number of Check Constraints [Date 2004]. A Foreign
Key Constraint is a referential constraint that specifies one or more Columns of a reference
table that correspond to Columns in a referenced table [ISO/IEC9075-2 2003].

Thus, a Column can assume the role of Primary Key Column — which identifies
a unique non-null value for any table instance when associated with a Primary Key Con-
straint — or the role of Foreign Key Column — which belongs to a referencing table
and whose values correspond to those of a Primary Key Column of some referenced table
associated with a Foreign Key Constraint [Date 2004].

4. Evaluation

The RDBS-O ontology, presented in Section 3, was implemented in OWL, giving rise to
its operational version RDBS-OWL.1 This process was done manually in order to bal-
ance expressiveness and computational properties, through adaptations in RDBS-OWL.
Verification, validation and testing techniques, as suggested by SABiO, followed.

For ontology verification, SABiO suggests we demonstrate that the ontology el-
ements are able to answer the Competency Questions (CQs) that were raised. Table 2
describes a part of the RDBS-O verification presenting the results for some of its CQs.

Ontology validation and testing activities were supported by a semi-automatic ap-
proach for constructing and publishing ontologies from relational databases, illustrated
in Figure 3. The activities were performed using a sample created by Oracle, called HR
database,2 a schema of Human Resources application whose main purpose is to store the
records of employees of an organization.

For ontology validation, the reference ontology should be instantiated to check
if it is able to represent real-world situations, i.e., the structure of a relational database.
For this, we elaborated a mapping file for the Oracle RDBMS using the RDBS-OWL
operational ontology, which indirectly instantiates RBDS-O with real entities from the

1The ontology and all other resources mentioned in this section are available at http://nemo.inf.
ufes.br/projects/sfwon/ so the interested readers can perform this evaluation for themselves.

2HR data model available at http://www.oracle.com/technetwork/developer-tools/
datamodeler/sample-models-scripts-224531.html.



Table 2. Results for RDBS-O verification.
CQ Concepts and Relations

CQ1 Loaded RDBMS Copy materialization of RDBMS and Loaded RDBMS Copy manages RDBMS Item and RDBMS
Item specialized in Table

CQ2 Table defines Line Type and Line instance of Line Type
CQ3 Table defines Line Type and Line Type constituted of Column

CQ4 Column Constraint specifies Column; Column Constraint specialized in Column Type Constraint and Column Type
Constraint refers to Data Type.

CQ5 Primary Key Constraint specializes Column Constraint; Column Constraint specifies Column; Table defines Line Type
and Line Type constituted of Column

CQ6 Primary Key Constraint specifies Primary Key Column and Primary Key Column specialized of Column

CQ7 Foreign Key Constraint specializes Column Constraint; Column Constraint specifies Column; Table defines Line Type
and Line Type constituted of Column

CQ8 Foreign Key Constraint specifies Foreign Key Column and Foreign Key Column specialized of Column

CQ9

Foreign Key Constraint specializes Foreign Key Column; Foreign Key Column specialized of Column; Table defines
Line Type and Line Type constituted of Column
Foreign Key Constraint refers to Primary Key Column; Primary Key Column specialized of Column; Table defines Line
Type and Line Type constituted of Column
Data Type Constraint specifies Data Type

CQ10 Data Type Constraint specifies Data Type and Data Type specialized in Internal Data Type
Data Type Constraint specifies Data Type and Data Type specialized in External Data Type

CQ11 Column Constraint specifies Column and Column Constraint specializes Column Type Constraint, Primary Key Con-
straint, Foreign Key Constraint and Check Constraint

CQ12 Loaded RDBMS Copy materialization of RDBMS and Loaded RDBMS Copy manages RDBMS Item and RDBMS
Item specialized in Table and Table specializes Base Table

CQ13
Loaded RDBMS Copy materialization of RDBMS and Loaded RDBMS Copy manages RDBMS Item and RDBMS
Item specialized in Table and Table specializes Derived Table

Figure 3. Approach to assist validation and testing of the ontology.

domain, hence validating it. The mapping file is used as input to a Semantic Query API,
namely D2RQ,3 which performs SQL queries to extract information from the database
based on the mapping. Then, an RDF dump describing such extracted information using
concepts defined in an ontology is generated, as an instance of RDBS-OWL, with real
information from a relational database. Table 3 describes part of the RDBS-O validation,
presenting some of the concepts instantiated by the ontology from the HR database.

For the test cases, we performed SPARQL queries using the endpoint provided
by D2RQ, which works as a Linked Data Server (i.e., a triplestore) over the RDF dump
generated during validation. The queries correspond to the CQs presented in Section 3.
Table 4 describes a part of the RDBS-O test cases presenting some of these queries from
the HR database and their test results.

Starting from this validation approach, and provided other RDBMSs (e.g.,
MySQL) are mapped to the ontology, one could perform database migration, publish
the database structure (or even its contents) as linked data, etc. Due to space constraints,
only part of the results of RDBS-O evaluation is presented here, but the interested reader
can refer to the aforementioned website for the complete results.

3http://d2rq.org



Table 3. Results of RDBS-O instantiation using the HR database.
Concept Instances

Table Instance: COUNTRIES
Dump: <rdf:Description rdf:about="#TABLE/COUNTRIES"> <rdbs-owl:HASCOLUMN
rdf:resource="#COLUMN/COUNTRIES/COUNTRIES ID"/> <rdbs-owl:HASCOLUMN
rdf:resource="#COLUMN/COUNTRIES/COUNTRY NAME"/> <rdbs-owl:HASCOLUMN
rdf:resource="#COLUMN/COUNTRIES/REGION ID"/> <rdfs:label>#COUNTRIES</rdfs:label>
<rdf:type rdf:resource="http://rdbsowl/TABLE"/> </rdf:Description>

Column Instance: COUNTRY ID
Dump:<rdf:Description rdf:about="#COLUMN/COUNTRIES/COUNTRY ID">
<rdbs-owl:BELONGSTOTABLE rdf:resource="#TABLE/COUNTRIES"/>
<rdbs-owl:DEFINEDBYDATATYPE>#DATATYPE/CHAR</rdbo:DEFINEDBYDATATYPE>
<rdfs:label>COLUMN #CONTRY ID</rdfs:label> <rdf:type rdf:resource="http://rdbs-
owl/COLUMN"/> </rdf:Description>

Primary
key

Column

Instance: COUNTRY ID
Dump:<rdf:Description rdf:about="#PRIMARYKEYCOLUMN/COUNTRIES/COUNTRY ID">
<rdbs-owl:BELONGSTOTABLE rdf:resource="#TABLE/COUNTRIES"/>
<rdfs:label>PRIMARYKEYCOLUMN COUNTRIES COUNTRY ID</rdfs:label> <rdf:type
rdf:resource="http://rdbs-owl/PRIMARYKEYCOLUMN"/> <rdbs-owl:REFERESTOCOLUMN
rdf:resource="#COLUMN/COUNTRIES/COUNTRY ID"/> </rdf:Description>

Foreign
key

Column

Instance: REGION ID
Dump:<rdf:Description rdf:about="#FOREIGNKEYCOLUMN/COUNTRIES/REGION ID">
<rdbs-owl:REFERSTOCOLUMN rdf:resource="#COLUMN/COUNTRIES/REGION ID"/>
<rdbs-owl:REFERSTOPRIMARYKEYCOLUMN rdf:resource="#PRIMARYKEYCOLUMN/REGIONS/
REGION ID"/> <rdbs-owl:BELONGSTOREFERENCINGTABLE rdf:resource="#REFERENCING-
TABLE/COUNTRIES"/> <rdbs-owl:REFERSTOREFERENCEDTABLE rdf:resource="#REFEREN-
CEDTABLE/REGIONS"/> <rdfs:label>FOREIGNKEYCOLUMN COUNTRIES
REGION ID</rdfs:label> <rdf:type rdf:resource="http://rdbs-owl/FOREIGNKEY-
COLUMN"/> </rdf:Description>

Primary
key

Constraint

Instance: PK COUNTRY
Dump:<rdf:Description rdf:about="#PRIMARYKEYCONSTRAINT/PK COUNTRY">
<rdbs-owl:DEFINESPRIMARYKEYCOLUMN rdf:resource="#PRIMARYKEYCOLUMN/COUNTRIES/
COUNTRY ID"/> <rdbs-owl:SPECIFIESTABLE rdf:resource="#TABLE/COUNTRIES"/>
<rdfs:label>PRIMARYKEYCONSTRAINT PK COUNTRY</rdfs:label> <rdf:type
rdf:resource="http://rdbs-owl/PRIMARYKEYCONSTRAINT"/> </rdf:Description>

Foreign
key

Constraint

Instance: FK COUNTRY REGION
Dump:<rdf:Description rdf:about="#FOREIGNKEYCONSTRAINT/FK COUNTRY REGION">
<rdbs-owl:DEFINESFOREIGNKEYCOLUMN rdf:resource="#FOREIGNKEYCOLUMN/COUNTRIES/
REGION ID"/> <rdbs-owl:REFERESTOPRIMARYKEYCONSTRAINT rdf:resource="#PRIMARY-
KEYCONSTRAINT/PK REGION"/> <rdbs-owl:SPECIFIESTABLE rdf:resource="#TABLE/
COUNTRIES"/> <rdfs:label>FOREIGNKEYCONSTRAINT FK COUNTRY REGION</rdfs:label>
<rdf:type rdf:resource="http://rdbs-owl/FOREIGNKEYCONSTRAINT"/>
</rdf:Description>

5. Related Works

In this section, we compare our proposal to some ontologies designed to describe the
relational database structure, which are part of approaches to build ontologies about the
schema and the data from relational databases, similar to the approach presented in Sec-
tion 4. Although such ontologies represent the same domain, none of them present a
reference ontology built on an foundation ontology such as RDBS-O.

The Relational.OWL [de Laborda and Conrad 2005] ontology describes the
schema of a relational database in the abstract form and generates a representation format
of the database itself. The ontology is written in Java with JDBC and Jena. Thus, from
the platform-independent representation, a database extracted from a platform A can be
imported on a platform B, currently supporting MySQL and DB2. The ontology con-
sists of four classes (dbs:Database, dbs:Table, dbs:Column, dbs:PrimaryKey) and seven
properties (dbs:has, dbs:hasTable, dbs:hasColumn, dbs:isIndentifiedBy, dbs:references,
dbs:scale, dbs:length). An ontological analysis on Relational.OWL has resulted in some
questionable points: (i) the model is represented only in OWL, which is not very expres-



Table 4. Test cases using SPARQL queries.
CQ SPARQL Query Test Results

CQ1 SELECT DISTINCT ?instance WHERE ?instance a rdbs-o:TABLE
ORDER BY ?instance

COUNTRIES, DEPART-
MENTS, EMPLOYEES,
JOBS, JOB HISTORY,
LOCATIONS, REGIONS

CQ3
SELECT DISTINCT ?instance WHERE ?instance a rdbs-o:COLUMN
; rdbs-o:BELONGSTOTABLE ?table. FILTER regex(?table,
"COUNTRIES") ORDER BY ?instance

COUNTRIES ID, COUN-
TRY NAME, REGION ID

CQ5

SELECT DISTINCT ?instance WHERE ?instance a
rdbs-o:PRIMARYKEYCONSTRAINT; rdbs-o:DEFINESPRIMARYKEYCOLUMN
?column. FILTER regex(?column , "COUNTRIES ID") ORDER BY
?instance

COUNTRY C ID PK

CQ6
SELECT DISTINCT ?instance WHERE ?instance a
rdbs-o:PRIMARYKEYCOLUMN; rdbs-o:BELONGSTOTABLE ?table.
FILTER regex(?table , "COUNTRIES") ORDER BY ?instance

COUNTRY ID

CQ7

SELECT DISTINCT ?instance WHERE ?instance a
rdbs-o:FOREIGNKEYCONSTRAINT; rdbs-o:DEFINESPRIMARYKEYCOLUMN
?column. FILTER regex(?column , "COUNTRIES ID") ORDER BY
?instance

COUNTRY C ID PK

CQ8
SELECT DISTINCT ?instance WHERE ?instance a
rdbs-o:FOREIGNKEYCOLUMN; rdbs-o:BELONGSTOTABLE ?table.
FILTER regex(?table , "COUNTRIES") ORDER BY ?instance

REGION ID

sive; (ii) cardinality associations are not presented; and (iii) it presents limited coverage
of the domain, not considering, for instance, data type, foreign keys and constraints.

The OWL-RDBO [Trinh et al. 2006] ontology describes an OWL vocabulary, its
semantic relationships, and constraints of the relational database system. From this vo-
cabulary, a tool generates and publishes ontology instances dynamically. OWL-RDBO
is written in Java with JDBC in order to extract metadata and structural constraints
from the database, currently supporting MySQL, PostegreSQL and DB2, and generate
an ontology in OWL as an instance of OWL-RDBO. The paper describes that the ontol-
ogy is formed by some classes (rdbo:DatabaseName, rdbo:RelationList, rdbo:Relation,
rdbo:AttributeList, rdbo:Attribute) and properties (rdbo:hasRelations, rdbo:hasType,
rdbo:referenceAttribute, rdo:referenceRelation), but the full ontology is not available for
access. An ontological analysis on OWL-RDBO has resulted in some questionable points:
(i) the model is represented only in OWL, which is not very expressive; (ii) what OWL-
RDBO defines as a Relation, we decided to use the term Table in order to decrease seman-
tic conflicts; and (iii) it includes concepts external to the domain, such as RelationList to
group a set of Relation and AttributeList to group a set of attributes.

Other approaches, such as [Barrett et al. 2002, Bizer 2003] convert data stored in
relational database to RDF objects from query into domain-specific ontologies. These and
other approaches aim to represent the real world relations from a domain ontology and
not an ontology representing the database structure, which is more accurate but unable to
reconstruct the data to the original format of the database.

In order to analyze the related ontologies according to the coverage on the rela-
tional database domain, we verified if they answer the Competency Questions presented
in Section 3. The results of this verification are shown in Figure 4. As we can ob-
serve, although Relational.OWL and OWL-RDBO answer some questions, they do not
consider some important aspects, especially those that allow reverse engineering of the
model. Note that CQ2 is answered by RDBS-O, however to be included by RDBS-OWL
it is necessary to convert RDBS-O instantiated from the database structure into a second



ontology and instance it with the data from that database.

Figure 4. Competency questions answered by related ontologies.

6. Final Considerations

In this paper we present an ontology on relational database systems in order to repre-
sent the domain according to ontological foundations. RDBS-O is built according to an
ontology engineering method and based on well-known data sources. The ontology incor-
porates concepts based on software engineering and database system ontologies in order
to clarify the relationship with the relational database domain. Moreover, the ontology al-
lows us to semantically represent any relational database structure independent of vendor.

Verification, validation and testing activities were successfully completed with
emphasis on the RDBS-O sub-ontology coverage. Furthermore, the RDBS-OWL oper-
ational version was applied in a semi-automatic approach that instantiates its concepts
from a database. Thus, the ontology, along with this approach, provide a way to describe
relational database systems using vocabulary defined in RDBS-O. Such approach can be
extended to demonstrate other uses of the ontology.

Finally, future work intends to apply the ontology in the context of semantic inter-
operability among object/relational mapping frameworks and the definition of architec-
tural smells in software projects.

Acknowledgments

NEMO (http://nemo.inf.ufes.br) is currently supported by Brazilian research
funding agencies CNPq (process 407235/2017-5), CAPES (process 23038.028816/2016-
41), and FAPES (process 69382549/2015).

References

Abbey, M., Corey, M., and Abramson, I. (2002). Oracle9i–guia introdutório–aprenda os
fundamentos do oracle 9i. Editora Campus, Rio de Janeiro–RJ.

Aguiar, C. Z. (2018). Relational Database Ontology — Reference Ontology Specifi-
cation Document (in Portuguese), available on: http://nemo.inf.ufes.br/
projects/sfwon/. Technical report, Federal University of Espı́rito Santo (UFES).

Barrett, T., Jones, D., Yuan, J., Sawaya, J., Uschold, M., Adams, T., and Folger, D.
(2002). Rdf representation of metadata for semantic integration of corporate informa-
tion resources. In International Workshop Real World and Semantic Web Applications,
volume 2002. Citeseer.

Bauer, C. and King, G. (2004). Hibernate in Action. Manning, 1 edition.



Bizer, C. (2003). D2R MAP - A Database to RDF Mapping Language. In Proc. of the
12th International World Wide Web Conference - Posters.

Date, C. J. (2004). Introdução a sistemas de bancos de dados. Elsevier Brasil.

de Laborda, C. P. and Conrad, S. (2005). Relational. owl: a data and schema repre-
sentation format based on owl. In Proceedings of the 2nd Asia-Pacific conference on
Conceptual modelling-Volume 43, pages 89–96. Australian Computer Society, Inc.

de Oliveira Bringuente, A. C., de Almeida Falbo, R., and Guizzardi, G. (2011). Using
a foundational ontology for reengineering a software process ontology. Journal of
Information and Data Management, 2(3):511.

Duarte, B. B., Leal, A. L. d. C., Falbo, R. A., Guizzardi, G., Guizzardi, R. S. S., and
Souza, V. E. S. (2018). Ontological Foundations for Software Requirements with a
Focus on Requirements at Runtime. Applied Ontology, Preprint(Preprint):1–33.

Elmasri, R. and Navathe, S. (2011). Database systems, volume 9. Pearson Education
Boston, MA.

Falbo, R. A. (2014). Sabio: Systematic approach for building ontologies. In ONTO.
COM/ODISE@ FOIS.

Guido, A. L. and Paiano, R. (2010). Semantic integration of information systems. Inter-
national Journal of Computer Networks and Communications (IJCNC), 2.

Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models. PhD
Thesis, University of Twente, The Netherlands.

Guizzardi, G. and Wagner, G. (2004). A unified foundational ontology and some applica-
tions of it in business modeling. In CAiSE Workshops (3), pages 129–143.

ISO/IEC9075-1 (2008). Information technology–database languages–sql–part 1: Frame-
work (sql/framework).

ISO/IEC9075-2 (2003). Information technology–database languages–sql–part 2: Foun-
dation (sql/foundation). ISO/IEC.

Melton, J. and Simon, A. R. (2001). SQL1999 understanding relational language com-
ponents. Elsevier.

Ruy, F. B., de Almeida Falbo, R., Barcellos, M. P., Costa, S. D., and Guizzardi, G. (2016).
Seon: A software engineering ontology network. In European Knowledge Acquisition
Workshop, pages 527–542. Springer.

Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowledge engineering: principles
and methods. Data & knowledge engineering, 25(1-2):161–197.

Trinh, Q., Barker, K., and Alhajj, R. (2006). Rdb2ont: A tool for generating owl ontolo-
gies from relational database systems. In Telecommunications, 2006. AICT-ICIW’06.
International Conference on Internet and Web Applications and Services/Advanced
International Conference on, pages 170–170. IEEE.

Trinh, Q., Barker, K., and Alhajj, R. (2007). Semantic interoperability between rela-
tional database systems. In Database Engineering and Applications Symposium, 2007.
IDEAS 2007. 11th International, pages 208–215. IEEE.


