
Contents

1 Intelligent Agents 3
1.1 Introduction 3
1.2 What are agents?. 4

1.2.1 Examples of Agents . .. 7
1.2.2 Intelligent Agents. 8
1.2.3 Agents and Objects 10
1.2.4 Agents and Expert Systems 11

1.3 Abstract Architectures for Intelligent Agents 12
1.3.1 Purely Reactive Agents .. 13
1.3.2 Perception 14
1.3.3 Agents with state. 15

1.4 Concrete Architectures for Intelligent Agents 17
1.4.1 Logic-based Architectures 17
1.4.2 Reactive Architectures .. 23
1.4.3 Belief-Desire-Intention Architectures 29
1.4.4 Layered Architectures .. 35

1.5 Agent Programming Languages. 40
1.5.1 Agent-oriented programming 40
1.5.2 Concurrent METATEM . 42

1.6 Conclusions . 44
1.7 Exercises 44

2 CONTENTS

1 Intelligent Agents

Michael Wooldridge

1.1 Introduction

Computers are not very good at knowing what to do: every action a computer performs
must be explicitly anticipated, planned for, and coded by a programmer. If a computer
program ever encounters a situation that its designer did not anticipate, then the result is not
usually pretty — a system crash at best, multiple loss of life at worst. This mundane fact is
at the heart of our relationship with computers. It is so self-evident to the computer literate
that it is rarely mentioned. And yet it comes as a complete surprise to those encountering
computers for the first time.

For the most part, we are happy to accept computers as obedient, literal, unimaginative
servants. For many applications (such as payroll processing), it is entirely acceptable.
However, for an increasingly large number of applications, we require systems that can
decide for themselves what they need to do in order to satisfy their design objectives.
Such computer systems are known asagents. Agents that must operate robustly in rapidly
changing, unpredictable, or open environments, where there is a significant possibility that
actions canfail are known asintelligent agents, or sometimesautonomous agents. Here
are examples of recent application areas for intelligent agents:

When a space probe makes its long flight from Earth to the outer planets, a ground
crew is usually required to continually track its progress, and decide how to deal
with unexpected eventualities. This is costly and, if decisions are requiredquickly,
it is simply not practicable. For these reasons, organisations likeNASA are seriously
investigating the possibility of making probes more autonomous — giving them richer
decision making capability and responsibilities.

Searching the Internet for the answer to a specific query can be a long and tedious
process. So, why not allow a computer program — an agent — do searches for us?
The agent would typically be given a query that would require synthesising pieces of
information from various different Internet information sources. Failure would occur
when a particular resource was unavailable, (perhaps due to network failure), or where
results could not be obtained.

This chapter is about intelligent agents. Specifically, it aims to give you a thorough

4 Intelligent Agents

introduction to the main issues associated with the design and implementation of intelligent
agents. After reading it, I hope that you will understand:

why agents are perceived to be an important new way of conceptualising and imple-
menting certain types of software application;

what intelligent agents are (and are not), and how agents relate to other software
paradigms — in particular, expert systems and object-oriented programming;

the main approaches that have been advocated for designing and implementing intel-
ligent agents, the issues surrounding these approaches, their relative merits, and the
challenges that face the agent implementor;

the characteristics of the main programming languages available for building agents
today.

The chapter is structured as follows. First, in section 1.2, I describe what I mean by
the termagent. In section 1.3, I present someabstract architectures for agents. That
is, I discuss some general models and properties of agents without regard to how such
agents might be implemented. In section 1.4, I discussconcrete architectures for agents.
The various major design routes that one can follow in implementing an agent system
are outlined in this section. In particular,logic-based architectures,reactive architectures,
belief-desire-intention architectures, and finally,layered architectures for intelligent agents
are described. Finally, section 1.5 introduces some prototypical programming languages
for agent systems.

Comments on notation

This chapter makes use of simple mathematical notation in order to make ideas precise.
The formalism used that of discrete maths: a basic grounding in sets and first-order logic
should be quite sufficient to make sense of the various definitions presented. In addition:
if S is an arbitrary set, then℘ (S) is the powerset ofS, andS� is the set of sequences of
elements ofS; the symbol: is used for logical negation (so:p is read “notp”); ^ is used
for conjunction (sop^q is read “p andq”); _ is used for disjunction (sop_q is read “p
or q”); and finally,) is used for material implication (sop) q is read “p impliesq”).

1.2 What are agents?

An obvious way to open this chapter would be by presenting a definition of the term
agent. After all, this is a book about multi-agent systems — surely we must all agree
on what an agent is? Surprisingly, there is no such agreement: there is no universally
accepted definition of the term agent, and indeed there is a good deal of ongoing debate
and controversy on this very subject. Essentially, while there is a general consensus that
autonomy is central to the notion of agency, there is little agreement beyond this. Part of
the difficulty is that various attributes associated with agency are of differing importance
for different domains. Thus, for some applications, the ability of agents tolearn from

1.2 What are agents? 5

ENVIRONMENT

AGENT

action
output

sensor
input

Figure 1.1 An agent in its environment. The agent takes sensory input from the environ-
ment, and produces as output actions that affect it. The interaction is usually an ongoing,
non-terminating one.

their experiences is of paramount importance; for other applications, learning is not only
unimportant, it is undesirable.

Nevertheless, some sort of definition is important — otherwise, there is a danger that the
term will lose all meaning (cf. “user friendly”). The definition presented here is adapted
from [71]: An agent is a computer system that issituated in someenvironment, and that is
capable ofautonomous action in this environment in order to meet its design objectives.

There are several points to note about this definition. First, the definition refers to
“agents” and not “intelligent agents”. The distinction is deliberate: it is discussed in more
detail below. Second, the definition does not say anything about whattype of environment
an agent occupies. Again, this is deliberate: agents can occupy many different types of
environment, as we shall see below. Third, we have not definedautonomy. Like agency
itself, autonomy is a somewhat tricky concept to tie down precisely, but I mean it in the
sense that agents are able to act without the intervention of humans or other systems: they
have control both over their own internal state, and over their behaviour. In section 1.2.3,
we will contrast agents with the objects of object-oriented programming, and we will
elaborate this point there. In particular, we will see how agents embody a much stronger
sense of autonomy than do objects.

Figure 1.1 gives an abstract, top-level view of an agent. In this diagram, we can see the
action output generated by the agent in order to affect its environment. In most domains of
reasonable complexity, an agent will not havecomplete control over its environment. It will
have at bestpartial control, in that it caninfluence it. From the point of view of the agent,
this means that the same action performed twice in apparently identical circumstances
might appear to have entirely different effects, and in particular, it mayfail to have the
desired effect. Thus agents in all but the most trivial of environments must be prepared for
the possibility offailure. We can sum this situation up formally by saying that environments
arenon-deterministic.

Normally, an agent will have a repertoire of actions available to it. This set of possible

6 Intelligent Agents

actions represents the agentseffectoric capability: its ability to modify its environments.
Note that not all actions can be performed in all situations. For example, an action “lift
table” is only applicable in situations where the weight of the table is sufficiently small
that the agentcan lift it. Similarly, the action “purchase a Ferrari” will fail if insufficient
funds area available to do so. Actions therefore havepre-conditions associated with them,
which define the possible situations in which they can be applied.

The key problem facing an agent is that of decidingwhich of its actions it should perform
in order to best satisfy its design objectives.Agent architectures, of which we shall see
several examples later in this article, are really software architectures for decision making
systems that are embedded in an environment. The complexity of the decision-making
process can be affected by a number of different environmental properties. Russell and
Norvig suggest the following classification of environment properties [59, p46]:

Accessible vs inaccessible.
An accessible environment is one in which the agent can obtain complete, accurate,
up-to-date information about the environment’s state. Most moderately complex envi-
ronments (including, for example, the everyday physical world and the Internet) are
inaccessible. The more accessible an environment is, the simpler it is to build agents to
operate in it.

Deterministic vs non-deterministic.
As we have already mentioned, a deterministic environment is one in which any action
has a single guaranteed effect — there is no uncertainty about the state that will result
from performing an action. The physical world can to all intents and purposes be re-
garded as non-deterministic. Non-deterministic environments present greater problems
for the agent designer.

Episodic vs non-episodic.
In an episodic environment, the performance of an agent is dependent on a number
of discrete episodes, with no link between the performance of an agent in different
scenarios. An example of an episodic environment would be a mail sorting system [60].
Episodic environments are simpler from the agent developer’s perspective because the
agent can decide what action to perform based only on the current episode — it need
not reason about the interactions between this and future episodes.

Static vsdynamic.
A static environment is one that can be assumed to remain unchanged except by the
performance of actions by the agent. A dynamic environment is one that has other
processes operating on it, and which hence changes in ways beyond the agent’s control.
The physical world is a highly dynamic environment.

Discrete vscontinuous.
An environment is discrete if there are a fixed, finite number of actions and percepts in
it. Russell and Norvig give a chess game as an example of a discrete environment, and
taxi driving as an example of a continuous one.

As Russell and Norvig observe [59, p46], if an environment is sufficiently complex, then
the fact that it isactually deterministic is not much help: to all intents and purposes, it may

1.2 What are agents? 7

as well be non-deterministic. The most complex general class of environments are those
that are inaccessible, non-deterministic, non-episodic, dynamic, and continuous.

1.2.1 Examples of Agents

At this point, it is worth pausing to consider some examples of agents (though not, as yet,
intelligent agents):

Any control system can be viewed as an agent. A simple (and overused) example of
such a system is a thermostat. Thermostats have a sensor for detecting room tempera-
ture. This sensor is directly embedded within the environment (i.e., the room), and it
produces as output one of two signals: one that indicates that the temperature is too low,
another which indicates that the temperature is OK. The actions available to the thermo-
stat are “heating on” or “heating off”. The action “heating on” will generally have the
effect of raising the room temperature, but this cannot be aguaranteed effect — if the
door to the room is open, for example, switching on the heater may have no effect. The
(extremely simple) decision making component of the thermostat implements (usually
in electro-mechanical hardware) the following rules:

too cold �! heating on

temperature OK �! heating off

More complex environment control systems, of course, have considerably richer deci-
sion structures. Examples include autonomous space probes, fly-by-wire aircraft, nu-
clear reactor control systems, and so on.

Most software daemons, (such as background processes in theUNIX operating system),
which monitor a software environment and perform actions to modify it, can be viewed
as agents. An example is the X Windows programxbiff. This utility continually
monitors a user’s incoming email, and indicates via aGUI icon whether or not they have
unread messages. Whereas our thermostat agent in the previous example inhabited a
physical environment — the physical world — thexbiff program inhabits asoftware
environment. It obtains information about this environment by carrying out software
functions (by executing system programs such asls, for example), and the actions it
performs are software actions (changing an icon on the screen, or executing a program).
The decision making component is just as simple as our thermostat example.

To summarise, agents are simply computer systems that are capable of autonomous action
in some environment in order to meet their design objectives. An agent will typically sense
its environment (by physical sensors in the case of agents situated in part of the real world,
or by software sensors in the case of software agents), and will have available a repertoire
of actions that can be executed to modify the environment, which may appear to respond
non-deterministically to the execution of these actions.

8 Intelligent Agents

1.2.2 Intelligent Agents

We are not used to thinking of thermostats orUNIX daemons as agents, and certainly not
as intelligent agents. So, when do we consider an agent to be intelligent? The question,
like the questionwhat is intelligence? itself, is not an easy one to answer. But for me, an
intelligent agent is one that is capable offlexible autonomous action in order to meet its
design objectives, where by flexible, I mean three things [71]:

reactivity: intelligent agents are able to perceive their environment, and respond in a
timely fashion to changes that occur in it in order to satisfy their design objectives;

pro-activeness: intelligent agents are able to exhibit goal-directed behaviour bytaking
the initiative in order to satisfy their design objectives;

social ability: intelligent agents are capable of interacting with other agents (and possi-
bly humans) in order to satisfy their design objectives.

These properties are more demanding than they might at first appear. To see why, let us
consider them in turn. First, considerpro-activeness: goal directed behaviour. It is not
hard to build a system that exhibits goal directed behaviour — we do it every time we
write a procedure inPASCAL, a function inC, or a method inJAVA. When we write such
a procedure, we describe it in terms of theassumptions on which it relies (formally, its
pre-condition) and theeffect it has if the assumptions are valid (itspost-condition). The
effects of the procedure are itsgoal: what the author of the software intends the procedure
to achieve. If the pre-condition holds when the procedure is invoked, then we expect that
the procedure will executecorrectly: that it will terminate, and that upon termination, the
post-condition will be true, i.e., the goal will be achieved. This is goal directed behaviour:
the procedure is simply a plan or recipe for achieving the goal. This programming model
is fine for many environments. For example, its works well when we considerfunctional
systems — those that simply take some inputx, and produce as output some some function
f (x) of this input. Compilers are a classic example of functional systems.

But for non-functional systems, this simple model of goal directed programming is not
acceptable, as it makes some important limiting assumptions. In particular, it assumes that
the environmentdoes not change while the procedure is executing. If the environment
does change, and in particular, if the assumptions (pre-condition) underlying the procedure
become false while the procedure is executing, then the behaviour of the procedure may
not be defined — often, it will simply crash. Also, it is assumed that the goal, that is, the
reason for executing the procedure, remains valid at least until the procedure terminates.
If the goal doesnot remain valid, then there is simply no reason to continue executing the
procedure.

In many environments, neither of these assumptions are valid. In particular, in domains
that aretoo complex for an agent to observe completely, that aremulti-agent (i.e., they
are populated with more than one agent that can change the environment), or where
there isuncertainty in the environment, these assumptions are not reasonable. In such
environments, blindly executing a procedure without regard to whether the assumptions
underpinning the procedure are valid is a poor strategy. In such dynamic environments,

1.2 What are agents? 9

an agent must bereactive, in just the way that we described above. That is, it must be
responsive to events that occur in its environment, where these events affect either the
agent’s goals or the assumptions which underpin the procedures that the agent is executing
in order to achieve its goals.

As we have seen, building purely goal directed systems is not hard. As we shall see
later in this chapter, buildingpurely reactive systems — ones thatcontinually respond to
their environment — is also not difficult. However, what turns out to be hard is building
a system that achieves an effectivebalance between goal-directed and reactive behaviour.
We want agents that will attempt to achieve their goals systematically, perhaps by making
use of complex procedure-like patterns of action. But we don’t want our agents to continue
blindly executing these procedures in an attempt to achieve a goal either when it is clear
that the procedure will not work, or when the goal is for some reason no longer valid. In
such circumstances, we want our agent to be able to react to the new situation, in time
for the reaction to be of some use. However, we do not want our agent to becontinually
reacting, and hence never focussing on a goal long enough to actually achieve it.

On reflection, it should come as little surprise that achieving a good balance between
goal directed and reactive behaviour is hard. After all, it is comparatively rare to find
humans who do this very well. How many of us have had a manager who stayed blindly
focussed on some project long after the relevance of the project was passed, or it was
clear that the project plan was doomed to failure? Similarly, how many have encountered
managers who seem unable to stay focussed at all, who flit from one project to another
without ever managing to pursue a goal long enough to achieveanything? This problem —
of effectively integrating goal-directed and reactive behaviour — is one of the key problems
facing the agent designer. As we shall see, a great many proposals have been made for how
to build agents that can do this — but the problem is essentially still open.

Finally, let us say something aboutsocial ability, the final component of flexible au-
tonomous action as defined here. In one sense, social ability is trivial: every day, millions
of computers across the world routinely exchange information with both humans and other
computers. But the ability to exchange bit streams is not really social ability. Consider that
in the human world, comparatively few of our meaningful goals can be achieved without
the cooperation of other people, who cannot be assumed toshare our goals — in other
words, they are themselves autonomous, with their own agenda to pursue. To achieve our
goals in such situations, we mustnegotiate andcooperate with others. We may be required
to understand and reason about the goals of others, and to perform actions (such as paying
them money) that we would not otherwise choose to perform, in order to get them to coop-
erate with us, and achieve our goals. This type of social ability is much more complex, and
much less well understood, than simply the ability to exchange binary information. Social
ability in general (and topics such as negotiation and cooperation in particular) are dealt
with elsewhere in this book, and will not therefore be considered here. In this chapter, we
will be concerned with the decision making ofindividual intelligent agents in environments
which may be dynamic, unpredictable, and uncertain, but do not contain other agents.

10 Intelligent Agents

1.2.3 Agents and Objects

Object-oriented programmers often fail to see anything novel or new in the idea of agents.
When one stops to consider the relative properties of agents and objects, this is perhaps not
surprising. Objects are defined as computational entities thatencapsulate some state, are
able to perform actions, ormethods on this state, and communicate by message passing.

While there are obvious similarities, there are also significant differences between
agents and objects. The first is in the degree to which agents and objects are autonomous.
Recall that the defining characteristic of object-oriented programming is the principle of
encapsulation — the idea that objects can have control over their own internal state. In
programming languages likeJAVA, we can declare instance variables (and methods) to be
private, meaning they are only accessible from within the object. (We can of course also
declare thempublic, meaning that they can be accessed from anywhere, and indeed we
must do this for methods so that they can be used by other objects. But the use ofpublic
instance variables is usually considered poor programming style.) In this way, an object
can be thought of as exhibiting autonomy over its state: it has control over it. But an object
does not exhibit control over it’sbehaviour. That is, if a methodm is made available for
other objects to invoke, then they can do so whenever they wish — once an object has made
a methodpublic, then it subsequently has no control over whether or not that method is
executed. Of course, an objectmust make methods available to other objects, or else we
would be unable to build a system out of them. This is not normally an issue, because if
we build a system, then we design the objects that go in it, and they can thus be assumed
to share a “common goal”. But in many types of multi-agent system, (in particular, those
that contain agents built by different organisations or individuals), no such common goal
can be assumed. It cannot be for granted that an agenti will execute an action (method)
a just because another agentj wants it to —a may not be in the best interests ofi. We
thus do not think of agents as invoking methods upon one-another, but rather asrequesting
actions to be performed. Ifj requestsi to performa, theni may perform the action or it may
not. The locus of control with respect to the decision about whether to execute an action
is thus different in agent and object systems. In the object-oriented case, the decision lies
with the object that invokes the method. In the agent case, the decision lies with the agent
that receives the request. I have heard this distinction between objects and agents nicely
summarised in the following slogan:Objects do it for free; agents do it for money.

Note that there is nothing to stop us implementing agents using object-oriented tech-
niques. For example, we can build some kind of decision making about whether to execute
a method into the method itself, and in this way achieve a stronger kind of autonomy for
our objects. The point is that autonomy of this kind is not a component of the basic object-
oriented model.

The second important distinction between object and agent systems is with respect to
the notion of flexible (reactive, pro-active, social) autonomous behaviour. The standard
object model has nothing whatsoever to say about how to build systems that integrate these
types of behaviour. Again, one could object that we can build object-oriented programs
that do integrate these types of behaviour. But this argument misses the point, which is
that the standard object-oriented programming model has nothing to do with these types of

1.2 What are agents? 11

behaviour.
The third important distinction between the standard object model and our view of agent

systems is that agents are each considered to have their own thread of control — in the
standard object model, there is a single thread of control in the system. Of course, a lot
of work has recently been devoted toconcurrency in object-oriented programming. For
example, theJAVA language provides built-in constructs for multi-threaded programming.
There are also many programming languages available (most of them admittedly proto-
types) that were specifically designed to allow concurrent object-based programming. But
such languages do not capture the idea we have of agents asautonomous entities. Perhaps
the closest that the object-oriented community comes is in the idea ofactive objects:

An active object is one that encompasses its own thread of control [. . .]. Active objects
are generally autonomous, meaning that they can exhibit some behaviour without being
operated upon by another object. Passive objects, on the other hand, can only undergo a
state change when explicitly acted upon. [5, p91]

Thus active objects are essentially agents that do not necessarily have the ability to exhibit
flexible autonomous behaviour.

To summarise, the traditional view of an object and our view of an agent have at least
three distinctions:

agents embody stronger notion of autonomy than objects, and in particular, they decide
for themselves whether or not to perform an action on request from another agent;

agents are capable of flexible (reactive, pro-active, social) behaviour, and the standard
object model has nothing to say about such types of behaviour;

a multi-agent system is inherently multi-threaded, in that each agent is assumed to have
at least one thread of control.

1.2.4 Agents and Expert Systems

Expert systems were the most important AI technology of the 1980s [31]. An expert
system is one that is capable of solving problems or giving advice in some knowledge-
rich domain [32]. A classic example of an expert system isMYCIN, which was intended
to assist physicians in the treatment of blood infections in humans.MYCIN worked by
a process of interacting with a user in order to present the system with a number of
(symbolically represented) facts, which the system then used to derive some conclusion.
MYCIN acted very much as aconsultant: it did not operate directly on humans, or indeed
any other environment. Thus perhaps the most important distinction between agents and
expert systems is that expert systems likeMYCIN are inherentlydisembodied. By this, we
mean that they do not interact directly with any environment: they get their information not
via sensors, but through a user acting as middle man. In the same way, they do notact on
any environment, but rather give feedback or advice to a third party. In addition, we do not
generally require expert systems to be capable of co-operating with other agents. Despite
these differences, some expert systems, (particularly those that perform real-time control
tasks), look very much like agents. A good example is theARCHON system [33].

12 Intelligent Agents

Sources and Further Reading

A view of artificial intelligence as the process of agent design is presented in [59],
and in particular, Chapter 2 of [59] presents much useful material. The definition of
agents presented here is based on [71], which also contains an extensive review of agent
architectures and programming languages. In addition, [71] contains a detailed survey of
agent theories — formalisms for reasoning about intelligent, rational agents, which is
outside the scope of this chapter. This question of “what is an agent” is one that continues
to generate some debate; a collection of answers may be found in [48]. The relationship
between agents and objects has not been widely discussed in the literature, but see [24].
Other readable introductions to the idea of intelligent agents include [34] and [13].

1.3 Abstract Architectures for Intelligent Agents

We can easily formalise the abstract view of agents presented so far. First, we will assume
that the state of the agent’s environment can be characterised as a setS = fs1;s2; : : :g

of environment states. At any given instant, the environment is assumed to be in one of
these states. The effectoric capability of an agent is assumed to be represented by a set
A = fa1;a2; : : :g of actions. Then abstractly, an agent can be viewed as a function

action : S�! A

which maps sequences of environment states to actions. We will refer to an agent modelled
by a function of this form as astandard agent. The intuition is that an agent decides what
action to perform on the basis of its history — its experiences to date. These experiences
are represented as a sequence of environment states — those that the agent has thus far
encountered.

The (non-deterministic) behaviour of an an environment can be modelled as a function

env : S�A! ℘ (S)

which takes the current state of the environments 2 S and an actiona 2 A (performed by
the agent), and maps them to a set of environment statesenv(s;a) — those that could result
from performing actiona in states. If all the sets in the range ofenv are all singletons, (i.e.,
if the result of performing any action in any state is a set containing a single member), then
the environment isdeterministic, and its behaviour can be accurately predicted.

We can represent the interaction of agent and environment as ahistory. A historyh is a
sequence:

h : s0
a0
�! s1

a1
�! s2

a2
�! s3

a3
�! �� �

au�1
�! su

au
�! �� �

wheres0 is the initial state of the environment (i.e., its state when the agent starts exe-
cuting),au is theu’th action that the agent chose to perform, andsu is theu’th environ-
ment state (which is one of the possible results of executing actionau�1 in statesu�1). If
action : S�! A is an agent,env : S�A! ℘ (S) is an environment, ands0 is the initial state

1.3 Abstract Architectures for Intelligent Agents 13

of the environment, then the sequence

h : s0
a0
�! s1

a1
�! s2

a2
�! s3

a3
�! �� �

au�1
�! su

au
�! �� �

will represent a possible history of the agent in the environment iff the following two
conditions hold:

8u 2 IN;au = action((s0;s1; : : : ;su))

and

8u 2 IN such thatu > 0;su 2 env(su�1;au�1):

Thecharacteristic behaviour of an agentaction : S�
!A in an environmentenv : S�A!

℘ (S) is the set of all the histories that satisfy these properties. If some propertyφ holds
of all these histories, this this property can be regarded as an invariant property of the
agent in the environment. For example, if our agent is a nuclear reactor controller, (i.e.,
the environment is a nuclear reactor), and in all possible histories of the controller/reactor,
the reactor does not blow up, then this can be regarded as a (desirable) invariant property.
We will denote byhist(agent;environment) the set of all histories ofagent in environment.
Two agentsag1 andag2 are said to bebehaviourally equivalent with respect to environment
env iff hist(ag1;env) = hist(ag2;env), and simply behaviourally equivalent iff they are
behaviourally equivalent with respect to all environments.

In general, we are interested in agents whose interaction with their environmentdoes
not end, i.e., they arenon-terminating. In such cases, the histories that we consider will be
infinite.

1.3.1 Purely Reactive Agents

Certain types of agents decide what to do without reference to their history. They base
their decision making entirely on the present, with no reference at all to the past. We will
call such agentspurely reactive, since they simply respond directly to their environment.
Formally, the behaviour of a purely reactive agent can be represented by a function

action : S! A:

It should be easy to see that for every purely reactive agent, there is an equivalent standard
agent; the reverse, however, is not generally the case.

Our thermostat agent is an example of a purely reactive agent. Assume, without loss of
generality, that the thermostat’s environment can be in one of two states — either too cold,
or temperature OK. Then the thermostat’s action function is simply

action(s) =

(
heater off ifs = temperature OK

heater on otherwise.

14 Intelligent Agents

ENVIRONMENT

action

AGENT

see

Figure 1.2 Perception and action subsystems.

1.3.2 Perception

Viewing agents at this abstract level makes for a pleasantly simply analysis. However, it
does not help us to construct them, since it gives us no clues about how to design the
decision functionaction. For this reason, we will now begin torefine our abstract model of
agents, by breaking it down into sub-systems in exactly the way that one does in standard
software engineering. As we refine our view of agents, we find ourselves makingdesign
choices that mostly relate to the subsystems that go to make up an agent — what data and
control structures will be present. Anagent architecture is essentially a map of the internals
of an agent — its data structures, the operations that may be performed on these data
structures, and the control flow between these data structures. Later in this chapter, we will
discuss a number of different types of agent architecture, with very different views on the
data structures and algorithms that will be present within an agent. In the remainder of this
section, however, we will survey some fairly high-level design decisions. The first of these
is the separation of an agent’s decision function intoperception andaction subsystems: see
Figure 1.2.

The idea is that the functionsee captures the agent’s ability to observe its environment,
whereas theaction function represents the agent’s decision making process. Thesee
function might be implemented in hardware in the case of an agent situated in the physical
world: for example, it might be a video camera or an infra-red sensor on a mobile robot.
For a software agent, the sensors might be system commands that obtain information about
the software environment, such asls, finger, or suchlike. Theoutput of thesee function
is a percept — a perceptual input. LetP be a (non-empty) set of percepts. Thensee is a
function

see : S! P

which maps environment states to percepts, andaction is now a function

action : P�

! A

1.3 Abstract Architectures for Intelligent Agents 15

which maps sequences of percepts to actions.
These simple definitions allow us to explore some interesting properties of agents and

perception. Suppose that we have two environment states,s1 2 S and s2 2 S, such that
s1 6= s2, but see(s1) = see(s2). Then twodifferent environment states are mapped to the
same percept, and hence the agent would receive the same perceptual information from
different environment states. As far as the agent is concerned, therefore,s1 and s2 are
indistinguishable. To make this example concrete, let us return to the thermostat example.
Let x represent the statement

“the room temperature is OK”

and lety represent the statement

“John Major is Prime Minister”.

If these are the only two facts about our environment that we are concerned with, then
the setS of environment states contains exactly four elements:

S = ff:x;:yg| {z }
s1

;f:x;yg| {z }
s2

;fx;:yg| {z }
s3

;fx;yg| {z }
s4

g

Thus in states1, the room temperature is not OK, and John Major is not Prime Minister;
in states2, the room temperature is not OK, and John Majoris Prime Minister. Now, our
thermostat is sensitiveonly to temperatures in the room. This room temperature is not
causally related to whether or not John Major is Prime Minister. Thus the states where
John Major is and is not Prime Minister are literallyindistinguishable to the thermostat.
Formally, thesee function for the thermostat would have two percepts in its range,p1 and
p2, indicating that the temperature is too cold or OK respectively. Thesee function for the
thermostat would behave as follows:

see(s) =

(
p1 if s = s1 or s = s2

p2 if s = s3 or s = s4.

Given two environment statess 2 S ands0 2 S, let us writes� s0 if see(s) = see(s0). It is
not hard to see that� is anequivalence relation over environment states, which partitions
S into mutually indistinguishable sets of states. Intuitively, the coarser these equivalence
classes are, the less effective is the agent’s perception. Ifj � j = jSj, (i.e., the number of
distinct percepts is equal to the number of different environment states), then the agent
can distinguishevery state — the agent has perfect perception in the environment; it is
omniscient. At the other extreme, ifj � j = 1, then the agent’s perceptual ability is non-
existent — it cannot distinguish betweenany different states. In this case, as far as the
agent is concerned, all environment states are identical.

1.3.3 Agents with state

We have so far been modelling an agent’s decision functionaction as fromsequences of
environment states or percepts to actions. This allows us to represent agents whose decision
making is influenced by history. However, this is a somewhat unintuitive representation,

16 Intelligent Agents

actionsee

next state

AGENT

ENVIRONMENT

Figure 1.3 Agents that maintain state.

and we shall now replace it by an equivalent, but somewhat more natural scheme. The idea
is that we now consider agents thatmaintain state — see Figure 1.3.

These agents have some internal data structure, which is typically used to record in-
formation about the environment state and history. LetI be the set of all internal states
of the agent. An agent’s decision making process is then based, at least in part, on this
information. The perception functionsee for a state-based agent is unchanged, mapping
environment states to percepts as before:

see : S! P

The action-selection functionaction is now defined a mapping

action : I ! A

from internal states to actions. An additional functionnext is introduced, which maps an
internal state and percept to an internal state:

next : I�P! I

The behaviour of a state-based agent can be summarised as follows. The agent starts in
some initial internal statei0. It then observes its environment states, and generates a percept
see(s). The internal state of the agent is then updated via thenext function, becoming set
to next(i0;see(s)). The action selected by the agent is thenaction(next(i0;see(s))). This
action is then performed, and the agent enters another cycle, perceiving the world viasee,
updating its state vianext, and choosing an action to perform viaaction.

It is worth observing that state-based agents as defined here are in fact no more powerful
than the standard agents we introduced earlier. In fact, they areidentical in their expres-
sive power — every state-based agent can be transformed into a standard agent that is
behaviourally equivalent.

1.4 Concrete Architectures for Intelligent Agents 17

Sources and Further Reading

The abstract model of agents presented here is based on that given in [25, Chapter 13], and
also makes use of some ideas from [61, 60]. The properties of perception as discussed in
this section lead toknowledge theory, a formal analysis of the information implicit within
the state of computer processes, which has had a profound effect in theoretical computer
science. The definitive reference is [14], and an introductory survey is [29].

1.4 Concrete Architectures for Intelligent Agents

Thus far, we have considered agents only in the abstract. So while we have examined the
properties of agents that do and do not maintain state, we have not stopped to consider
what this state might look like. Similarly, we have modelled an agent’s decision making as
an abstract functionaction, which somehow manages to indicate which action to perform
— but we have not discussed how this function might be implemented. In this section, we
will rectify this omission. We will consider four classes of agents:

logic based agents — in which decision making is realised through logical deduction;

reactive agents — in which decision making is implemented in some form of direct
mapping from situation to action;

belief-desire-intention agents — in which decision making depends upon the manip-
ulation of data structures representing the beliefs, desires, and intentions of the agent;
and finally,

layered architectures — in which decision making is realised via various software
layers, each of which is more-or-less explicitly reasoning about the environment at
different levels of abstraction.

In each of these cases, we are moving away from the abstract view of agents, and beginning
to make quite specific commitments about the internal structure and operation of agents. In
each section, I will try to explain the nature of these commitments, the assumptions upon
which the architectures depend, and the relative advantages and disadvantages of each.

1.4.1 Logic-based Architectures

The “traditional” approach to building artificially intelligent systems, (known assymbolic
AI) suggests that intelligent behaviour can be generated in a system by giving that system a
symbolic representation of its environment and its desired behaviour, and syntactically ma-
nipulating this representation. In this section, we focus on the apotheosis of this tradition, in
which these symbolic representations arelogical formulae, and the syntactic manipulation
corresponds tological deduction, or theorem proving.

The idea of agents as theorem provers is seductive. Suppose we have some theory
of agency — some theory that explains how an intelligent agent should behave. This
theory might explain, for example, how an agent generates goals so as to satisfy its design

18 Intelligent Agents

objective, how it interleaves goal-directed and reactive behaviour in order to achieve these
goals, and so on. Then this theoryφcan be considered as aspecification for how an agent
should behave. The traditional approach to implementing a system that will satisfy this
specification would involverefining the specification through a series of progressively
more concrete stages, until finally an implementation was reached. In the view of agents
as theorem provers, however, no such refinement takes place. Instead,φ is viewed as an
executable specification: it is directly executed in order to produce the agent’s behaviour.

To see how such an idea might work, we shall develop a simple model of logic-based
agents, which we shall calldeliberate agents. In such agents, the internal state is assumed
to be a database of formulae of classical first-order predicate logic. For example, the agent’s
database might contain formulae such as:

Open(valve221)

Temperature(reactor4726;321)

Pressure(tank776;28)

It is not difficult to see how formulae such as these can be used to represent the properties
of some environment. The database is theinformation that the agent has about its environ-
ment. An agent’s database plays a somewhat analogous role to that ofbelief in humans.
Thus a person might have a belief that valve 221 is open — the agent might have the pred-
icateOpen(valve221) in its database. Of course, just like humans, agents can be wrong.
Thus I might believe that valve 221 is open when it is in fact closed; the fact that an agent
hasOpen(valve221) in its database does not mean that valve 221 (or indeed any valve) is
open. The agent’s sensors may be faulty, its reasoning may be faulty, the information may
be out of date, or the interpretation of the formulaOpen(valve221) intended by the agent’s
designer may be something entirely different.

Let L be the set of sentences of classical first-order logic, and letD = ℘ (L) be the set
of L databases, i.e., the set of sets ofL-formulae. The internal state of an agent is then an
element ofD. We write∆;∆1; : : : for members ofD. The internal state of an agent is then
simply a member of the setD. An agent’s decision making process is modelled through a
set ofdeduction rules, ρ. These are simply rules of inference for the logic. We write∆ `ρ φ
if the formulaφ can be proved from the database∆ using only the deduction rulesρ. An
agents perception functionsee remains unchanged:

see : S! P:

Similarly, ournext function has the form

next : D�P!D

It thus maps a database and a percept to a new database. However, an agent’s action
selection function, which has the signature

action : D! A

is defined in terms of its deduction rules. The pseudo-code definition of this function is as
follows.

1.4 Concrete Architectures for Intelligent Agents 19

1. function action(∆ : D) : A
2. begin
3. for each a 2 A do
4. if ∆ `ρ Do(a) then
5. return a
6. end-if
7. end-for
8. for each a 2 A do
9. if ∆ 6`ρ :Do(a) then
10. return a
11. end-if
12. end-for
13. return null
14. end function action

The idea is that the agent programmer will encode the deduction rulesρ and database
∆ in such a way that if a formulaDo(a) can be derived, wherea is a term that denotes
an action, thena is the best action to perform. Thus, in the first part of the function (lines
(3)–(7)), the agent takes each of its possible actionsa in turn, and attempts to prove the
form the formulaDo(a) from its database (passed as a parameter to the function) using its
deduction rulesρ. If the agent succeeds in provingDo(a), thena is returned as the action
to be performed.

What happens if the agent fails to proveDo(a), for all actionsa 2 A? In this case, it
attempts to find an action that isconsistent with the rules and database, i.e., one that is not
explicitly forbidden. In lines (8)–(12), therefore, the agent attempts to find an actiona 2 A
such that:Do(a) cannot be derived from its database using its deduction rules. If it can
find such an action, then this is returned as the action to be performed. If, however, the
agent fails to find an action that is at least consistent, then it returns a special actionnull
(or noop), indicating that no action has been selected.

In this way, the agent’s behaviour is determined by the agent’s deduction rules (its
“program”) and its current database (representing the information the agent has about its
environment).

To illustrate these ideas, let us consider a small example (based on the vacuum cleaning
world example of [59, p51]). The idea is that we have a small robotic agent that will clean
up a house. The robot is equipped with a sensor that will tell it whether it is over any dirt,
and a vacuum cleaner that can be used to suck up dirt. In addition, the robot always has a
definite orientation (one ofnorth, south, east, or west). In addition to being able to suck
up dirt, the agent can move forward one “step” or turn right 90�. The agent moves around
a room, which is divided grid-like into a number of equally sized squares (conveniently
corresponding to the unit of movement of the agent). We will assume that our agent does
nothing but clean — it never leaves the room, and further, we will assume in the interests
of simplicity that the room is a 3�3 grid, and the agent always starts in grid square(0;0)
facing north.

20 Intelligent Agents

dirt dirt

(0,0) (1,0) (2,0)

(0,1)

(0,2)

(1,1) (2,1)

(2,2)(1,2)

Figure 1.4 Vacuum world

To summarise, our agent can receive a perceptdirt (signifying that there is dirt beneath
it), or null (indicating no special information). It can perform any one of three possible
actions:f orward, suck, or turn. The goal is to traverse the room continually searching for
and removing dirt. See Figure 1.4 for an illustration of the vacuum world.

First, note that we make use of three simpledomain predicates in this exercise:

In(x;y) agent is at(x;y)

Dirt(x;y) there is dirt at(x;y)

Facing(d) the agent is facing directiond

Now we specify ournext function. This function must look at the perceptual information
obtained from the environment (eitherdirt or null), and generate a new database which
includes this information. But in addition, it mustremove old or irrelevant information,
and also, it must try to figure out the new location and orientation of the agent. We will
therefore specify thenext function in several parts. First, let us writeold(∆) to denote the
set of “old” information in a database, which we want the update functionnext to remove:

old(∆) = fP(t1; : : : ; tn) j P 2 fIn;Dirt;Facingg andP(t1; : : : ; tn) 2 ∆g

Next, we require a functionnew, which gives the set of new predicates to add to the
database. This function has the signature

new : D�P!D

The definition of this function is not difficult, but it is rather lengthy, and so we will leave
it as an exercise. (It must generate the predicatesIn(: : :), describing the new position of
the agent,Facing(: : :) describing the orientation of the agent, andDirt(: : :) if dirt has been
detected at the new position.) Given thenew andold functions, thenext function is defined
as follows:

next(∆; p) = (∆nold(∆))[new(∆; p)

Now we can move on to the rules that govern our agent’s behaviour. The deduction rules

1.4 Concrete Architectures for Intelligent Agents 21

have the form

φ(: : :)�! ψ(: : :)

whereφ andψ are predicates over some arbitrary list of constants and variables. The idea
being that ifφ matches against the agent’s database, thenψ can be concluded, with any
variables inψ instantiated.

The first rule deals with the basic cleaning action of the agent: this rule will take priority
over all other possible behaviours of the agent (such as navigation).

In(x;y)^Dirt(x;y)�!Do(suck) (1.1)

Hence if the agent is at location(x;y) and it perceives dirt, then the prescribed action
will be to suck up dirt. Otherwise, the basic action of the agent will be to traverse the
world. Taking advantage of the simplicity of our environment, we will hardwire the basic
navigation algorithm, so that the robot will always move from(0;0) to (0;1) to (0;2) and
then to(1;2), (1;1) and so on. Once the agent reaches(2;2), it must head back to(0;0).
The rules dealing with the traversal up to(0;2) are very simple.

In(0;0)^Facing(north)^:Dirt(0;0)�!Do(f orward) (1.2)

In(0;1)^Facing(north)^:Dirt(0;1)�!Do(f orward) (1.3)

In(0;2)^Facing(north)^:Dirt(0;2)�!Do(turn) (1.4)

In(0;2)^Facing(east)�!Do(f orward) (1.5)

Notice that in each rule, we must explicitly check whether the antecedent of rule (1.1) fires.
This is to ensure that we only ever prescribe one action via theDo(: : :) predicate. Similar
rules can easily be generated that will get the agent to(2;2), and once at(2;2) back to
(0;0). It is not difficult to see that these rules, together with thenext function, will generate
the required behaviour of our agent.

At this point, it is worth stepping back and examining the pragmatics of the logic-based
approach to building agents. Probably the most important point to make is that a literal,
naive attempt to build agents in this way would be more or less entirely impractical. To
see why, suppose we have designed out agent’s rule setρ such that for any database∆, if
we can proveDo(a) thena is anoptimal action — that is,a is the best action that could
be performed when the environment is as described in∆. Then imagine we start running
our agent. At timet1, the agent has generated some database∆1, and begins to apply its
rulesρ in order to find which action to perform. Some time later, at timet2, it manages
to establish∆1 `ρ Do(a) for somea 2 A, and soa is the optimal action that the agent
could perform at timet1. But if the environment haschanged betweent1 andt2, then there
is no guarantee thata will still be optimal. It could be far from optimal, particularly if
much time has elapsed betweent1 andt2. If t2� t1 is infinitesimal — that is, if decision
making is effectively instantaneous — then we could safely disregard this problem. But
in fact, we know that reasoning of the kind our logic-based agents use will be anything
but instantaneous. (If our agent uses classical first-order predicate logic to represent the
environment, and its rules are sound and complete, then there is no guarantee that the

22 Intelligent Agents

decision making procedure will eventerminate.) An agent is said to enjoy the property of
calculative rationality if and only if its decision making apparatus will suggest an action
that was optimalwhen the decision making process began. Calculative rationality is clearly
not acceptable in environments that change faster than the agent can make decisions — we
shall return to this point later.

One might argue that this problem is an artifact of the pure logic-based approach
adopted here. There is an element of truth in this. By moving away from strictly logical
representation languages and complete sets of deduction rules, one can build agents that
enjoy respectable performance. But one also loses what is arguably the greatest advantage
that the logical approach brings: a simple, elegant logical semantics.

There are several other problems associated with the logical approach to agency. First,
thesee function of an agent, (its perception component), maps its environment to a percept.
In the case of a logic-based agent, this percept is likely to be symbolic — typically, a set
of formulae in the agent’s representation language. But for many environments, it is not
obvious how the mapping from environment to symbolic percept might be realised. For
example, the problem of transforming an image to a set of declarative statements repre-
senting that image has been the object of study in AI for decades, and is still essentially
open. Another problem is that actuallyrepresenting properties of dynamic, real-world en-
vironments is extremely hard. As an example, representing and reasoning abouttemporal
information — how a situation changes over time — turns out to be extraordinarily dif-
ficult. Finally, as the simple vacuum world example illustrates, representing even rather
simpleprocedural knowledge (i.e., knowledge about “what to do”) in traditional logic can
be rather unintuitive and cumbersome.

To summarise, in logic-based approaches to building agents, decision making is viewed
as deduction. An agent’s “program” — that is, its decision making strategy — is encoded
as a logical theory, and the process of selecting an action reduces to a problem of proof.
Logic-based approaches are elegant, and have a clean (logical) semantics — wherein lies
much of their long-lived appeal. But logic-based approaches have many disadvantages. In
particular, the inherent computational complexity of theorem proving makes it question-
able whether agents as theorem provers can operate effectively in time-constrained envi-
ronments. Decision making in such agents is predicated on the assumption of calculative
rationality — the assumption that the world will not change in any significant way while
the agent is deciding what to do, and that an action which is rational when decision making
begins will be rational when it concludes. The problems associated with representing and
reasoning about complex, dynamic, possibly physical environments are also essentially
unsolved.

Sources and Further Reading

My presentation of logic based agents is based largely on the discussion ofdeliberate
agents presented in [25, Chapter 13], which represents the logic-centric view of AI and
agents very well. The discussion is also partly based on [38]. A number of more-or-
less “pure” logical approaches to agent programming have been developed. Well-known
examples include theCONGOLOG system of Lesp´erance and colleagues [39] (which is

1.4 Concrete Architectures for Intelligent Agents 23

based on thesituation calculus [45]) and the METATEM and Concurrent METATEM
programming languages developed by Fisher and colleagues [3, 21] (in which agents are
programmed by giving themtemporal logic specifications of the behaviour they should
exhibit). Concurrent METATEM is discussed as a case study in section 1.5. Note that these
architectures (and the discussion above) assume that if one adopts a logical approach to
agent-building, then this means agents are essentially theorem provers, employing explicit
symbolic reasoning (theorem proving) in order to make decisions. But just because we
find logic a useful tool for conceptualising or specifying agents, this does not mean that
we must view decision-making as logical manipulation. An alternative is tocompile the
logical specification of an agent into a form more amenable to efficient decision making.
The difference is rather like the distinction between interpreted and compiled programming
languages. The best-known example of this work is thesituated automata paradigm of
Leslie Kaelbling and Stanley Rosenschein [58]. A review of the role of logic in intelligent
agents may be found in [70]. Finally, for a detailed discussion of calculative rationality and
the way that it has affected thinking in AI, see [60].

1.4.2 Reactive Architectures

The seemingly intractable problems with symbolic/logical approaches to building agents
led some researchers to question, and ultimately reject, the assumptions upon which such
approaches are based. These researchers have argued that minor changes to the symbolic
approach, such as weakening the logical representation language, will not be sufficient to
build agents that can operate in time-constrained environments: nothing less than a whole
new approach is required. In the mid-to-late 1980s, these researchers began to investigate
alternatives to the symbolic AI paradigm. It is difficult to neatly characterise these different
approaches, since their advocates are united mainly by a rejection of symbolic AI, rather
than by a common manifesto. However, certain themes do recur:

the rejection of symbolic representations, and of decision making based on syntactic
manipulation of such representations;

the idea that intelligent, rational behaviour is seen as innately linked to theenvironment
an agent occupies — intelligent behaviour is not disembodied, but is a product of the
interaction the agent maintains with its environment;

the idea that intelligent behaviouremerges from the interaction of various simpler
behaviours.

Alternative approaches to agency are sometime referred to asbehavioural (since a com-
mon theme is that of developing and combining individual behaviours),situated (since a
common theme is that of agents actually situated in some environment, rather than being
disembodied from it), and finally — the term I will use —reactive (because such sys-
tems are often perceived as simply reacting to an environment, without reasoning about
it). This section presents a survey of thesubsumption architecture, which is arguably the
best-known reactive agent architecture. It was developed by Rodney Brooks — one of the
most vocal and influential critics of the symbolic approach to agency to have emerged in

24 Intelligent Agents

recent years.
There are two defining characteristics of the subsumption architecture. The first is that

an agent’s decision-making is realised through a set oftask accomplishing behaviours;
each behaviour may be though of as an individualaction function, as we defined above,
which continually takes perceptual input and maps it to an action to perform. Each of these
behaviour modules is intended to achieve some particular task. In Brooks’ implementation,
the behaviour modules are finite state machines. An important point to note is that these
task accomplishing modules are assumed to includeno complex symbolic representations,
and are assumed to dono symbolic reasoning at all. In many implementations, these
behaviours are implemented as rules of the form

situation�! action

which simple map perceptual input directly to actions.
The second defining characteristic of the subsumption architecture is that many be-

haviours can “fire” simultaneously. There must obviously be a mechanism to choose be-
tween the different actions selected by these multiple actions. Brooks proposed arranging
the modules into asubsumption hierarchy, with the behaviours arranged intolayers. Lower
layers in the hierarchy are able toinhibit higher layers: the lower a layer is, the higher is
its priority. The idea is that higher layers represent more abstract behaviours. For exam-
ple, one might desire a behaviour in a mobile robot for the behaviour “avoid obstacles”. It
makes sense to give obstacle avoidance a high priority — hence this behaviour will typi-
cally be encoded in alow-level layer, which hashigh priority. To illustrate the subsumption
architecture in more detail, we will now present a simple formal model of it, and illustrate
how it works by means of a short example. We then discuss its relative advantages and
shortcomings, and point at other similar reactive architectures.

Thesee function, which represents the agent’s perceptual ability, is assumed to remain
unchanged. However, in implemented subsumption architecture systems, there is assumed
to be quite tight coupling between perception and action — raw sensor input is not
processed or transformed much, and there is certainly no attempt to transform images to
symbolic representations.

The decision functionaction is realised through a set of behaviours, together with an
inhibition relation holding between these behaviours. A behaviour is a pair(c;a), where
c�P is a set of percepts called thecondition, anda2A is an action. A behaviour(c;a) will
fire when the environment is in states2 S iff see(s)2 c. LetBeh= f(c;a) j c�P anda2Ag
be the set of all such rules.

Associated with an agent’s set of behaviour rulesR� Beh is a binaryinhibition relation
on the set of behaviours:� � R�R. This relation is assumed to be a total ordering onR
(i.e., it is transitive, irreflexive, and antisymmetric). We writeb1 � b2 if (b1;b2) 2�, and
read this as “b1 inhibitsb2”, that is,b1 is lower in the hierarchy thanb2, and will hence get
priority overb2. The action function is then defined as follows:

1. function action(p : P) : A
2. var f ired : ℘ (R)

1.4 Concrete Architectures for Intelligent Agents 25

3. var selected : A
4. begin
5. f ired := f(c;a) j (c;a) 2 R and p 2 cg
6. for each (c;a) 2 f ired do
7. if :(9(c0;a0) 2 f ired such that (c0;a0)� (c;a)) then
8. return a
9. end-if
10. end-for
11. return null
12. end function action

Thus action selection begins by first computing the setf ired of all behaviours that fire
(5). Then, each behaviour(c;a) that fires is checked, to determine whether there is some
other higher priority behaviour that fires. If not, then the action part of the behaviour,a, is
returned as the selected action (8). If no behaviour fires, then the distinguished actionnull
will be returned, indicating that no action has been chosen.

Given that one of our main concerns with logic-based decision making was its theoretical
complexity, it is worth pausing to examine how well our simple behaviour-based system
performs. The overall time complexity of the subsumption action function is no worse than
O(n2), wheren is the larger of the number of behaviours or number of percepts. Thus,
even with the naive algorithm above, decision making is tractable. In practice, we can do
considerably better than this: the decision making logic can be encoded into hardware,
giving constant decision time. For modern hardware, this means that an agent can be
guaranteed to select an action within nano-seconds. Perhaps more than anything else, this
computational simplicity is the strength of the subsumption architecture.

To illustrate how the subsumption architecture in more detail, we will show how sub-
sumption architecture agents were built for the following scenario (this example is adapted
from [66]):

The objective is to explore a distant planet, more concretely, to collect samples of a
particular type of precious rock. The location of the rock samples is not known in advance,
but they are typically clustered in certain spots. A number of autonomous vehicles are
available that can drive around the planet collecting samples and later reenter the a
mothership spacecraft to go back to earth. There is no detailed map of the planet available,
although it is known that the terrain is full of obstacles — hills, valleys, etc. — which
prevent the vehicles from exchanging any communication.

The problem we are faced with is that of building an agent control architecture for each
vehicle, so that they will cooperate to collect rock samples from the planet surface as
efficiently as possible. Luc Steels argues that logic-based agents, of the type we described
above, are “entirely unrealistic” for this problem [66]. Instead, he proposes a solution using
the subsumption architecture.

The solution makes use of two mechanisms introduced by Steels: The first is agradient
field. In order that agents can know in which direction the mothership lies, the mothership
generates a radio signal. Now this signal will obviously weaken as distance to the source

26 Intelligent Agents

increases — to find the direction of the mothership, an agent need therefore only travel “up
the gradient” of signal strength. The signal need not carry any information — it need only
exist.

The second mechanism enables agents to communicate with one another. The charac-
teristics of the terrain prevent direct communication (such as message passing), so Steels
adopted anindirect communication method. The idea is that agents will carry “radioactive
crumbs”, which can be dropped, picked up, and detected by passing robots. Thus if an
agent drops some of these crumbs in a particular location, then later, another agent hap-
pening upon this location will be able to detect them. This simple mechanism enables a
quite sophisticated form of cooperation.

The behaviour of an individual agent is then built up from a number of behaviours,
as we indicated above. First, we will see how agents can be programmed toindividually
collect samples. We will then see how agents can be programmed to generate acooperative
solution.

For individual (non-cooperative) agents, the lowest-level behaviour, (and hence the
behaviour with the highest “priority”) is obstacle avoidance. This behaviour can can be
represented in the rule:

if detect an obstaclethen change direction. (1.6)

The second behaviour ensures that any samples carried by agents are dropped back at the
mother-ship.

if carrying samplesand at the basethen drop samples (1.7)

if carrying samples andnot at the basethen travel up gradient. (1.8)

Behaviour (1.8) ensures that agents carrying samples will return to the mother-ship (by
heading towards the origin of the gradient field). The next behaviour ensures that agents
will collect samples they find.

if detect a samplethen pick sample up. (1.9)

The final behaviour ensures that an agent with “nothing better to do” will explore randomly.

if truethen move randomly. (1.10)

The pre-condition of this rule is thus assumed to always fire. These behaviours are arranged
into the following hierarchy:

(1:6)� (1:7)� (1:8)� (1:9)� (1:10)

The subsumption hierarchy for this example ensures that, for example, an agent willalways
turn if any obstacles are detected; if the agent is at the mother-ship and is carrying samples,
then it will always drop them if it is not in any immediate danger of crashing, and so on.
The “top level” behaviour — a random walk — will only every be carried out if the agent
has nothing more urgent to do. It is not difficult to see how this simple set of behaviours
will solve the problem: agents will search for samples (ultimately by searching randomly),
and when they find them, will return them to the mother-ship.

1.4 Concrete Architectures for Intelligent Agents 27

If the samples are distributed across the terrain entirely at random, then equipping a
large number of robots with these very simple behaviours will work extremely well. But
we know from the problem specification, above, that this is not the case: the samples
tend to be located in clusters. In this case, it makes sense to have agentscooperate with
one-another in order to find the samples. Thus when one agent finds a large sample,
it would be helpful for it to communicate this to the other agents, so they can help it
collect the rocks. Unfortunately, we also know from the problem specification thatdirect
communication is impossible. Steels developed a simple solution to this problem, partly
inspired by the foraging behaviour of ants. The idea revolves around an agent creating a
“trail” of radioactive crumbs whenever it finds a rock sample. The trail will be created
when the agent returns the rock samples to the mother ship. If at some later point, another
agent comes across this trail, then it need only follow it down the gradient field to locate
the source of the rock samples. Some small refinements improve the efficiency of this
ingenious scheme still further. First, as an agent follows a trail to the rock sample source,
it picks up some of the crumbs it finds, hence making the trail fainter. Secondly, the trail
is only laid by agents returning to the mothership. Hence if an agent follows the trail out
to the source of the nominal rock sample only to find that it contains no samples, it will
reduce the trail on the way out, and will not return with samples to reinforce it. After a few
agents have followed the trail to find no sample at the end of it, the trail will in fact have
been removed.

The modified behaviours for this example are as follows. Obstacle avoidance, (1.6),
remains unchanged. However, the two rules determining what to do if carrying a sample
are modified as follows.

if carrying samplesand at the basethen drop samples (1.11)

if carrying samples andnot at the base

then drop 2 crumbsand travel up gradient.
(1.12)

The behaviour (1.12) requires an agent to drop crumbs when returning to base with a
sample, thus either reinforcing or creating a trail. The “pick up sample” behaviour, (1.9),
remains unchanged. However, an additional behaviour is required for dealing with crumbs.

if sense crumbsthen pick up 1 crumband travel down gradient (1.13)

Finally, the random movement behaviour, (1.10), remains unchanged. These behaviour are
then arranged into the following subsumption hierarchy.

(1:6)� (1:11)� (1:12)� (1:9)� (1:13)� (1:10)

Steels shows how this simple adjustment achieves near-optimal performance in many
situations. Moreover, the solution ischeap (the computing power required by each agent
is minimal) androbust (the loss of a single agent will not affect the overall system
significantly).

In summary, there are obvious advantages to reactive approaches such as that Brooks’
subsumption architecture: simplicity, economy, computational tractability, robustness
against failure, and elegance all make such architectures appealing. But there are some

28 Intelligent Agents

fundamental, unsolved problems, not just with the subsumption architecture, but with
other purely reactive architectures:

If agents do not employ models of their environment, then they must have sufficient
information available in theirlocal environment for them to determine an acceptable
action.

Since purely reactive agents make decisions based onlocal information, (i.e., informa-
tion about the agentscurrent state), it is difficult to see how such decision making could
take into accountnon-local information — it must inherently take a “short term” view.

It is difficult to see how purely reactive agents can be designed thatlearn from experi-
ence, and improve their performance over time.

A major selling point of purely reactive systems is that overall behaviouremerges
from the interaction of the component behaviours when the agent is placed in its
environment. But the very term “emerges” suggests that the relationship between
individual behaviours, environment, and overall behaviour is not understandable. This
necessarily makes it very hard toengineer agents to fulfill specific tasks. Ultimately,
there is no principledmethodology for building such agents: one must use a laborious
process of experimentation, trial, and error to engineer an agent.

While effective agents can be generated with small numbers of behaviours (typically
less that ten layers), it ismuch harder to build agents that contain many layers. The
dynamics of the interactions between the different behaviours become too complex to
understand.

Various solutions to these problems have been proposed. One of the most popular of these
is the idea ofevolving agents to perform certain tasks. This area of work has largely broken
away from the mainstream AI tradition in which work on, for example, logic-based agents
is carried out, and is documented primarily in theartificial life (alife) literature.

Sources and Further Reading

Brooks’ original paper on the subsumption architecture — the one that started all the
fuss — was published as [8]. The description and discussion here is partly based on [15].
This original paper seems to be somewhat less radical than many of his later ones, which
include [9, 11, 10]. The version of the subsumption architecture used in this chapter is
actually a simplification of that presented by Brooks. The subsumption architecture is
probably the best-known reactive architecture around — but there are many others. The
collection of papers edited by Pattie Maes [41] contains papers that describe many of these,
as does the collection by Agre and Rosenschein [2]. Other approaches include:

theagent network architecture developed by Pattie Maes [40, 42, 43];

Nilsson’steleo reactive programs [49];

Rosenchein and Kaelbling’ssituated automata approach, which is particularly interest-
ing in that it shows how agents can bespecified in an abstract, logical framework, and
compiled into equivalent, but computationally very simple machines [57, 36, 35, 58];

1.4 Concrete Architectures for Intelligent Agents 29

Agre and Chapman’sPENGI system [1];

Schoppers’universal plans — which are essentially decision trees that can be used to
efficiently determine an appropriate action in any situation [62];

Firby’s reactive action packages [19].

Kaelbling [34] gives a good discussion of the issues associated with developing resource-
bounded rational agents, and proposes an agent architecture somewhat similar to that
developed by Brooks.

1.4.3 Belief-Desire-Intention Architectures

In this section, we shall discussbelief-desire-intention (BDI) architectures. These architec-
tures have their roots in the philosophical tradition of understandingpractical reasoning
— the process of deciding, moment by moment, which action to perform in the furtherance
of our goals.

Practical reasoning involves two important processes: decidingwhat goals we want to
achieve, andhow we are going to achieve these goals. The former process is known as
deliberation, the latter asmeans-ends reasoning. To gain an understanding of theBDI

model, it is worth considering a simple example of practical reasoning. When you leave
university with a first degree, you are faced with a decision to make — about what to
do with your life. The decision process typically begins by trying to understand what
the options available to you are. For example, if you gain a good first degree, then one
option is that of becoming an academic. (If you fail to obtain a good degree, this option
is not available to you.) Another option is entering industry. After generating this set of
alternatives, you mustchoose between them, andcommit to some. These chosen options
becomeintentions, which then determine the agent’s actions. Intentions then feed back into
the agent’s future practical reasoning. For example, if I decide I want to be an academic,
then I should commit to this objective, and devote time and effort to bringing it about.

Intentions play a crucial role in the practical reasoning process. Perhaps the most obvious
property of intentions is that they tend to lead to action. If I truly have an intention to
become an academic, then you would expect me toact on that intention — to try to
achieve it. For example, you might expect me to apply to various PhD programs. You
would expect to to make areasonable attempt to achieve the intention. By this, I mean that
you would expect me to carry our some course of action that I believed would best satisfy
the intention. Moreover, if a course of action fails to achieve the intention, then you would
expect me totry again — you would not expect me to simply give up. For example, if my
first application for a PhD programme is rejected, then you might expect me to apply to
alternative universities.

In addition, once I have adopted an intention, then the very fact of having this intention
will constrain my future practical reasoning. For example, while I hold some particular
intention, I will not entertain options that are inconsistent with that intention. Intending to
become an academic, for example, would preclude the option of partying every night: the
two are mutually exclusive.

Next, intentionspersist. If I adopt an intention to become an academic, then I should

30 Intelligent Agents

persist with this intention and attempt to achieve it. For if I immediately drop my intentions
without devoting resources to achieving them, then I will never achieve anything. However,
I should not persist with my intention for too long — if it becomes clear to me that I
will never become an academic, then it is only rational to drop my intention to do so.
Similarly, if the reason for having an intention goes away, then it is rational of me to drop
the intention. For example, if I adopted the intention to become an academic because I
believed it would be an easy life, but then discover that I would be expected to actually
teach, then the justification for the intention is no longer present, and I should drop the
intention.

Finally, intentions are closely related to beliefs about the future. For example, if I intend
to become an academic, then I should believe that I will indeed become an academic. For
if I truly believe that I will never be an academic, it would be non-sensical of me to have an
intention to become one. Thus if I intend to become an academic, I should at least believe
that there is a good chance I will indeed become one.

From this discussion, we can see that intentions play a number of important roles in
practical reasoning:

Intentions drive means-ends reasoning.
If I have formed an intention to become an academic, then I will attempt to achieve
the intention, which involves, amongst other things, decidinghow to achieve it, for
example, by applying for a PhD programme. Moreover, if one particular course of
action fails to achieve an intention, then I will typically attempt others. Thus if I fail
to gain a PhD place at one university, I might try another university.

Intentions constrain future deliberation.
If I intend to become an academic, then I will not entertain options that are inconsistent
with this intention. For example, a rational agent would not consider being rich as
an option while simultaneously intending to be an academic. (While the two are
not actually mutually exclusive, the probability of simultaneously achieving both is
infinitesimal.)

Intentions persist.
I will not usually give up on my intentions without good reason — they will persist,
typically until either I believe I have successfully achieved them, I believe I cannot
achieve them, or else because the purpose for the intention is no longer present.

Intentions influence beliefs upon which future practical reasoning is based.
If I adopt the intention to become an academic, then I can plan for the future on
the assumption that Iwill be an academic. For if I intend to be an academic while
simultaneously believing that I will never be one, then I am being irrational.

A key problem in the design of practical reasoning agents is that of of achieving a good
balance between these different concerns. Specifically, it seems clear that an agent should
at times drop some intentions (because it comes to believe that either they will never be
achieved, they are achieved, or else because the reason for having the intention is no longer
present). It follows that, from time to time, it is worth an agent stopping toreconsider
its intentions. But reconsideration has a cost — in terms of both time and computational

1.4 Concrete Architectures for Intelligent Agents 31

resources. But this presents us with a dilemma:

an agent that does not stop to reconsider sufficiently often will continue attempting to
achieve its intentions even after it is clear that they cannot be achieved, or that there is
no longer any reason for achieving them;

an agent thatconstantly reconsiders its attentions may spend insufficient time actually
working to achieve them, and hence runs the risk of never actually achieving them.

This dilemma is essentially the problem of balancing pro-active (goal directed) and reactive
(event driven) behaviour, that we introduced in section 1.2.2.

There is clearly a tradeoff to be struck between the degree of commitment and recon-
sideration at work here. The nature of this tradeoff was examined by David Kinny and
Michael Georgeff, in a number of experiments carried out with aBDI agent framework
called dMARS [37]. They investigate howbold agents (those that never stop to reconsider)
andcautious agents (those that are constantly stopping to reconsider) perform in a variety
of different environments. The most important parameter in these experiments was therate
of world change, γ. The key results of Kinny and Georgeff were as follows.

If γ is low, (i.e., the environment does not change quickly), then bold agents do
well compared to cautious ones, because cautious ones waste time reconsidering their
commitments while bold agents are busy working towards — and achieving — their
goals.

If γ is high, (i.e., the environment changes frequently), then cautious agents tend to
outperform bold agents, because they are able to recognise when intentions are doomed,
and also to take advantage of serendipitous situations and new opportunities.

The lesson is that different types of environment require different types of decision strate-
gies. In static, unchanging environment, purely pro-active, goal directed behaviour is ad-
equate. But in more dynamic environments, the ability to react to changes by modififying
intentions becomes more important.

The process of practical reasoning in aBDI agent is summarised in Figure 1.5. As this
Figure illustrates, there are seven main components to aBDI agent:

a set of currentbeliefs, representing information the agent has about its current envi-
ronment;

a belief revision function, (br f), which takes a perceptual input and the agent’s current
beliefs, and on the basis of these, determines a new set of beliefs;

anoption generation function, (options), which determines the options available to the
agent (its desires), on the basis of its current beliefs about its environment and its current
intentions;

a set ofcurrent options, representing possible courses of actions available to the agent;

a filter function (f ilter), which represents the agent’sdeliberation process, and which
determines the agent’s intentions on the basis of its current beliefs, desires, and inten-
tions;

a set of currentintentions, representing the agent’s current focus — those states of

32 Intelligent Agents

output
action

action

intentions

desires

options
generate

beliefs

brf

sensor

filter

input

Figure 1.5 Schematic diagram of a generic belief-desire-intention architecture.

affairs that it has committed to trying to bring about;

an action selection function (execute), which determines an action to perform on the
basis of current intentions.

It is straightforward to formally define these components. First, letBel be the set of all
possible beliefs,Des be the set of all possible desires, andInt be the set of all possible
intentions. For the purposes of this chapter, the content of these sets is not important.
(Often, beliefs, desires, and intentions are represented as logical formulae, perhaps of first-
order logic.) Whatever the content of these sets, its is worth noting that they should have
some notion ofconsistency defined upon them, so that one can answer the question of,
for example, whether having an intention to achievex is consistent with the belief thaty.
Representing beliefs, desires, and intentions as logical formulae permits us to cast such
questions as questions as questions of determining whether logical formulae are consistent
— a well known and well-understood problem. The state of aBDI agent at any given
moment is, unsurprisingly, a triple(B;D; I), whereB � Bel, D�Des, andI � Int.

An agent’s belief revision function is a mapping

br f : ℘ (Bel)�P! ℘ (Bel)

1.4 Concrete Architectures for Intelligent Agents 33

which on the basis of the current percept and current beliefs determines a new set of beliefs.
Belief revision is out of the scope of this chapter (and indeed this book), and so we shall
say no more about it here.

The option generation function,options, maps a set of beliefs and a set of intentions to
a set of desires.

options : ℘ (Bel)�℘ (Int)! ℘ (Des)

This function plays several roles. First, it must be responsible for the agent’s means-ends
reasoning — the process of deciding how to achieve intentions. Thus, once an agent has
formed an intention tox, it must subsequently consider options toachieve x. These options
will be more concrete — less abstract — thanx. As some of these options then become
intentions themselves, they will also feedback into option generation, resulting in yet more
concrete options being generated. We can thus think of aBDI agent’s option generation
process as one of recursively elaborating a hierarchical plan structure, considering and
committing to progressively more specific intentions, until finally it reaches the intentions
that correspond to immediately executable actions.

While the main purpose of theoptions function is thus means-ends reasoning, it must in
addition satisfy several other constraints. First, it must beconsistent: any options generated
must be consistent with both the agent’s current beliefs and current intentions. Secondly,
it must beopportunistic, in that it should recognise when environmental circumstances
change advantageously, to offer the agent new ways of achieving intentions, or the possi-
bility of achieving intentions that were otherwise unachievable.

A BDI agent’s deliberation process (decidingwhat to do) is represented in thef ilter
function,

f ilter : ℘ (Bel)�℘ (Des)�℘ (Int)! ℘ (Int)

which updates the agent’s intentions on the basis of its previously-held intentions and
current beliefs and desires. This function must fulfill two roles. First, it mustdrop any
intentions that are no longer achievable, or for which the expected cost of achieving them
exceeds the expected gain associated with successfully achieving them. Second, it should
retain intentions that are not achieved, and that are still expected to have a positive overall
benefit. Finally, it shouldadopt new intentions, either to achieve existing intentions, or to
exploit new opportunities.

Notice that we do not expect this function to introduce intentions from nowhere. Thus
f ilter should satisfy the following constraint:

8B 2 ℘ (Bel);8D 2 ℘ (Des);8I 2 ℘ (Int); f ilter(B;D; I)� I[D:

In other words, current intentions are either previously held intentions or newly adopted
options.

Theexecute function is assumed to simply return any executable intentions — by which
we mean intentions that correspond to directly executable actions:

execute : ℘ (Int)! A

34 Intelligent Agents

The agent decision function,action of a BDI agent is then a function

action : P! A

and is defined by the following pseudo-code.

1. function action(p : P) : A
2. begin
3. B := br f (B; p)
4. D := options(D; I)
5. I := f ilter(B;D; I)
6. return execute(I)
7. end function action

Note that representing an agent’s intentions as aset (i.e., as an unstructured collection) is
generally too simplistic in practice. A simple alternative is to associate apriority with each
intention, indicating its relative importance. Another natural idea is to represent intentions
as astack. An intention is pushed on to the stack when it is adopted, and popped when
it is either achieved or else not achievable. More abstract intentions will tend to be at the
bottom of the stack, with more concrete intentions towards the top.

To summarise,BDI architectures are practical reasoning architectures, in which the
process of deciding what to do resembles the kind of practical reasoning that we appear to
use in our everyday lives. The basic components of aBDI architecture are data structures
representing the beliefs, desires, and intentions of the agent, and functions that represent
its deliberation (decidingwhat intentions to have — i.e., deciding what to do) and means-
ends reasoning (deciding how to do it). Intentions play a central role in theBDI model:
they provide stability for decision making, and act to focus the agent’s practical reasoning.
A major issue inBDI architectures is the problem of striking abalance between being
committed to and overcommitted to one’s intentions: the deliberation process must be
finely tuned to its environment, ensuring that in more dynamic, highly unpredictable
domains, it reconsiders its intentions relatively frequently — in more static environments,
less frequent reconsideration is necessary.

TheBDI model is attractive for several reasons. First, it is intuitive — we all recognise
the processes of deciding what to do and then how to do it, and we all have an informal
understanding of the notions of belief, desire, and intention. Second, it gives us a clear
functional decomposition, which indicates what sorts of subsystems might be required to
build an agent. But the main difficulty, as ever, is knowing how to efficiently implement
these functions.

Sources and Further Reading

Belief-desire-intention architectures originated in the work of the Rational Agency project
at Stanford Research Institute in the mid 1980s. The origins of the model lie in the
theory of human practical reasoning developed by the philosopher Michael Bratman [6],

1.4 Concrete Architectures for Intelligent Agents 35

which focusses particularly on the role of intentions in practical reasoning. The conceptual
framework of the BDI model is described in [7], which also describes a specific BDI agent
architecture calledIRMA. The description of theBDI model given here (and in particular
Figure 1.5) is adapted from [7]. One of the interesting aspects of theBDI model is that it
has been used in one of the most successful agent architectures to date. The Procedural
Resoning System (PRS), originally developed by Michael Georgeff and Amy Lansky [26],
has been used to build some of the most exacting agent applications to date, including fault
diagnosis for the reaction control system of the space shuttle, and an air traffic management
system at Sydney airport in Australia — overviews of these systems are described in [27].
In thePRS, an agent is equipped with a library ofplans which are used to perform means-
ends reasoning. Deliberation is achieved by the use ofmeta-level plans, which are able to
modify an agent’s intention structure at run-time, in order to change the focus of the agent’s
practical reasoning. Beliefs in thePRSare represented asPROLOG-like facts — essentially,
as atoms of first-order logic.

The BDI model is also interesting because a great deal of effort has been devoted to
formalising it. In particular, Anand Rao and Michael Georgeff have developed a range
of BDI logics, which they use to axiomatise properties ofBDI-based practical reasoning
agents [52, 56, 53, 54, 55, 51]. These models have been extended by others to deal with,
for example, communication between agents [28].

1.4.4 Layered Architectures

Given the requirement that an agent be capable of reactive and pro-active behaviour, an
obvious decomposition involves creating separate subsystems to deal with these different
types of behaviours. This idea leads naturally to a class of architectures in which the various
subsystems are arranged into a hierarchy of interactinglayers. In this section, we will
consider some general aspects of layered architectures, and then go on to consider two
examples of such architectures:INTERRAP andTOURINGMACHINES.

Typically, there will be at least two layers, to deal with reactive and pro-active behaviours
respectively. In principle, there is no reason why there should not be many more layers.
However many layers there are, a useful typology for such architectures is by the informa-
tion and control flows within them. Broadly speaking, we can identify two types of control
flow within layered architectures (see Figure 1.6):

Horizontal layering.
In horizontally layered architectures (Figure 1.6(a)), the software layers are each di-
rectly connected to the sensory input and action output. In effect, each layer itself acts
like an agent, producing suggestions as to what action to perform.

Vertical layering.
In vertically layered architectures (Figure 1.6(b) and 1.6(c)), sensory input and action
output are each dealt with by at most one layer each.

The great advantage of horizontally layered architectures is their conceptual simplicity: if
we need an agent to exhibitn different types of behaviour, then we implementn different
layers. However, because the layers are each in effect competing with one-another to

36 Intelligent Agents

action
output

perceptual
input

(b) Vertical layering
(One pass control)

(a) Horizontal layering

perceptual
input

action
output

perceptual
input

action
output

(Two pass control)

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

...

(c) Vertical layering

Figure 1.6 Information and control flows in three types of layered agent architecture
(Source: [47, p263]).

generate action suggestions, there is a danger that theoverall behaviour of the agent will
not be coherent. In order to ensure that horizontally layered architecturesare consistent,
they generally include amediator function, which makes decisions about which layer has
“control” of the agent at any given time. The need for such central control is problematic: it
means that the designer must potentially consider all possible interactions between layers.
If there aren layers in the architecture, and each layer is capable of suggestingm possible
actions, then this means there aremn such interactions to be considered. This is clearly
difficult from a design point of view in any but the most simple system. The introduction
of a central control system also introduces abottleneck into the agent’s decision making.

These problems are partly alleviated in a vertically layered architecture. We can subdi-
vide vertically layered architectures intoone pass architectures (Figure 1.6(b)) andtwo
pass architectures (Figure 1.6(c)). In one-pass architectures, control flows sequentially
through each layer, until the final layer generates action output. In two-pass architectures,
information flows up the architecture (the first pass) and control then flows back down.
There are some interesting similarities between the idea of two-pass vertically layered ar-
chitectures and the way that organisations work, with information flowing up to the highest
levels of the organisation, and commands then flowing down. In both one pass and two pass
vertically layered architectures, the complexity of interactions between layers is reduced:
since there aren�1 interfaces betweenn layers, then if each layer is capable of suggesting
m actions, there are at mostm2(n�1) interactions to be considered between layers. This is
clearly much simpler than the horizontally layered case. However, this simplicity comes at
the cost of some flexibility: in order for a vertically layered architecture to make a decision,
control must pass betweeneach different layer. This is not fault tolerant: failures in any one
layer are likely to have serious consequences for agent performance.

In the remainder of this section, we will consider two examples of layered architectures:
Innes Ferguson’sTOURINGMACHINES, and Jörg Müller’s INTERRAP. The former is an

1.4 Concrete Architectures for Intelligent Agents 37

Perception subsystem

Modelling layer

Planning Layer

Reactive layer

Control subsystem

Action subsystem

input

action
output

sensor

Figure 1.7 TOURINGMACHINES: a horizontally layered agent architecture

example of a horizontally layered architecture; the latter is a (two pass) vertically layered
architecture.

TouringMachines

The TOURINGMACHINES architecture is illustrated in Figure 1.7. As this Figure shows,
TOURINGMACHINES consists of threeactivity producing layers. That is, each layer con-
tinually produces “suggestions” for what actions the agent should perform. Thereactive
layer provides a more-or-less immediate response to changes that occur in the environment.
It is implemented as a set of situation-action rules, like the behaviours in Brooks’ subsump-
tion architecture (section 1.4.2). These rules map sensor input directly to effector output.
The original demonstration scenario forTOURINGMACHINES was that of autonomous ve-
hicles driving between locations through streets populated by other similar agents. In this
scenario, reactive rules typically deal with functions like obstacle avoidance. For example,
here is an example of a reactive rule for avoiding the kerb (from [16, p59]):

rule-1: kerb-avoidance
if

is-in-front(Kerb, Observer) and
speed(Observer) > 0 and
separation(Kerb, Observer) < KerbThreshHold

then
change-orientation(KerbAvoidanceAngle)

Herechange-orientation(...) is the action suggested if the rule fires. The rules can
only make references to the agent’s current state — they cannot do any explicit reasoning
about the world, and on the right hand side of rules areactions, not predicates. Thus if this
rule fired, it would not result in any central environment model being updated, but would

38 Intelligent Agents

just result in an action being suggested by the reactive layer.
The TOURINGMACHINES planning layer achieves the agent’s pro-active behaviour.

Specifically, the planning layer is responsible for the “day-to-day” running of the agent
— under normal circumstances, the planning layer will be responsible for deciding what
the agent does. However, the planning layer does not do “first-principles” planning. That
is, it does not attempt to generate plans from scratch. Rather, the planning layer employs
a library of plan “skeletons” calledschemas. These skeletons are in essence hierarchically
structured plans, which theTOURINGMACHINES planning layer elaborates at run time in
order to decide what to do. So, in order to achieve a goal, the planning layer attempts to
find a schema in its library which matches that goal. This schema will contain sub-goals,
which the planning layer elaborates by attempting to find other schemas in its plan library
that match these sub-goals.

Themodeling layer represents the various entities in the world (including the agent itself,
as well as other agents). The modeling layer thus predicts conflicts between agents, and
generates new goals to be achieved in order to resolve these conflicts. These new goals
are then posted down to the planning layer, which makes use of its plan library in order to
determine how to satisfy them.

The three control layers are embedded within acontrol subsystem, which is effectively
responsible for deciding which of the layers should have control over the agent. This
control subsystem is implemented as a set ofcontrol rules. Control rules can eithersuppress
sensor information between the control rules and the control layers, or elsecensor action
outputs from the control layers. Here is an example censor rule [18, p207]:

censor-rule-1:
if

entity(obstacle-6) in perception-buffer
then

remove-sensory-record(layer-R, entity(obstacle-6))

This rule prevents the reactive layer from ever knowing about whetherobstacle-6 has
been perceived. The intuition is that although the reactive layer will in general be the most
appropriate layer for dealing with obstacle avoidance, there are certain obstacles for which
other layers are more appropriate. This rule ensures that the reactive layer never comes to
know about these obstacles.

InteRRaP

INTERRAP is an example of a vertically layered two-pass agent architecture — see Fig-
ure 1.8.

As Figure 1.8 shows,INTERRAP contains three control layers, as inTOURINGMA-
CHINES. Moreover, the purpose of eachINTERRAP layer appears to be rather similar to
the purpose of each correspondingTOURINGMACHINES layer. Thus the lowest (behaviour
based) layer deals with reactive behaviour; the middle (local planning) layer deals with
everyday planning to achieve the agent’s goals, and the uppermost (cooperative planning)
layer deals with social interactions. Each layer has associated with it aknowledge base, i.e.,

1.4 Concrete Architectures for Intelligent Agents 39

world interface

cooperation layer

plan layer

behaviour layer

social knowledge

planning knowledge

world model

perceptual input action output

Figure 1.8 INTERRAP – a vertically layered two-pass agent architecture.

a representation of the world appropriate for that layer. These different knowledge bases
represent the agent and its environment at different levels of abstraction. Thus the highest
level knowledge base represents the plans and actions of other agents in the environment;
the middle-level knowledge base represents the plans and actions of the agent itself; and
the lowest level knowledge base represents “raw” information about the environment. The
explicit introduction of these knowledge bases distinguishesTOURINGMACHINES from
INTERRAP.

The way the different layers inINTERRAP conspire to produce behaviour is also quite
different fromTOURINGMACHINES. The main difference is in the way the layers interract
with the environment. InTOURINGMACHINES, each layer was directly coupled to percep-
tual input and action output. This necessitated the introduction of a supervisory control
framework, to deal with conflicts or problems between layers. InINTERRAP, layers inter-
act witheach other to achieve the same end. The two main types of interaction between
layers arebottom-up activation andtop-down execution. Bottom-up activation occurs when
a lower layer passes control to a higher layer because it is notcompetent to deal with the
current situation. Top-down execution occurs when a higher layer makes use of the fa-
cilities provided by a lower layer to achieve one of its goals. The basic flow of control in
INTERRAPbegins when perceptual input arrives at the lowest layer in the achitecture. If the
reactive layer can deal with this input, then it will do so; otherwise, bottom-up activation
will occur, and control will be passed to the local planning layer. If the local planning layer
can handle the situation, then it will do so, typically by making use of top-down execution.
Otherwise, it will use bottom-up activation to pass control to the highest layer. In this way,
control in INTERRAP will flow from the lowest layer to higher layers of the architecture,
and then back down again.

The internals of each layer are not important for the purposes of this article. However,
it is worth noting that each layer implements two general functions. The first of these is a
situation recognition and goal activation function. This function acts rather like theoptions

40 Intelligent Agents

function in a BDI architecture (see section 1.4.3). It maps a knowledge base (one of the
three layers) and current goals to a new set of goals. The second function is responsible for
planning and scheduling — it is responsible for selecting which plans to execute, based on
the current plans, goals, and knowledge base of that layer.

Layered architectures are currently the most popular general class of agent architecture
available. Layering represents a natural decomposition of functionality: it is easy to see
how reactive, pro-active, social behaviour can be generated by the reactive, pro-active,
and social layers in an architecture. The main problem with layered architectures is that
while they are arguably apragmatic solution, they lack the conceptual and semantic clarity
of unlayered approaches. In particular, while logic-based approaches have a clear logical
semantics, it is difficult to see how such a semantics could be devised for a layered
architecture. Another issue is that of interactions between layers. If each layer is an
independent activity producing process (as inTOURINGMACHINES), then it is necessary
to consider all possible ways that the layers can interact with one another. This problem is
partly alleviated in two-pass vertically layered architecture such asINTERRAP.

Sources and Further Reading

The introductory discussion of layered architectures given here draws heavily upon [47,
pp262–264].The best reference toTOURINGMACHINESis [16]; more accessible references
include [17, 18]. The definitive reference toINTERRAPis [46], although [20] is also a useful
reference. Other examples of layered architectures include the subsumption architecture [8]
(see also section 1.4.2), and the 3T architecture [4].

1.5 Agent Programming Languages

As agent technology becomes more established, we might expect to see a variety of
software tools become available for the design and construction of agent-based systems;
the need for software support tools in this area was identified as long ago as the mid-
1980s [23]. In this section, we will discuss two of the better-known agent programming
languages, focussing in particular on Yoav Shoham’sAGENT0 system.

1.5.1 Agent-oriented programming

Yoav Shoham has proposed a “new programming paradigm, based on a societal view of
computation” which he callsagent-oriented programming. The key idea which informs
AOP is that of directly programming agents in terms ofmentalistic notions (such as
belief, desire, and intention) that agent theorists have developed to represent the properties
of agents. The motivation behind the proposal is that humans use such concepts as an
abstraction mechanism for representing the properties of complex systems. In the same
way that we use these mentalistic notions to describe and explain the behaviour of humans,
so it might be useful to use them to program machines.

1.5 Agent Programming Languages 41

The first implementation of the agent-oriented programming paradigm was theAGENT0
programming language. In this language, an agent is specified in terms of a set of capa-
bilities (things the agent can do), a set of initialbeliefs (playing the role of beliefs inBDI

architectures), a set of initialcommitments (playing a role similar to that of intentions in
BDI architectures), and a set ofcommitment rules. The key component, which determines
how the agent acts, is the commitment rule set. Each commitment rule contains amessage
condition, a mental condition, and an action. In order to determine whether such a rule
fires, the message condition is matched against the messages the agent has received; the
mental condition is matched against the beliefs of the agent. If the rule fires, then the agent
becomes committed to the action. Actions may beprivate, corresponding to an internally
executed subroutine, orcommunicative, i.e., sending messages. Messages are constrained
to be one of three types: “requests” or “unrequests” to perform or refrain from actions,
and “inform” messages, which pass on information — Shoham indicates that he took his
inspiration for these message types from speech act theory [63, 12]. Request and unrequest
messages typically result in the agent’s commitments being modified; inform messages
result in a change to the agent’s beliefs.

Here is an example of anAGENT0 commitment rule:

COMMIT(
(agent, REQUEST, DO(time, action)
), ;;; msg condition
(B,
[now, Friend agent] AND
CAN(self, action) AND
NOT [time, CMT(self, anyaction)]

), ;;; mental condition
self,
DO(time, action)

)

This rule may be paraphrased as follows:

if I receive a message from agent which requests me to do action at time, and I believe
that:

agent is currently a friend;

I can do the action;

at time, I am not committed to doing any other action,

then commit to doing action at time.

The operation of an agent can be described by the following loop (see Figure 1.9):

1. Read all current messages, updating beliefs — and hence commitments — where
necessary;

2. Execute all commitments for the current cycle where the capability condition of the
associated action is satisfied;

42 Intelligent Agents

beliefs

commitments

abilities

EXECUTE

update

beliefs

update

commitments

initialise messages in

internal actions

messages out

Figure 1.9 The flow of control inAGENT-0.

3. Goto (1).

It should be clear how more complex agent behaviours can be designed and built in
AGENT0. However, it is important to note that this language is essentially aprototype, not
intended for building anything like large-scale production systems. However, it does at
least give a feel for how such systems might be built.

1.5.2 Concurrent METATEM

Arguably, one drawback withAGENT0 is that the relationship between the logic and
interpreted programming language is only loosely defined. The programming language
cannot be said to trulyexecute the associated logic, in the way that our logic-based
agents did in section 1.4.1. The Concurrent METATEM language developed by Fisher can
make a stronger claim in this respect [21]. A Concurrent METATEM system contains a
number of concurrently executing agents, each of which is able to communicate with its
peers via asynchronous broadcast message passing. Each agent is programmed by giving
it a temporal logic specification of the behaviour that it is intended the agent should
exhibit. An agent’s specification is executed directly to generate its behaviour. Execution

1.5 Agent Programming Languages 43

of the agent program corresponds to iteratively building a logical model for the temporal
agent specification. It is possible to prove that the procedure used to execute an agent
specification is correct, in that if it is possible to satisfy the specification, then the agent
will do so [3].

The logical semantics of Concurrent METATEM are closely related to the semantics
of temporal logic itself. This means that, amongst other things, the specification and
verification of Concurrent METATEM systems is a realistic proposition [22].

An agent program in Concurrent METATEM has the form
V

i Pi) Fi, wherePi is a
temporal logic formula referring only to the present or past, andFi is a temporal logic
formula referring to the present or future. ThePi) Fi formulae are known asrules. The
basic idea for executing such a program may be summed up in the following slogan:

on the basis of the pastdo the future.

Thus each rule is continually matched against an internal, recordedhistory, and if a match
is found, then the rulefires. If a rule fires, then any variables in the future time part are
instantiated, and the future time part then becomes acommitment that the agent will
subsequently attempt to satisfy. Satisfying a commitment typically means making some
predicate true within the agent. Here is a simple example of a Concurrent METATEM agent
definition:

rc(ask)[give] :

ask(x)) give(x)

(:ask(x)Z (give(x)^:ask(x))):give(x)

give(x)^give(y)) (x = y)

The agent in this example is a controller for a resource that is infinitely renewable, but
which may only be possessed by one agent at any given time. The controller must therefore
enforce mutual exclusion over this resource. The first line of the program defines the
interface to the agent: its name isrc (for resource controller), and it will acceptask
messages and sendgive messages. The following three lines constitute the agent program
itself. The predicateask(x) means that agentx has asked for the resource. The predicate
give(x) means that the resource controller has given the resource to agentx. The resource
controller is assumed to be the only agent able to ‘give’ the resource. However, many agents
may ask for the resource simultaneously. The three rules that define this agent’s behaviour
may be summarized as follows:

Rule 1: if someone has just asked for the resource, then eventually give them the resource;

Rule 2: don’t give unless someone has asked since you last gave; and

Rule 3: if you give to two people, then they must be the same person (i.e., don’t give to
more than one person at a time).

Concurrent METATEM is a good illustration of how a quite pure approach to logic-based
agent programming can work, even with a quite expressive logic.

44 Intelligent Agents

Sources and Further Reading

The main references toAGENT0 are [64, 65]. Michael Fisher’s Concurrent METATEM
language is described in [21]; the execution algorithm that underpins it is described in [3].
Since Shoham’s proposal, a number of languages have been proposed which claim to
be agent-oriented. Examples include Becky Thomas’s Planning Communicating Agents
(PLACA) language [67, 68],MAIL [30], and Anand Rao’sAGENTSPEAK(L) language [50].
APRIL is a language that is intended to be used for building multi-agent systems, although
it is not “agent-oriented” in the sense that Shoham describes [44]. TheTELESCRIPT

programming language, developed by General Magic, Inc., was the firstmobile agent
programming language [69]. That is, it explicitly supports the idea of agents as processes
that have the ability to autonomously move themselves across a computer network and
recommence executing at a remote site. SinceTELESCRIPTwas announced, a number of
mobile agent extensions to theJAVA programming language have been developed.

1.6 Conclusions

I hope that after reading this chapter, you understand what agents are and why they are
considered to be an important area of research and development. The requirement for
systems that can operate autonomously is very common. The requirement for systems
capable offlexible autonomous action, in the sense that I have described in this chapter,
is similarly common. This leads me to conclude that intelligent agents have the potential
to play a significant role in the future of software engineering. Intelligent agent research is
about the theory, design, construction, and application of such systems. This chapter has
focussed on the design of intelligent agents. It has presented a high-level, abstract view
of intelligent agents, and described the sort of properties that one would expect such an
agent to enjoy. It went on to show how this view of an agent could be refined into various
different types of agent architecture — purely logical agents, purely reactive/behavioural
agents,BDI agents, and layered agent architectures.

1.7 Exercises

1. [Level 1]
Give other examples of agents (not necessarily intelligent) that you know of. For
each, define as precisely as possible:

the environment that the agent occupies (physical, software,. . .), thestates that
this environment can be in, and whether the environment is: accessible or inac-
cessible; deterministic or non-deterministic; episodic or non-episodic; static or
dynamic; discrete or continuous.

the action repertoire available to the agent, and any pre-conditions associated with
these actions;

1.7 Exercises 45

the goal, or design objectives of the agent — what it is intended to achieve.

2. [Level 1]

(a) Prove that for every purely reactive agent, these is a behaviourally equivalent
standard agent.

(b) Prove that there exist standard agents that have no behaviourally equivalent
purely reactive agent.

3. [Level 1]
Prove that state-based agents are equivalent in expressive power to standard agents,
i.e., that for every state-based agent there is a behaviourally equivalent standard agent
and vice versa.

4. [Level 2]
The following few questions refer to the vacuum world example described in sec-
tion 1.4.1.
Give the full definition (using pseudo-code if desired) of thenew function, which
defines the predicates to add to the agent’s database.

5. [Level 2]
Complete the vacuum world example, by filling in the missing rules. How intuitive
do you think the solution is? How elegant is it? How compact is it?

6. [Level 2]
Try using your favourite (imperative) programming language to code a solution to the
basic vacuum world example. How do you think it compares to the logical solution?
What does this tell you about trying to encode essentiallyprocedural knowledge (i.e.,
knowledge about what action to perform) as purely logical rules?

7. [Level 2]
If you are familiar withPROLOG, try encoding the vacuum world example in this
language and running it with randomly placed dirt. Make use of theassert and
retract meta-level predicates provided byPROLOGto simplify your system (allow-
ing the program itself to achieve much of the operation of thenext function).

8. [Level 2]
Develop a solution to the vacuum world example using the behaviour-based approach
described in section 1.4.2. How does it compare to the logic-based example?

9. [Level 2]
Try scaling the vacuum world up to a 10� 10 grid size. Approximately how many
rules would you need to encode this enlarged example, using the approach presented
above? Try to generalise the rules, encoding a more general decision making mecha-
nism.

10. [Level 3]
Suppose that the vacuum world could also containobstacles, which the agent needs to
avoid. (Imagine it is equipped with a sensor to detect such obstacles.) Try to adapt the
example to deal with obstacle detection and avoidance. Again, compare a logic-based
solution to one implemented in a traditional (imperative) programming language.

46 Intelligent Agents

11. [Level 3]
Suppose the agent’s sphere of perception in the vacuum world is enlarged, so that
it can see thewhole of its world, and seeexactly where the dirt lay. In this case, it
would be possible to generate anoptimal decision-making algorithm — one which
cleared up the dirt in the smallest time possible. Try and think of such general
algorithms, and try to code them both in first-order logic and a more traditional
programming language. Investigate the effectiveness of these algorithms when there
is the possibility ofnoise in the perceptual input the agent receives, (i.e., there is a
non-zero probability that the perceptual information is wrong), and try to develop
decision-making algorithms that are robust in the presence of such noise. How do
such algorithms perform as the level of perception is reduced?

12. [Level 2]
Try developing a solution to the Mars explorer example from section 1.4.2 using the
logic-based approach. How does it compare to the reactive solution?

13. [Level 3]
In the programming language of your choice, implement the Mars explorer example
using the subsumption architecture. (To do this, you may find it useful to implement
a simple subsumption architecture “shell” for programming different behaviours.)
Investigate the performance of the two approaches described, and see if you can do
better.

14. [Level 3]
Using the simulator implemented for the preceding question, see what happens as
you increase the number of agents. Eventually, you should see that overcrowding
leads to a sub-optimal solution — agents spend too much time getting out of each
other’s way to get any work done. Try to get around this problem by allowing agents
to pass samples to each other, thus implementingchains. (See the description in [15,
p305].)

15. [Level 4]
Read about traditionalcontrol theory, and compare the problems and techniques of
control theory to what are trying to accomplish in building intelligent agents. How
are the techniques and problems of traditional control theory similar to those of
intelligent agent work, and how do they differ?

16. [Level 4]
One advantage of the logic-based approach to building agents is that the logic-based
architecture isgeneric: first-order logic turns out to extremely powerful and useful for
expressing a range of different properties. Thus it turns out to be possible to use the
logic-based architecture toencode a range of other architectures. For this exercise,
you should attempt to use first-order logic to encode the different architectures
(reactive,BDI, layered) described in this chapter. (You will probably need to read
the original references to be able to do this.) Once completed, you will have a
logical theory of the architecture, that will serve both as a formal specification of the
architecture, and also as a precise mathematical model of it, amenable to proof. Once
you have your logically-specified architecture, try toanimate it, by mapping your

1.7 Exercises 47

logical theory of it into, say thePROLOGprogramming language. What compromises
do you have to make? Does it seem worthwhile trying to directly program the system
in logic, or would it be simpler to implement your system in a more pragmatic
programming language (such asJAVA)?

1. P. Agre and D. Chapman. PENGI: An implementation of a theory of activity. InProceedings
of the Sixth National Conference on Artificial Intelligence (AAAI-87), pages 268–272, Seattle,
WA, 1987.

2. P. E. Agre and S. J. Rosenschein, editors.Computational Theories of Interaction and Agency.
The MIT Press: Cambridge, MA, 1996.

3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A framework for
programming in temporal logic. InREX Workshop on Stepwise Refinement of Distributed
Systems: Models, Formalisms, Correctness (LNCS Volume 430), pages 94–129.
Springer-Verlag: Berlin, Germany, June 1989.

4. R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences with an architecture
for intelligent, reactive agents. In M. Wooldridge, J. P. M¨uller, and M. Tambe, editors,
Intelligent Agents II (LNAI Volume 1037), pages 187–202. Springer-Verlag: Berlin, Germany,
1996.

5. G. Booch.Object-Oriented Analysis and Design (second edition). Addison-Wesley: Reading,
MA, 1994.

6. M. E. Bratman.Intentions, Plans, and Practical Reason. Harvard University Press:
Cambridge, MA, 1987.

7. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical
reasoning.Computational Intelligence, 4:349–355, 1988.

8. R. A. Brooks. A robust layered control system for a mobile robot.IEEE Journal of Robotics
and Automation, 2(1):14–23, 1986.

9. R. A. Brooks. Elephants don’t play chess. In P. Maes, editor,Designing Autonomous Agents,
pages 3–15. The MIT Press: Cambridge, MA, 1990.

10. R. A. Brooks. Intelligence without reason. InProceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), pages 569–595, Sydney, Australia, 1991.

11. R. A. Brooks. Intelligence without representation.Artificial Intelligence, 47:139–159, 1991.

12. P. R. Cohen and C. R. Perrault. Elements of a plan based theory of speech acts.Cognitive
Science, 3:177–212, 1979.

13. Oren Etzioni. Intelligence without robots.AI Magazine, 14(4), December 1993.

14. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning About Knowledge. The MIT
Press: Cambridge, MA, 1995.

15. J. Ferber. Reactive distributed artificial intelligence. In G. M. P. O’Hare and N. R. Jennings,
editors,Foundations of Distributed Artificial Intelligence, pages 287–317. John Wiley, 1996.

16. I. A. Ferguson.TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents.
PhD thesis, Clare Hall, University of Cambridge, UK, November 1992. (Also available as
Technical Report No. 273, University of Cambridge Computer Laboratory).

17. I. A. Ferguson. Towards an architecture for adaptive, rational, mobile agents. In E. Werner
and Y. Demazeau, editors,Decentralized AI 3 — Proceedings of the Third European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-91), pages

48 Intelligent Agents

249–262. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992.

18. I. A. Ferguson. Integrated control and coordinated behaviour: A case for agent models. In
M. Wooldridge and N. R. Jennings, editors,Intelligent Agents: Theories, Architectures, and
Languages (LNAI Volume 890), pages 203–218. Springer-Verlag: Berlin, Germany, January
1995.

19. J. A. Firby. An investigation into reactive planning in complex domains. InProceedings of
the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87), pages 202–206,
Milan, Italy, 1987.

20. K. Fischer, J. P. M¨uller, and M. Pischel. A pragmatic BDI architecture. In M. Wooldridge,
J. P. Müller, and M. Tambe, editors,Intelligent Agents II (LNAI Volume 1037), pages 203–218.
Springer-Verlag: Berlin, Germany, 1996.

21. M. Fisher. A survey of Concurrent METATEM — the language and its applications. In D. M.
Gabbay and H. J. Ohlbach, editors,Temporal Logic — Proceedings of the First International
Conference (LNAI Volume 827), pages 480–505. Springer-Verlag: Berlin, Germany, July 1994.

22. M. Fisher and M. Wooldridge. Specifying and verifying distributed intelligent systems. In
M. Filgueiras and L. Damas, editors,Progress in Artificial Intelligence — Sixth Portuguese
Conference on Artificial Intelligence (LNAI Volume 727), pages 13–28. Springer-Verlag:
Berlin, Germany, October 1993.

23. L. Gasser, C. Braganza, and N. Hermann. MACE: A flexible testbed for distributed AI
research. In M. Huhns, editor,Distributed Artificial Intelligence, pages 119–152. Pitman
Publishing: London and Morgan Kaufmann: San Mateo, CA, 1987.

24. L. Gasser and J. P. Briot. Object-based concurrent programming and DAI. InDistributed
Artificial Intelligence: Theory and Praxis, pages 81–108. Kluwer Academic Publishers:
Boston, MA, 1992.

25. M. R. Genesereth and N. Nilsson.Logical Foundations of Artificial Intelligence. Morgan
Kaufmann Publishers: San Mateo, CA, 1987.

26. M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. InProceedings of the
Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677–682, Seattle, WA,
1987.

27. M. P. Georgeff and A. S. Rao. A profile of the Australian AI Institute.IEEE Expert,
11(6):89–92, December 1996.

28. A. Haddadi.Communication and Cooperation in Agent Systems (LNAI Volume 1056).
Springer-Verlag: Berlin, Germany, 1996.

29. J. Y. Halpern. Using reasoning about knowledge to analyze distributed systems.Annual
Review of Computer Science, 2:37–68, 1987.

30. H. Haugeneder, D. Steiner, and F. G. McCabe. IMAGINE: A framework for building
multi-agent systems. In S. M. Deen, editor,Proceedings of the 1994 International Working
Conference on Cooperating Knowledge Based Systems (CKBS-94), pages 31–64, DAKE
Centre, University of Keele, UK, 1994.

31. F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, editors.Building Expert Systems.
Addison-Wesley: Reading, MA, 1983.

32. P. Jackson.Introduction to Expert Systems. Addison-Wesley: Reading, MA, 1986.

33. N. R. Jennings, J. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriolat, P. Skarek, and L. Z.
Varga. Using ARCHON to develop real-world DAI applications for electricity transportation
management and particle accelerator control.IEEE Expert, dec 1996.

34. L. P. Kaelbling. An architecture for intelligent reactive systems. In M. P. Georgeff and A. L.
Lansky, editors,Reasoning About Actions & Plans — Proceedings of the 1986 Workshop,

1.7 Exercises 49

pages 395–410. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

35. L. P. Kaelbling. A situated automata approach to the design of embedded agents.SIGART
Bulletin, 2(4):85–88, 1991.

36. L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents. In P. Maes,
editor,Designing Autonomous Agents, pages 35–48. The MIT Press: Cambridge, MA, 1990.

37. D. Kinny and M. Georgeff. Commitment and effectiveness of situated agents. InProceedings
of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), pages
82–88, Sydney, Australia, 1991.

38. K. Konolige. A Deduction Model of Belief. Pitman Publishing: London and Morgan
Kaufmann: San Mateo, CA, 1986.

39. Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl. Foundations of a
logical approach to agent programming. In M. Wooldridge, J. P. M¨uller, and M. Tambe,
editors,Intelligent Agents II (LNAI Volume 1037), pages 331–346. Springer-Verlag: Berlin,
Germany, 1996.

40. P. Maes. The dynamics of action selection. InProceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI-89), pages 991–997, Detroit, MI, 1989.

41. P. Maes, editor.Designing Autonomous Agents. The MIT Press: Cambridge, MA, 1990.

42. P. Maes. Situated agents can have goals. In P. Maes, editor,Designing Autonomous Agents,
pages 49–70. The MIT Press: Cambridge, MA, 1990.

43. P. Maes. The agent network architecture (ANA).SIGART Bulletin, 2(4):115–120, 1991.

44. F. G. McCabe and K. L. Clark.April — agent process interaction language. In
M. Wooldridge and N. R. Jennings, editors,Intelligent Agents: Theories, Architectures, and
Languages (LNAI Volume 890), pages 324–340. Springer-Verlag: Berlin, Germany, January
1995.

45. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors,Machine Intelligence 4. Edinburgh
University Press, 1969.

46. J. Müller. A cooperation model for autonomous agents. In J. P. M¨uller, M. Wooldridge, and
N. R. Jennings, editors,Intelligent Agents III (LNAI Volume 1193), pages 245–260.
Springer-Verlag: Berlin, Germany, 1997.

47. J. P. Müller, M. Pischel, and M. Thiel. Modelling reactive behaviour in vertically layered
agent architectures. In M. Wooldridge and N. R. Jennings, editors,Intelligent Agents:
Theories, Architectures, and Languages (LNAI Volume 890), pages 261–276. Springer-Verlag:
Berlin, Germany, January 1995.

48. J. P. Müller, M. Wooldridge, and N. R. Jennings, editors.Intelligent Agents III (LNAI Volume
1193). Springer-Verlag: Berlin, Germany, 1995.

49. N. J. Nilsson. Towards agent programs with circuit semantics. Technical Report
STAN–CS–92–1412, Computer Science Department, Stanford University, Stanford, CA
94305, January 1992.

50. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. W. Perram, editors,Agents Breaking Away: Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a Multi-Agent World, (LNAI Volume
1038), pages 42–55. Springer-Verlag: Berlin, Germany, 1996.

51. A. S. Rao. Decision procedures for propositional linear-time Belief-Desire-Intention logics.
In M. Wooldridge, J. P. M¨uller, and M. Tambe, editors,Intelligent Agents II (LNAI Volume
1037), pages 33–48. Springer-Verlag: Berlin, Germany, 1996.

52. A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-effect problems in linear time and

50 Intelligent Agents

branching time intention logics. InProceedings of the Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91), pages 498–504, Sydney, Australia, 1991.

53. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
R. Fikes and E. Sandewall, editors,Proceedings of Knowledge Representation and Reasoning
(KR&R-91), pages 473–484. Morgan Kaufmann Publishers: San Mateo, CA, April 1991.

54. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich,
W. Swartout, and B. Nebel, editors,Proceedings of Knowledge Representation and Reasoning
(KR&R-92), pages 439–449, 1992.

55. A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situated
reasoning systems. InProceedings of the Thirteenth International Joint Conference on
Artificial Intelligence (IJCAI-93), pages 318–324, Chamb´ery, France, 1993.

56. A. S. Rao, M. P. Georgeff, and E. A. Sonenberg. Social plans: A preliminary report. In
E. Werner and Y. Demazeau, editors,Decentralized AI 3 — Proceedings of the Third European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-91), pages
57–76. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992.

57. S. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with provable
epistemic properties. In J. Y. Halpern, editor,Proceedings of the 1986 Conference on
Theoretical Aspects of Reasoning About Knowledge, pages 83–98. Morgan Kaufmann
Publishers: San Mateo, CA, 1986.

58. S. J. Rosenschein and L. P. Kaelbling. A situated view of representation and control. In P. E.
Agre and S. J. Rosenschein, editors,Computational Theories of Interaction and Agency, pages
515–540. The MIT Press: Cambridge, MA, 1996.

59. S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice-Hall, 1995.

60. S. Russell and D. Subramanian. Provably bounded-optimal agents.Journal of AI Research,
2:575–609, 1995.

61. S. J. Russell and E. Wefald.Do the Right Thing — Studies in Limited Rationality. The MIT
Press: Cambridge, MA, 1991.

62. M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87),
pages 1039–1046, Milan, Italy, 1987.

63. J. R. Searle.Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press: Cambridge, England, 1969.

64. Y. Shoham. Agent-oriented programming. Technical Report STAN–CS–1335–90, Computer
Science Department, Stanford University, Stanford, CA 94305, 1990.

65. Y. Shoham. Agent-oriented programming.Artificial Intelligence, 60(1):51–92, 1993.

66. L. Steels. Cooperation between distributed agents through self organization. In Y. Demazeau
and J.-P. M¨uller, editors,Decentralized AI — Proceedings of the First European Workshop on
Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-89), pages 175–196.
Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

67. S. R. Thomas.PLACA, an Agent Oriented Programming Language. PhD thesis, Computer
Science Department, Stanford University, Stanford, CA 94305, August 1993. (Available as
technical report STAN–CS–93–1487).

68. S. R. Thomas. The PLACA agent programming language. In M. Wooldridge and N. R.
Jennings, editors,Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume
890), pages 355–369. Springer-Verlag: Berlin, Germany, January 1995.

69. J. E. White. Telescript technology: The foundation for the electronic marketplace. White
paper, General Magic, Inc., 2465 Latham Street, Mountain View, CA 94040, 1994.

1.7 Exercises 51

70. M. Wooldridge. Agent-based software engineering.IEE Transactions on Software
Engineering, 144(1):26–37, February 1997.

71. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.The Knowledge
Engineering Review, 10(2):115–152, 1995.

Acknowledgment

Thanks to Gerhard Weiß, for his patience and enthusiasm.

