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Correspondence

Coevolutionary Particle Swarm Optimization Using
Gaussian Distribution for Solving Constrained

Optimization Problems

Renato A. Krohling and Leandro dos Santos Coelho

Abstract—In this correspondence, an approach based on coevolutionary
particle swarm optimization to solve constrained optimization problems
formulated as min–max problems is presented. In standard or canonical
particle swarm optimization (PSO), a uniform probability distribution is
used to generate random numbers for the accelerating coefficients of the
local and global terms. We propose a Gaussian probability distribution
to generate the accelerating coefficients of PSO. Two populations of PSO
using Gaussian distribution are used on the optimization algorithm that is
tested on a suite of well-known benchmark constrained optimization prob-
lems. Results have been compared with the canonical PSO (constriction
factor) and with a coevolutionary genetic algorithm. Simulation results
show the suitability of the proposed algorithm in terms of effectiveness and
robustness.

Index Terms—Constrained optimization, Gaussian distribution,
min–max problem, particle swarm optimization (PSO).

I. INTRODUCTION

Evolutionary algorithms (EAs) have shown to be a promising ap-
proach to solve complex constrained optimization problems [1]. A
very important factor in constrained optimization is how to handle
constraints. Some algorithms to handle constraints in EAs have been
proposed in the last decade and they can be grouped as [1]: 1) preser-
vation of the feasible individuals; 2) repair of infeasible solutions;
3) use of decoders; 4) penalty functions; and 5) hybrid algorithms. The
performance of these methods depends on the problem at hand. The
main question is to evaluate the fitness of infeasible individuals. In
most of the cases, the approaches to handle constraints developed for
EAs have been adapted to other soft computing algorithms, although it
may not be always possible to. An alternative algorithm to EAs, which
has demonstrated to be a promising approach for solving constrained
optimization problems, is particle swarm optimization (PSO) [4]–[9].

In the last few years, several heuristics have been developed to
improve the performance and set up suitable parameters for the PSO
algorithm [10]–[12]. Some theoretical work to analyze the trajectory
of particles has been carried out. Van den Bergh [13] studied the
trajectory of particles under different inertia weights and acceleration
coefficients. A constriction factor has been proposed by Clerc and
Kennedy [14] to ensure convergence. Trelea [15] analyzed the trajec-
tory of a deterministic particle in a one-dimensional search space using
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dynamic systems theory. However, the deterministic approach pro-
posed in [15] may not be straightforward generalized for the analysis
of PSO with random coefficients in a multidimensional search space.

In PSO, a uniform probability distribution to generate random
numbers to updating the velocity is used. However, the use of other
probability distributions may improve the ability to fine-tune or even
to escape from local optima. In the meantime, the use of Gaussian
and Cauchy probability distributions has been proposed to generate
random numbers to update the velocity equation [16]–[24] inspired
by studies of mutation operators in fast evolutionary programming
[29], [30]. Coelho and Krohling [16], [17] proposed the use of a
truncated Gaussian and Cauchy probability distribution to generate
random numbers for the velocity updating equation. First, random
numbers are generated using the Gaussian or the Cauchy probability
distribution in the interval [−1; 1], and then mapped to the interval
[0; 1]. Secrest and Lamont [18] proposed also a rule for the Gaussian
motion of the particles of the swarm. Kennedy [19] also used a
Gaussian distribution in his bare bones particle. Higashi and Iba [20]
and Stacey et al. [21] use an additional term to the velocity updating
equation, which consists of a perturbation operator implemented as a
mutation for generating random numbers according to the Gaussian
distribution. Miranda and Fonseca [22] and Wei et al. [23] combine
evolutionary programming with PSO. Esquivel and Coello [24] have
presented an approach using Cauchy mutation to updating the velocity
equation. All these approaches attempted to improve the performance
of the standard PSO, but the amount of parameters of the algorithm to
tune remained the same.

A different approach has been proposed by Clerc [26], [42] termed
Tribes, which is a parameter-free PSO. In Tribes, the number of
particles is automatically found out during the search. This approach is
attractive from the user’s perspective and has been applied to solve the
flow shop scheduling problem [27]. An approach using a diversity of
the population borrowed from EA has been proposed by Ursem [28].
Krohling [25] proposed the updating of the velocity equation based
on the Gaussian distribution; the accelerating constants c1 and c2 are
not more specified by the user, but instead of that they are generated
using the absolute value of the Gaussian distribution with zero mean
and unit standard deviation. PSO using Gaussian distribution was first
tested on unconstrained optimization problems [25]. In this correspon-
dence, we apply the algorithm to handle more challenging problems,
i.e., min–max problems. This approach with Gaussian motion of the
particle is quite different from those proposed in previous works
[16]–[24]. PSO using Gaussian distribution [25] is based on the
expected value, which should be generated from a probability dis-
tribution (the Gaussian one) in order to generate suitable stochastic
coefficients to the velocity updating equation.

Previous studies on coevolutionary algorithms (CEAs) have demon-
strated the suitability of the approach to solve constrained optimization
problems [36]–[40]. A constrained optimization problem is trans-
formed into an unconstrained optimization problem by introducing
Lagrange multipliers. The optimization problem is then formulated
as a min–max problem [31], a representation that arises in many
areas of science and engineering, especially in game theory and robust
optimal control. Min–max problems are considered difficult to solve.
Hillis [32], in his pioneering work, proposed a method inspired by
the coevolution of populations. Two independent genetic algorithms
(GAs) were used, whereas one for sorting networks (host) and the

1083-4419/$20.00 © 2006 IEEE



1408 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 6, DECEMBER 2006

other for test cases (parasites). Both GAs evolve simultaneously and
are coupled through the fitness function.

In CEAs, the fitness of an individual depends not only on the
individual itself but also the individuals of other EA. CEAs have
shown useful results for solving complex problems. In this case,
the fitness of an individual is evaluated by means of a competition
with the members of the other population [32]–[35]. Inspired by the
work of Hillis [32], the coevolutionary approach has been extended
to solve constrained optimization problems [36]–[40]. Barbosa [36],
[37] presented a method to solve min–max problems by using two
independent populations of GA coupled by a common fitness function.
Tahk and Sun [38] also used a coevolutionary augmented Lagrangian
method to solve min–max problems by means of two populations of
evolution strategies with an annealing scheme. The first population is
made up of the variables vector, and the second one is made up of
the Lagrange multiplier vector. Laskari et al. [41] have also presented
a method using PSO for solving min–max problems, but not using a
coevolutionary approach.

In this correspondence, based on our previous work on coevolu-
tionary particle swarm optimization (CPSO) [39], we observed that
the standard PSO presents deficiencies to find a fine-tuning of the
solution. Further, in order to improve the performance of the CPSO,
we have also proposed a truncated Gaussian distribution to generate
the accelerating coefficients of PSO [40], and some improvement of
performance has been obtained. In this correspondence, we extend
our previous work on PSO using Gaussian distribution [25] and apply
it for solving challenging constrained optimization problems. Two
populations of independent PSO are evolved: one for the variable
vector and the other for the Lagrange multiplier vector. At the end
of the optimization the first PSO provides the variable vector, and the
second PSO provides the Lagrange multiplier vector.

The rest of the correspondence is organized as follows. In
Section II, the formulation of the min–max problem is described. The
standard PSO is explained in Section III. In Section IV, the PSO using
Gaussian distribution is developed. In Section V, the coevolutionary
particle swarm algorithm is presented to solve min–max problems.
Section VI provides simulation results and comparisons for some
benchmark constrained optimization problems, followed by conclu-
sions in Section VII.

II. PROBLEM FORMULATION

Many problems in various scientific areas and real-world applica-
tions can be formulated as constrained optimization problems. Gener-
ally, a constrained optimization problem is given by

min
x∈�n

f(x)

subject to

gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l (1)

where f(x) is the objective function, x = [x1, x2, . . . , xn]T ∈ �n is
the vector of variables, gi(x) is the vector of inequality constraints,
and hi(x) is the vector of equality constraints.

The set S ⊆ �n designates the search space, which is defined by
the lower and upper bounds of the variables: xj ≤ xj ≤ xj with
j = 1, . . . , n. Points in the search space, which satisfy the equality
and inequality constraints, are feasible candidate solutions.

The Lagrange-based method [31] is a classical approach to formu-
late constrained optimization problems. By introducing the Lagrangian

formulation, the dual problem associated with the primal problem (1)
can be written as

max
µ,λ

L(x,µ,λ)

subject to

µi ≥ 0, i = 1, . . . ,m

λi ≥ 0, i = 1, . . . , l (2)

where

L(x,µ,λ) = f(x) + µTg(x) + λTh(x) (3)

µ is a m× 1 multiplier vector for the inequality constraints;
λ is a l × 1 multiplier vector for the equality constraints.
If the problem (1) satisfies the convexity conditions over S, then the

solution of the primal problem (1) is the vector x∗ of the saddle point
{x∗,µ∗,λ∗} of L(x∗,µ∗,λ∗) so that

L(x∗,µ,λ) ≤ L(x∗,µ∗,λ∗) ≤ L(x,µ∗,λ∗).

The saddle point can be obtained by minimizing L(x∗,µ,λ) with
the optimal Lagrange multipliers (µ∗,λ∗) as a fixed vector of pa-
rameter. In general, the optimal values of the Lagrange multipliers
are unknown a priori. The duality theorem [31] can be used to
overcome this difficulty. According to the duality theorem, the primal
problem (1) subject to the inequality and equality constraints can be
transformed into a dual or min–max problem.

Solving the min–max problem

min
x

max
µ,λ

L(x,µ,λ) (4)

provides the minimizer x∗ as well as the Lagrange multiplier µ∗, λ∗.
However, for nonconvex problems, the solution of the dual problem
does not coincide with that of the primal problem. In that case,
a penalty term associated with equality and inequality constraints
is added to the Lagrangian function. The augmented Lagrangian is
given by

La(x,µ,λ, r) = f(x) +

m∑
i=1

pi(x,µ, r) + λTh(x) + r

l∑
i=1

h2
i (x)

(5)

where the term pi for the ith inequality constraint is given by

pi(x, µi, r) =

{
µigi(x) + rg2

i (x), if gi(x) − µi
2r

−µ2
i

4r
, if gi(x) < −µi

2r

(6)

and r is a penalty constant. It can be shown that the solutions of the
primal problem and the augmented Lagrangian are identical. The goal
is to find the saddle point (x∗,µ∗,λ∗). In Section V, the coevolu-
tionary particle swarm using Gaussian distribution (CPSO-GD) will
be presented to solve the min–max problem. Next, we provide some
background on PSO.

III. PSO

PSO is an effective optimization method that belongs to the category
of swarm intelligence methods, originally developed by Kennedy and
Eberhart [2], [3]. PSO is initialized with a population of candidate
solutions called particles, which have associated randomized veloci-
ties. Since particles move through the search space, each particle keeps
track of its coordinates in the search space, which are associated with
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the best solution (fitness) it has achieved so far, pbest. Another “best”
value tracked by the global version of the particle swarm optimizer is
the overall best value, gbest, and its location, obtained so far by any
particle in the population. First, the velocities and then the positions of
the particle are updated as follows:

vi(t + 1)=wvi(t) + c1rand (pi − xi(t)) + c2Rand
(
pg − xi(t)

)
(7)

xi(t)=xi(t) + vi(t + 1). (8)

The vector xi = [xi1, xi2, . . . , xin]T stands for the position of
the ith particle, vi = [vi1, vi2, . . . , vin]T stands for the velocity of
the ith particle, and pi = [pi1, pi2, . . . , pin]T represents the best pre-
vious position (the position giving the best fitness value) of the ith
particle. The index g represents the index of the best particle among
all the particles, i.e., pg is the global best. The variable w is the
inertia weight, c1 and c2 are positive constants; rand and Rand are
random numbers in the range [0; 1] generated according to a uniform
probability distribution. The random numbers are generated anew for
each dimension i = 1, . . . , n of the particle i.

The inertia weight w represents the degree of the momentum of the
particles. The second part is the “cognition” part, which represents
the independent behavior of the particle itself. The third part is the
“social” part, which represents the collaboration among the particles.
The constants c1 and c2 represent the weighting of the “cognition”
and “social” parts that pull each particle toward pbest and pgbest.
The PSO algorithm is described in [2] and [3].

Clerc and Kennedy [14] in their study on stability and convergence
of PSO have introduced a constriction coefficient k. In that case, the
velocity equation is updated according to

vi(t+1)=k
[
vi(t)+c1 rand (pi−xi(t)) + c2 Rand

(
pg−xi(t)

)]
(9)

where

k =
2

|2 − ϕ−
√

ϕ2 − 4ϕ|

with ϕ = c1 + c2 > 4 and k is a function of c1 and c2. Usually,
ϕ is set to 4.1 (c1 = c2 = 2.05), and the constriction coefficient k
is 0.729; but there are other possible choices for the constriction
coefficients. A detailed theoretical analysis of the derivation of the
constriction factor can be found in [14].

For a simplified analysis assuming the independence of the local
and global terms, the stochastic coefficient of the terms (pi − xi)
and (pg − xi) is calculated by multiplying 0.729 by 2.05 resulting
1.494, which multiplied by 0.5 (mean value of a uniform probability
distribution U(0, 1) gives a constriction coefficient 0.729. Trelea [15]
also presented some analysis of convergence for a one-dimensional
particle. The parameter settings used in his simulations were w = 0.6
and c1 = c2 = 1.7. The mean value of the stochastic coefficients for
the terms (pi − xi) and (pg − xi) is calculated by multiplying c1 =
c2 = 1.7 by 0.5 (mean value of U(0, 1), which gives 0.85. As can
be seen from (9), the two differences are averaged; each with its own
uniformly distributed random numbers. In the Appendix, we rewrite
(9) over two time steps, and one concludes that a possible good choice
for the stochastic coefficients lies in the interval [0.72; 0.86].

IV. PSO USING GAUSSIAN DISTRIBUTION

Since the mean value of the two stochastic coefficients for the local
term (pi − xi) and the global term (pg − xi) lies in the interval

Fig. 1. Sum of two random uniform probability density functions with sup-
port set [0; kc] = [0; 1.49] (dashed line) and sum of two absolute Gaussian
probability density functions abs(N(0, 1)) (solid line).

[0.72; 0.86], then a candidate for the probability distribution that gener-
ates random numbers is the absolute value of the Gaussian probability
distribution with zero mean and unit variance, i.e., abs(N(0, 1)). The
probability density function of abs(N(0, 1)) is given by

q(x) =
2√
2π

e−
x2
2 , x ≥ 0. (10)

The mean or expected value E(x) of abs(N(0, 1)) is calculated by

E(x) =
2√
2π

∞∫
0

xe−
x2
2 dx = 0.798.

The variance of abs(N(0, 1)) is given by

V (x) = σ2 =
2√
2π

∞∫
0

(x− µ)2e−
x2
2 dx

σ2 =
2√
2π

∞∫
0

(x− µ)22e−
x2
2 dx = 0.36

which results in a standard deviation σ = 0.60. The objective consists
of generating the stochastic coefficients for the terms (pi − xi) and
(pg − xi). The velocity equation now is updated according to

vi(t + 1) = |randn| (pi − xi(t)) + |Randn|
(
pg − xi(t)

)
(11)

where |randn| and |Randn| are positive random numbers generated
using abs(N(0, 1)).

Let us consider z a random variable, which results from the sum
of two random variables with probability density function q(x). Then,
the probability distribution function of the sum q(z) is given by

q(z) =
2√
π
e−

z2
4 · erf(0.5z)

where erf(z) = (1/
√
π)

∫ z

0
e−x2

dx.
Fig. 1 shows the difference between the sum of two uniform random

variables U(0, 1) multiplied by 1.49 and the sum of two abs(N(0, 1)).
The use of abs(N(0, 1)) for generating the stochastic coefficients of
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PSO seems to provide a good compromise between the probability of
having a large number of small amplitudes around the current points
(fine-tuning) and a small probability of having higher amplitudes,
which may allow particles to move away from the current point and
escape from local minima. Since the velocity is calculated from an
average of two differences between previous best and current position,
Kennedy [45] has demonstrated that the probability density is constant
on a large area around the center of the box (hyperrectangle).

Preliminary results for unconstrained optimization have shown the
suitability of the PSO algorithm using abs(N(0, 1)) [25]. In the
following, we describe the coevolutionary PSO algorithm to handle
constrained optimization problems.

V. CPSO-GD

Two populations of PSOs are involved in the CPSO for solving the
min–max problem formulated according to (5). The first PSO focuses
on evolving the variable vector x while the vector of Lagrangian
multiplier θ = [µ,λ] is maintained, “frozen.” Only the variable vector
x is represented in the population P1. The second PSO focuses on
evolving the Lagrangian multiplier vector θ while the Population P1

is maintained “frozen.” Only the multiplier vector θ is represented in
the population P2. The two PSOs interact with each other through
a common fitness evaluation. For the first PSO, the problem is a
minimization problem and the fitness value of each particle x is
evaluated according to

f1(x) = max
θ∈P2

La(x,θ). (12)

Each particle xi of P1 is evaluated against all particle θj of P2. The
fitness for the particle xi is the highest value of f1(xi). This process
is repeated for all N particles of P1.

The second problem consists in a maximization problem and the
fitness value of each particle θ is evaluated according to

f2(θ) = min
x∈P1

La(x,θ). (13)

Each particle θj of P2 is evaluated against all particle xi of P1. The
fitness for particle θj is the smallest value of f2(θj). This process is
repeated for all M particles of P2.

In the PSO algorithm, all particles are transferred into the next
generation (no selection mechanism). The cooperation among parti-
cles is established through the “history” variables pbest and pgbest,
which are updated if better fitness values are obtained. The CPSO-
GD algorithm is described in Fig. 2. Within each generation g, the
first PSO, named PSO1, is run for C cycles; then the second PSO,
named PSO2, is run for C cycles. This process is repeated until the
maximum number of generations has been elapsed. The global best in
the population P1, i.e., pgbest1 is the solution for the variable vector x,
and the global best in the population P2, i.e., pgbest2 is the solution for
the Lagrangian multiplier vector θ. In the CPSO-GD algorithm, when
one PSO is running, the other serves as its environment, so each PSO
has a changing environment from generation to generation.

VI. SIMULATION RESULTS

A. Benchmark Problems

Four benchmark problems of constrained optimization [38] have
been used to investigate the performance of the proposed algorithm.

The problem G1 consists of minimizing

f(x) = 5x1 + 5x2 + 5x3 + 5x4 − 5

4∑
i=1

x2
i −

13∑
i=5

xi

subject to

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

with

0 ≤ xi ≤ 1, i = 1, . . . , 9

0 ≤ xi ≤ 100, i = 10, 11, 12

0 ≤ xi,≤ 1, i = 13.

The global minimum is known to be x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1,
3, 3, 3, 1) with f(x∗) = −15.

The problem G7 consists of minimizing

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g3(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g4(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g5(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g6(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g7(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

g8(x) = 0.5(x1 − 8)2 + 2(x2 − 4) + 3x2
5 − x6 − 30 ≤ 0

with

−10 ≤ xi ≤ 10, i = 1, . . . , 10.

The global minimum is x∗ = (2.1719, 2.3636, 8.7739, 5.0959,
0.9906, 1.4305, 1.3216 , 9.8287, 8.2800, 8.3759) with f(x∗) =
24.306.

The problem G9 consists of minimizing

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+ 10x6
5 + 7x2

6 − 4x6x7 − 10x6 − 8x7

subject to

g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0
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Fig. 2. Pseudocode of the CPSO-GD algorithm.

with

−10 ≤ xi ≤ 10, i = 1, . . . , 7.

The global minimum is x∗ = (2.3304, 1.9513,−0.4775, 4.3657,
−0.6244, 1.0381, 1.5942) with f(x∗) = 680.63.

The problem G10 consists of minimizing

f(x) = x1 + x2 + x3

subject to

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83 333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250 000 + x3x5 − 2500x5 ≤ 0
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TABLE I
RESULTS USING CPSO-GD AND CPSO (SWARM SIZE P1 = P2 = 30)

Fig. 3. Fitness of the best particle (best run) for problem G1.

with

100 ≤ xi ≤ 10 000, i = 1
1000 ≤ xi ≤ 10 000, i = 2, 3
10 ≤ xi ≤ 1000, i = 4, . . . , 8.

The global minimum is x∗ = (579.3167, 1359.943, 5110.071,
182.0174, 295.5985, 217.979, 286.4162, 395.5979) with f(x∗) =
7049.33.

B. Experimental Settings

The maximum numbers of generations was set to 2000 and the
number of cycles to 2. The penalty constant r introduced by the
augmented Lagrange formulation was set to 100 as recommended in a
previous work [38]. This value will be used in all experiments if not
stated otherwise. For the benchmark problems studied, the population
size was initially set to P1 = P2 = 30. Later on, we will also present
results for another different swarm size. The particles are randomly
initialized within the boundaries for each run according to a uniform
probability distribution.

For the standard PSO (with constriction factor) [14] the parame-
ters were set to c1 = c2 = 2.05, and k = 0.729. For the PSO using
Gaussian distribution, the only parameter of the algorithm to be
specified by the user is the number of particles (population size). Each
experiment is run 30 times. Each run is terminated only when the
maximum number of generations has been elapsed.

C. Discussions of the Results

The simulation results using the standard CPSO (with constriction
factor) and CPSO-GD (with the absolute Gaussian distribution) are
shown in Table I.

Fig. 4. Fitness of the best particle (best run) for problem G1 showing details
of the first 200 generations.

Fig. 5. Fitness of the best particle (best run) for problem G7.

For problem G1, the optimal solution is −15. The fitness value
for the best particle is shown in Fig. 3 and in more detail in Fig. 4.
From Table I, the median and mean of fitness found by CPSO-GD
is much better than the results obtained by CPSO. It can be seen
that CPSO-GD finds the optimal solution, while CPSO does not.
Using CPSO-GD, the optimal solution is found in approximately 100
generations, while CPSO gets stuck in local minima and are not more
able to escape. It can be seen that the solution found presents a very
small standard deviation (0.0017), which demonstrates the robustness
of the algorithm.
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Fig. 6. Fitness of the best particle (best run) for problem G7 showing details
of the first 200 generations.

Fig. 7. Fitness of the best particle (best run) for problem G9.

Fig. 8. Fitness of the best particle (best run) for problem G9 showing details
of the first 200 generations.

Fig. 9. Fitness of the best particle (best run) for problem G10.

Fig. 10. Fitness of the best particle (best run) for problem G10 showing details
of the first 500 generations.

For problem G7, the optimal solution is 24.306. The fitness value for
the best particle is shown in Fig. 5 and in more detail in Fig. 6. From
Table I, it can be observed that CPSO-GD finds a solution very close
to the optimal solution, which is much better than the solution found
using CPSO. In this case, CPSO-GD performed significantly better
than CPSO in terms of the median as well as the mean. According
to the results obtained by CPSO-GD, the solution found presents a
relatively low standard deviation (0.7767).

For problem G9, the optimal solution is 680.630. The fitness value
for the best particle is shown in Fig. 7 and in more detail in Fig. 8.
In this case, according to Table I, one observes that CPSO finds the
optimal solution and that CPSO-GD finds a very close value to the
optimal. The solution found by CPSO presents a smaller standard
deviation (0.0196) than the results obtained by CPSO-GD (0.1843).

For problem G10, the optimal solution is 7049.331. In this case,
the penalty constant r = 100 does not provide a feasible solution due
the tradeoff between the function value and the penalty. The small
penalty value used was not enough to force particles to the feasible
search space. Therefore, we carried out experiments increasing the
penalty parameter and set it to r = 400 000. The fitness value for the
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TABLE II
RESULTS USING CPSO-GD AND CPSO (SWARM SIZE P1 = 50, P2 = 30)

TABLE III
STATISTIC COMPARISON BETWEEN CPSO-GD AND CPSO
(P1 = P2 = 30) USING THE WILCOXON RANK SUM TEST

best particle is shown in Fig. 9 and in more detail in Fig. 10. From
Table I, we observe that increasing the penalty CPSO-GD finds a value
of 7064.3 for the fitness of the best particle, which is very close to the
optimal solution. The CPSO algorithm finds a value of 7610.0 for the
best particle, which is considerably inferior. For this problem most of
the algorithms proposed in the literature present difficulties due the
nature of the constraints (all are nonlinear).

For the problems G1, G7, G9, and G10, we provide more details on
the convergence behavior in Figs. 4, 6, 8, and 10, respectively. We can
observe that for all these problems CPSO-GD converges much faster
than CPSO, and obtains solutions closer to the optimal and presents
a smaller standard deviation with exception of the problem G9 where
CPSO provides slightly better results.

The same benchmarks problems have been simulated for a different
population size in order to evaluate the influence of the population
size. The first population is the main population since it is made up
of the variable vector x. Therefore, we increase the size of the first
population to P1 = 50 and have maintained the size of the second
population P2 = 30, since this population is made up of the Lagrange
multipliers vector µ. The new simulation results for the benchmark
problems are shown in Table II. From the results, we observe that for
some problems a small improvement has occurred.

For the validation of significance of results and comparison between
the CPSO and CPSO-GD algorithms, we carried out the Wilcoxon rank
sum test1 using the statistical toolbox provided in Matlab [44]. The test
was performed using the results of 30 runs. For the hypothesis test, the
h value indicates that the results are statistically significant at the 95%
confidence level.

The statistic test of the results given in Tables I and II are provided in
Tables III and IV, respectively. The Wilcoxon rank sum test indicates
that the medians of CPSO-GD and CPSO are significantly different at
the 95% confidence level, since h is equal to 1 in Tables III and IV.

1The Wilcoxon rank sum test performs a two-sided rank sum test of the
hypothesis that two independent samples of data come from distributions with
equal medians, and returns the p-value from the test. p is the probability
of observing the given result, or one more extreme, by chance if the null
hypothesis is true, i.e., the medians are equal. Small values of p cast doubt
on the validity of the null hypothesis. ranksum contains the value of the rank
sum statistic. If the sample size is large, then p is calculated using a normal
approximation and zval contains the value of the normal statistics.

TABLE IV
STATISTIC COMPARISON BETWEEN CPSO-GD AND CPSO (P1 = 50,

P2 = 30) USING THE WILCOXON RANK SUM TEST

The Wilcoxon rank sum test confirms that CPSO-GD performs better
than CPSO except for problem G9.

In order to compare our results, we have simulated the benchmark
problems using a coevolutionary genetic algorithm (CGA). The pop-
ulation size was set to P1 = 50 and P2 = 30. Crossover probability
was set to 0.35 and mutation probability to 0.02. The maximal number
of generation was set to 2000. More details on the GA used can be
found in [46]. The results using CGA are shown in Table V and the
statistics in Table VI. From Table V, we observe that the best solution
found by CPSO-GD and CGA are similar for problems G1 and G9,
but CPSO-GD found better solutions for problems G7 and G10. The
convergence of CGA occurred in the first 500 generations similar to
CPSO-GD. Increasing the populations size of CGA and changing the
probabilities of crossover and mutation did not seem to improve the
quality of the final solution.

The performance of any method of evolutionary computation for
constrained optimization problems depends on the EAs as well as the
constraint-handling technique. Throughout our study, we focus on the
optimization method PSO-GD, and have used the standard Lagrangian
formulation. However, it would also be possible the application of
other constraint-handling techniques.

VII. CONCLUSION

In this correspondence, a CPSO using the absolute value of the
Gaussian distribution (CPSO-GD) has been presented for solving
constrained optimization problems. The use of abs(N(0, 1)) for gen-
erating the stochastic coefficients of PSO seems to provide a good
compromise between the probability of having a large number of
small amplitudes around the current points (fine-tuning) and a small
probability of having larger amplitudes, which may allow particles to
move away from the current point and escape from local minima.

The CPSO-GD algorithm was compared with the standard CPSO
(with constriction factor) and with a CGA on the benchmark con-
strained optimization problems. The simulation results showed that
the algorithm CPSO-GD outperforms the standard CPSO and CGA
as well. The CPSO-GD algorithm presents faster convergence and
obtains solutions closer to the optimal. As part of future work, the
CPSO-GD algorithm could be used with other more powerful methods
to handle constraints, e.g., stochastic ranking.
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TABLE V
RESULTS USING CGA (POPULATION SIZE P1 = 50, P2 = 30)

TABLE VI
STATISTIC COMPARISON BETWEEN CPSO-GD AND CGA

USING THE WILCOXON RANK SUM TEST

APPENDIX

Let us consider the velocity updating equation described in (9).
Without loss of generality, we omit the indexes and consider a one-
dimensional particle as follows:

v(t + 1) = kv(t) + cU(0, 1) [pbest − x(t)]

+ cU(0, 1)
[
(pgbest − x(t)

]
(14)

where t stands for the time step. The stochastic coefficients for the
local and global terms cU(0, 1) are a realization of a uniform random
variable with support set in c = [0; c]. Then, for the first step, the
velocity and position equation can be written, respectively, as

v(t + 1) = kv(t) + c
(t)
1 [pbest− x(t)] + c

(t)
2

[
(pgbest− x(t)

]
(15)

x(t + 1) =x(t) + v(t + 1) (16)

and for the second step as

v(t + 2) = kv(t + 1) + c
(t+1)
3 [pbest − x(t + 1)]

+ c
(t+1)
4

[
(pgbest − x(t + 1)

]
(17)

x(t + 2) =x(t + 1) + v(t + 2). (18)

The quantities c(t)1 , c(t)2 , c(t+1)
3 , c(t+1)

4 are uniform random variables
with support set in c = [0; c]. Inserting (15) and (16) into (17) we
obtain for the velocity equation

v(t + 2)=


k−(

c
(t+1)
3 +c

(t+1)
4

)
+

(
c
(t+1)
3 + c

(t+1)
4

)
(
c
(t)
1 + c

(t)
2

)



× v(t+1)−k

(
c
(t+1)
3 +c

(t+1)
4

)
(
c
(t)
1 +c

(t)
2

) v(t)

+


c(t+1)

3 −c
(t)
1 .

(
c
(t+1)
3 +c

(t+1)
4

)
(
c
(t)
1 +c

(t)
2

)

(pbest−pgbest). (19)

Rearranging the terms in (19) and shifting the index, the difference
equation for the velocity reads [43]

v(t + 2) = Zv(t + 1) − kQv(t) + W (pbest − pgbest) (20)

with

z = k −
(
c
(t+1)
3 + c

(t+1)
4

)
+

(
c
(t+1)
3 + c

(t+1)
4

)
(
c
(t)
1 + c

(t)
2

)

q =

(
c
(t+1)
3 + c

(t+1)
4

)
(
c
(t)
1 + c

(t)
2

)

w = c
(t+1)
3 − c

(t)
1 .

(c
(t+1)
3 + c

(t+1)
4 )(

c
(t)
1 + c

(t)
2

) .

Furthermore, Z can be rewritten as Z = (k − s + q) with S =

c
(t+1)
3 + c

(t+1)
4 . The quantities z, q, and w are realizations of the

random variables Z, Q, and W , respectively. Next, we calculate the
mean value for these random variables. The following analysis is
based on Clerc’s work [43]. The calculation of the probability densities
for the variables S and Q is quite easy, but for Z and W is quite
complicated. Since the random variable S consists of a sum of two
random uniform variables s = c

(t+1)
3 + c

(t+1)
4 , then its mean value is

given by mean(S) = c.
For the random variable Q, the mean can be calculated considering

that Q = S1/S2, which can be written as a product of two independent
random variables, i.e., Q = S1(1/S2), with 1/S2 = 1/(U1 + U2).
The probability density function for S2 is given by

f(u) =

{
2

u2 − 1
u3 , if u ∈ [0.5; 1]

1
u3 , if u > 1

and the mean of S2 can be computed as

mean(S2) =

1∫
0.5

(
2

u
− 1

u2

)
du +

∞∫
1

1

u2
= 2 ln(2).

Therefore, mean(Q) = 2 ln(2) = 1.386.
The random variable Z = k − S + Q can be written as

Z = k −
(
U

(t+1)
3 + U

(t+1)
4

)
+

(
c− 1

U
(t)
1 + U

(t)
2

)
.

The main difficulty is that the variables S and Q are not independent.
The minimum value assumed by the random variable Z is k + 1 − 2c.
In order to allow negative value of z, a possible choice for c is the
relationship [43]

c =
k + 1

2
.

The mean value of Z is computed as mean(Z) = k − c + 2 ln 2.
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In PSO two differences are averaged, each with its own uniformly
distributed random numbers. According to the mean values calculated
for Q and Z, a possible choice for the constriction coefficients is given
as follows:

k =
1

2 ln 2
= 0.72

c =
k + 1

2
= 0.86.

Therefore, the interval [0.72; 0.86] contains possible values for the
constriction coefficients. Details can be found in [43].
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