I[sabelle’s Logics: FOL and ZF

Lawrence C. Paulson
Computer Laboratory
University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel®

8 March 2002

'Markus Wenzel made numerous improvements. Philippe de Groote con-
tributed to ZF. Philippe Noél and Martin Coen made many contributions to ZF.
The research has been funded by the EPSRC (grants GR/G53279, GR/H40570,
GR/K57381, GR/K77051, GR/M75440) and by ESPRIT (projects 3245: Logical
Frameworks, and 6453: Types) and by the DFG Schwerpunktprogramm Deduktion.

Abstract

This manual describes Isabelle’s formalizations of many-sorted first-order
logic (FOL) and Zermelo-Fraenkel set theory (ZF). See the Reference Manual
for general Isabelle commands, and Introduction to Isabelle for an overall
tutorial.

Contents

1 Syntax definitions

2 First-Order Logic

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Syntax and rules of inference
Generic packages s
Intuitionistic proof procedures
Classical proof procedures
An intuitionistic example L.
An example of intuitionistic negation
A classical example Lo
Derived rules and the classical tactics
2.8.1 Deriving the introduction rule.
2.8.2 Deriving the elimination rule
2.8.3 Using the derived rules.
2.8.4 Derived rules versus definitions

3 Zermelo-Fraenkel Set Theory

3.1
3.2
3.3
3.4
3.5

3.6

3.7

From basic lemmas to function spaces
3.5.1 Fundamental lemmas.
3.5.2 Unordered pairs and finite sets
3.5.3 Subset and lattice properties
3.5.4 Ordered pairs
3.5.5 Relations
3.5.6 Functions oL
Further developments
3.6.1 Disjoint unions L
3.6.2 Non-standard ordered pairs
3.6.3 Least and greatest fixedpoints
3.6.4 Finitesetsand lists
3.6.5 Miscellaneous
Automatic Tools
3.7.1 Simplification 0oL

CONTENTS ii

3.8
3.9

3.10

3.11
3.12
3.13
3.14
3.15

3.7.2 Classical Reasoning 45
3.7.3 Type-Checking Tactics 46
Natural number and integer arithmetic 47
Datatype definitions 50
391 Basics 50
3.9.2 Defining datatypes L. 53
3.93 Examples 54
3.9.4 Recursive function definitions 56
Inductive and coinductive definitions 58
3.10.1 The syntax of a (co)inductive definition 58
3.10.2 Example of an inductive definition 60
3.10.3 Further examples, 61
3.10.4 The result structure 62
The outer reaches of set theory 63
The examples directories 64
A proof about powersets 65
Monotonicity of the union operator 67

Low-level reasoning about functions 69

Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

e identifiers denote nonterminal symbols
e typewriter font denotes terminal symbols
e parentheses (...) express grouping

e constructs followed by a Kleene star, such as id* and (...)* can be
repeated 0 or more times

e alternatives are separated by a vertical bar, |
e the symbol for alphanumeric identifiers is id
e the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where 3 has lower priority than V, which has lower priority than A.
There, P A @ V R abbreviates (P A Q) V R rather than P A (Q V R). Also,
Jdz. PV @ abbreviates dz . (P V Q) rather than (3z. P)V Q. Note especially
that PV (3z . Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (¢ = 7) = 7'.
For instance, we may declare V as a binder for the constant All, which has
type (o = 0) = o. This defines the syntax Vz . ¢ to mean All(Az . t). We
can also write Vi ... x, . t to abbreviate Va;V, . t; this is possible for
any constant provided that 7 and 7 are the same type. HOL’s description
operator ez . Pz has type (o = bool) = « and can bind only one variable,
except when « is bool. ZF’s bounded quantifier Vx € A . P(z) cannot be

CHAPTER 1. SYNTAX DEFINITIONS 2

declared as a binder because it has type [i,7 = 0] = o. The syntax for
binders allows type constraints on bound variables, as in

V(z:a) (y::f) ziv. Q(z,y, 2)

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric pri-
orities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For
example, the formulae of first-order logic have type o. Every Isabelle ex-
pression of type o is therefore a formula. These include atomic formulae
such as P, where P is a variable of type o, and more generally expressions
such as P(t,u), where P, t and u have suitable types. Therefore, ‘expression
of type o’ is listed as a separate possibility in the grammar for formulae.

Chapter 2

First-Order Logic

Isabelle implements Gentzen’s natural deduction systems NJ and NK. In-
tuitionistic first-order logic is defined first, as theory IFOL. Classical logic,
theory FOL, is obtained by adding the double negation rule. Basic proof
procedures are provided. The intuitionistic prover works with derived rules
to simplify implications in the assumptions. Classical FOL employs Isabelle’s
classical reasoner, which simulates a sequent calculus.

2.1 Syntax and rules of inference

The logic is many-sorted, using Isabelle’s type classes. The class of first-
order terms is called term and is a subclass of logic. No types of individ-
uals are provided, but extensions can define types such as nat::term and
type constructors such as list::(term)term (see the examples directory,
FOL/ex). Below, the type variable a ranges over class term; the equality
symbol and quantifiers are polymorphic (many-sorted). The type of formu-
lae is o, which belongs to class logic. Figure 2.1 gives the syntax. Note
that a~=b is translated to —=(a = b).

Figure 2.2 shows the inference rules with their ML names. Negation is
defined in the usual way for intuitionistic logic; =P abbreviates P — 1. The
biconditional (<) is defined through A and —; introduction and elimination
rules are derived for it.

The unique existence quantifier, 3lz. P(x), is defined in terms of 3 and V.
An Isabelle binder, it admits nested quantifications. For instance, dlz y .
P(z,y) abbreviates 3!z . Aly . P(x,y); note that this does not mean that
there exists a unique pair (z,y) satisfying P(z, y).

Some intuitionistic derived rules are shown in Fig. 2.3, again with their
ML names. These include rules for the defined symbols —, «<» and 3!. Nat-
ural deduction typically involves a combination of forward and backward
reasoning, particularly with the destruction rules (AE), (—F), and (VE).
Isabelle’s backward style handles these rules badly, so sequent-style rules
are derived to eliminate conjunctions, implications, and universal quan-
tifiers. Used with elim-resolution, allE eliminates a universal quantifier
while all_dupE re-inserts the quantified formula for later use. The rules
conj_impE, etc., support the intuitionistic proof procedure (see §2.3).

CHAPTER 2. FIRST-ORDER LOGIC 4

See the files FOL/IFOL.thy, FOL/IFOL.ML and FOL/intprover.ML for
complete listings of the rules and derived rules.

2.2 Generic packages

FOL instantiates most of Isabelle’s generic packages.

e It instantiates the simplifier. Both equality (=) and the biconditional
(«») may be used for rewriting. Tactics such as Asm_simp_tac and
Full_simp_tac refer to the default simpset (simpset ()), which works
for most purposes. Named simplification sets include IFOL_ss, for
intuitionistic first-order logic, and FOL_ss, for classical logic. See the
file FOL/simpdata.ML for a complete listing of the simplification rules.

e [t instantiates the classical reasoner. See §2.4 for details.

e FOL provides the tactic hyp_subst_tac, which substitutes for an
equality throughout a subgoal and its hypotheses. This tactic uses
FOL’s general substitution rule.

' Reducing @ = b A P(a) to a = b A P(b) is sometimes advantageous. The left
® part of a conjunction helps in simplifying the right part. This effect is not
available by default: it can be slow. It can be obtained by including conj_cong in
a simpset, addcongs [conj_cong].

2.3 Intuitionistic proof procedures

Implication elimination (the rules mp and impE) pose difficulties for auto-
mated proof. In intuitionistic logic, the assumption P — () cannot be
treated like =PV (). Given P — (), we may use) provided we can prove P;
the proof of P may require repeated use of P — (. If the proof of P fails
then the whole branch of the proof must be abandoned. Thus intuitionistic
propositional logic requires backtracking.

For an elementary example, consider the intuitionistic proof of @ from
P — @ and (P — @) — P. The implication P — @ is needed twice:

(P—-Q)—P P—Q
P—Q P
Q

The theorem prover for intuitionistic logic does not use impE. Instead, it
simplifies implications using derived rules (Fig.2.3). It reduces the an-
tecedents of implications to atoms and then uses Modus Ponens: from
P — @ and P deduce). The rules conj_impE and disj_impE are straight-
forward: (P A Q) — S is equivalent to P — (@ — S), and (PV Q) — S is

(—E)

(—E)

CHAPTER 2. FIRST-ORDER LOGIC

name meta-type description
Trueprop o = prop coercion to prop
Not 0=0 negation (—)
True 0 tautology (T)
False 0 absurdity (L)
CONSTANTS
symbol name meta-type priority description
ALL All (a=0)=o0 10 universal quantifier (V)
EX Ex (a=0)=o0 10 existential quantifier (3)
EX! Ex1 (a=0)=o0 10 unique existence (3!)
BINDERS
symbol meta-type priority description
= [a,a] =0 Left 50 equality (=)
& [o,0] = o Right 35 conjunction (A)
| [o,0] = o Right 30 disjunction (V)
-=> [o,0] = o Right 25 implication (—)
<-> [o,0] = o Right 25 biconditional ()
INFIXES
formula expression of type o
term = term | term ~= term
~ formula

|

|

| formula & formula

| formula | formula

| formula --> formula
| formula <=> formula
| ALL id id* . formula
| EX id id* . formula
| EX! id id* . formula

GRAMMAR

Figure 2.1: Syntax of FOL

CHAPTER 2. FIRST-ORDER LOGIC

refl a=a

subst [l a=b; P(a) |1 ==> P(b)
EQUALITY RULES

conjI [l P; Q11 ==>P&Q

conjunctl P&Q ==> P
conjunct2 P&Q ==> Q

disjI1 P ==> P|Q

disjI2 Q ==> PIQ

disjE [l PIQ; P==>R; Q==>R |] ==>R
impI (P ==> Q) ==> P-—>Q

mp [l P-->Q; P |1 ==>Q

FalseE False ==> P

PROPOSITIONAL RULES

alll (I'x. P(x)) ==> (ALL x.P(x))

spec (ALL x.P(x)) ==> P(x)

exI P(x) ==> (EX x.P(x))

exE [l EX x.P(x); !'!'x. P(x) ==> R |] ==> R

QUANTIFIER RULES

True_def True == False-->False

not_def “P == P-->False

iff_def P<->Q == (P-->Q) & (Q-->P)

exl_def EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)
DEFINITIONS

Figure 2.2: Rules of intuitionistic logic

CHAPTER 2. FIRST-ORDER LOGIC

sym a=b ==> b=a
trans [| a=b; b=c |] ==> a=c
ssubst [l b=a; P(a) |] ==> P(b)

DERIVED EQUALITY RULES

Truel True

notl (P ==> False) ==> "P

notE [l "P; P |] ==>R

iffI [| P==>0Q; Q==>P |] ==>P<->Q

iffE [l P<->Q; [l P->Q; Q-——>P |] ==>R |] ==>R

iffD1 [l P<>Q; P I]==>Q

iffD2 [l P<>Q Q1l]==>P

ex1I [l P(a); !''x. P(x) ==> x=a |] ==> EX! x. P(x)

ex1E [l EX! x.P(x); !!x.[l P(x); ALL y. P(y) --> y=x |] ==> R
|1 ==>R

DERIVED RULES FOR T, —, <> AND d!

conjE [l P&Q; [l P; Q Il ==>RI]==>R
impE [l P-->Q; P; Q==>R |] ==> R
allE [l ALL x.P(x); P(x) ==> R |] ==> R

all_dupE [| ALL x.P(x); [l P(x); ALL x.P(x) |] ==> R |] ==> R

SEQUENT-STYLE ELIMINATION RULES

conj_impE [| (P&Q)-->S; P-->(Q-->S) ==>R |] ==> R

disj_impE [| (PIQ)-->S; [| P-->S; Q-->S |] ==> R |] ==> R

imp_impE [| (P-->Q)-->S; [l P; Q-->8 |] ==>Q; S ==>R |] ==>R

not_impE [| "P --> S; P ==> False; S ==>R |] ==> R

iff_impE [(P<->Q)-->S; [| P; Q-->S |] ==> Q; [l Q; P-->S |] ==> P;
S ==>R|] ==>R

all_impE [| (ALL x.P(x))-->S; !'x.P(x); S ==>R |] ==> R

ex_impE [l (EX x.P(x))-->S; P(a)-->S ==> R |] ==> R

INTUITIONISTIC SIMPLIFICATION OF IMPLICATION

Figure 2.3: Derived rules for intuitionistic logic

CHAPTER 2. FIRST-ORDER LOGIC 8

equivalent to the conjunction of P — S and) — S. The other ... _impE
rules are unsafe; the method requires backtracking. All the rules are derived
in the same simple manner.

Dyckhoff has independently discovered similar rules, and (more impor-
tantly) has demonstrated their completeness for propositional logic [8]. How-
ever, the tactics given below are not complete for first-order logic because
they discard universally quantified assumptions after a single use.

mp_tac : int -> tactic
eq_mp_tac : int -> tactic
IntPr.safe_step_tac : int -> tactic
IntPr.safe_tac : tactic
IntPr.inst_step_tac : int -> tactic
IntPr.step_tac . int -> tactic
IntPr.fast_tac : int -> tactic
IntPr.best_tac : int -> tactic

Most of these belong to the structure IntPr and resemble the tactics of
Isabelle’s classical reasoner.

mp_tac ¢ attempts to use notE or impE within the assumptions in subgoal
1. For each assumption of the form =P or P — (), it searches for
another assumption unifiable with P. By contradiction with =P it
can solve the subgoal completely; by Modus Ponens it can replace the
assumption P — @ by (. The tactic can produce multiple outcomes,
enumerating all suitable pairs of assumptions.

eq_mp_tac ¢ is like mp_tac 4, but may not instantiate unknowns — thus, it
is safe.

IntPr.safe_step_tac ¢ performs a safe step on subgoal i. This may in-
clude proof by assumption or Modus Ponens (taking care not to in-
stantiate unknowns), or hyp_subst_tac.

IntPr.safe_tac repeatedly performs safe steps on all subgoals. It is deter-
ministic, with at most one outcome.

IntPr.inst_step_tac i is like safe_step_tac, but allows unknowns to be
instantiated.

IntPr.step_tac i tries safe_tac or inst_step_tac, or applies an unsafe
rule. This is the basic step of the intuitionistic proof procedure.

IntPr.fast_tac ¢ applies step_tac, using depth-first search, to solve sub-
goal 1.

IntPr.best_tac i applies step_tac, using best-first search (guided by the
size of the proof state) to solve subgoal i.

CHAPTER 2. FIRST-ORDER LOGIC 9

excluded_middle “P | P

disjCI ("Q ==> P) ==> PIQ

exCI (ALL x. “P(x) ==> P(a)) ==> EX x.P(x)

impCE [| P-—>Q; "P ==>R; Q ==> R |] ==> R

iffCE [l P<->Q; [l P; Q1] ==>R; [l "P; "Q |I] ==>R [] ==>R
notnotD “"P ==> P

swap “P ==> ("Q ==> P) ==>Q

Figure 2.4: Derived rules for classical logic

Here are some of the theorems that IntPr.fast_tac proves automati-
cally. The latter three date from Principia Mathematica (*11.53, *11.55,
*11.61) [21].

P& (P -—> Q) --> ""Q

(ALL x y. P(x) -—> Q(y)) <> ((EX x. P(x)) -—> (ALL y. Q(y)))

(EX x y. P(x) & Q(x,y)) <> (EX x. P(x) & (EX y. Q(x,y)))

(EX y. ALL x. P(x) -—> Q(x,y)) -—> (ALL x. P(x) -—> (EX y. Q(x,y)))

2.4 Classical proof procedures

The classical theory, FOL, consists of intuitionistic logic plus the rule
[P

: classical

b ()

P

Natural deduction in classical logic is not really all that natural. FOL derives
classical introduction rules for V and 3, as well as classical elimination rules
for — and <, and the swap rule (see Fig.2.4).

The classical reasoner is installed. Tactics such as Blast_tac and
Best_tac refer to the default claset (claset()), which works for most
purposes. Named clasets include prop_cs, which includes the proposi-
tional rules, and FOL_cs, which also includes quantifier rules. See the file
FOL/cladata.ML for lists of the classical rules, and the Reference Manual
for more discussion of classical proof methods.

2.5 An intuitionistic example

Here is a session similar to one in Logic and Computation [13, pages 222-3].
Isabelle treats quantifiers differently from LCF-based theorem provers such
as HOL.

First, we specify that we are working in intuitionistic logic:

CHAPTER 2. FIRST-ORDER LOGIC 10

context IFOL.thy;

The proof begins by entering the goal, then applying the rule (—1).

Goal "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))";
Level 0
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
by (resolve_tac [impI] 1);
Level 1
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. EX y. ALL x. Q(x,y) ==> ALL x. EX y. Q(x,y)

In this example, we shall never have more than one subgoal. Applying (—1)
replaces —=> by ==> making Jy . Vz . Q(z,y) an assumption. We have the
choice of (GE) and (VI); let us try the latter.

by (resolve_tac [allI] 1);
Level 2
(EX y. ALL x. Q(x,y)) -—> (ALL x. EX y. Q(x,y))
1. !!x. EX y. ALL x. Q(x,y) ==> EX y. Q(x,y)

Applying (VI) replaces the ALL x by !!x, changing the universal quantifier
from object (V) to meta (A). The bound variable is a parameter of the
subgoal. We now must choose between (37) and (3E). What happens if the
wrong rule is chosen?

by (resolve_tac [exI] 1);
Level 3
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !lx. EX y. ALL x. Q(x,y) ==> Q(x,7y2(x))

The new subgoal 1 contains the function variable ?y2. Instantiating ?y2 can
replace 7y2(x) by a term containing x, even though x is a bound variable.
Now we analyse the assumption 3y . Vz . Q(z, y) using elimination rules:

by (eresolve_tac [exE] 1);
Level 4
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !x y. ALL x. Q(x,y) ==> Q(x,?y2(x))

Applying (FE) has produced the parameter y and stripped the existential
quantifier from the assumption. But the subgoal is unprovable: there is
no way to unify ?y2(x) with the bound variable y. Using choplev we can
return to the critical point. This time we apply (IE):

choplev 2;
Level 2
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !x. EX y. ALL x. Q(x,y) ==> EX y. Q(x,y)

CHAPTER 2. FIRST-ORDER LOGIC 11

by (eresolve_tac [exE] 1);
Level 3
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !x y. ALL x. Q(x,y) ==> EX y. Q(x,y)

We now have two parameters and no scheme variables. Applying (3) and
(VE) produces two scheme variables, which are applied to those parameters.
Parameters should be produced early, as this example demonstrates.
by (resolve_tac [exI] 1);
Level 4
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !x y. ALL x. Q(x,y) ==> Q(x,7y3(x,y))
by (eresolve_tac [allE] 1);
Level 5
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !x y. Q(7x4(x,y),y) ==> Q(x,7y3(x,y))

The subgoal has variables 7y3 and 7x4 applied to both parameters. The
obvious projection functions unify ?x4(x,y) with x and ?y3(x,y) with y.
by (assume_tac 1);
Level 6

(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
No subgoals!

The theorem was proved in six tactic steps, not counting the abandoned
ones. But proof checking is tedious; IntPr.fast_tac proves the theorem in
one step.
Goal "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y)";
Level O
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
by (IntPr.fast_tac 1);
Level 1
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
No subgoals!

2.6 An example of intuitionistic negation

The following example demonstrates the specialized forms of implication
elimination. Even propositional formulae can be difficult to prove from the
basic rules; the specialized rules help considerably.

Propositional examples are easy to invent. As Dummett notes [7, page
28], =P is classically provable if and only if it is intuitionistically provable;
therefore, P is classically provable if and only if == P is intuitionistically
provable.! Proving ——P intuitionistically is much harder than proving P
classically.

LOf course this holds only for propositional logic, not if P is allowed to contain quan-
tifiers.

CHAPTER 2. FIRST-ORDER LOGIC 12

Our example is the double negation of the classical tautology (P —
Q) V (Q — P). When stating the goal, we command Isabelle to expand
negations to implications using the definition -P = P — L. This allows
use of the special implication rules.

Goalw [not_def] "~ = ((P-->Q) | (Q-—>P))";
Level 0
T (P -->Q | @Q-->P))
1. ((P -——> Q) | (@ -—> P) --> False) --> False

The first step is trivial.

by (resolve_tac [impI] 1);
Level 1
ST -—>Q | @ -->P)
1. (P --> Q) | (@ -=—> P) --> False ==> False

By (— FE) it would suffice to prove (P — @)V (Q — P), but that formula
is not a theorem of intuitionistic logic. Instead we apply the specialized
implication rule disj_impE. It splits the assumption into two assumptions,
one for each disjunct.

by (eresolve_tac [disj_impE] 1);
Level 2
TP > | @ -->P))
1. [| (P --> Q) --> False; (Q --> P) --> False |] ==> False

We cannot hope to prove P — @ or () — P separately, but their negations
are inconsistent. Applying imp_impE breaks down the assumption —(P —
@), asking to show () while providing new assumptions P and — Q).

by (eresolve_tac [imp_impE] 1);
Level 3
TP -—>Q | @ -—>P)
1. [l (@ --> P) --> False; P; Q --> False |] ==> @
2. [| (@ --> P) --> False; False |] ==> False

Subgoal 2 holds trivially; let us ignore it and continue working on subgoal 1.
Thanks to the assumption P, we could prove) — P; applying imp_impE is
simpler.

by (eresolve_tac [imp_impE] 1);
Level 4
TP > | @ -->P))
1. [| P; Q --> False; Q; P --> False [] ==> P
2. [| P; Q --> False; False |] ==> @
3. [l (@ --> P) --> False; False |] ==> False

The three subgoals are all trivial.

by (REPEAT (eresolve_tac [FalseE] 2));
Level 5
TP -—>@) | @-->P)
1. [| P; Q --> False; Q; P --> False |] ==> P

CHAPTER 2. FIRST-ORDER LOGIC 13

by (assume_tac 1);
Level 6
TP > | @ -->P))
No subgoals!

This proof is also trivial for IntPr.fast_tac.

2.7 A classical example

To illustrate classical logic, we shall prove the theorem Jy.Vz.P(y) — P(z).
Informally, the theorem can be proved as follows. Choose y such that = P(y),
if such exists; otherwise Vx . P(z) is true. Either way the theorem holds.
First, we switch to classical logic:

context FOL.thy;

The formal proof does not conform in any obvious way to the sketch
given above. The key inference is the first one, exCI; this classical version
of (3I) allows multiple instantiation of the quantifier.

Goal "EX y. ALL x. P(y)-->P(x)";
Level 0
EX y. ALL x. P(y) --> P(x)
1. EX y. ALL x. P(y) --> P(x)
by (resolve_tac [exCI] 1);
Level 1
EX y. ALL x. P(y) -—> P(x)
1. ALL y. ~ (ALL x. P(y) --> P(x)) ==> ALL x. P(?a) --> P(x)

We can either exhibit a term 7a to satisfy the conclusion of subgoal 1, or
produce a contradiction from the assumption. The next steps are routine.

by (resolve_tac [allI] 1);
Level 2
EX y. ALL x. P(y) --> P(x)
1. !!x. ALL y. ~ (ALL x. P(y) --> P(x)) ==> P(7a) --> P(x)
by (resolve_tac [impI] 1);
Level 3
EX y. ALL x. P(y) --> P(x)
1. !x. [| ALL y. ~ (ALL x. P(y) --> P(x)); P(?a) |] ==> P(x)

By the duality between 3 and V, applying (VE) in effect applies (3I) again.

by (eresolve_tac [allE] 1);
Level 4
EX y. ALL x. P(y) --> P(x)
1. !x. [| P(?a); ~ (ALL xa. P(?y3(x)) --> P(xa)) |] ==> P(x)

In classical logic, a negated assumption is equivalent to a conclusion.
To get this effect, we create a swapped version of (VI) and apply
it using eresolve_tac; we could equivalently have applied (VI) using
swap_res_tac.

CHAPTER 2. FIRST-ORDER LOGIC 14

alll RSN (2,swap);
val it = "[| “(ALL x. ?P1(x)); !!x. ~ ?Q ==> ?P1(x) [|] ==> ?Q" : thm
by (eresolve_tac [it] 1);
Level 5
EX y. ALL x. P(y) -—> P(x)
1. !lx xa. [| P(?a); ~ P(x) |] ==> P(?y3(x)) --> P(xa)

The previous conclusion, P(x), has become a negated assumption.

by (resolve_tac [impI] 1);
Level 6
EX y. ALL x. P(y) --> P(x)
1. !!x xa. [| P(?a); ~ P(x); P(?y3(x)) |] ==> P(xa)

The subgoal has three assumptions. We produce a contradiction between
the assumptions "P(x) and P(?y3(x)). The proof never instantiates the
unknown 7a.

by (eresolve_tac [notE] 1);

Level 7

EX y. ALL x. P(y) --> P(x)

1. !lx xa. [| P(?a); P(?y3(x)) |] ==> P(x)

by (assume_tac 1);

Level 8

EX y. ALL x. P(y) -—> P(x)

No subgoals!

The civilised way to prove this theorem is through Blast_tac, which auto-
matically uses the classical version of (31):

Goal "EX y. ALL x. P(y)-—>P(x)";
Level 0O
EX y. ALL x. P(y) -—> P(x)
1. EX y. ALL x. P(y) --> P(x)
by (Blast_tac 1);

Depth = 0
Depth = 1
Depth = 2
Level 1

EX y. ALL x. P(y) --> P(x)
No subgoals!

If this theorem seems counterintuitive, then perhaps you are an intuitionist.
In constructive logic, proving Jy . Vz . P(y) — P(z) requires exhibiting a
particular term ¢ such that Vz . P(¢t) — P(z), which we cannot do without
further knowledge about P.

2.8 Derived rules and the classical tactics

Classical first-order logic can be extended with the propositional connective
if (P, @, R), where

if(P,Q,R)=PAQV—-PAR. (if)

CHAPTER 2. FIRST-ORDER LOGIC 15

Theorems about if can be proved by treating this as an abbreviation, re-
placing if (P, Q,R) by P A @V =P A R in subgoals. But this duplicates P,
causing an exponential blowup and an unreadable formula. Introducing
further abbreviations makes the problem worse.

Natural deduction demands rules that introduce and eliminate
if (P, Q, R) directly, without reference to its definition. The simple identity

if(P,Q,R) < (P = Q)A (=P — R)

suggests that the if-introduction rule should be

] [P
o ko
qe.o.r D

The if-elimination rule reflects the definition of if (P, @, R) and the elimi-
nation rules for vV and A.

P.Q] [~P.H]

if(P,Q.R) 8 g
. (if E)

Having made these plans, we get down to work with Isabelle. The theory
of classical logic, FOL, is extended with the constant if :: [0, 0, 0] = 0. The
axiom if_def asserts the equation (if).

If = FOL +

consts if :: [o0,0,0]=>0

rules if_def "if(P,Q,R) == P&Q | ~P&R"
end

We create the file If.thy containing these declarations. (This file is on
directory FOL/ex in the Isabelle distribution.) Typing

use_thy "If";

loads that theory and sets it to be the current context.

2.8.1 Deriving the introduction rule

The derivations of the introduction and elimination rules demonstrate the
methods for rewriting with definitions. Classical reasoning is required, so
we use blast_tac.

The introduction rule, given the premises P — @ and -P = R, con-
cludes if (P, @, R). We propose the conclusion as the main goal using Goalw,
which uses if_def to rewrite occurrences of if in the subgoal.

CHAPTER 2. FIRST-ORDER LOGIC 16

val prems = Goalw [if_def]
"[I P==>Q; ~P==>R|] ==>if(P,Q,R)";
Level 0
if(P,Q,R)
1. P&Q | “"P&R

The premises (bound to the ML variable prems) are passed as introduction
rules to blast_tac. Remember that claset () refers to the default classical
set.

by (blast_tac (claset() addIs prems) 1);
Level 1
if(P,Q,R)
No subgoals!

ged "ifI";

2.8.2 Deriving the elimination rule

The elimination rule has three premises, two of which are themselves rules.
The conclusion is simply S.

val major::prems = Goalw [if_def]
“[I if(P,Q,R); [I P; Q |11 ==>38; [I ~P; R |] ==>35 [|] ==>38";
Level 0
S
1. S

The major premise contains an occurrence of if , but the version returned by
Goalw (and bound to the ML variable major) has the definition expanded.
Now cut_facts_tac inserts major as an assumption in the subgoal, so that
blast_tac can break it down.

by (cut_facts_tac [major] 1);
Level 1
S
1.P&Q | "P&R==>3S8
by (blast_tac (claset() addIs prems) 1);
Level 2
S
No subgoals!
qed "ifE";

As you may recall from Introduction to Isabelle, there are other ways of
treating definitions when deriving a rule. We can start the proof using Goal,
which does not expand definitions, instead of Goalw. We can use rew_tac
to expand definitions in the subgoals—perhaps after calling cut_facts_tac
to insert the rule’s premises. We can use rewrite_rule, which is a meta-
inference rule, to expand definitions in the premises directly.

CHAPTER 2. FIRST-ORDER LOGIC 17

2.8.3 Using the derived rules

The rules just derived have been saved with the ML names ifI and ifE.
They permit natural proofs of theorems such as the following:

if (P,if(Q, A, B),if(Q, C, D)) < if(Q,if(P,A,C),if(P,B,D))
if(if (P,Q,R),A,B) < if(P,if(Q, A, B),if(R, A, B))

Proofs also require the classical reasoning rules and the < introduction rule
(called iffI: do not confuse with ifI).
To display the if-rules in action, let us analyse a proof step by step.

Goal "if (P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))";
Level 0
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
by (resolve_tac [iffI] 1);
Level 1
if(pP,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. if(P,if(Q,A,B),if(Q,C,D)) ==> if(Q,if(P,A,C),if(P,B,D))
2. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

The if-elimination rule can be applied twice in succession.

by (eresolve_tac [ifE] 1);
Level 2
if(P,if(Q,A,B),if(§,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. [| pP; if(Q,A,B) |] ==> if(Q,if(P,A,C),if(P,B,D))
2. [| -~ Pp; if(qQ,c,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
3. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))
by (eresolve_tac [ifE] 1);
Level 3
if(p,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. [| P; Q; A |] ==> if(Q,if(P,A,C),if(P,B,D))
2. [I P; ~Q; B |] ==>if(Q,if(P,A,C),if(P,B,D))
3. [| - P; if(qg,c,D) |1 ==> if(Q,if(P,A,C),if(P,B,D))
4. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

In the first two subgoals, all assumptions have been reduced to atoms. Now
if-introduction can be applied. Observe how the if-rules break down occur-
rences of if when they become the outermost connective.

by (resolve_tac [ifI] 1);

Level 4

if(P,if(Q,A,B),if(§,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. [| P; Q; A; Q |] ==> if(P,A,C)

[l P; Q; A; ~ Q |] ==> if(P,B,D)
[l P;, ~Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))
[l ~ p; if(Q,c,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
if(qQ,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

a N W N

CHAPTER 2. FIRST-ORDER LOGIC 18

by (resolve_tac [ifI] 1);

Level 5

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. [I P; Q; A; Q; P |1 ==> A

[l P; Q; A; Q; P] ==>C
[l p; Q; A; = Q |] ==> if(P,B,D)
[l P, ~Q; B[] ==> if(Q,if(P,A,C),if(P,B,D))
[l ~p; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

o O W N

Where do we stand? The first subgoal holds by assumption; the second and
third, by contradiction. This is getting tedious. We could use the classical
reasoner, but first let us extend the default claset with the derived rules

for if.

AddSIs [ifI];
AddSEs [ifE];

Now we can revert to the initial proof state and let blast_tac solve it.

choplev O;

Level 0

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

by (Blast_tac 1);

Level 1

if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

No subgoals!

This tactic also solves the other example.

Goal "if (if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))";
Level 0
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
by (Blast_tac 1);
Level 1
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
No subgoals!

2.8.4 Derived rules versus definitions

Dispensing with the derived rules, we can treat if as an abbreviation, and
let blast_tac prove the expanded formula. Let us redo the previous proof:

choplev 0;
Level O
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))

This time, simply unfold using the definition of if:

CHAPTER 2. FIRST-ORDER LOGIC 19

by (rewtac if_def);
Level 1
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
1. P&Q | “P&R) &A| ~(P&Q | ~P&R) & B <>
P& Q@Q&Al " Q&B) | " P& ((R&A| "R &B)

We are left with a subgoal in pure first-order logic, which is why the classical
reasoner can prove it given FOL_cs alone. (We could, of course, have used
Blast_tac.)

by (blast_tac FOL_cs 1);
Level 2
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
No subgoals!

Expanding definitions reduces the extended logic to the base logic. This
approach has its merits — especially if the prover for the base logic is good
— but can be slow. In these examples, proofs using the default claset
(which includes the derived rules) run about six times faster than proofs
using FOL_cs.

Expanding definitions also complicates error diagnosis. Suppose we are
having difficulties in proving some goal. If by expanding definitions we have
made it unreadable, then we have little hope of diagnosing the problem.

Attempts at program verification often yield invalid assertions. Let us
try to prove one:

Goal "if (if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))";
Level 0
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
by (Blast_tac 1);
by: tactic failed

This failure message is uninformative, but we can get a closer look at the
situation by applying Step_tac.

by (REPEAT (Step_tac 1));
Level 1
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. [| A; ~P; R; “P; R|] ==>B

2. [| B; “P; “R; “P; "R [|] ==> A
3. [| ~P; R; B; “P; R[] ==>4
4. [| ~P; “R; A; "~ B; “P |] ==>R

Subgoal 1 is unprovable and yields a countermodel: P and B are false
while R and A are true. This truth assignment reduces the main goal to
true < false, which is of course invalid.

We can repeat this analysis by expanding definitions, using just the rules
of FOL:

CHAPTER 2. FIRST-ORDER LOGIC 20

choplev O;
Level 0
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,4A))
by (rewtac if_def);
Level 1
if(if (P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. (P&Q| "P&R) &A| ~(P&Q | “P&R) &B <>
P& Q@Q&A| "Q&B) | "P& ((R&B| "R &A)
by (blast_tac FOL_cs 1);
by: tactic failed

Again we apply step_tac:

by (REPEAT (step_tac FOL_cs 1));
Level 2
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. [l A; ~ P; R; ~ P; R; ~ False |] ==> B

2. [| A; ~ P; R; R; ~ False; ~ B; ~ B |] ==>Q
3. [| B; ~P; “R; “~P; ~A|] ==>R

4. [| B; “P; “R; ~Q; ~A|] ==>R

5. [| B; “R; ~P; ~A; “R; Q; ~ False |] ==> A
6. [| ~P; R; B; ~ P; R; ~ False |[] ==> A

7. [| ~P; “R; A; “B; "R [] ==>P

8. [| ~P; “R; 4; " B; "R |] ==>4Q

Subgoal 1 yields the same countermodel as before. But each proof step has
taken six times as long, and the final result contains twice as many subgoals.

Expanding definitions causes a great increase in complexity. This is why
the classical prover has been designed to accept derived rules.

Chapter 3

Zermelo-Fraenkel Set Theory

The theory ZF implements Zermelo-Fraenkel set theory [9, 20] as an exten-
sion of FOL, classical first-order logic. The theory includes a collection of
derived natural deduction rules, for use with Isabelle’s classical reasoner.
Much of it is based on the work of Noél [11].

A tremendous amount of set theory has been formally developed, includ-
ing the basic properties of relations, functions, ordinals and cardinals. Sig-
nificant results have been proved, such as the Schroder-Bernstein Theorem,
the Wellordering Theorem and a version of Ramsey’s Theorem. ZF provides
both the integers and the natural numbers. General methods have been de-
veloped for solving recursion equations over monotonic functors; these have
been applied to yield constructions of lists, trees, infinite lists, etc.

ZF has a flexible package for handling inductive definitions, such as in-
ference systems, and datatype definitions, such as lists and trees. Moreover
it handles coinductive definitions, such as bisimulation relations, and co-
datatype definitions, such as streams. It provides a streamlined syntax for
defining primitive recursive functions over datatypes.

Because ZF is an extension of FOL, it provides the same packages,
namely hyp_subst_tac, the simplifier, and the classical reasoner. The de-
fault simpset and claset are usually satisfactory.

Published articles [14, 16] describe ZF less formally than this chap-
ter. Isabelle employs a novel treatment of non-well-founded data structures
within the standard zF axioms including the Axiom of Foundation [18].

3.1 Which version of axiomatic set theory?

The two main axiom systems for set theory are Bernays-Godel (BG) and
Zermelo-Fraenkel (zF). Resolution theorem provers can use BG because it is
finite [3, 19]. zF does not have a finite axiom system because of its Axiom
Scheme of Replacement. This makes it awkward to use with many theorem
provers, since instances of the axiom scheme have to be invoked explicitly.
Since Isabelle has no difficulty with axiom schemes, we may adopt either
axiom system.

These two theories differ in their treatment of classes, which are col-
lections that are ‘too big’ to be sets. The class of all sets, V', cannot be a

21

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 22

set without admitting Russell’s Paradox. In BG, both classes and sets are
individuals; x € V expresses that x is a set. In zF, all variables denote
sets; classes are identified with unary predicates. The two systems define
essentially the same sets and classes, with similar properties. In particular,
a class cannot belong to another class (let alone a set).

Modern set theorists tend to prefer ZF because they are mainly concerned
with sets, rather than classes. BG requires tiresome proofs that various
collections are sets; for instance, showing = € {z} requires showing that z
is a set.

3.2 The syntax of set theory

The language of set theory, as studied by logicians, has no constants. The
traditional axioms merely assert the existence of empty sets, unions, pow-
ersets, etc.; this would be intolerable for practical reasoning. The Isa-
belle theory declares constants for primitive sets. It also extends FOL
with additional syntax for finite sets, ordered pairs, comprehension, gen-
eral union/intersection, general sums/products, and bounded quantifiers.
In most other respects, Isabelle implements precisely Zermelo-Fraenkel set
theory.

Figure 3.1 lists the constants and infixes of ZF, while Figure 3.2 presents
the syntax translations. Finally, Figure 3.3 presents the full grammar for
set theory, including the constructs of FOL.

Local abbreviations can be introduced by a let construct whose syntax
appears in Fig. 3.3. Internally it is translated into the constant Let. It can
be expanded by rewriting with its definition, Let_def.

Apart from let, set theory does not use polymorphism. All terms in ZF
have type ¢, which is the type of individuals and has class term. The type
of first-order formulae, remember, is o.

Infix operators include binary union and intersection (AU B and AN B),
set difference (A — B), and the subset and membership relations. Note that
a”:b is translated to =(a € b). The union and intersection operators (|J A
and (] A) form the union or intersection of a set of sets; |J A means the same
as U,ca . Of these operators, only [J A is primitive.

The constant Upair constructs unordered pairs; thus Upair (A, B) de-
notes the set {A, B} and Upair(A,A) denotes the singleton {A}. General
union is used to define binary union. The Isabelle version goes on to define
the constant cons:

AUB = U(Upair(A,B))
cons(a,B) = Upair(a,a)UB

The {a, ...} notation abbreviates finite sets constructed in the obvious man-

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

name meta-type description
Let [, = p] = B let binder
0 1 empty set
cons [i,i] = ¢ finite set constructor
Upair [i,i] = 1 unordered pairing
Pair [i,i] = i ordered pairing
Inf ? infinite set
Pow 1= 1 powerset,
Union Inter 1= 1 set union/intersection
split [[i,4] = i,4] =i generalized projection
fst snd 1= 1 projections
converse 1 =1 converse of a relation
succ 1 =1 successor
Collect [i,i= 0] =1 separation
Replace [i,[i,i] = o] = i replacement
PrimReplace [i,[i,i] = o] =i primitive replacement
RepFun [i,% =14 =14 functional replacement
Pi Sigma [i,9=1] =1 general product/sum
domain =1 domain of a relation
range 1= 1 range of a relation
field 1= field of a relation
Lambda [i,i=1] =1 A-abstraction
restrict [i,4] = ¢ restriction of a function
The [i = o] =i definite description
if [o,4,i] = i conditional
Ball Bex [i,i=0]=o0 bounded quantifiers
CONSTANTS

symbol meta-type priority description

€ [i,i) =4 Left 90 image

- [i,i]=1 Left 90 inverse image

¢ [i,i] =14 Left 90 application

Int [i,¢]) =14 Left 70 intersection (N)

Un [i,i] = ¢ Left 65 union (U)

- [i,i) =14 Left 65 set difference (—)

i [4,i) =0 Left 50 membership (€)

<= [i,i]= 0 Left 50 subset (C)

INFIXES

Figure 3.1: Constants of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 24

external internal description

a “: b “(a : b) negated membership

{ar, ..., a.} cons(ay,...,cons(a,,0)) finite set
<a1, ..., Qn-1, ap> Pair(ai,...,Pair(an—1,a,)...) ordered n-tuple
{z:A. P[z]} Collect (A, \z . P[z]) separation
{y.z:4, Qlz,y]} Replace(A, Az y . Qlz, y]) replacement
{b[z].z: A} RepFun(A,\z . b[z]) functional replacement

INT z:A. Blx] Inter ({Bz] . z:A}) general intersection

UN z:A. Blz] Union({B[z].z:A4}) general union
PROD z:A . Blz] Pi(A,\z . Blz]) general product
SUM z:A. Blz] Sigma(A,\z . Blz]) general sum

A -> B Pi(A,\z.B) function space

A * B Sigma(A,\z . B) binary product

THE z . P[z] The(A\z . P[z]) definite description

lam z:A. b[z] Lambda (A, Az . b[z]) A-abstraction

ALL z:A. P[z] Ball(A,\z . Plz]) bounded V

EX z:A. Plz] Bex(A,\z . P[z]) bounded 3

Figure 3.2: Translations for ZF

ner using cons and) (the empty set):
{a,b,¢} = cons(a,cons(b,cons(c,0)))

The constant Pair constructs ordered pairs, as in Pair(a,b). Ordered
pairs may also be written within angle brackets, as <a,b>. The n-tuple
<a1,...,0,_1,0,> abbreviates the nest of pairs

Pair(ay,...,Pair(a,—1,a,)...).

In ZF, a function is a set of pairs. A ZF function f is simply an individual
as far as Isabelle is concerned: its Isabelle type is i, not say ¢« = i. The
infix operator ¢ denotes the application of a function set to its argument; we
must write f‘z, not f(z). The syntax for image is f“A and that for inverse
image is f—“A.

3.3 Binding operators

The constant Collect constructs sets by the principle of separation. The
syntax for separation is {z:A. P[z]|}, where P[z] is a formula that may
contain free occurrences of z. It abbreviates the set Collect (A4, Az . Plz]),
which consists of all z € A that satisfy P[z]. Note that Collect is an un-
fortunate choice of name: some set theories adopt a set-formation principle,
related to replacement, called collection.

The constant Replace constructs sets by the principle of replacement.
The syntax {y. z:A4,Q[z,y]} denotes the set Replace(A,\zy . Q[z,y]),
which consists of all y such that there exists z € A satisfying Q[z,y]. The
Replacement Axiom has the condition that ¢ must be single-valued over A:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

term = expression of type i
| let id = term; ... ; id = term in term
| if term then term else term
| { term (,term)* }
| < term (,term)* >
| { id:term . formula }
| { id . id:term, formula }
| { term . id:term }
| term ‘¢ term
| term -¢¢ term
| term ¢ term
| term * term
| term Int term
| term Un term
| term - term
| term -> term
| THE 4d . formula
| lam dd:term . term
| INT dd:term . term
| UN id:term . term
| PROD id:term . term
| SUM id:term . term
formula expression of type o

| term : term
| term ~: term

| term <= term

| term = term

| term ~= term
|~ formula

| formula & formula
| formula | formula

| formula --> formula

| formula <=> formula

| ALL id:term . formula
| EX id:term . formula
| ALL id id* . formula

| EX idid* . formula

| EX! id id* . formula

Figure 3.3: Full grammar for ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 26

for all z € A there exists at most one y satisfying Q[z,y]. A single-valued
binary predicate is also called a class function.

The constant RepFun expresses a special case of replacement, where
Q|z, y] has the form y = b[z]. Such a @ is trivially single-valued, since it is
just the graph of the meta-level function Az . b[z|. The resulting set consists
of all b[z] for x € A. This is analogous to the ML functional map, since it
applies a function to every element of a set. The syntax is {b[z]. x:A},
which expands to RepFun (A, Az . b[z]).

General unions and intersections of indexed families of sets, namely
Usea Blz] and N,c 4 Blz], are written UN z:A. Blz] and INT z:A. B[z].
Their meaning is expressed using RepFun as

U({B[ac] .x € A}) and n({B[x] .z € A}).

General sums), 4 Bz] and products [[,c 4 B[z] can be constructed in set
theory, where Blz] is a family of sets over A. They have as special cases
A x B and A — B, where B is simply a set. This is similar to the situation
in Constructive Type Theory (set theory has ‘dependent sets’) and calls for
similar syntactic conventions. The constants Sigma and Pi construct general
sums and products. Instead of Sigma(A, B) and Pi(A,B) we may write
SUM z:A. Blz]and PROD z:A. B[z]. The special cases as A*B and A->B
abbreviate general sums and products over a constant family.! Isabelle
accepts these abbreviations in parsing and uses them whenever possible for
printing.

As mentioned above, whenever the axioms assert the existence and
uniqueness of a set, Isabelle’s set theory declares a constant for that set.
These constants can express the definite description operator tz . Plz],
which stands for the unique a satisfying P[a], if such exists. Since all terms
in ZF denote something, a description is always meaningful, but we do not
know its value unless P[z] defines it uniquely. Using the constant The, we
may write descriptions as The (Az . P[z]) or use the syntax THE z. P[z].

Function sets may be written in A-notation; Az € A . b[z] stands for the
set of all pairs (z, b[z]) for z € A. In order for this to be a set, the func-
tion’s domain A must be given. Using the constant Lambda, we may express
function sets as Lambda (A, Az . b[z]) or use the syntax lam z:A. b[z].

Isabelle’s set theory defines two bounded quantifiers:

Vz € A.P[z] abbreviates Vz.z € A — P[z]
Jz € A. P[z] abbreviates Jz .z € AA P[x]

The constants Ball and Bex are defined accordingly. Instead of Ball(A, P)
and Bex(A,P) we may write ALL z:A. P[z] and EX z:A. P[z].

1Unlike normal infix operators, * and -> merely define abbreviations; there are no
constants op * and op ->.

Let_def

Ball_def
Bex_def

subset_def
extension

Union_iff
Pow_iff

foundation

replacement

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

Let(s, f) == f(s)

Ball(A,P) == ALL x. x:A -—> P(x)
Bex(A,P) == EX x. x:A & P(%)

A <= B == ALL x:A. x:B
A=B <> A<K=B&B<=A

A : Union(C) <-> (EX B:C. A:B)
A : Pow(B) <-> A <=B
A=0 | (EX x:A. ALL y:x. ~ y:A)

(ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==>
b : PrimReplace(A,P) <-> (EX x:A. P(x,b))

THE ZERMELO-FRAENKEL AXIOMS

27

Replace_def

Replace(A,P) ==
PrimReplace(A, %x y. (EX!'z. P(x,z)) & P(x,y))

RepFun_def RepFun(A,f) == {y . x:A, y=f(x)}
the_def The (P) == Union({y . x:{0}, P(y)})
if_def if(P,a,b) == THE z. P & z=a | "P & z=b
Collect_def Collect(A,P) == {y . x:A, x=y & P(x)}
Upair_def Upair(a,b) ==
{y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}

CONSEQUENCES OF REPLACEMENT
Inter_def Inter(A) == {x:Union(A) . ALL y:A. x:y}
Un_def A Un B == Union(Upair(A,B))
Int_def A Int B == Inter(Upair(A,B))
Diff_def A-B == {x:A . x":B}

UNION, INTERSECTION, DIFFERENCE

Figure 3.4: Rules and axioms of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

cons_def cons(a,A) == Upair(a,a) Un A
succ_def succ(i) == cons(i,i)
infinity 0:Inf & (ALL y:Inf. succ(y): Inf)

FINITE AND INFINITE SETS

Pair_def <a,b> == {{a,a}, {a,b}}

split_def split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)
fst_def fst(4) == split(¥x y. x, p)

snd_def snd (A) == split(%x y. y, p)

Sigma_def Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}

ORDERED PAIRS AND CARTESIAN PRODUCTS

converse_def converse(r) == {z. w:r, EX x y. w=<x,y> & 2z=<y,x>}
domain_def domain(r) == {x. w:r, EX y. w=<x,y>}

range_def range(r) == domain(converse(r))

field_def field(r) == domain(r) Un range(r)

image_def r ‘A == {y : range(r) . EX x:A. <x,y> : r}
vimage_def r -‘¢“ A == converse(r)‘ ‘A

OPERATIONS ON RELATIONS

lam_def Lambda(A,b) == {<x,b(x)> . x:A}

apply_def f‘a == THE y. <a,y> : f
Pi_def Pi(A,B) == {f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f}
restrict_def restrict(f,A) == lam x:A. f‘x

FUNCTIONS AND GENERAL PRODUCT

Figure 3.5: Further definitions of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 29

3.4 The Zermelo-Fraenkel axioms

The axioms appear in Fig.3.4. They resemble those presented by Sup-

pes [20]. Most of the theory consists of definitions. In particular, bounded

quantifiers and the subset relation appear in other axioms. Object-level

quantifiers and implications have been replaced by meta-level ones wherever

possible, to simplify use of the axioms. See the file ZF/ZF.thy for details.
The traditional replacement axiom asserts

y € PrimReplace(A, P) < (Jz € A. P(z,y))

subject to the condition that P(z,y) is single-valued for all x € A. The
Isabelle theory defines Replace to apply PrimReplace to the single-valued

part of P, namely
(Jz. P(z,2)) AN P(z,y).

Thus y € Replace(A4, P) if and only if there is some z such that P(z,—)
holds uniquely for y. Because the equivalence is unconditional, Replace is
much easier to use than PrimReplace; it defines the same set, if P(z,y) is
single-valued. The nice syntax for replacement expands to Replace.

Other consequences of replacement include functional replacement
(RepFun) and definite descriptions (The). Axioms for separation (Collect)
and unordered pairs (Upair) are traditionally assumed, but they actually
follow from replacement [20, pages 237-8].

The definitions of general intersection, etc., are straightforward. Note
the definition of cons, which underlies the finite set notation. The axiom of
infinity gives us a set that contains 0 and is closed under successor (succ).
Although this set is not uniquely defined, the theory names it (Inf) in order
to simplify the construction of the natural numbers.

Further definitions appear in Fig.3.5. Ordered pairs are defined in the
standard way, (a,b) = {{a},{a,b}}. Recall that Sigma(A, B) generalizes
the Cartesian product of two sets. It is defined to be the union of all singleton
sets {(z,y)}, for z € A and y € B(z). This is a typical usage of general
union.

The projections fst and snd are defined in terms of the generalized
projection split. The latter has been borrowed from Martin-Lof’s Type
Theory, and is often easier to use than fst and snd.

Operations on relations include converse, domain, range, and image. The
set Pi(A, B) generalizes the space of functions between two sets. Note the
simple definitions of A-abstraction (using RepFun) and application (using a
definite description). The function restrict(f, A) has the same values as f,
but only over the domain A.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

balll [l !''x. x:A ==> P(x) |] ==> ALL x:A. P(x)

bspec [l ALL x:A. P(x); x: A |] ==> P(x)

ballE [l ALL x:A. P(x); P(x) ==>Q; ~ x:A==>0Q |] ==>Q
ball_cong [| A=A’; !!x. x:A’ ==> P(x) <> P’ (x) |] ==>

(ALL x:A. P(x)) <-> (ALL x:A’. P’(x))

bexI [I P(x); =x: A |] ==> EX x:A. P(x)

bexCI [l ALL x:A. "P(x) ==> P(a); a: A |] ==> EX x:A. P(x)
bexE [l EX x:A. P(x); !!x. [| x:A; P(x) |] ==>Q I] ==>Q
bex_cong [] A=A’; 1lx. x:A’ ==> P(x) <> P’ (x) |] ==>

(EX x:A. P(x)) <> (EX x:A’. P’ (x))

BOUNDED QUANTIFIERS

subsetI ("'x. x:A ==> x:B) ==> A <= B
subsetD [| A<=B; c:A|] ==>c:B
subsetCE [l A <=B; ~“(c:A) ==>P; c:B==>P |] ==>P

subset_refl A <= A
subset_trans [| A<=B; B<=C |] ==> A<=C

equalityl [A<=B; B<=A|]==>A=8B

equalityD1 A = B ==> A<=B

equalityD2 A = B ==> B<=A

equalityE [A=B; [| A<=B; B<=A |[] ==>P |] ==> P

SUBSETS AND EXTENSIONALITY

emptyE a:0 ==>P

empty_subsetI 0 <= A

equalsOI [l ''y. y:A ==> False |] ==> A=0
equalsOD [I A=0; a:A |] ==>P

PowI A <= B ==> A : Pow(B)

PowD A : Pow(B) ==> A<=B

THE EMPTY SET; POWER SETS

Figure 3.6: Basic derived rules for ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 31

3.5 From basic lemmas to function spaces

Faced with so many definitions, it is essential to prove lemmas. Even trivial
theorems like AN B = BN A would be difficult to prove from the definitions
alone. Isabelle’s set theory derives many rules using a natural deduction
style. Ideally, a natural deduction rule should introduce or eliminate just
one operator, but this is not always practical. For most operators, we may
forget its definition and use its derived rules instead.

3.5.1 Fundamental lemmas

Figure 3.6 presents the derived rules for the most basic operators. The rules
for the bounded quantifiers resemble those for the ordinary quantifiers, but
note that ballE uses a negated assumption in the style of Isabelle’s classical
reasoner. The congruence rules ball_cong and bex_cong are required by
Isabelle’s simplifier, but have few other uses. Congruence rules must be
specially derived for all binding operators, and henceforth will not be shown.
Figure 3.6 also shows rules for the subset and equality relations (proof by
extensionality), and rules about the empty set and the power set operator.
Figure 3.7 presents rules for replacement and separation. The rules
for Replace and RepFun are much simpler than comparable rules for
PrimReplace would be. The principle of separation is proved explicitly,
although most proofs should use the natural deduction rules for Collect.
The elimination rule CollectE is equivalent to the two destruction rules
CollectDl and CollectD2, but each rule is suited to particular circum-
stances. Although too many rules can be confusing, there is no reason to
aim for a minimal set of rules. See the file ZF/ZF.ML for a complete listing.
Figure 3.8 presents rules for general union and intersection. The empty
intersection should be undefined. We cannot have (\((}) = V because V,
the universal class, is not a set. All expressions denote something in ZF
set theory; the definition of intersection implies () = @, but this value is
arbitrary. The rule InterI must have a premise to exclude the empty inter-
section. Some of the laws governing intersections require similar premises.

3.5.2 Unordered pairs and finite sets

Figure 3.9 presents the principle of unordered pairing, along with its derived
rules. Binary union and intersection are defined in terms of ordered pairs
(Fig.3.10). Set difference is also included. The rule UnCI is useful for clas-
sical reasoning about unions, like disjCI; it supersedes UnI1 and UnI2, but
these rules are often easier to work with. For intersection and difference we
have both elimination and destruction rules. Again, there is no reason to
provide a minimal rule set.

Figure 3.11 is concerned with finite sets: it presents rules for cons, the

CHAPTER 3.

Replacel

ReplaceE

RepFunI
RepFunE

separation
Collectl
CollectE
CollectD1
CollectD2

UnionI
UnionE

Interl
InterD
InterE

UN_I
UN_E

INT_I
INT_E

pairing
UpairIl
UpairI2
UpairE

ZERMELO-FRAENKEL SET THEORY 32

[l x: A; P(x,b); !!y. P(x,y) ==> y=b |] ==>
b : {y. x:A, P(x,y)}

[l b: {y. x:A, P(x,7)};
t'x. [I x: A; P(x,b); ALL y. P(x,y)-->y=b [] ==> R
] ==>R

[l a: Al == f(a) : {f(x). x:A}
[l b: {f(x). x:A};
Mx. [| x:A; b=f(x) |] ==>P |] ==>P

a : {x:A. P(x)} <> a:A & P(a)

[l a:A; P(a) |] ==> a : {x:A. P(x)}

[l a: {x:A. P(x)}; [l a:A; P(a) |] ==>R |] ==> R
a : {x:A. P(x)} ==> a:A

a : {x:A. P(x)} ==> P(a)

Figure 3.7: Replacement and separation

[I B: C; A: B |] ==> A: Union(C)
[l A : Union(C); !!B.[| A: B; B: C |] ==>R |] ==> R

['"'x. x: C==>A: x; c:C |] ==> A : Inter(C)
[l A : Inter(C); B :C |] ==>A:B
[l A : Inter(C); A:B==>R; ~ B:C==>R |] ==>R

[l a: A; b: B(a) |] ==> b: (UN x:A. B(x))
[b : (UN x:A. B(x)); '"!'x.[l x: A; b: B(x) |] ==>R
|1 ==>R

[l ''x. x: A ==>b: B(x); a: A |] ==>Db: (INT x:A. B(x))
[I b : (INT x:A. B(x)); a: A |] ==>Db : B(a)

Figure 3.8: General union and intersection

a:Upair(b,c) <-> (a=b | a=c)

a : Upair(a,b)

b : Upair(a,b)

[l a : Upair(b,c); a=b==>P; a=c==>P|] ==>P

Figure 3.9: Unordered pairs

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 33

UnIl c:A==>c:AUnB

UnI2 c :B==>c: AUnB

UnCI ("c : B==>c :A) ==>c: AUnB

UnE [c: AUnB; c:A==>P; c:B==>P |] ==>P
IntI [¢c:A; ¢c:Bl]l]==>c:AlIntB

IntD1 c : AInt B==>c : A

IntD2 c : AInt B==>c :B

IntE [¢c: AlIntB; [l c:A; c:B|]==>P |] ==>P
DiffI [l c:A; “"c:B|]==>c:A-B

DiffD1 c: A-B==>c: A

DiffD2 c: A-B==>c " : B

DiffE [¢ : A-B; [l c:A; “c:B|] ==>P |] ==>P

Figure 3.10: Union, intersection, difference

consIil a : cons(a,B)

consI2 a: B ==>a: cons(b,B)

consCI (" a:B ==> a=b) ==> a: cons(b,B)

consE [l a : cons(b,A); a=b ==>P; a:A ==>P |] ==>P

singletonI a : {a}
singletonE [| a : {b}; a=b ==> P |] ==> P

Figure 3.11: Finite and singleton sets

succIl i : succ(di)

succI2 i j==>1i : succ(j)

succCI (7 i:j ==> i=j) ==> i: succ(j)

succE [l i : succ(j); di=j ==>P; i:j ==> P |] ==>P

succ_neq_0 [l succ(n)=0 |] ==> P
succ_inject succ(m) = succ(n) ==> m=n

Figure 3.12: The successor function

the_equality [l P(a); !'x. P(x) ==> x=a |] ==> (THE x. P(x)) = a
thel EX! x. P(x) ==> P(THE x. P(x))

if_P P ==> (if P then a else b) = a

if_not_P “P ==> (if P then a else b) = b

mem_asym [l a:b; b:a |] ==>P

mem_irrefl a:a ==> P

Figure 3.13: Descriptions; non-circularity

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 34

Union_upper B:A ==> B <= Union(A)

Union_least [l '"!x. x:A ==> x<=C |] ==> Union(A) <= C
Inter_lower B:A ==> Inter(A) <= B

Inter_greatest [l a:A; !'1x. x:A ==> C<=x |] ==> C <= Inter(4)
Un_upperi A<= ATUnB

Un_upper2 B<=AUnB

Un_least [| A<=C; B<=C |] ==> A Un B <= C
Int_lowerl A Int B <= A

Int_lower2 A Int B <= B

Int_greatest [| Ck=A; C<=B |] ==> C <= A Int B
Diff_subset A-B <= A

Diff_contains [| C<=A; C Int B=0 |] ==>C <= A-B

Collect_subset Collect(A,P) <= A

Figure 3.14: Subset and lattice properties

finite set constructor, and rules for singleton sets. Figure 3.12 presents
derived rules for the successor function, which is defined in terms of cons.
The proof that succ is injective appears to require the Axiom of Foundation.

Definite descriptions (THE) are defined in terms of the singleton set {0},
but their derived rules fortunately hide this (Fig.3.13). The rule thel is dif-
ficult to apply because of the two occurrences of 7P. However, the_equality
does not have this problem and the files contain many examples of its use.

Finally, the impossibility of having both a € b and b € a (mem_asym)
is proved by applying the Axiom of Foundation to the set {a,b}. The
impossibility of ¢ € a is a trivial consequence.

See the file ZF/upair.ML for full proofs of the rules discussed in this
section.

3.5.3 Subset and lattice properties

The subset relation is a complete lattice. Unions form least upper bounds;
non-empty intersections form greatest lower bounds. Figure 3.14 shows the
corresponding rules. A few other laws involving subsets are included. Proofs
are in the file ZF/subset . ML.

Reasoning directly about subsets often yields clearer proofs than reason-
ing about the membership relation. Section 3.13 below presents an example
of this, proving the equation Pow(A) NPow(B) = Pow(A N B).

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 35

Pair_injectl <a,b> = <c,d> ==> a=c

Pair_inject2 <a,b> = <c,d> ==> b=d

Pair_inject [l <a,b> = <c,d>; [l a=c; b=d |] ==> P |] ==>P
Pair_neq_0 <a,b>=0 ==> P

fst_conv fst(<a,b>) = a

snd_conv snd(<a,b>) = b

split split(%x y. c(x,y), <a,b>) = c(a,b)

Sigmal [l a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)

SigmaE [l c: Sigma(A,B);

"x y. [l x:4; y:B(x); c=<x,y> |] ==>P |] ==>P

SigmaE2 [l <a,b> : Sigma(A,B);
[l a:A; b:B(a) |] ==>P 1] ==>P

Figure 3.15: Ordered pairs; projections; general sums

3.5.4 Ordered pairs

Figure 3.15 presents the rules governing ordered pairs, projections and gen-
eral sums. File ZF/pair.ML contains the full (and tedious) proof that
{{a},{a, b}} functions as an ordered pair. This property is expressed as
two destruction rules, Pair_injectl and Pair_inject2, and equivalently
as the elimination rule Pair_inject.

The rule Pair_neq_0 asserts (a,b) # (. This is a property of
{{a},{a,b}}, and need not hold for other encodings of ordered pairs. The
non-standard ordered pairs mentioned below satisfy (0; () = ().

The natural deduction rules Sigmal and SigmaE assert that Sigma(A, B)
consists of all pairs of the form (z,y), for z € A and y € B(z). The
rule SigmaE2 merely states that (a,b) € Sigma(A, B) implies a € A and
b € B(a).

In addition, it is possible to use tuples as patterns in abstractions:

h<x,y>. t stands for split(hz y. t)

Nested patterns are translated recursively: %<z,y,z>. t~ %<z,<y,z>>.
t ~ split(Y%z.%<y,z>. 1) ~ split(%z. split(%hy z. t)). The re-
verse translation is performed upon printing.

' The translation between patterns and split is performed automatically by the
® parser and printer. Thus the internal and external form of a term may differ,
which affects proofs. For example the term (%<x,y>.<y,x>)<a,b> requires the
theorem split to rewrite to <b,a>.

In addition to explicit A-abstractions, patterns can be used in any vari-
able binding construct which is internally described by a A-abstraction. Here
are some important examples:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 36

domainI <a,b>: r ==> a : domain(r)
domainE [l a : domain(r); !!y. <a,y>: r ==>P |] ==>P
domain_subset domain(Sigma(A,B)) <= A

rangel <a,b>: r ==> b : range(r)
rangeE [l b : range(r); !!'x. <x,b>: r ==> P |] ==>P
range_subset range(A*B) <= B

fieldIl <a,b>: r ==> a : field(r)

fieldI2 <a,b>: r ==> b : field(r)

fieldCI (" <c,a>:r ==> <a,b>: r) ==> a : field(xr)
fieldE [| a : field(r);

Ix. <a,x>: r ==> P;
1x., <x,a>: r ==> P
1 ==>P

field_subset field(A*xA) <= A

Figure 3.16: Domain, range and field of a relation

imagel [l <a,b>: r; a:A |] ==>Db : r‘‘A
imageE [I b: r¢A; ''x.[| <x,b>: r; x:A |] ==>P |] ==> P
vimagel [l <a,b>: r; Db:B |] ==>a : r-‘‘B
vimageE [l a: r=“‘B; !'!'x.[| <a,x>: r; x:B |] ==>P |] ==>P

Figure 3.17: Image and inverse image

Let: let pattern = t in wu
Choice: THE pattern . P
Set operations: UN pattern: A. B

Comprehension: { pattern:A . P }

3.5.5 Relations

Figure 3.16 presents rules involving relations, which are sets of ordered pairs.
The converse of a relation r is the set of all pairs (y, z) such that (z, y) € r;
if 7 is a function, then converse(r) is its inverse. The rules for the domain
operation, namely domainI and domainE, assert that domain(r) consists of
all z such that r contains some pair of the form (z, y). The range operation
is similar, and the field of a relation is merely the union of its domain and
range.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 37

fun_is_rel f: Pi(A,B) ==> f <= Sigma(A,B)

apply_equality [| <a,b>: f; £: Pi(A,B) |] ==> f‘a =b
apply_equality2 [| <a,b>: f; <a,c>: f; f: Pi(A,B) |] ==> b=c

apply_type [I £: Pi(A,B); a:A |] ==> f‘a : B(a)
apply_Pair [l £: Pi(A,B); a:A |] ==> <a,f‘a>: f
apply_iff f: Pi(A,B) ==> <a,b>: f <-> a:A & f‘a=>

fun_extension [I £ : Pi(A,B); g: Pi(A,D);

Mx. x:A ==> f‘x = g‘x |1 ==> f=¢
domain_type [l <a,b> : f; f: Pi(A,B) |] ==>a : A
range_type [l <a,b> : £; £: Pi(A,B) |] ==> Db : B(a)
Pi_type [l £: A->C; !!x. x:A ==> f‘x: B(x) |] ==> f: Pi(A,B)

domain_of_fun f: Pi(A,B) ==> domain(f)=A
range_of_fun f: Pi(A,B) ==> f: A->range(f)

restrict a : A ==> restrict(f,A) ¢ a = f‘a
restrict_type [l !!'x. x:A ==> f‘x: B(x) [|] ==>
restrict(f,A) : Pi(A,B)

Figure 3.18: Functions

lamI a:A ==> <a,b(a)> : (lam x:A. b(x))
lamE [l p: (Qam x:A. b(x)); !'!x.[l x:A; p=<x,b(x)> |] ==>P
|1 ==> P

lam_type [l !'x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)

beta a : A ==> (lam x:A. b(x)) ¢ a = b(a)
eta f : Pi(A,B) ==> (lam x:A. f‘x) = f

Figure 3.19: A-abstraction

Figure 3.17 presents rules for images and inverse images. Note that these
operations are generalisations of range and domain, respectively. See the file
ZF/domrange . ML for derivations of the rules.

3.5.6 Functions

Functions, represented by graphs, are notoriously difficult to reason about.
The file ZF/func.ML derives many rules, which overlap more than they
ought. This section presents the more important rules.

Figure 3.18 presents the basic properties of Pi(A, B), the generalized
function space. For example, if f is a function and (a, b) € f, then f‘a =
b (apply_equality). Two functions are equal provided they have equal

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 38

fun_empty 0: 0->0
fun_single {<a,b>} : {a} > {b}
fun_disjoint_Un [l £f: A->B; g: C>D; AIntC=0 [] ==>

(fUng) : (AUnC) -> (B Un D)

fun_disjoint_applyl [| a:A; f: A->B; g: C->D; A Int C =0 |] ==>
(f Un g)‘a =f‘a

fun_disjoint_apply2 [| c:C; £f: A->B; g: C->D; A Int C =10 [|] ==>
(f Un g)‘c = g‘c

Figure 3.20: Constructing functions from smaller sets

domains and deliver equals results (fun_extension).

By Pi_type, a function typing of the form f € A — C can be refined
to the dependent typing f € [],c4 B(z), given a suitable family of sets
{B(z)}sca. Conversely, by range_of_fun, any dependent typing can be
flattened to yield a function type of the form A — C; here, C' = range(f).

Among the laws for A-abstraction, lamI and lamE describe the graph of
the generated function, while beta and eta are the standard conversions.
We essentially have a dependently-typed A-calculus (Fig.3.19).

Figure 3.20 presents some rules that can be used to construct functions
explicitly. We start with functions consisting of at most one pair, and may
form the union of two functions provided their domains are disjoint.

3.6 Further developments

The next group of developments is complex and extensive, and only high-
lights can be covered here. It involves many theories and ML files of proofs.

Figure 3.21 presents commutative, associative, distributive, and idem-
potency laws of union and intersection, along with other equations. See file
ZF/equalities.ML.

Theory Bool defines {0, 1} as a set of booleans, with the usual operators
including a conditional (Fig. 3.22). Although ZF is a first-order theory, you
can obtain the effect of higher-order logic using bool-valued functions, for
example. The constant 1 is translated to succ(0).

3.6.1 Disjoint unions

Theory Sum defines the disjoint union of two sets, with injections and a
case analysis operator (Fig.3.23). Disjoint unions play a role in datatype
definitions, particularly when there is mutual recursion [16].

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

Int_absorb
Int_commute
Int_assoc
Int_Un_distrib

Un_absorb
Un_commute
Un_assoc
Un_Int_distrib
Diff_cancel
Diff_disjoint
Diff_partition
double_complement
Diff_Un

Diff_Int
Union_Un_distrib
Inter_Un_distrib

Int_Union_RepFun

Un_Inter_RepFun

SUM_Un_distribl

SUM_Un_distrib2

SUM_Int_distribl

SUM_Int_distrib2

39

A Int A=A
A Int B =B Int A
(A Int B) Int C = A Int (B Int C)

(AUnB) Int C = (A Int C) Un (B Int C)
AUn A=A
AUnB=BUnA
(AUnB) UnC =
(A Int B) UnC =

A Un (B Un C)
(A Un C) Int (B Un C)

A-A =0

A Int (B-A) =0

A<=B ==> A Un (B-A) =B

[l A<=B; B<=C |] ==> (B - (C-4)) = A
A - (BUn C) = (A-B) Int (A-C)

A - (B Int C) (A-B) Un (A-C)

Union(A Un B) =
[l a:A; b:B |]
Inter(A Un B) =

Union(A) Un Union(B)
==>

Inter(A) Int Inter(B)
A Int Union(B) = (UN C:B. A Int C)

b:B ==
A Un Inter(B) = (INT C:B. A Un C)

(SUM x:A Un B. C(x)) =

(SUM x:A. C(x)) Un (SUM x:B. C(x))
(SUM x:C. A(x) Un B(x)) =

(SUM x:C. A(x)) Un (SUM x:C. B(x))
(SUM x:A Int B. C(x)) =

(SUM x:A. C(x)) Int (SUM x:B. C(x))
(SUM x:C. A(x) Int B(x)) =

(SUM x:C. A(x)) Int (SUM x:C. B(x))

Figure 3.21: Equalities

CHAPTER 3.

bool_def
cond_def
not_def
and_def
or_def
xor_def

bool_1I
bool_0I
boolE
cond_1
cond_0O

symbol

+

Inl Inr
case

sum_def
Inl_def
Inr_def
case_def

sum_InlT
sum_InrI

Inl_inject
Inr_inject
Inl_neq_Inr
sumE2 u: A+B

case_Inl
case_Inr

QPair_def
gsplit_def
qfsplit_def
qconverse_def
QSigma_def

qsum_def
QInl_def
QInr_def
qcase_def

bool == {0,1%}

ZERMELO-FRAENKEL SET THEORY

cond(b,c,d) == if b=1 then c else d

not (b)
a and
aorb ==
a xor

1 : bool

0 : bool

[l c: bool;
cond(1,c,d) =
cond(0,c,d) =

c=1

c
d

Figure 3.22:

meta-type
[1,9] = i
1=1

[i = i,i= 1,4 =1

cond(b,0,1)
cond(a,b,0)
cond(a,1,b)
cond(a,not(b),b)

==>P; ¢=0==>P |] ==>P

The booleans

priority description
Right 65 disjoint union operator
injections

conditional for A + B

A+B == {0}*A Un {1}*B
Inl(a) == <0,a>
Inr(b) == <1,b>
case(c,d,u) == split(%y z. cond(y, d(z), c(z)), w)

a : A
b : B

==> Inl(a)
==> Inr(b)

: A+B
: A+B

Inl(a)=Inl(b) ==> a=b
==> a=b
==> P

Inr(a)=Inr(b)
Inl(a)=Inr(b)

==> (EX x. x:A &

case(c,d,Inl(a))
case(c,d,Inr (b))

u=Inl(x)) | (EX y. y:B & u=Inr(y))

c(a)
d(®)

Figure 3.23: Disjoint unions

<a;b> == a+tb
gsplit(c,p)

qfsplit(R,z) =

gconverse(r)
QSigma(A,B)

A <+> B
QInl(a)
QInr(b)
gcase(c,d)

= THE y. EX a b. p=<a;b> & y=c(a,b)

EX x y. z=<x;y> & R(x,y)
{z. w:r, EX x y. w=<x;y> & z=<y;x>}
UN x:A. UN y:B(x). {<x;y>}

({0} <*> A) Un ({1} <*> B)

= <0;a>

<1;b>

= gsplit(%y z. cond(y, d(z), c(z)))

Figure 3.24: Non-standard pairs, products and sums

40

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 41

3.6.2 Non-standard ordered pairs

Theory QPair defines a notion of ordered pair that admits non-well-founded
tupling (Fig.3.24). Such pairs are written <a;b>. It also defines the elimina-~
tor gsplit, the converse operator qconverse, and the summation operator
QSigma. These are completely analogous to the corresponding versions for
standard ordered pairs. The theory goes on to define a non-standard notion
of disjoint sum using non-standard pairs. All of these concepts satisfy the
same properties as their standard counterparts; in addition, <a;b> is con-
tinuous. The theory supports coinductive definitions, for example of infinite
lists [18].

3.6.3 Least and greatest fixedpoints

The Knaster-Tarski Theorem states that every monotone function over a
complete lattice has a fixedpoint. Theory Fixedpt proves the Theorem only
for a particular lattice, namely the lattice of subsets of a set (Fig. 3.25). The
theory defines least and greatest fixedpoint operators with corresponding
induction and coinduction rules. These are essential to many definitions that
follow, including the natural numbers and the transitive closure operator.
The (co)inductive definition package also uses the fixedpoint operators [15].
See Davey and Priestley [5] for more on the Knaster-Tarski Theorem and
my paper [16] for discussion of the Isabelle proofs.

Monotonicity properties are proved for most of the set-forming opera-
tions: union, intersection, Cartesian product, image, domain, range, etc.
These are useful for applying the Knaster-Tarski Fixedpoint Theorem. The
proofs themselves are trivial applications of Isabelle’s classical reasoner. See
file ZF/mono.ML.

3.6.4 Finite sets and lists

Theory Finite (Figure 3.26) defines the finite set operator; Fin(A) is the set
of all finite sets over A. The theory employs Isabelle’s inductive definition
package, which proves various rules automatically. The induction rule shown
is stronger than the one proved by the package. The theory also defines the
set of all finite functions between two given sets.

Figure 3.27 presents the set of lists over A, 1ist(A). The definition
employs Isabelle’s datatype package, which defines the introduction and
induction rules automatically, as well as the constructors, case operator
(1ist_case) and recursion operator. The theory then defines the usual list
functions by primitive recursion. See theory List.

CHAPTER 3.

ZERMELO-FRAENKEL SET THEORY

bnd_mono_def bnd_mono(D,h) ==

1fp_def
gfp_def

h(D)<=D & (ALL W X. W<=X --> X<=D --> h(W) <= h(X))

1fp(D,h) == Inter({X: Pow(D). h(X) <= X})
gfp(D,h) == Union({X: Pow(D). X <= h(X)})

1fp_lowerbound [| h(A) <= A; A<=D |] ==> 1fp(D,h) <= A

1fp_subset

1fp(D,h) <= D

1fp_greatest [| bnd_mono(D,h);

1fp_Tarski

induct

1fp_mono

X, [h(X) <= X; X<=D |] ==> A<=X
|1 ==> A <= 1fp(D,h)

bnd_mono(D,h) ==> 1fp(D,h) = h(1fp(D,h))

[l a : 1fp(D,h); bnd_mono(D,h);
'x. x : h(Collect(1fp(D,h),P)) ==> P(x)
[T ==> P(a)

[l bnd_mono(D,h); bnd_mono(E,i);
11X, X<=D ==> h(X) <= i(X)
|1 ==> 1fp(D,h) <= 1fp(E,i)

gfp_upperbound [| A <= h(A); A<=D |] ==> A <= gfp(D,h)

gfp_subset

gfp_least

gfp_Tarski

coinduct

gfp_mono

gfp(D,h) <= 1D
[l bnd_mono(D,h);
"X, [| X <= h(X); X<=D |] ==> X<=A
|1 ==> gfp(D,h) <= A
bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))

[| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D
|1 ==> a : gfp(D,h)

[| bnd_mono(D,h); D <= E;

11X, X<=D ==> h(X) <= i(X)
|1 ==> gfp(D,h) <= gfp(E,i)

Figure 3.25: Least and greatest fixedpoints

42

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 43

Fin.emptyI 0 : Fin(A)
Fin.consI [l a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)

Fin_induct

[l b: Fin(A);
P(0);
"'x y. [l x: A; y: Fin(A); x7:y; P(y) |] ==> P(cons(x,y))
117 ==> P(b)
Fin_mono A<=B ==> Fin(A) <= Fin(B)
Fin_UnI [l b: Fin(A); c: Fin(A) |] ==> b Un c¢ : Fin(A)
Fin_UnionI C : Fin(Fin(A)) ==> Union(C) : Fin(a)
Fin_subset [l c<=b; b: Fin(A) |] ==> c: Fin(A)

Figure 3.26: The finite set operator

symbol meta-type priority description
list 1=1 lists over some set
list_case [i,[i, 4] = i,1] =i conditional for list(A)
map [i =i, =1 mapping functional
length i =1 length of a list
rev 1= 1 reverse of a list
o [i,i] = ¢ Right 60 append for lists
flat =1 append of list of lists
Nill Nil : list(A)

ConsI [l a: A; 1: list(A) |] ==> Comns(a,l) : list(A)

List.induct
[l 1: list(A);

P(Nil);
Mx y. [l x: A; y: list(A); P(y) |1 ==> P(Cons(x,y))
[T ==>P(1)
Cons_iff Cons(a,l)=Cons(a’,1’) <-> a=a’ & 1=1’
Nil_Cons_iff ~ Nil=Comns(a,l)
list_mono A<=B ==> list(A) <= 1list(B)
map_ident 1: list(A) ==> map(Ju. u, 1) =1
map_compose 1: list(A) ==> map(h, map(j,1)) = map(u. h(j(u)), 1)
map_app_distrib xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)
map_type
[l 1: list(A); !!'x. x: A ==> h(x): B |] ==> map(h,1) : list(B)
map_flat

1s: 1list(1list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))

Figure 3.27: Lists

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

symbol
0

id

inj
surj
bij

comp_def r O

id_def id(a)
inj_def inj(A,B)

44

meta-type priority description
[i,4] = ¢ Right 60 composition (o)
=1 identity function
[1,9] =i injective function space
[i,9] = i surjective function space
[i,7] = i bijective function space
s == {xz : domain(s)*range(r)

EX x y z. x2=<x,2> & <x,y>:s & <y,z>:r}

== (lam x:A. x)
== { f: A->B. ALL w:A. ALL x:A. fw=f‘x --> w=x }

surj_def surj(A,B) == { f: A->B . ALL y:B. EX x:A. f‘x=y }

bij_def bij(A,B)

left_inverse
right_inverse

== inj(A,B) Int surj(A,B)

[l £: inj(A,B); a: A |] ==> converse(f)‘(f‘a) = a
[l £: inj(A,B); b: range(f) [|] ==>
f‘(converse(f) ‘b) = b

inj_converse_inj f: inj(A,B)
bij_converse_bij f:

comp_type
comp_assoc

left_comp_id
right_comp_id

comp_func

==> converse(f): inj(range(f), A)

bij(A,B) ==> converse(f): bij(B,A)

[l s<=A*B; 1r<=B*C |] ==> (r 0 s) <= AxC
(r0s)0Ot=r0(s0t)

r<=A*B ==> id(B) O r = r

r<=A*B ==> r 0 id(A) = r

[l g:A->B; £:B->C |] ==> (£ 0 g):A->C

comp_func_apply [|

comp_inj
comp_surj
comp_bij

[l g:inj(A,B); £:inj(B,C) 1] ==> (f 0 g):inj(4,C)
[l g:surj(A,B); f:surj(B,C) |] =
[l g:bij(A,B); £:bij(B,C) |1 ==> (£ 0 g):bij(4A,C)

left_comp_inverse
right_comp_inverse

bij_disjoint_Un
[l £: bij(4,B);

(f Un g)

restrict_bij

: bij(

[l £:

g:A->B; f:B->C; a:A |] ==> (£ 0 g)‘a =

f(g‘a)

f: inj(A,B) ==> converse(f) 0 f = id(A)
f: surj(A,B) ==> f 0 converse(f) = id(B)

g: bij(C,D); A Int C=0; BIntD=0 [|] ==>

AUn C, B Un D)

=> (£ 0 g):surj(4,C)

inj(A,B); C<=A |] ==> restrict(f,C): bij(C, £°‘C)

Figure 3.28: Permutations

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 45

3.6.5 Miscellaneous

The theory Perm is concerned with permutations (bijections) and related
concepts. These include composition of relations, the identity relation, and
three specialized function spaces: injective, surjective and bijective. Fig-
ure 3.28 displays many of their properties that have been proved. These
results are fundamental to a treatment of equipollence and cardinality.

Theory Univ defines a ‘universe’ univ(A), which is used by the datatype
package. This set contains A and the natural numbers. Vitally, it is closed
under finite products: univ(A) x univ(A) C univ(A). This theory also
defines the cumulative hierarchy of axiomatic set theory, which traditionally
is written V, for an ordinal «. The ‘universe’ is a simple generalization
of V.

Theory QUniv defines a ‘universe’ quniv(A4), which is used by the data-
type package to construct codatatypes such as streams. It is analogous to
univ(A) (and is defined in terms of it) but is closed under the non-standard
product and sum.

3.7 Automatic Tools

ZF provides the simplifier and the classical reasoner. Moreover it supplies a
specialized tool to infer ‘types’ of terms.

3.7.1 Simplification

ZF inherits simplification from FOL but adopts it for set theory. The
extraction of rewrite rules takes the ZF primitives into account. It
can strip bounded universal quantifiers from a formula; for example,
Ve € A. f(x) = g(z) yields the conditional rewrite rule x € A = f(z) =
g(z). Given a € {z € A. P(z)} it extracts rewrite rules from a € A
and P(a). It can also break down a € AN B and a € A — B.

Simplification tactics tactics such as Asm_simp_tac and Full_simp_tac
use the default simpset (simpset()), which works for most purposes. A
small simplification set for set theory is called ZF_ss, and you can even use
FOL_ss as a minimal starting point. ZF_ss contains congruence rules for
all the binding operators of ZF. It contains all the conversion rules, such
as fst and snd, as well as the rewrites shown in Fig.3.29. See the file
ZF/simpdata.ML for a fuller list.

3.7.2 Classical Reasoning

As for the classical reasoner, tactics such as Blast_tac and Best_tac refer
to the default claset (claset()). This works for most purposes. Named
clasets include ZF_cs (basic set theory) and le_cs (useful for reasoning

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 46

aeld « L
ac AUB < a€AVaceB
ac ANB < a€AANacB
a€A—-B < a€ AAN—(a€ B)
(a,b) € Sigma(A,B) < a€ ANbE B(a)
a € Collect(A,P) < a€ ANP(a)
Vzel.P(z)) < T
VeeA. T) & T

Figure 3.29: Some rewrite rules for set theory

about the relations < and <). You can use FOL_cs as a minimal basis for
building your own clasets. See the Reference Manual for more discussion of
classical proof methods.

3.7.3 Type-Checking Tactics

Isabelle/ZF provides simple tactics to help automate those proofs that are
essentially type-checking. Such proofs are built by applying rules such as
these:

[| ?P ==> ?a: ?A; ~7?P ==> ?b: ?A |] ==> (if ?P then 7a else 7b): 7A
[l ?m : nat; ?n : nat |] ==> 7m #+ ?n : nat
?a : ?A ==> Inl(7a) : ?A + 7B

In typical applications, the goal has the form ¢ € ?4: in other words, we
have a specific term ¢ and need to infer its ‘type’ by instantiating the set
variable ?A. Neither the simplifier nor the classical reasoner does this job
well. The if-then-else rule, and many similar ones, can make the classical
reasoner loop. The simplifier refuses (on principle) to instantiate variables
during rewriting, so goals such as i#+j : 7A are left unsolved.

The simplifier calls the type-checker to solve rewritten subgoals: this
stage can indeed instantiate variables. If you have defined new constants
and proved type-checking rules for them, then insert the rules using AddTCs
and the rest should be automatic. In particular, the simplifier will use
type-checking to help satisfy conditional rewrite rules. Call the tactic
Typecheck_tac to break down all subgoals using type-checking rules.

Though the easiest way to invoke the type-checker is via the simplifier,
specialized applications may require more detailed knowledge of the type-
checking primitives. They are modelled on the simplifier’s:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 47

tcset is the type of tesets: sets of type-checking rules.
addTCs is an infix operator to add type-checking rules to a tcset.
delTCs is an infix operator to remove type-checking rules from a tcset.

typecheck_tac is a tactic for attempting to prove all subgoals using the
rules given in its argument, a tcset.

Tcsets, like simpsets, are associated with theories and are merged when
theories are merged. There are further primitives that use the default tcset.

tcset is a function to return the default tcset; use the expression tcset ().
AddTCs adds type-checking rules to the default tcset.

DelTCs removes type-checking rules from the default tcset.
Typecheck_tac calls typecheck_tac using the default tcset.

To supply some type-checking rules temporarily, using Addrules and
later Delrules is the simplest way. There is also a high-tech approach. Call
the simplifier with a new solver expressed using type_solver_tac and your
temporary type-checking rules.

by (asm_simp_tac
(simpset() setSolver type_solver_tac (tcset() addTCs prems)) 2);

3.8 Natural number and integer arithmetic

Theory Nat defines the natural numbers and mathematical induction, along
with a case analysis operator. The set of natural numbers, here called nat,
is known in set theory as the ordinal w.

Theory Arith develops arithmetic on the natural numbers (Fig. 3.30).
Addition, multiplication and subtraction are defined by primitive recursion.
Division and remainder are defined by repeated subtraction, which requires
well-founded recursion; the termination argument relies on the divisor’s be-
ing non-zero. Many properties are proved: commutative, associative and
distributive laws, identity and cancellation laws, etc. The most interesting
result is perhaps the theorem a mod b + (a/b) x b = a.

To minimize the need for tedious proofs of ¢ € nat, the arithmetic
operators coerce their arguments to be natural numbers. The function
natify is defined such that natify(n) = n if n is a natural number,
natify(succ(z)) = succ(natify(z)) for all z, and finally natify(z) = 0 in
all other cases. The benefit is that the addition, subtraction, multiplication,
division and remainder operators always return natural numbers, regardless
of their arguments. Algebraic laws (commutative, associative, distributive)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

symbol meta-type priority description
nat 1 set of natural numbers
nat_case [i,1=>1,i] =1 conditional for nat
#x [i,i] = ¢ Left 70 multiplication

div [i,i] = ¢ Left 70 division

mod [i,9] =4 Left 70 modulus

#+ [i,i] = ¢ Left 65 addition

#- [i,9] =1 Left 65 subtraction

nat_def nat == 1lfp(lam r: Pow(Inf). {0} Un {succ(x). x:r}

nat_case_def nat_case(a,b,k) ==
THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))

nat_OI 0 : nat
nat_succl n : nat ==> succ(n) : nat

nat_induct
[l n: nat; P(0); !!x. [| x: nat; P(x) |] ==> P(succ(x))
|1 ==> P(n)

nat_case_0 nat_case(a,b,0) = a
nat_case_succ nat_case(a,b,succ(m)) = b(m)

add_O_natify 0 #+ n = natify(n)

add_succ succ(m) #+ n = succ(m #+ n)
mult_type m #* n : nat

mult_O O #xn =0

mult_succ succ(m) #* n = n #+ (m #* n)
mult_commute m#* n = n #* m

add_mult_dist (m #+ n) #* k = (m #*x k) #+ (n #* k)

mult_assoc (m #* n) #% k = m #* (n #* k)
mod_div_equality m: nat ==> (m div n)#*n #+ mmod n = m

Figure 3.30: The natural numbers

48

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 49

symbol meta-type priority description
int i set of integers
$x [i,1] = Left 70 multiplication
$+ [, = Left 65 addition
$- i,1] = Left 65 subtraction
$< [i,4] = Left 50 < on integers
$<= [i,i] = Left 50 < on integers
zadd_O_intify 0 $+ n = intify(n)
zmult_type m $* n : int
zmult_O 0$*xn=20
zmult_commute m$xn=n¢xm
zadd_zmult_dist (m $+ n) $*x k = (m $*x k) $+ (n $* k)
zmult_assoc (m $*x n) $* k = m $* (n $* k)

Figure 3.31: The integers

are unconditional. Occurrences of natify as operands of those operators
are simplified away. Any remaining occurrences can either be tolerated or
else eliminated by proving that the argument is a natural number.

The simplifier automatically cancels common terms on the opposite sides
of subtraction and of relations (=, < and <). Here is an example:

1.1 #+ j#+ k# j <k #+1
> by (Simp_tac 1);
1. natify(i) < natify(1)

Given the assumptions i:nat and 1:nat, both occurrences of natify would
be simplified away.

Theory Int defines the integers, as equivalence classes of natural num-
bers. Figure 3.31 presents a tidy collection of laws. In fact, a large library of
facts is proved, including monotonicity laws for addition and multiplication,
covering both positive and negative operands.

As with the natural numbers, the need for typing proofs is minimized.
All the operators defined in Fig.3.31 coerce their operands to integers by
applying the function intify. This function is the identity on integers and
maps other operands to zero.

Decimal notation is provided for the integers. Numbers, written as #nnn
or #-nnn, are represented internally in two’s-complement binary. Expres-
sions involving addition, subtraction and multiplication of numeral constants
are evaluated (with acceptable efficiency) by simplification. The simplifier
also collects similar terms, multiplying them by a numerical coefficient. It
also cancels occurrences of the same terms on the other side of the relational
operators. Example:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 50

1.y $+ z $+ #-3 $* x $+ y $<= x $* #2 $+ z
> by (Simp_tac 1);
1. #2 $x y $<= #5 $x x

For more information on the integers, please see the theories on directory
ZF/Integ.

3.9 Datatype definitions

The datatype definition package of ZF constructs inductive datatypes sim-
ilar to those of ML. It can also construct coinductive datatypes (codata-
types), which are non-well-founded structures such as streams. It defines
the set using a fixed-point construction and proves induction rules, as well
as theorems for recursion and case combinators. It supplies mechanisms for
reasoning about freeness. The datatype package can handle both mutual
and indirect recursion.

3.9.1 Basics

A datatype definition has the following form:

datatype t(A1,...,A,) = constructor} | ... | constructor/%1
and tn(A1,...,Ap) = constructor(| ... | constructor]
Here t, ..., t, are identifiers and Ay, ..., A} are variables: the datatype’s

parameters. Each constructor specification has the form
C C"a:T1", oo, " T)

Here C' is the constructor name, and variables 1, ..., x,, are the constructor
arguments, belonging to the sets 11, ..., Ty, respectively. Typically each
T; is either a constant set, a datatype parameter (one of Ay, ..., Ap) or
a recursive occurrence of one of the datatypes, say t¢;(Ai,...,Ay). More
complex possibilities exist, but they are much harder to realize. Often,
additional information must be supplied in the form of theorems.

A datatype can occur recursively as the argument of some function F.
This is called a nested (or indirect) occurrence. It is only allowed if the
datatype package is given a theorem asserting that F' is monotonic. If the
datatype has indirect occurrences, then Isabelle/ZF does not support recur-
sive function definitions.

A simple example of a datatype is 1ist, which is built-in, and is defined
by

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY o1

consts list :: i=>i
datatype "list(A)" = Nil | Cons ("a:A", "1: 1list(A)")

Note that the datatype operator must be declared as a constant first. How-
ever, the package declares the constructors. Here, Nil gets type ¢ and Cons
gets type [i, 1] = 1.

Trees and forests can be modelled by the mutually recursive datatype
definition

consts tree, forest, tree_forest :: i=>i
datatype ‘"tree(A)" = Tcons ("a: A", "f: forest(A)")
and "forest(A)" = Fnil | Fcons ("t: tree(A)", "f: forest(A)")

Here tree(A) is the set of trees over A, forest(A) is the set of forests over
A, and tree_forest(A) is the union of the previous two sets. All three
operators must be declared first.

The datatype term, which is defined by

consts term :: i=>i
datatype ‘"term(A)" = Apply ("a: A", "1: list(term(A))")
monos "[list_mono]"

is an example of nested recursion. (The theorem list_mono is proved in file
List.ML, and the term example is devaloped in theory ex/Term.)

Freeness of the constructors

Constructors satisfy freeness properties. Constructions are distinct, for ex-
ample Nil # Cons(a,l), and they are injective, for example Cons(a,l) =
Cons(a’,l') <> a = o’ ANl =1'. Because the number of freeness is quadratic
in the number of constructors, the datatype package does not prove them.
Instead, it ensures that simplification will prove them dynamically: when
the simplifier encounters a formula asserting the equality of two datatype
constructors, it performs freeness reasoning.

Freeness reasoning can also be done using the classical reasoner, but it is
more complicated. You have to add some safe elimination rules rules to the
claset. For the list datatype, they are called 1ist.free_SEs. Occasionally
this exposes the underlying representation of some constructor, which can
be rectified using the command fold_tac list.con_defs.

Structural induction

The datatype package also provides structural induction rules. For data-
types without mutual or nested recursion, the rule has the form exempli-
fied by list.induct in Fig.3.27. For mutually recursive datatypes, the
induction rule is supplied in two forms. Consider datatype TF. The rule
tree_forest.induct performs induction over a single predicate P, which is
presumed to be defined for both trees and forests:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 52

[l x : tree_forest(A);
la f. [| a : A; f : forest(A); P(f) |] ==> P(Tcons(a, f));
P(Fnil);
1f t. [| t : tree(d); P(t); £ : forest(A); P(£f) |]
==> P(Fcons(t, f))
11 ==> P(x)

The rule tree_forest.mutual_induct performs induction over two distinct
predicates, P_tree and P_forest.

[l 1a f.
[l a: A; £ : forest(A); P_forest(f) |] ==> P_tree(Tcons(a, f));
P_forest (Fnil);
1f t. [| t : tree(A); P_tree(t); f : forest(A); P_forest(f) |]
==> P_forest(Fcons(t, f))
|1 ==> (ALL za. za : tree(A) --> P_tree(za)) &
(ALL za. za : forest(A) --> P_forest(za))

For datatypes with nested recursion, such as the term example from
above, things are a bit more complicated. The rule term.induct refers to
the monotonic operator, list:

[l x : term(A);
'ta 1. [| a: A; 1: list(Collect(term(A), P)) |] ==> P(Apply(a, 1))
11 ==>P(x)

The file ex/Term.ML derives two higher-level induction rules, one of which
is particularly useful for proving equations:

[l t : term(A);
"x zs. [| x : A; zs : list(term(A)); map(f, zs) = map(g, zs) |[]
==> f(Apply(x, zs)) = g(Apply(x, zs))
11 ==> £(t) = g(t)

How this can be generalized to other nested datatypes is a matter for future
research.

The case operator

The package defines an operator for performing case analysis over the data-
type. For 1list, it is called 1list_case and satisfies the equations

list_case(f_Nil, f_Comns, []) = f_Nil
list_case(f_Nil, f_Cons, Cons(a, 1)) = f_Cons(a, 1)

Here £_Nil is the value to return if the argument is Nil and f_Cons is a
function that computes the value to return if the argument has the form
Cons(a,!). The function can be expressed as an abstraction, over patterns
if desired (§3.5.4).

For mutually recursive datatypes, there is a single case operator. In
the tree/forest example, the constant tree_forest_case handles all of the
constructors of the two datatypes.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 93

datatype

datatype

I

codatatype

datadecls

constructor

and
constructor
consargs

(OO var [tem [-(D)~—0)
()

b

Figure 3.32: Syntax of datatype declarations

3.9.2 Defining datatypes

The theory syntax for datatype definitions is shown in Fig. 3.32. In order
to be well-formed, a datatype definition has to obey the rules stated in the
previous section. As a result the theory is extended with the new types, the
constructors, and the theorems listed in the previous section. The quotation
marks are necessary because they enclose general Isabelle formulae.

Codatatypes are declared like datatypes and are identical to them in
every respect except that they have a coinduction rule instead of an induc-
tion rule. Note that while an induction rule has the effect of limiting the
values contained in the set, a coinduction rule gives a way of constructing
new values of the set.

Most of the theorems about datatypes become part of the default
simpset. You never need to see them again because the simplifier applies
them automatically. Induction or exhaustion are usually invoked by hand,
usually via these special-purpose tactics:

induct_tac "z" i applies structural induction on variable x to subgoal 1,
provided the type of z is a datatype. The induction variable should

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY o4

not occur among other assumptions of the subgoal.

In some cases, induction is overkill and a case distinction over all construc-
tors of the datatype suffices.

exhaust_tac "z" 4 performs an exhaustive case analysis for the variable z.

Both tactics can only be applied to a variable, whose typing must be
given in some assumption, for example the assumption x: list(A). The
tactics also work for the natural numbers (nat) and disjoint sums, although
these sets were not defined using the datatype package. (Disjoint sums are
not recursive, so only exhaust_tac is available.)

Here are some more details for the technically minded. Processing the
theory file produces an ML structure which, in addition to the usual compo-
nents, contains a structure named ¢ for each datatype ¢ defined in the file.
Each structure ¢ contains the following elements:

val intrs : thm list the introduction rules

val elim : thm the elimination (case analysis) rule

val induct : thm the standard induction rule

val mutual_induct : thm the mutual induction rule, or True

val case_eqns : thm list equations for the case operator

val recursor_eqns : thm list equations for the recursor

val con_defs : thm list definitions of the case operator and constructors
val free_iffs : thm list logical equivalences for proving freeness

val free_SEs : thm list elimination rules for proving freeness

val mk_free : string -> thm A function for proving freeness theorems
val mk_cases : string -> thm case analysis, see below

val defs : thm list definitions of operators

val bnd_mono : thm list monotonicity property

val dom_subset : thm list inclusion in ‘bounding set’

Furthermore there is the theorem C_I for every constructor C; for example,
the list datatype’s introduction rules are bound to the identifiers Nil_I
and Cons_I.

For a codatatype, the component coinduct is the coinduction rule, re-
placing the induct component.

See the theories ex/Ntree and ex/Brouwer for examples of infinitely
branching datatypes. See theory ex/LList for an example of a codatatype.
Some of these theories illustrate the use of additional, undocumented fea-
tures of the datatype package. Datatype definitions are reduced to inductive
definitions, and the advanced features should be understood in that light.

3.9.3 Examples

The datatype of binary trees

Let us define the set bt(A) of binary trees over A. The theory must contain
these lines:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 95

consts bt :: i=>i
datatype "bt(A)" = Lf | Br ("a: A", "t1: bt(A)", "t2: bt(A)")

After loading the theory, we can prove, for example, that no tree equals its
left branch. To ease the induction, we state the goal using quantifiers.

Goal "1 : bt(A) ==> ALL x r. Br(x,1,r) "= 1";
Level 0
1 : bt(A) ==> ALL xr. Br(x, 1, r) =1
1. 1 : bt(4A) ==> ALL x r. Br(x, 1, r) "=1

This can be proved by the structural induction tactic:

by (induct_tac "1" 1);
Level 1
1 : bt(A) ==> ALL xr. Br(x, 1, r) =1
1. ALL x r. Br(x, Lf, r) "= Lf
2. !lla t1 t2.
[| a: A; t1 : bt(4);
ALL x r. Br(x, t1, r) "= t1; t2 : bt(4d);
ALL x r. Br(x, t2, r) "= t2 []
==> ALL x r. Br(x, Br(a, t1, t2), r) ~= Br(a, t1, t2)

Both subgoals are proved using Auto_tac, which performs the necessary
freeness reasoning.
by Auto_tac;
Level 2
1 : bt(A) ==> ALL xr. Br(x, 1, r) =1
No subgoals!
To remove the quantifiers from the induction formula, we save the theorem
using qed_spec_mp.
ged_spec_mp "Br_neq_left";
val Br_neq_left = "?1 : bt(?A) ==> Br(?x, 7?1, ?r) "= 71" : thm
When there are only a few constructors, we might prefer to prove the
freenness theorems for each constructor. This is trivial, using the function
given us for that purpose:

val Br_iff =
bt.mk_free "Br(a,l,r)=Br(a’,1’,r’) <-> a=a’ & 1=1’ & r=r’";
val Br_iff =
"Br(?a, ?1, ?r) = Br(?a’, ?1’, ?r’) <->

7a =7a’ & 71 =71’ & ?r = ?r’" : thm

The purpose of mk_cases is to generate instances of the elimination
(case analysis) rule that have been simplified using freeness reasoning. For
example, this instance of the elimination rule propagates type-checking in-
formation from the premise Br(a,l, r) € bt(A):

val BrE = bt.mk_cases "Br(a,l,r) : bt(A)";
val BrE =
"[| Br(?a, 7?1, ?r) : bt(?4);
[l ?a : ?A; 71 : bt(7A); ?r : bt(?4) |] ==> 7Q]
==> ?7Q" : thm

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 56

Mixfix syntax in datatypes
Mixfix syntax is sometimes convenient. The theory ex/PropLog makes a
deep embedding of propositional logic:

consts prop :: i

datatype "prop" = Fls
| Var ("n: nat") ("#_" [100] 100)
| n=>n (np: PIOP", nq: Prop") (infixr 90)

The second constructor has a special #n syntax, while the third constructor
is an infixed arrow.
A giant enumeration type

This example shows a datatype that consists of 60 constructors:

consts enum :: i
datatype
"enum" = CO0 | CO1 | CO2 | CO3 | CO4 | CO5 | CO6 | CO7 | CO8 | CO9

| C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19
| C20 | C21 | C22 | C23 | C24 | €25 | C26 | C27 | C28 | C29
| C30 | €31 | €32 | €33 | C34 | €35 | €36 | €37 | C38 | C39
| C40 | C41 | C42 | C43 | C44 | C45 | C46 | CA7 | C48 | C49
| C50 | €51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59

end

The datatype package scales well. Even though all properties are proved
rather than assumed, full processing of this definition takes under 15 seconds
(on a 300 MHz Pentium). The constructors have a balanced representation,
essentially binary notation, so freeness properties can be proved fast.

Goal "COO "= CO1";
by (Simp_tac 1);

You need not derive such inequalities explicitly. The simplifier will dispose
of them automatically.

3.9.4 Recursive function definitions

Datatypes come with a uniform way of defining functions, primitive recur-
sion. Such definitions rely on the recursion operator defined by the datatype
package. Isabelle proves the desired recursion equations as theorems.

In principle, one could introduce primitive recursive functions by assert-
ing their reduction rules as new axioms. Here is a dangerous way of defining
the append function for lists:

consts "@" :: [i,i]=>i (infixr 60)
rules
app_Nil "[] @ ys = ys"
app_Cons "(Cons(a,l)) @ ys = Cons(a, 1 @ ys)"
Asserting axioms brings the danger of accidentally asserting nonsense. It
should be avoided at all costs!

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY o7

The primrec declaration is a safe means of defining primitive recursive
functions on datatypes:

consts "@" :: [i,i]l=>i (infixr 60)
primrec
n [] @ ys = ys n

"(Cons(a,1)) @ ys = Cons(a, 1 @ ys)"

Isabelle will now check that the two rules do indeed form a primitive recur-
sive definition. For example, the declaration

primrec
n [] @ yS = 'LlS"

is rejected with an error message “Extra variables on rhs”.

Syntax of recursive definitions
The general form of a primitive recursive definition is

primrec
reduction rules

where reduction rules specify one or more equations of the form

fo ooz (Cyr oo yp) 21 oo 2 =71

such that C is a constructor of the datatype, r contains only the free vari-
ables on the left-hand side, and all recursive calls in r are of the form
f ...y ... for some i. There must be at most one reduction rule for each
constructor. The order is immaterial. For missing constructors, the function
is defined to return zero.

All reduction rules are added to the default simpset. If you would like to
refer to some rule by name, then you must prefix the rule with an identifier.
These identifiers, like those in the rules section of a theory, will be visible
at the ML level.

The reduction rules for @ become part of the default simpset, which leads
to short proof scripts:

Goal "xs: list(A) ==> (xs @ ys) @ zs = xs @ (ys @ zs)";
by (induct_tac "xs" 1);
by (ALLGOALS Asm_simp-tac);

You can even use the primrec form with non-recursive datatypes and
with codatatypes. Recursion is not allowed, but it provides a convenient
syntax for defining functions by cases.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY o8

Example: varying arguments

All arguments, other than the recursive one, must be the same in each
equation and in each recursive call. To get around this restriction, use
explict A-abstraction and function application. Here is an example, drawn
from the theory Resid/Substitution. The type of redexes is declared as
follows:

consts redexes :: i
datatype
"redexes" Var ("n: nat")

Fun ("t: redexes")
App ("b:bool" ,"f:redexes" , "a:redexes")

The function 1ift takes a second argument, &k, which varies in recursive
calls.

primrec
"lift(Var(i)) (lam k:nat. if i<k then Var(i) else Var(succ(i)))"
"lift (Fun(t)) = (lam k:nat. Fun(lift(t) ¢ succ(k)))"
"lift(App(b,f,a)) = (lam k:nat. App(b, 1lift(f)‘k, lift(a)‘k))"

Now 1lift(r) ‘k satisfies the required recursion equations.

3.10 Inductive and coinductive definitions

An inductive definition specifies the least set R closed under given rules.
(Applying a rule to elements of R yields a result within R.) For example,
a structural operational semantics is an inductive definition of an evalua-
tion relation. Dually, a coinductive definition specifies the greatest set R
consistent with given rules. (Every element of R can be seen as arising by ap-
plying a rule to elements of R.) An important example is using bisimulation
relations to formalise equivalence of processes and infinite data structures.

A theory file may contain any number of inductive and coinductive defi-
nitions. They may be intermixed with other declarations; in particular, the
(co)inductive sets must be declared separately as constants, and may have
mixfix syntax or be subject to syntax translations.

Each (co)inductive definition adds definitions to the theory and also
proves some theorems. Each definition creates an ML structure, which is a
substructure of the main theory structure. This package is described in detail
in a separate paper,? which you might refer to for background information.

3.10.1 The syntax of a (co)inductive definition

An inductive definition has the form

2Tt appeared in CADE [15]; a longer version is distributed with Isabelle as A Fizedpoint
Approach to (Co)Inductive and (Co)Datatype Definitions.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 99

inductive
domains domain declarations
intrs introduction rules
monos monotonicity theorems
con_defs constructor definitions

type_intrs introduction rules for type-checking
type_elims elimination rules for type-checking

A coinductive definition is identical, but starts with the keyword co-
inductive.

The monos, con-defs, type-intrs and type-elims sections are op-
tional. If present, each is specified either as a list of identifiers or as a
string. If the latter, then the string must be a valid ML expression of type
thm list. The string is simply inserted into the _thy.ML file; if it is ill-
formed, it will trigger ML error messages. You can then inspect the file on
the temporary directory.

domain declarations are items of the form string <= string, associating each
recursive set with its domain. (The domain is some existing set that
is large enough to hold the new set being defined.)

introduction rules specify one or more introduction rules in the form
ident string, where the identifier gives the name of the rule in the
result structure.

monotonicity theorems are required for each operator applied to a recursive
set in the introduction rules. There must be a theorem of the form
A C B = M(A) C M(B), for each premise ¢ € M(R-i) in an
introduction rule!

constructor definitions contain definitions of constants appearing in the in-
troduction rules. The (co)datatype package supplies the construc-
tors’ definitions here. Most (co)inductive definitions omit this section;
one exception is the primitive recursive functions example; see theory
ex/Primrec.

type-intrs consists of introduction rules for type-checking the definition: for
demonstrating that the new set is included in its domain. (The proof
uses depth-first search.)

type-elims consists of elimination rules for type-checking the definition.
They are presumed to be safe and are applied as often as possible
prior to the type-intrs search.

The package has a few restrictions:

e The theory must separately declare the recursive sets as constants.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 60

e The names of the recursive sets must be identifiers, not infix operators.

e Side-conditions must not be conjunctions. However, an introduction
rule may contain any number of side-conditions.

e Side-conditions of the form x = ¢, where the variable z does not occur
in ¢, will be substituted through the rule mutual_induct.

3.10.2 Example of an inductive definition

Two declarations, included in a theory file, define the finite powerset opera-
tor. First we declare the constant Fin. Then we declare it inductively, with
two introduction rules:

consts Fin :: i=>i

inductive
domains "Fin(A)" <= "Pow(A)"
intrs

emptyI "0 : Fin(A)"

consI "[] a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)"
type_intrs empty_subsetI, cons_subsetI, Powl
type_elims "[make_elim PowD]"

The resulting theory structure contains a substructure, called Fin. It con-
tains the Fin A introduction rules as the list Fin.intrs, and also individ-
ually as Fin.emptyI and Fin.consI. The induction rule is Fin.induct.

The chief problem with making (co)inductive definitions involves type-
checking the rules. Sometimes, additional theorems need to be supplied
under type_intrs or type_elims. If the package fails when trying to prove
your introduction rules, then set the flag trace_induct to true and try
again. (See the manual A Fizedpoint Approach ... for more discussion of
type-checking.)

In the example above, Pow(A) is given as the domain of Fin(A), for
obviously every finite subset of A is a subset of A. However, the inductive
definition package can only prove that given a few hints. Here is the output
that results (with the flag set) when the type_intrs and type_elims are
omitted from the inductive definition above:

Inductive definition Finite.Fin
Fin(A) ==
1fp(Pow(4),
%X. z: Pow(A) . z=0] (EXab. z=cons(a, b) a : A &b : X))
Proving monotonicity...
Proving the introduction rules...
The type-checking subgoal:
0 : Fin(4)
1. 0 : Pow(A)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 61

The subgoal after monos, type_elims:
0 : Fin(4)

1. 0 : Pow(A)
***x prove_goal: tactic failed

We see the need to supply theorems to let the package prove () € Pow(A).
Restoring the type_intrs but not the type_elims, we again get an error
message:

The type-checking subgoal:
0 : Fin(A)
1. 0 : Pow(d)
The subgoal after monos, type_elims:
0 : Fin(A)
1. 0 : Pow(d)
The type-checking subgoal:
cons(a, b) : Fin(A)
1. [l a : A; b : Fin(A) |] ==> cons(a, b) : Pow(A)
The subgoal after monos, type_elims:
cons(a, b) : Fin(A)
1. [l a : A; b : Pow(d) |] ==> cons(a, b) : Pow(A)
*** prove_goal: tactic failed

The first rule has been type-checked, but the second one has failed. The
simplest solution to such problems is to prove the failed subgoal separately
and to supply it under type_intrs. The solution actually used is to supply,
under type_elims, a rule that changes b € Pow(A) to b C A; together with
cons_subsetI and Powl, it is enough to complete the type-checking.

3.10.3 Further examples

An inductive definition may involve arbitrary monotonic operators. Here is
a standard example: the accessible part of a relation. Note the use of Pow in
the introduction rule and the corresponding mention of the rule Pow_mono
in the monos list. If the desired rule has a universally quantified premise,
usually the effect can be obtained using Pow.

consts acc :: i=>i
inductive
domains "acc(r)" <= "field(r)"
intrs
vimage "[| r-‘‘a: Pow(acc(r)); a: field(r) |] ==> a: acc(x)"
monos Pow_mono

Finally, here is a coinductive definition. It captures (as a bisimulation)
the notion of equality on lazy lists, which are first defined as a codatatype:

consts 1llist :: i=>i
codatatype "1llist(A)" = LNil | LComns ("a: A", "1: 1list(A)")

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 62

consts 1lleq :: i=>i

coinductive
domains "lleq(A)" <= "1list(A) * 1list(A)"
intrs

LNil "<LNil, LNil> : 1leq(A)"
LCons "[| a:A; <1,1°>: 1lleq(A) |]
==> <LCons(a,l), LCons(a,1l’)>: lleq(A)"
type_intrs "llist.intrs"

This use of type_intrs is typical: the relation concerns the codatatype
11ist, so naturally the introduction rules for that codatatype will be re-
quired for type-checking the rules.

The Isabelle distribution contains many other inductive definitions. Sim-
ple examples are collected on subdirectory ZF/ex. The directory Coind and
the theory ZF/ex/LList contain coinductive definitions. Larger examples
may be found on other subdirectories of ZF, such as IMP, and Resid.

3.10.4 The result structure

Each (co)inductive set defined in a theory file generates an ML substruc-
ture having the same name. The the substructure contains the following
elements:

val intrs : thm list the introduction rules

val elim : thm the elimination (case analysis) rule
val mk_cases : string -> thm case analysis, see below

val induct : thm the standard induction rule

val mutual_induct : thm the mutual induction rule, or True
val defs : thm list definitions of operators

val bnd_mono : thm list monotonicity property

val dom_subset : thm list inclusion in ‘bounding set’

Furthermore there is the theorem C_I for every constructor C; for example,
the 1ist datatype’s introduction rules are bound to the identifiers Nil_I
and Cons_I.

For a codatatype, the component coinduct is the coinduction rule, re-
placing the induct component.

Recall that mk_cases generates simplified instances of the elimination
(case analysis) rule. It is as useful for inductive definitions as it is for data-
types. There are many examples in the theory ex/Comb, which is discussed
at length elsewhere [17]. The theory first defines the datatype comb of com-
binators:

consts comb :: i
datatype '"comb" =
|
| "#" ("p: comb", "q: comb") (infixl 90)
The theory goes on to define contraction and parallel contraction induc-
tively. Then the file ex/Comb.ML defines special cases of contraction using

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 63

mk_cases:

val K_contractE = contract.mk_cases "K -1-> r";
val K_contractE = "K -1-> ?r ==> ?7Q" : thm

We can read this as saying that the combinator K cannot reduce to anything.
Similar elimination rules for S and application are also generated and are
supplied to the classical reasoner. Note that comb.con_defs is given to
mk_cases to allow freeness reasoning on datatype comb.

3.11 The outer reaches of set theory

The constructions of the natural numbers and lists use a suite of operators for
handling recursive function definitions. I have described the developments
in detail elsewhere [16]. Here is a brief summary:

e Theory Trancl defines the transitive closure of a relation (as a least
fixedpoint).

e Theory WF proves the Well-Founded Recursion Theorem, using an el-
egant approach of Tobias Nipkow. This theorem permits general re-
cursive definitions within set theory.

e Theory Ord defines the notions of transitive set and ordinal number.
It derives transfinite induction. A key definition is less than: i < j
if and only if ¢ and j are both ordinals and ¢ € j. As a special case, it
includes less than on the natural numbers.

e Theory Epsilon derives e-induction and e-recursion, which are gen-
eralisations of transfinite induction and recursion. It also defines
rank(z), which is the least ordinal a such that z is constructed at
stage « of the cumulative hierarchy (thus z € Vi41).

Other important theories lead to a theory of cardinal numbers. They
have not yet been written up anywhere. Here is a summary:

e Theory Rel defines the basic properties of relations, such as
(ir)reflexivity, (a)symmetry, and transitivity.

e Theory EquivClass develops a theory of equivalence classes, not using
the Axiom of Choice.

e Theory Order defines partial orderings, total orderings and wellorder-
ings.

e Theory OrderArith defines orderings on sum and product sets. These
can be used to define ordinal arithmetic and have applications to car-
dinal arithmetic.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 64

Theory OrderType defines order types. Every wellordering is equiva-
lent to a unique ordinal, which is its order type.

Theory Cardinal defines equipollence and cardinal numbers.

Theory CardinalArith defines cardinal addition and multiplication,
and proves their elementary laws. It proves that there is no greatest
cardinal. It also proves a deep result, namely k ® kK = & for every infi-
nite cardinal x; see Kunen [10, page 29]. None of these results assume
the Axiom of Choice, which complicates their proofs considerably.

The following developments involve the Axiom of Choice (AC):

Theory AC asserts the Axiom of Choice and proves some simple equiv-
alent forms.

Theory Zorn proves Hausdorff’s Maximal Principle, Zorn’s Lemma
and the Wellordering Theorem, following Abrial and Laffitte [1].

Theory Cardinal_AC uses AC to prove simplified theorems about the
cardinals. It also proves a theorem needed to justify infinitely branch-
ing datatype declarations: if k is an infinite cardinal and | X (a)| < k
for all @ < k then |, X (a)| < k.

a<k

Theory InfDatatype proves theorems to justify infinitely branching
datatypes. Arbitrary index sets are allowed, provided their cardinal-
ities have an upper bound. The theory also justifies some unusual
cases of finite branching, involving the finite powerset operator and
the finite function space operator.

3.12 The examples directories

Directory HOL/IMP contains a mechanised version of a semantic equivalence
proof taken from Winskel [22]. It formalises the denotational and operational
semantics of a simple while-language, then proves the two equivalent. It
contains several datatype and inductive definitions, and demonstrates their

use.

The directory ZF/ex contains further developments in ZF set theory.
Here is an overview; see the files themselves for more details. 1 describe
much of this material in other publications [14, 16, 15].

File misc.ML contains miscellaneous examples such as Cantor’s Theo-
rem, the Schroder-Bernstein Theorem and the ‘Composition of homo-
morphisms’ challenge [3].

Theory Ramsey proves the finite exponent 2 version of Ramsey’s The-
orem, following Basin and Kaufmann’s presentation [2].

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 65

e Theory Integ develops a theory of the integers as equivalence classes
of pairs of natural numbers.

e Theory Primrec develops some computation theory. It inductively
defines the set of primitive recursive functions and presents a proof
that Ackermann’s function is not primitive recursive.

e Theory Primes defines the Greatest Common Divisor of two natural
numbers and and the “divides” relation.

e Theory Bin defines a datatype for two’s complement binary integers,
then proves rewrite rules to perform binary arithmetic. For instance,
1359 x —2468 = —3354012 takes under 14 seconds.

e Theory BT defines the recursive data structure bt(A), labelled binary
trees.

e Theory Term defines a recursive data structure for terms and term
lists. These are simply finite branching trees.

e Theory TF defines primitives for solving mutually recursive equations
over sets. It constructs sets of trees and forests as an example, includ-
ing induction and recursion rules that handle the mutual recursion.

e Theory Prop proves soundness and completeness of propositional
logic [16]. This illustrates datatype definitions, inductive definitions,
structural induction and rule induction.

e Theory ListN inductively defines the lists of n elements [12].
e Theory Acc inductively defines the accessible part of a relation [12].

e Theory Comb defines the datatype of combinators and inductively de-
fines contraction and parallel contraction. It goes on to prove the
Church-Rosser Theorem. This case study follows Camilleri and Mel-
ham [4].

e Theory LList defines lazy lists and a coinduction principle for proving
equations between them.

3.13 A proof about powersets

To demonstrate high-level reasoning about subsets, let us prove the equa-
tion Pow(A) NPow(B) = Pow(A N B). Compared with first-order logic, set
theory involves a maze of rules, and theorems have many different proofs.
Attempting other proofs of the theorem might be instructive. This proof
exploits the lattice properties of intersection. It also uses the monotonicity
of the powerset operation, from ZF/mono.ML:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 66

Pow_mono A<=B ==> Pow(A) <= Pow(B)

We enter the goal and make the first step, which breaks the equation into
two inclusions by extensionality:

Goal "Pow(A Int B) = Pow(A) Int Pow(B)";
Level 0
Pow(A Int B) = Pow(A) Int Pow(B)
1. Pow(A Int B) = Pow(A) Int Pow(B)
by (resolve_tac [equalityI] 1);
Level 1
Pow(A Int B) = Pow(A) Int Pow(B)
1. Pow(A Int B) <= Pow(4) Int Pow(B)
2. Pow(4) Int Pow(B) <= Pow(A Int B)

Both inclusions could be tackled straightforwardly using subsetI. A shorter
proof results from noting that intersection forms the greatest lower bound:

by (resolve_tac [Int_greatest] 1);
Level 2
Pow(A Int B) = Pow(A) Int Pow(B)
1. Pow(A Int B) <= Pow(A)
2. Pow(A Int B) <= Pow(B)
3. Pow(A) Int Pow(B) <= Pow(A Int B)

Subgoal 1 follows by applying the monotonicity of Pow to AN B C A;
subgoal 2 follows similarly:

by (resolve_tac [Int_lowerl RS Pow_mono] 1);
Level 3
Pow(A Int B) = Pow(A) Int Pow(B)
1. Pow(A Int B) <= Pow(B)
2. Pow(A) Int Pow(B) <= Pow(A Int B)
by (resolve_tac [Int_lower2 RS Pow_mono] 1);
Level 4
Pow(A Int B) = Pow(A) Int Pow(B)
1. Pow(A) Int Pow(B) <= Pow(A Int B)

We are left with the opposite inclusion, which we tackle in the straightfor-
ward way:
by (resolve_tac [subsetI] 1);
Level 5

Pow(A Int B) = Pow(A) Int Pow(B)
1. !lx. x : Pow(A) Int Pow(B) ==> x : Pow(A Int B)

The subgoal is to show z € Pow(A N B) assuming z € Pow(A) N Pow(B);
eliminating this assumption produces two subgoals. The rule IntE treats
the intersection like a conjunction instead of unfolding its definition.
by (eresolve_tac [IntE] 1);
Level 6

Pow(A Int B) = Pow(A) Int Pow(B)
1. Ix. [| x : Pow(A); x : Pow(B) |] ==> x : Pow(A Int B)

The next step replaces the Pow by the subset relation (C).

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 67

by (resolve_tac [PowI] 1);
Level 7
Pow(A Int B) = Pow(A) Int Pow(B)
1. I'!'x. [| x : Pow(A); x : Pow(B) |] ==> x <= A Int B

We perform the same replacement in the assumptions. This is a good demon-
stration of the tactic dresolve_tac:

by (REPEAT (dresolve_tac [PowD] 1));

Level 8
Pow(A Int B) = Pow(A) Int Pow(B)
1. !lx. [| x <= A; x <= B |] ==> x <= A Int B

The assumptions are that z is a lower bound of both A and B, but AN B
is the greatest lower bound:

by (resolve_tac [Int_greatest] 1);

Level 9
Pow(A Int B) = Pow(A) Int Pow(B)
1. Ix. [| x <= A4; x <=B |] ==> x <=4

2. !llx., [| x <= A; x <=B |] ==> x <= B

To conclude the proof, we clear up the trivial subgoals:

by (REPEAT (assume_tac 1));
Level 10
Pow(A Int B) = Pow(A) Int Pow(B)
No subgoals!

We could have performed this proof in one step by applying Blast_tac. Let
us go back to the start:

choplev O;
Level 0
Pow(A Int B) = Pow(A) Int Pow(B)
1. Pow(A Int B) = Pow(A) Int Pow(B)
by (Blast_tac 1);

Depth = 0
Depth = 1
Depth = 2
Depth = 3
Level 1

Pow(A Int B) = Pow(A) Int Pow(B)
No subgoals!

Past researchers regarded this as a difficult proof, as indeed it is if all the
symbols are replaced by their definitions.

3.14 Monotonicity of the union operator

For another example, we prove that general union is monotonic: C' C D
implies J(C) C (D). To begin, we tackle the inclusion using subsetI:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 68

Goal "C<=D ==> Union(C) <= Union(D)";
Level 0
C <= D ==> Union(C) <= Union(D)
1. C <= D ==> Union(C) <= Union(D)
by (resolve_tac [subsetI] 1);
Level 1
C <= D ==> Union(C) <= Union(D)
1. !'lx. [| C <= D; x : Union(C) |] ==> x : Union(D)

Big union is like an existential quantifier — the occurrence in the assump-
tions must be eliminated early, since it creates parameters.

by (eresolve_tac [UnionE] 1);
Level 2
C <= D ==> Union(C) <= Union(D)
1. !"'x B. [| C<=D; x : B; B : C |] ==>x : Union(D)

Now we may apply UnionI, which creates an unknown involving the param-
eters. To show z € |J(D) it suffices to show that z belongs to some element,
say ?B2(z, B), of D.

by (resolve_tac [UnionI] 1);
Level 3
C <= D ==> Union(C) <= Union(D)
1. !''x B. [| C<=D; x : B; B :
2. !'lxB. [| C<=D; x : B; B :

Cc |] ==> ?B2(x,B) : D
c |] ==>x : ?B2(x,B)

Combining subsetD with the assumption C' C D yields 7a € € = 7a €
D, which reduces subgoal 1. Note that eresolve_tac has removed that
assumption.

by (eresolve_tac [subsetD] 1);
Level 4
C <= D ==> Union(C) <= Union(D)
1. !""'xB. [| x : B; B:C|] ==> ?B2(x,B) : C
2. !''lxB. [| C<=D; x : B; B:C|] ==>x: ?B2(x,B)

The rest is routine. Observe how ?B2(z, B) is instantiated.

by (assume_tac 1);

Level 5

C <= D ==> Union(C) <= Union(D)

1. !''x B. [| C<=D; x : B; B:C|] ==>x:B

by (assume_tac 1);

Level 6

C <= D ==> Union(C) <= Union(D)

No subgoals!

Again, Blast_tac can prove the theorem in one step.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 69

by (Blast_tac 1);

Depth = 0
Depth = 1
Depth = 2
Level 1

C <= D ==> Union(C) <= Union(D)
No subgoals!

The file ZF/equalities.ML has many similar proofs. Reasoning about
general intersection can be difficult because of its anomalous behaviour on
the empty set. However, Blast_tac copes well with these. Here is a typical
example, borrowed from Devlin [6, page 12]:

a:C ==> (INT x:C. A(x) Int B(x)) = (INT x:C. A(x)) Int (INT x:C. B(x))

In traditional notation this is

aeC = (4@ nB@)= (N A@)n (N B=)

zelC zeC zeC

3.15 Low-level reasoning about functions

The derived rules lamI, lamE, lam_type, beta and eta support reasoning
about functions in a A-calculus style. This is generally easier than regarding
functions as sets of ordered pairs. But sometimes we must look at the un-
derlying representation, as in the following proof of fun_disjoint_applyl.
This states that if f and ¢ are functions with disjoint domains A and C,
and if @ € A, then (fUg)‘'a = f‘a:

Goal "[| a:A; f: A->B; g: C->D; A Int C =0 |] ==> \
\ (f Un g)‘a = £¢a";
Level 0
[| a:A; £f:A->B; g:C->D; AlInt C=0 /]
==> (fUng) ‘“a=f ‘a
1. [l a: A4; £f: A->B; g:C->D; Alnt C=20][]
==> (fUng) ‘“a=f a

Using apply_equality, we reduce the equality to reasoning about ordered
pairs. The second subgoal is to verify that fU g is a function. To save space,
the assumptions will be abbreviated below.

by (resolve_tac [apply_equality] 1);

Level 1
[l ... 1] ==>(Ung) “a=f°f"°a
1. [] ... |] ==><a,f “a : fUng
2. [l ... |1 ==>fUng : (PROD x:7A. 7B(x))

We must show that the pair belongs to f or g; by UnI1 we choose f:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 70
by (resolve_tac [UnIl] 1);
Level 2
[l ... 1]==>(fUng) “a=*f" a
1. [... |] ==> <a,f “a> : f
2. [l ... |] ==>fUng : (PROD x:?A. 7B(x))

To show (a,f‘a) € f
of apply_equality:

by (resolve_tac

Level 3

[... 11 ==>
1. [... []
2. [l ... 1]
3. [l ...]

we use apply_Pair, which is essentially the converse

[apply_Pair] 1);

(fUng) “a=f °a
==> f : (PROD x:7A2.
==>a : 7A2
==>f Un g :

?B2(x))

(PROD x:7A. ?B(x))

Using the assumptions f € A — B and a € A, we solve the two subgoals
from apply_Pair. Recall that a II-set is merely a generalized function space,
and observe that 7A2 is instantiated to A.

by (assume_tac 1);

Level 4
[l ... 1]==>(fUng) “a=*f" a
1. [l ... |] ==>a: A
2. [l ... |] ==>fUng : (PROD x:?A. 7B(x))
by (assume_tac 1);
Level 5
[l ... 1]==>(fUng) “a=fFf" a
1. [l ... |] ==> f Un g : (PROD x:7A. ?B(x))

To construct functions of the form f U g, we apply fun_disjoint_Un:

by (resolve_tac

Level 6
... 1] ==
1.0 ... 1]
2. [l 11
3. [l 11

[fun_disjoint_Un] 1);

(fUng) “a=f " a
==>f : 7A3 -> 7B3
==> g : ?C3 -> ?D3

==> ?A3 Int ?C3 = 0

The remaining subgoals are instances of the assumptions. Again, observe
how unknowns are instantiated:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY

by (assume_tac 1);

Level 7
[l ... 1]==>(fUng) “a=*f" a
1. [l ... |] ==> g : ?€3 -> 7D3
2. [| ... |] ==> A Int ?C3 =0
by (assume_tac 1);
Level 8
[l ... 1]==>(fUng) “a=f" a
1. [/ ... |] ==>AInt C=0
by (assume_tac 1);
Level 9
[l ... 1]==>(fUng) “a=*¢f" a

No subgoals!

71

See the files ZF/func . ML and ZF/WF . ML for more examples of reasoning about

functions.

Bibliography

1]

[2]

J. R. Abrial and G. Laffitte. Towards the mechanization of the proofs
of some classical theorems of set theory. preprint, February 1993.

David Basin and Matt Kaufmann. The Boyer-Moore prover and Nuprl:
An experimental comparison. In Gérard Huet and Gordon Plotkin,
editors, Logical Frameworks, pages 89—-119. Cambridge University Press,
1991.

Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark
Stickel, and Lawrence Wos. Set theory in first-order logic: Clauses for
Godel’s axioms. Journal of Automated Reasoning, 2(3):287-327, 1986.

J. Camilleri and T. F. Melham. Reasoning with inductively defined
relations in the HOL theorem prover. Technical Report 265, Computer
Laboratory, University of Cambridge, August 1992.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

Keith J. Devlin. Fundamentals of Contemporary Set Theory. Springer,
1979.

Michael Dummett. Elements of Intuitionism. Oxford University Press,
1977.

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic, 57(3):795-807, 1992.

Paul R. Halmos. Naive Set Theory. Van Nostrand, 1960.

Kenneth Kunen. Set Theory: An Introduction to Independence Proofs.
North-Holland, 1980.

Philippe Noél. Experimenting with Isabelle in ZF set theory. Journal
of Automated Reasoning, 10(1):15-58, 1993.

Christine Paulin-Mohring. Inductive definitions in the system Coq:
Rules and properties. In M. Bezem and J.F. Groote, editors, Typed
Lambda Calculi and Applications, LNCS 664, pages 328-345. Springer,
1993.

72

BIBLIOGRAPHY 73

[13]

[14]

[15]

[16]

[17]

[20]
[21]

[22]

Lawrence C. Paulson. Logic and Computation: Interactive proof with
Cambridge LCF. Cambridge University Press, 1987.

Lawrence C. Paulson. Set theory for verification: I. From foundations
to functions. Journal of Automated Reasoning, 11(3):353-389, 1993.

Lawrence C. Paulson. A fixedpoint approach to implementing
(co)inductive definitions. In Alan Bundy, editor, Automated Deduc-
tion — CADE-12 International Conference, LNAI 814, pages 148-161.
Springer, 1994.

Lawrence C. Paulson. Set theory for verification: II. Induction and
recursion. Journal of Automated Reasoning, 15(2):167-215, 1995.

Lawrence C. Paulson. Generic automatic proof tools. In Robert Veroff,
editor, Automated Reasoning and its Applications: Essays in Honor of
Larry Wos, chapter 3. MIT Press, 1997.

Lawrence C. Paulson. Final coalgebras as greatest fixed points in ZF
set theory. Mathematical Structures in Computer Science, 9, 1999. in
press.

Art Quaife. Automated deduction in von Neumann-Bernays-Godel set
theory. Journal of Automated Reasoning, 8(1):91-147, 1992.

Patrick Suppes. Aziomatic Set Theory. Dover, 1972.

A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge
University Press, 1962. Paperback edition to *56, abridged from the
2nd edition (1927).

Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, 1993.

Index

#* symbol, 48
#+ symbol, 48
#- symbol, 48
$* symbol, 49
$+ symbol, 49
$- symbol, 49
& symbol, 5

* symbol, 24
+ symbol, 40
- symbol, 23
-=> symbol, 5
-> symbol, 24
-¢¢ symbol, 23
: symbol, 23
<=> symbol, 5
<= symbol, 23
= symbol, 5

¢ symbol, 23
¢ ¢ symbol, 23
| symbol, 5

0 constant, 23

add_O_natify theorem, 48
add_mult_dist theorem, 48
add_succ theorem, 48
AddTCs, 47

addTCs, 47

ALL symbol, 5, 24

A1l constant, 5

all_dupE theorem, 3, 7
all_impE theorem, 7

allE theorem, 3, 7

alll theorem, 6

and_def theorem, 40
apply_def theorem, 28

apply_equality theorem, 37, 69,

70

apply_equality2 theorem, 37
apply_iff theorem, 37
apply_Pair theorem, 37, 70
apply_type theorem, 37
Arith theory, 47
arithmetic, 47-50
assumptions

contradictory, 14

Ball constant, 23, 26
ball_cong theorem, 30, 31
Ball_def theorem, 27
ballE theorem, 30, 31
balll theorem, 30

beta theorem, 37, 38

Bex constant, 23, 26
bex_cong theorem, 30, 31
Bex_def theorem, 27
bexCI theorem, 30

bexE theorem, 30

bexI theorem, 30

bij constant, 44
bij_converse_bij theorem, 44
bij_def theorem, 44
bij_disjoint_Un theorem, 44
Blast_tac, 14, 6769
blast_tac, 16, 18
bnd_mono_def theorem, 42
Bool theory, 38

bool_OI theorem, 40
bool_1I theorem, 40
bool_def theorem, 40
boolE theorem, 40

bspec theorem, 30

case constant, 40
case_def theorem, 40
case_Inl theorem, 40

INDEX

case_Inr theorem, 40
coinduct theorem, 42
coinductive, 5863
Collect constant, 23, 24, 29
Collect_def theorem, 27
Collect_subset theorem, 34
CollectD1 theorem, 31, 32
CollectD2 theorem, 31, 32
CollectE theorem, 31, 32
CollectI theorem, 32
comp_assoc theorem, 44
comp_bij theorem, 44
comp_def theorem, 44
comp_func theorem, 44
comp_func_apply theorem, 44
comp_inj theorem, 44
comp_surj theorem, 44
comp_type theorem, 44
cond_0 theorem, 40
cond_1 theorem, 40
cond_def theorem, 40
congruence rules, 31
conj_cong, 4

conj_impE theorem, 4, 7
conjE theorem, 7

conjI theorem, 6
conjunctl theorem, 6
conjunct2 theorem, 6
cons constant, 22, 23
cons_def theorem, 28
Cons_iff theorem, 43
consCI theorem, 33

consE theorem, 33

ConsI theorem, 43

consI1 theorem, 33
consI2 theorem, 33
converse constant, 23, 36
converse_def theorem, 28
cut_facts_tac, 16

datatype, 50, 50-56
DelTCs, 47

delTCs, 47

Diff_cancel theorem, 39

Diff_contains theorem, 34
Diff_def theorem, 27
Diff_disjoint theorem, 39
Diff_Int theorem, 39
Diff_partition theorem, 39
Diff_subset theorem, 34
Diff_Un theorem, 39
DiffD1 theorem, 33

DiffD2 theorem, 33

DiffE theorem, 33

DiffI theorem, 33
disj_impE theorem, 4, 7, 12
disjCI theorem, 9

disjE theorem, 6

disjI1 theorem, 6

disjI2 theorem, 6

div symbol, 48

domain constant, 23, 36
domain_def theorem, 28
domain_of _fun theorem, 37
domain_subset theorem, 36
domain_type theorem, 37
domainE theorem, 36
domainI theorem, 36

75

double_complement theorem, 39

dresolve_tac, 67

empty_subsetI theorem, 30
emptyE theorem, 30
eq_mp_tac, 8

equalityD1 theorem, 30
equalityD2 theorem, 30
equalityE theorem, 30
equalityI theorem, 30, 66
equalsOD theorem, 30
equalsOI theorem, 30
eresolve_tac, 13

eta theorem, 37, 38

EX symbol, 5, 24

Ex constant, 5

EX! symbol, 5

ex/Term theory, 51

Ex1 constant, 5

ex1_def theorem, 6

INDEX

ex1E theorem, 7

ex1I theorem, 7

ex_impE theorem, 7

exCI theorem, 9, 13
excluded_middle theorem, 9
exE theorem, 6
exhaust_tac, 54

exI theorem, 6

extension theorem, 27

False constant, 5
FalseE theorem, 6
field constant, 23
field_def theorem, 28
field_subset theorem, 36
fieldCI theorem, 36
fieldE theorem, 36
fieldI1l theorem, 36
fieldI2 theorem, 36
Fin.consI theorem, 43
Fin.emptyI theorem, 43
Fin_induct theorem, 43
Fin_mono theorem, 43
Fin_subset theorem, 43
Fin_UnI theorem, 43
Fin_UnionI theorem, 43
first-order logic, 3—20
Fixedpt theory, 41

flat constant, 43

FOL theory, 3, 9

FOL_cs, 9, 46

FOL_ss, 4, 45
foundation theorem, 27
fst constant, 23, 29
fst_conv theorem, 35
fst_def theorem, 28

fun_disjoint_applyl theorem,

38, 69

fun_disjoint_apply2 theorem,

38

fun_disjoint_Un theorem, 38, 70

fun_empty theorem, 38

fun_extension theorem, 37, 38

fun_is_rel theorem, 37

fun_single theorem, 38
function applications, 23

gfp_def theorem, 42
gfp_least theorem, 42
gfp_mono theorem, 42
gfp_subset theorem, 42
gfp_Tarski theorem, 42
gfp_upperbound theorem, 42
Goalw, 15, 16

hyp_subst_tac, 4

1 type, 22

id constant, 44
id_def theorem, 44
if constant, 23
if_def theorem, 15, 27
if_not_P theorem, 33
if _P theorem, 33

ifE theorem, 17
iff_def theorem, 6
iff_impE theorem, 7
iffCE theorem, 9
iffD1 theorem, 7
iffD2 theorem, 7
iffE theorem, 7

iffI theorem, 7, 17
ifI theorem, 17

IFOL theory, 3
IFOL_ss, 4
image_def theorem, 28
imageE theorem, 36
imageI theorem, 36
imp_impE theorem, 7, 12
impCE theorem, 9
impE theorem, 7, 8
impI theorem, 6

in symbol, 25

induct theorem, 42
induct_tac, 53
inductive, 5863

Inf constant, 23, 29
infinity theorem, 28
inj constant, 44

76

INDEX

inj_converse_inj theorem, 44
inj_def theorem, 44

Inl constant, 40

Inl_def theorem, 40
Inl_inject theorem, 40
Inl_neq_Inr theorem, 40
Inr constant, 40

Inr_def theorem, 40
Inr_inject theorem, 40
INT symbol, 24, 26

Int symbol, 23

Int theory, 49

int constant, 49
Int_absorb theorem, 39
Int_assoc theorem, 39
Int_commute theorem, 39
Int_def theorem, 27
INT_E theorem, 32

Int_greatest theorem, 34, 66, 67

INT_I theorem, 32
Int_lowerl theorem, 34, 66
Int_lower2 theorem, 34, 66
Int_Un_distrib theorem, 39
Int_Union_RepFun theorem, 39
IntD1 theorem, 33

IntD2 theorem, 33

IntE theorem, 33, 66
integers, 49

Inter constant, 23
Inter_def theorem, 27
Inter_greatest theorem, 34
Inter_lower theorem, 34
Inter_Un_distrib theorem, 39
InterD theorem, 32

InterE theorem, 32

InterI theorem, 31, 32

IntI theorem, 33

intify constant, 49
IntPr.best_tac, 8
IntPr.fast_tac, 8, 11
IntPr.inst_step_tac, 8
IntPr.safe_step_tac, 8
IntPr.safe_tac, 8
IntPr.step_tac, 8

7

lam symbol, 24, 26
lam_def theorem, 28
lam_type theorem, 37
Lambda constant, 23, 26
A-abstractions, 24

lamE theorem, 37, 38

lamI theorem, 37, 38
le_cs, 45

left_comp_id theorem, 44
left_comp_inverse theorem, 44
left_inverse theorem, 44
length constant, 43

Let constant, 22, 23

let symbol, 25

Let_def theorem, 22, 27
1fp_def theorem, 42
1fp_greatest theorem, 42
1fp_lowerbound theorem, 42
1fp_mono theorem, 42
1fp_subset theorem, 42
1fp_Tarski theorem, 42
list constant, 43
List.induct theorem, 43
list_case constant, 43
list_mono theorem, 43
logic class, 3

map constant, 43
map_app_distrib theorem, 43
map_compose theorem, 43
map_flat theorem, 43
map_ident theorem, 43
map_type theorem, 43
mem_asym theorem, 33, 34
mem_irrefl theorem, 33
mk_cases, 55, 62

mod symbol, 48
mod_div_equality theorem, 48
mp theorem, 6

mp_tac, 8

mult_O theorem, 48
mult_assoc theorem, 48
mult_commute theorem, 48
mult_succ theorem, 48

INDEX

mult_type theorem, 48

Nat theory, 47

nat constant, 48

nat_OI theorem, 48
nat_case constant, 48
nat_case_0 theorem, 48
nat_case_def theorem, 48
nat_case_succ theorem, 48
nat_def theorem, 48
nat_induct theorem, 48
nat_succl theorem, 48
natify constant, 47, 49
natural numbers, 47
Nil_Cons_iff theorem, 43
NilI theorem, 43

Not constant, 5

not_def theorem, 6, 40
not_impE theorem, 7

notE theorem, 7, 8

notI theorem, 7

notnotD theorem, 9

0 symbol, 44
o type, 3
or_def theorem, 40

Pair constant, 23, 24
Pair_def theorem, 28
Pair_inject theorem, 35
Pair_injectl theorem, 35
Pair_inject2 theorem, 35
Pair_neq_0 theorem, 35
pairing theorem, 32

Perm theory, 45

Pi constant, 23, 26, 37
Pi_def theorem, 28
Pi_type theorem, 37, 38
Pow constant, 23

Pow_iff theorem, 27
Pow_mono theorem, 66
PowD theorem, 30, 67

PowI theorem, 30, 66
primrec, 57, 56-58
PrimReplace constant, 23, 29

78

priorities, 1
PROD symbol, 24, 26
prop_cs, 9

qcase_def theorem, 40
gconverse constant, 41
qgconverse_def theorem, 40
ged_spec_mp, 55
qfsplit_def theorem, 40
QInl_def theorem, 40
QInr_def theorem, 40
QPair theory, 41
QPair_def theorem, 40
QSigma constant, 41
QSigma_def theorem, 40
gsplit constant, 41
gsplit_def theorem, 40
gsum_def theorem, 40
QUniv theory, 45

range constant, 23
range_def theorem, 28
range_of_fun theorem, 37, 38
range_subset theorem, 36
range_type theorem, 37
rangeE theorem, 36
rangel theorem, 36
rank constant, 63
recursion

primitive, 56-58
recursive functions, see recursion
refl theorem, 6
RepFun constant, 23, 26, 29, 31
RepFun_def theorem, 27
RepFunE theorem, 32
RepFunI theorem, 32
Replace constant, 23, 24, 29, 31
Replace_def theorem, 27
ReplaceE theorem, 32
Replacel theorem, 32
replacement theorem, 27
restrict constant, 23, 29
restrict theorem, 37
restrict_bij theorem, 44

INDEX

restrict_def theorem, 28 succI2 theorem, 33

restrict_type theorem, 37 SUM symbol, 24, 26

rev constant, 43 Sum theory, 38

rew_tac, 16 sum_def theorem, 40

rewrite_rule, 16 sum_InlI theorem, 40

right_comp_id theorem, 44 sum_InrI theorem, 40

right_comp_inverse theorem, 44 SUM_Int_distribl theorem, 39

right_inverse theorem, 44 SUM_Int_distrib2 theorem, 39
SUM_Un_distribl theorem, 39

separation theorem, 32 SUM_Un_distrib2 theorem, 39

set theory, 21-71 sumE2 theorem, 40

Sigma constant, 23, 26, 29, 35 surj constant, 44

Sigma_def theorem, 28 surj_def theorem, 44

SigmaFE theorem, 35 swap theorem, 9

SigmaE2 theorem, 35 swap_res_tac, 13

Sigmal theorem, 35 sym theorem, 7

simplification

of conjunctions, 4 tcset, 47

singletonE theorem, 33 term class, 3

singletonI theorem, 33 THE symbol, 24, 26, 34

snd constant, 23, 29 The constant, 23, 26, 29

snd_conv theorem, 35 the_def theorem, 27

snd_def theorem, 28 the_equality theorem, 33, 34

spec theorem, 6 thel theorem, 33, 34

split constant, 23, 29 trace_induct, 60

split theorem, 35 trans theorem, 7

split_def theorem, 28 True constant, 5

ssubst theorem, 7 True_def theorem, 6

Step_tac, 19 Truel theorem, 7

step_tac, 20 Trueprop constant, 5

subset_def theorem, 27 type-checking tactics, 46

subset_refl theorem, 30 type_solver_tac, 47

subset_trans theorem, 30 Typecheck_tac, 46, 47

subsetCE theorem, 30 typecheck_tac, 47

subsetD theorem, 30, 68

subsetI theorem, 30, 66, 67 UN symbol, 24, 26

Un symbol, 23

Un_absorb theorem, 39
Un_assoc theorem, 39
Un_commute theorem, 39
Un_def theorem, 27

UN_E theorem, 32

UN_I theorem, 32
Un_Int_distrib theorem, 39

subst theorem, 6

succ constant, 23, 29
succ_def theorem, 28
succ_inject theorem, 33
succ_neq_0 theorem, 33
succCI theorem, 33
succE theorem, 33
succIl theorem, 33

79

INDEX

Un_Inter_RepFun theorem, 39
Un_least theorem, 34
Un_upperl theorem, 34
Un_upper?2 theorem, 34
UnCI theorem, 31, 33

UnE theorem, 33

UnI1 theorem, 31, 33, 69
UnI2 theorem, 31, 33
Union constant, 23
Union_iff theorem, 27
Union_least theorem, 34
Union_Un_distrib theorem, 39
Union_upper theorem, 34
UnionE theorem, 32, 68
UnionI theorem, 32, 68
Univ theory, 45

Upair constant, 22, 23, 29
Upair_def theorem, 27
UpairE theorem, 32
UpairIl theorem, 32
UpairI2 theorem, 32

vimage_def theorem, 28
vimageE theorem, 36
vimageI theorem, 36

xor_def theorem, 40

zadd_O_intify theorem, 49
zadd_zmult_dist theorem, 49
ZF theory, 21

ZF_cs, 45

ZF_ss, 45

zmult_0 theorem, 49
zmult_assoc theorem, 49
zmult_commute theorem, 49
zmult_type theorem, 49

80

	Syntax definitions
	First-Order Logic
	Syntax and rules of inference
	Generic packages
	Intuitionistic proof procedures
	Classical proof procedures
	An intuitionistic example
	An example of intuitionistic negation
	A classical example
	Derived rules and the classical tactics
	Deriving the introduction rule
	Deriving the elimination rule
	Using the derived rules
	Derived rules versus definitions

	Zermelo-Fraenkel Set Theory
	Which version of axiomatic set theory?
	The syntax of set theory
	Binding operators
	The Zermelo-Fraenkel axioms
	From basic lemmas to function spaces
	Fundamental lemmas
	Unordered pairs and finite sets
	Subset and lattice properties
	Ordered pairs
	Relations
	Functions

	Further developments
	Disjoint unions
	Non-standard ordered pairs
	Least and greatest fixedpoints
	Finite sets and lists
	Miscellaneous

	Automatic Tools
	Simplification
	Classical Reasoning
	Type-Checking Tactics

	Natural number and integer arithmetic
	Datatype definitions
	Basics
	Defining datatypes
	Examples
	Recursive function definitions

	Inductive and coinductive definitions
	The syntax of a (co)inductive definition
	Example of an inductive definition
	Further examples
	The result structure

	The outer reaches of set theory
	The examples directories
	A proof about powersets
	Monotonicity of the union operator
	Low-level reasoning about functions

