The Isabelle System Manual

Markus Wenzel and Stefan Berghofer
TU Miinchen

8th March 2002

Contents

1 The Isabelle system environment 1
1.1 Isabelle settings 0oL 1
Building the environment, 2
Common variables 0 3
1.2 The Isabelle tools wrapper 5
1.3 The raw Isabelle process 6
1.4 The Isabelle interface wrapper 8
2 Presenting theories 10
2.1 Generating theory browser information 11
2.2 Browsing theory graphs. 12
Invoking the graph browser 12
Using the graph browser 13
2.3 Creating Isabelle session directories — isatool mkdir 15
2.4 Running Isabelle sessions — isatool usedir 17
2.5 Preparing Isabelle session documents — isatool document . 19
2.6 Running IKTEX within the Isabelle environment — isatool
latex 21
3 Miscellaneous tools 22
3.1 Converting legacy ML scripts — isatool convert 22
3.2 Viewing documentation — isatool doc 22
3.3 Tuning proof scripts — isatool expandshort 23
3.4 Getting logic images — isatool findlogics 23
3.5 Inspecting the settings environment — isatool getenv . .. 23
3.6 Installing standalone Isabelle executables — isatool install 24
3.7 Creating instances of the Isabelle logo — isatool logo . .. 25
3.8 Isabelle’s version of make — isatool make 25
3.9 Make all logics — isatool makeall 26
3.10 Remove awkward symbol names from theory sources —
isatool unsymbolize 26

A Standard Isabelle symbols 28

CONTENTS

11

Chapter 1

The Isabelle system
environment

This manual describes Isabelle together with related tools and user interfaces
as seen from an outside (system oriented) view. See also the Isabelle/Isar
Reference Manual [4] and the Isabelle Reference Manual [3] for the actual
Isabelle commands and related functions.

The Isabelle system environment emerges from a few general concepts.

e The Isabelle settings mechanism provides environment variables to all
Isabelle programs (including tools and user interfaces).

e The Isabelle tools wrapper (isatool) provides a generic startup plat-
form for Isabelle related utilities. Thus tools automatically benefit from
the settings mechanism.

e The raw Isabelle process (isabelle or isabelle-process) runs logic
sessions either interactively or in batch mode. In particular, this view
abstracts over the invocation of the actual ML system to be used.

e The Isabelle interface wrapper (Isabelle or isabelle-interface)
provides some abstraction over the actual user interface to be used.
The de-facto standard interface for Isabelle is Proof General [2].

The beginning user would probably just run the default user interface (by
invoking the capital Isabelle). This assumes that the system has already
been installed, of course. In case you have to do this yourself, see the INSTALL
file in the top-level directory of the distribution of how to proceed; binary
packages for various system components are available as well.

1.1 Isabelle settings

The Isabelle system heavily depends on the settings mechanism. Essen-
tially, this is a statically scoped collection of environment variables, such as

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 2

ISABELLE_HOME, ML_SYSTEM, ML_HOME. These variables are not intended to
be set directly from the shell, though. Isabelle employs a somewhat more
sophisticated scheme of settings files — one for site-wide defaults, another
for additional user-specific modifications. With all configuration variables in
at most two places, this scheme is more maintainable and user-friendly than
global shell environment variables.

In particular, we avoid the typical situation where prospective users of
a software package are told to put several things into their shell startup
scripts, before being able to actually run the program. Isabelle requires none
such administrative chores of its end-users — the executables can be invoked
straight away.!

Building the environment

Whenever any of the Isabelle executables is run, their settings environment
is put together as follows.

1. The special variable ISABELLE_HOME is determined automatically from
the location of the binary that has been run.

You should not try to set ISABELLE_HOME manually. Also note that the
Isabelle executables either have to be run from their original location
in the distribution directory, or via the executable objects created by
the install utility (see §3.6). Just doing a plain copy of the bin files
will not work!

2. The file $ISABELLE_HOME/etc/settings ist run as a shell script with
the auto-export option for variables enabled.

This file holds a rather long list of shell variable assigments, thus pro-
viding the site-wide default settings. The Isabelle distribution already
contains a global settings file with sensible defaults for most variables.
When installing the system, only a few of these may have to be adapted
(probably ML_SYSTEM etc.).

3. The file $ISABELLE_HOME_USER/etc/settings (if it exists) is run
in the same way as the site default settings. Note that the vari-
able ISABELLE_HOME_USER has already been set before — usually to
~/isabelle.

Thus individual users may override the site-wide defaults. See also
file etc/user-settings.sample in the distribution. Typically, a user

LQccasionally, users would still want to put the Isabelle bin directory into their shell’s
search path, but this is not required.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 3

settings file would contain only a few lines, just the assigments that
are really changed. One should definitely not start with a full copy the
basic $ISABELLE_HOME/etc/settings. This could cause very annoying
maintainance problems later, when the Isabelle installation is updated
or changed otherwise.

Note that settings files are actually full GNU bash scripts. So one may
use complex shell commands, such as if or case statements to set variables
depending on the system architecture or other environment variables. Such
advanced features should be added only with great care, though. In partic-
ular, external environment references should be kept at a minimum.

A few variables are somewhat special:

e ISABELLE and ISATOOL are set automatically to the absolute path
names of the isabelle-process and isatool executables, respec-
tively.

e ISABELLE_OUTPUT will have the ML system identifier (according to
ML_IDENTIFIER) automatically appended to its value.

The Isabelle settings scheme is conceptually simple, but not completely
trivial. For debugging purposes, the resulting environment may be inspected
with the getenv utility, see §3.5.

Common variables

This is a reference of common Isabelle settings variables. Note that the list
is somewhat open-ended. Third-party utilities or interfaces may add their
own selection. Variables that are special in some sense are marked with *.

ISABELLE_HOME* is the location of the top-level Isabelle distribution direc-
tory. This is automatically determined from the Isabelle executable
that has been invoked. Do not attempt to set ISABELLE_HOME yourself
from the shell.

ISABELLE_HOME_USER is the user-specific counterpart of ISABELLE_HOME.
The default value is “/isabelle, under rare circumstances this may be
changed in the global setting file. Typically, the ISABELLE_HOME_USER
directory mimics ISABELLE_HOME to some extend. In particular, site-
wide defaults may be overridden by a private etc/settings.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 4

ISABELLE*, ISATOOL* are automatically set to the full path names of the
isabelle-process and isatool executables, respectively. Thus other
tools and scripts need not assume that the Isabelle bin directory is on
the current search path of the shell.

ML_SYSTEM, ML_HOME, ML_OPTIONS, ML_PLATFORM, ML_IDENTIFIER* specify
the underlying ML system to be used for Isabelle. There is only a fixed
set of admissable ML_SYSTEM names (see the etc/settings file of the
distribution).

The actual compiler binary will be run from the directory ML_HOME,
with ML_OPTIONS as first arguments on the command line. The op-
tional ML_PLATFORM may specify the binary format of ML heap im-
ages, which is useful for cross-platform installations. The value of
ML_IDENTIFIER is automatically obtained by composing the ML_SYSTEM
and ML_PLATFORM values.

ISABELLE_PATH is a list of directories (separated by colons) where Isabelle
logic images may reside. When looking up heaps files, the value of
ML_IDENTIFIER is appended to each component internally.

ISABELLE_QUTPUT* is a directory where output heap files should be stored
by default. The ML_SYSTEM identifier is appended here, too.

ISABELLE_BROWSER_INFO is the directory where theory browser information
(HTML text, graph data, and printable documents) is stored (see also
§2.1). The default value is $ISABELLE_HOME_USER/browser_info.

ISABELLE_LOGIC specifies the default logic to load if none is given explicitely
by the user. The default value is HOL.

ISABELLE_USEDIR_OPTIONS is implicitly prefixed to the command line of
any isatool usedir invocation (see also §2.4). This typically contains
compilation options for object-logics — usedir is the basic utility for
managing logic sessions (cf. the IsaMakefiles in the distribution).

ISABELLE_LATEX, ISABELLE_PDFLATEX, ISABELLE_BIBTEX, ISABELLE_DVIPS
refer to IXTEX related tools for Isabelle document preparation (see also
§2.6).

ISABELLE_TOOLS is a colon separated list of directories that are scanned by
isatool for external utility programs (see also §1.2).

ISABELLE_DOCS is a colon separated list of directories with documentation
files.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 5

DVI_VIEWER specifies the command to be used for displaying dvi files.

ISABELLE_TMP_PREFIX* is the prefix from which any running isabelle pro-
cess derives an individual directory for temporary files. The default is
somewhere in /tmp.

ISABELLE_INTERFACE is an identifier that specifies the actual user interface
that the capital Isabelle or isabelle-interface should invoke. See
§1.4 for more details.

1.2 The Isabelle tools wrapper

All Isabelle related utilities are called via a common wrapper — isatool:

Usage: isatool TOOL [ARGS ...]

Start Isabelle utility program TOOL with ARGS. Pass "-7" to TOOL
for more specific help.

Available tools are:

browser - Isabelle graph browser

In principle, Isabelle tools are ordinary executable scripts that are run within
the Isabelle settings environment, see §1.1. The set of available tools is col-
lected by isatool from the directories listed in the ISABELLE_TOOLS setting.
Do not try to call the scripts directly from the shell. Neither should you add
the tool directories to your shell’s search path!

Examples

Show the list of available documentation of the current Isabelle installation

like this:

isatool doc

View a certain document as follows:
isatool doc isar-ref
Create an Isabelle session derived from HOL (see also §2.3 and §3.8):

isatool mkdir HOL Test && isatool make

Note that isatool mkdir is usually only invoked once; existing sessions
(including document output etc.) are then updated by isatool make alone.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 6

1.3 The raw Isabelle process

The isabelle (or isabelle-process) executable runs bare-bones Isabelle
logic sessions — either interactively or in batch mode. It provides an abstrac-
tion over the underlying ML system, and over the actual heap file locations.
Its usage is:

Usage: isabelle [OPTIONS] [INPUT] [OUTPUT]

Options are:

-C tell ML system to copy output image

-1 startup Isar interaction mode

-P startup Proof General interaction mode
-c tell ML system to compress output image
-e MLTEXT pass MLTEXT to the ML session

-f pass ’Session.finish();’ to the ML session
-m MODE add print mode for output

-q non-interactive session

-r open heap file read-only

-u pass ’use"ROOT.ML";’ to the ML session
-w reset write permissions on OUTPUT

INPUT (default "$ISABELLE_LOGIC") and OUTPUT specify in/out heaps.
These are either names to be searched in the Isabelle path, or
actual file names (containing at least one /).

If INPUT is "RAW_ML_SYSTEM", just start the bare bones ML system.

Input files without path specifications are looked up in the ISABELLE_PATH
setting, which may consist of multiple components separated by colons —
these are tried in the given order with the value of ML_IDENTIFIER appended
internally. In a similar way, base names are relative to the directory specified
by ISABELLE_QUTPUT. In any case, actual file locations may also be given
by including at least one slash (/) in the name (hint: use ./ to refer to the
current directory).

Options

If the input heap file does not have write permission bits set, or the -r option
is given explicitely, then the session started will be read-only. That is, the ML
world cannot be committed back into the image file. Otherwise, a writable
session enables commits into either the input file, or into another output
heap file (if that is given as the second argument on the command line).
The read-write state of sessions is determined at startup only, it cannot be
changed intermediately. Also note that heap images may require considerable

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 7

amounts of disk space (approximately 20-40 MB). Users are responsible for
themselves to dispose their heap files when they are no longer needed.

The -w option makes the output heap file read-only after terminating.
Thus subsequent invocations cause the logic image to be read-only automat-
ically.

The -c option tells the underlying ML system to compress the output
heap (fully transparently). On Poly/ML for example, the image is garbage
collected and all stored values are maximally shared, resulting in up to 50%
less disk space consumption.

The -C option tells the ML system to produce a completely self-contained
output image, probably including a copy of the ML runtime system itself.

Using the -e option, arbitrary ML code may be passed to the Isabelle
session from the command line. Multiple -e’s are evaluated in the given
order. Strange things may happen when errorneous ML code is provided.
Also make sure that the ML commands are terminated properly by semicolon.

The —u option is a shortcut for —e passing “use"RO0T.ML";” to the ML ses-
sion. The -f option passes “Session.finish();”, which is intended mainly
for administrative purposes.

The -m option adds identifiers of print modes to be made active for this
session. Typically, this is used by some user interface, e.g. to enable output
of proper mathematical symbols.

Isabelle normally enters an interactive top-level loop (after processing the
-e texts). The -q option inhibits interaction, thus providing a pure batch
mode facility.

The -I option makes Isabelle enter Isar interaction mode on startup,
instead of the primitive ML top-level. The -P option configures the top-level
loop for interaction with the Proof General user interface; do not enable this
in plain TTY sessions.

Examples

Run an interactive session of the default object-logic (as specified by the
ISABELLE_LOGIC setting) like this:

isabelle

Usually ISABELLE_LOGIC refers to one of the standard logic images, which
are read-only by default. A writable session — based on FOL, but output to
Foo (in the directory specified by the ISABELLE_QUTPUT setting) — may be
invoked as follows:

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 8

isabelle FOL Foo

Ending this session normally (e.g. by typing control-D) dumps the whole ML
system state into Foo. Be prepared for several tens of megabytes.
The Foo session may be continued later (still in writable state) by:

isabelle Foo

A read-only Foo session may be started by:

isabelle -r Foo

Note that manual session management like this does not provide proper
setup for theory presentation. This would require the usedir utility, see §2.4.

The next example demonstrates batch execution of Isabelle. We print a
certain theorem of FOL:

isabelle -e "prth allE;" -q -r FOL

Note that the output text will be interspersed with additional junk messages
by the ML runtime environment.

1.4 The Isabelle interface wrapper

Isabelle is a generic theorem prover, even w.r.t. its user interface. The
Isabelle (or isabelle-interface) executable provides a uniform way for
end-users to invoke a certain interface; which one to start is determined by
the ISABELLE_INTERFACE setting variable. Also note that the install util-
ity provides some options to install desktop environment icons as well (see
§3.6).

An interface may be specified either by giving an identifier that the Isa-
belle distribution knows about, or by specifying an actual path name (con-
taining a slash “/”) of some executable. Currently, the following interfaces
are available:

e none is just a pass-through to raw isabelle. Thus Isabelle basically
becomes an alias for isabelle. This is the factory default.

e emacs refers to David Aspinall’s Isamode for emacs. Isabelle just pro-
vides a wrapper for this, the actual Isamode distribution is available
elsewhere [1].

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 9

e Proof General [2] is an advanced interface for common theorem proving
environments. It has become the de-facto standard for Isabelle recently,
supporting both the old ML top-level of classic Isabelle and the more
convenient Isabelle/Isar interpreter loop. The Proof General distribu-
tions includes separate interface wrapper scripts (in ProofGeneral/isa
and ProofGeneral/isar). The canonical settings for Isabelle/Isar are
as follows:

ISABELLE_INTERFACE=$ISABELLE_HOME/contrib/ProofGeneral/isar/interface
PROOFGENERAL_OPTIONS=""

Thus Isabelle would automatically invoke Emacs with proper setup
of the Proof General Lisp packages. There are some options available,
such as -1 for passing the logic image to be used by default, or -m to
tune the standard print mode. The -I option allows to switch between
the Isar and ML view, independently of the interface script being used.

Note that the world may be also seen the other way round: Emacs
may be started first (with proper setup of Proof General mode), and
isabelle run from within. This requires further Emacs Lisp configu-
ration, see the Proof General documentation [2] for more information.

Chapter 2

Presenting theories

Isabelle provides several ways to present the outcome of formal developments,
including WWW-based browsable libraries or actual printable documents.
Presentation is centered around the concept of logic sessions. The global
session structure is that of a tree, with Isabelle Pure at its root, further
object-logics derived (e.g. HOLCF from HOL, and HOL from Pure), and
application sessions in leaf positions (usually without a separate image).

The mkdir (see §2.3) and make (see §3.8) tools of Isabelle provide the
primary means for managing Isabelle sessions, including proper setup for
presentation. Here the usedir (see §2.4) tool takes care to let the isabelle
process run any additional stages required for document preparation, notably
the tools document (see §2.5) and latex (see §2.6). The complete tool chain
for managing batch-mode Isabelle sessions is illustrated in figure 2.1.

isatool mkdir invoked once by the user to create the ini-
tial source setup (common IsaMakefile plus
a single session directory);

isatool make invoked repeatedly by the user to keep session
output up-to-date (HTML, documents etc.);

isatool usedir part of the standard IsaMakefile entry of a
session;

isabelle run through isatool usedir;

isatool document run by the Isabelle process if document prepa-
ration is enabled;

isatool latex universal KTEX tool wrapper invoked multiple
times by isatool document; also useful for
manual experiments;

Figure 2.1: The tool chain of Isabelle session presentation

10

CHAPTER 2. PRESENTING THEORIES 11

2.1 Generating theory browser information

As a side-effect of running a logic sessions, Isabelle is able to generate the-
ory browsing information, including HTML documents that show a theory’s
definition, the theorems proved in its ML file and the relationship with its
ancestors and descendants. Besides the HTML file that is generated for ev-
ery theory, Isabelle stores links to all theories in an index file. These indexes
are linked with other indexes to represent the overall tree structure of logic
sessions.

Isabelle also generates graph files that represent the theory hierarchy of
a logic. There is a graph browser Java applet embedded in the generated
HTML pages, and also a stand-alone application that allows browsing theory
graphs without having to start a WWW client first. The latter version also
includes features such as generating Postscript files, which are not available
in the applet version. See §2.2 for further information.

The easiest way to let Isabelle generate theory browsing information for
existing sessions is to append “-i true” to the ISABELLE_USEDIR_OPTIONS
before invoking isatool make (or ./build in the distribution). For example,
add something like this to your Isabelle settings file

ISABELLE_USEDIR_OPTIONS="-i true"

and then change into the src/FOL directory of the Isabelle distribution
and run isatool make, or even isatool make all. The presentation out-
put will appear in $ISABELLE_BROWSER_INFO/FOL, which usually refers to
~/isabelle/browser_info/FOL. Note that option -v true will make the
internal runs of usedir more explicit about such details.

Many standard Isabelle sessions (such as HOL/ex) also provide actual
printable documents. These are prepared automatically as well if enabled
like this, using the -d option

ISABELLE_USEDIR_OPTIONS="-i true -d dvi"

Enabling options -i and -d simultaneausly as shown above causes an appro-
priate “document” link to be included in the HTML index. Documents (or
raw document sources) may be generated independently of browser informa-
tion as well, see §2.5 for further details.

The theory browsing information is stored in a sub-directory directory de-
termined by the ISABELLE_BROWSER_INFO setting plus a prefix corresponding
to the session identifier (according to the tree structure of sub-sessions by
default). A complete WWW view of all standard object-logics and examples
of the Isabelle distribution is available at the Cambridge or Munich Isabelle
sites:

CHAPTER 2. PRESENTING THEORIES 12

http://www.cl.cam.ac.uk/Research/HVG /Isabelle/library /
http://isabelle.in.tum.de/library/

In order to present your own theories on the web, simply copy the corre-
sponding subdirectory from ISABELLE_BROWSER_INFO to your WWW server,
having generated browser info like this:

isatool usedir -i true HOL Foo

This assumes that directory Foo contains some ROOT.ML file to load all your
theories, and HOL is your parent logic image (isatool mkdir assists in
setting up Isabelle session directories, see §2.3). Theory browser information
for HOL should have been generated already beforehand. Alternatively, one
may specify an external link to an existing body of HTML data by giving
usedir a -P option like this:

isatool usedir -i true -P http://isabelle.in.tum.de/library/ HOL Foo

For production use, the usedir tool is usually invoked in an appropriate
IsaMakefile, via the Isabelle make utility. There is a separate mkdir tool
to provide easy setup of all this, with only minimal manual editing required.

isatool mkdir HOL Foo && isatool make

See §2.3 for more information on preparing Isabelle session directories, in-
cluding the setup for documents.

2.2 Browsing theory graphs

The Isabelle graph browser is a general tool for visualizing dependency
graphs. Certain nodes of the graph (i.e. theories) can be grouped together
in “directories”, whose contents may be hidden, thus enabling the user to
collapse irrelevant portions of information. The browser is written in Java,
it can be used both as a stand-alone application and as an applet. Note that
the option -g of isatool usedir (see §2.4) creates graph presentations in
batch mode for inclusion in session documents.

Invoking the graph browser

The stand-alone version of the graph browser is wrapped up as an Isabelle
tool called browser:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
http://isabelle.in.tum.de/library/

CHAPTER 2. PRESENTING THEORIES 13

Usage: browser [OPTIONS] [GRAPHFILE]

Options are:
-d delete file after use
-o FILE output to FILE (ps, eps, pdf)

When no filename is specified, the browser automatically changes to the
directory ISABELLE_BROWSER_INFO

The -d option causes the source file (!) to be deleted after the browser
terminates; this is mainly intended for detaching interactive graph views from
a running Isabelle session.

The -o option indicates batch-mode operation, with the output written
to the indicated file; note that pdf produces an eps copy as well.

The applet version of the browser is part of the standard WWW theory
presentation, see the link “theory dependencies” within each session index.

Using the graph browser

The browser’s main window, which is shown in figure 2.2, consists of two
sub-windows: In the left sub-window, the directory tree is displayed. The
graph itself is displayed in the right sub-window.

The directory tree window

We describe the usage of the directory browser and the meaning of the dif-
ferent items in the browser window.

e A red arrow before a directory name indicates that the directory is
currently “folded”, i.e. the nodes in this directory are collapsed to one
single node. In the right sub-window, the names of nodes corresponding
to folded directories are enclosed in square brackets and displayed in
red color.

e A green downward arrow before a directory name indicates that the
directory is currently “unfolded”. It can be folded by clicking on the
directory name. Clicking on the name for a second time unfolds the
directory again. Alternatively, a directory can also be unfolded by
clicking on the corresponding node in the right sub-window.

e Blue arrows stand before ordinary node names. When clicking on such
a name (i.e. that of a theory), the graph display window focuses to the
corresponding node. Double clicking invokes a text viewer window in
which the contents of the theory file are displayed.

CHAPTER 2. PRESENTING THEORIES 14

¥ Foot §
p Fure :[Pu:re]
p HOL
¥ Lambda [HOL]
p Lambda
P Commutation [Commutation | | Lambda | [Accessible_Part]
p FarRed
p Eta
p Accessible Part | ParRed | [ListApplication | | ListOrder |
p ListApplication
p ListOrder Eta ListBeta
p ListBeta
INductTermi
: Type [InductTermi_]
Type

Figure 2.2: Browser main window

The graph display window

When pointing on an ordinary node, an upward and a downward arrow is
shown. Initially, both of these arrows are green. Clicking on the upward
or downward arrow collapses all predecessor or successor nodes, respectively.
The arrow’s color then changes to red, indicating that the predecessor or
successor nodes are currently collapsed. The node corresponding to the col-
lapsed nodes has the name “[....]”. To uncollapse the nodes again, simply
click on the red arrow or on the node with the name “[....]”. Similar to
the directory browser, the contents of theory files can be displayed by double
clicking on the corresponding node.

The “File” menu

Please note that due to Java security restrictions this menu is not available
in the applet version. The meaning of the menu items is as follows:

Open ... Open a new graph file.

Export to PostScript Outputs the current graph in Postscript format, ap-
propriately scaled to fit on one single sheet of A4 paper. The resulting

CHAPTER 2. PRESENTING THEORIES 15

file can be printed directly.

Export to EPS Outputs the current graph in Encapsulated Postscript for-
mat. The resulting file can be included in other documents.

Quit Quit the graph browser.

*Syntax of graph definition files
A graph definition file has the following syntax:

graph = {vertex ; }*

vertex = wertexname vertezlID dirname [+] path [<|>] { vertezID }*

The meaning of the items in a vertex description is as follows:
vertexname The name of the vertex.

vertexID The vertex identifier. Note that there may be two vertices with
equal names, whereas identifiers must be unique.

dirname The name of the “directory” the vertex should be placed in. A
“+”7 sign after dirname indicates that the nodes in the directory are
initially visible. Directories are initially invisible by default.

path The path of the corresponding theory file. This is specified relatively
to the path of the graph definition file.

List of successor/predecessor nodes A “<” sign before the list means
that successor nodes are listed, a “>” sign means that predecessor nodes
are listed. If neither “<” nor “>” is found, the browser assumes that
successor nodes are listed.

2.3 Creating Isabelle session directories —
isatool mkdir

The mkdir utility prepares Isabelle session source directories, including a
sensible default setup of IsaMakefile, ROOT.ML, and a document directory
with a minimal root.tex that is sufficient to print all theories of the session
(in the order of appearance); see §2.5 for further information on Isabelle
document preparation. The usage of isatool mkdir is:

CHAPTER 2. PRESENTING THEORIES 16

Usage: mkdir [OPTIONS] [LOGIC] NAME

Options are:

-I FILE alternative IsaMakefile output

-P include parent logic target

-b setup build mode (session outputs heap image)
-q quiet mode

Prepare session directory, including IsaMakefile and document source,
with parent LOGIC (default ISABELLE_LOGIC=$ISABELLE_LOGIC)

The mkdir tool is conservative in the sense that any existing IsaMakefile
etc. is left unchanged. Thus it is safe to invoke it multiple times, although
later runs may not have the desired effect.

Note that mkdir is unable to change IsaMakefile incrementally — man-
ual changes are required for multiple sub-sessions. On order to get an initial
working session, the only editing needed is to add appropriate use_thy calls
to the generated ROOT.ML file.

Options

The -I option specifies an alternative to IsaMakefile for dependencies. Note
that “-” refers to stdout, i.e. “~I-" provides an easy way to peek at mkdir’s
idea of make setup required for some particular of Isabelle session.

The -P option includes a target for the parent LOGIC session in the gen-
erated IsaMakefile. The corresponding sources are assumed to be located
within the Isabelle distribution.

The -b option sets up the current directory as the base for a new session
that provides an actual logic image, as opposed to one that only runs several
theories based on an existing image. Note that in the latter case, everything
except IsaMakefile would be placed into a separate directory NAME, rather
than the current one. See §2.4 for further information on build mode vs.
example mode of the usedir utility.

The -q enables quiet mode, suppressing further notes on how to proceed.

Examples

The standard setup of a single “example session” based on the default logic,
with proper document generation is generated like this:

isatool mkdir Foo && isatool make

The theory sources should be put into the Foo directory, and its ROOT.ML
should be edited to load all required theories. Invoking isatool make again

CHAPTER 2. PRESENTING THEORIES 17

would run the whole session, generating browser information and the docu-
ment automatically. The IsaMakefile is typically tuned manually later, e.g.
adding source dependencies, or changing the options passed to usedir.

Large projects may demand further sessions, potentially with separate
logic images being created. This usually requires manual editing of the gen-
erated IsaMakefile, which is meant to cover all of the sub-session directo-
ries at the same time (this is the deeper reasong why IsaMakefile is not
made part of the initial session directory created by isatool mkdir). See
src/HOL/IsaMakefile of the Isabelle distribution for a full-blown example.

2.4 Running Isabelle sessions — isatool
usedir

The usedir utility builds object-logic images, or runs example sessions based
on existing logics. Its usage is:

Usage: usedir [OPTIONS] LOGIC NAME

Options are:

-D PATH dump generated document sources into PATH

-P PATH set path for remote theory browsing information

-b build mode (output heap image, using current dir)

-c BOOL tell ML system to compress output image (default true)
-d FORMAT build document as FORMAT (default false)

-g BOOL generate session graph image for document (default false)
-i BOOL generate theory browser information (default false)

-m MODE add print mode for output

-p LEVEL set level of detail for proof objects

-r reset session path

-s NAME override session NAME

-v BOOL be verbose (default false)

Build object-logic or run examples. Also creates browsing
information (HTML etc.) according to settings.

ISABELLE_USEDIR_OPTIONS=

Note that the value of the ISABELLE_USEDIR_OPTIONS setting is implicitly
prefixed to any usedir call. Since the IsaMakefiles of all object-logics
distributed with Isabelle just invoke usedir for the real work, one may control
compilation options globally via above variable. In particular, generation of
HTML browsing information and document preparation is controlled here.

CHAPTER 2. PRESENTING THEORIES 18

Options

Basically, there are two different modes of operation: build mode (enabled
through the -b option) and ezample mode (default).

Calling usedir with -b runs isabelle with input image LOGIC and out-
put to NAME, as provided on the command line. This will be a batch session,
running ROOT. ML from the current directory and then quitting. It is assumed
that ROOT.ML contains all ML, commands required to build the logic.

In example mode, usedir runs a read-only session of LOGIC and auto-
matically runs ROOT.ML from within directory NAME. It assumes that this file
contains appropriate ML commands to run the desired examples.

The -1 option controls theory browser data generation. It may be explic-
itly turned on or off — as usual, the last occurrence of -i on the command
line wins.

The -P option specifies a path (or actual URL) to be prefixed to any
non-local reference of existing theories. Thus user sessions may easily link to
existing Isabelle libraries already present on the WWW.

The -m options specifies additional print modes to be activated temporar-
ily while the session is processed.

The -d option controls document preparation. Valid arguments are false
(do not prepare any document; this is default), or any of dvi, dvi.gz, ps,
ps.gz, pdf. The logic session has to provide a properly setup document
directory. See §2.5 and §2.6 for more details.

The -g option produces images of the theory dependency graph (cf.
§2.2) for inclusion in the generated document, both as session_graph.eps
and session_graph.pdf at the same time. To include this in the fi-
nal ITEX document one could say \includegraphics{session_graph} in
document/root.tex (omitting the file-name extension enables KTEX to se-
lect to correct version, either for the DVI or PDF output path).

The -D option causes the generated document sources (including the
user’s template of document/root.tex etc.) to be dumped at location PATH;
this path is relative to the session’s main directory. For example, isatool
usedir -D generated HOL Foo will produces a complete set of document
sources at Foo/generated. Subsequent invocation of isatool document
Foo/generated (sce also §2.5) will process the final result independently of
an Isabelle job. This decoupled mode of operation facilitates debugging of
serious I{TEX errors, for example.

The -p option determines the level of detail for internal proof objects, see
also the Isabelle Reference Manual [3].

CHAPTER 2. PRESENTING THEORIES 19

The -v option causes additional information to be printed while running
the session, notably the location of prepared documents.

Any usedir session is named by some session identifier. These accumu-
late, documenting the way sessions depend on others. For example, consider
Pure/FOL/ex, which refers to the examples of FOL, which in turn is built
upon Pure.

The current session’s identifier is by default just the base name of the
LOGIC argument (in build mode), or of the NAME argument (in example mode).
This may be overridden explicitly via the —-s option.

Examples

Refer to the IsaMakefiles of the Isabelle distribution’s object-logics as a
model for your own developments. For example, see src/FOL/IsaMakefile.
The Isabelle mkdir tool (see §2.3) creates IsaMakefiles with proper invoca-
tion of usedir as well.

2.5 Preparing Isabelle session documents —
isatool document

The document utility prepares logic session documents, processing the
sources both as provided by the user and generated by Isabelle. Its usage is:

Usage: document [0OPTIONS] [DIR]

Options are:

-C cleanup —- be aggressive in removing old stuff
-o FORMAT specify output format: dvi (default), dvi.gz, ps,
ps.gz, pdf

Prepare the theory session document in DIR (default ’document’)
producing the specified output format.

This tool is usually run automatically as part of the corresponding Isabelle
batch process, provided document preparation has been enabled (cf. the -d
option of the usedir utility, §2.4). It may be manually invoked on the
generated browser information document output as well, e.g. in case of errors
encountered in the batch run.

Document preparation requires a properly setup “document” directory
within the logic session sources. This directory is supposed to contain all the
files needed to produce the final document — apart from the actual theories
which are generated by Isabelle.

CHAPTER 2. PRESENTING THEORIES 20

For most practical purposes, the document tool is smart enough to create
any of the specified output formats, taking root.tex supplied by the user as
a starting point. This even includes multiple runs of KTEX to accommodate
references and bibliographies (the latter assumes root.bib within the same
directory).

In more complex situations, a separate IsaMakefile for the document
sources may be given instead. This should provide targets for any admissible
document format; these have to produce corresponding output files named
after root as well, e.g. root.dvi for target format dvi.

When running the session, Isabelle copies the original document directory
into its proper place within ISABELLE_BROWSER_INFQO according to the session
path. Then, for any processed theory A some IXTEX source is generated and
put there as A.tex. Furthermore, a list of all generated theory files is put
into session.tex. Typically, the root IXTEX file provided by the user would
include session.tex to get a document containing all the theories.

The KTEX versions of the theories require some macros defined in
isabelle.sty as distributed with Isabelle. Doing \usepackage{isabelle}
in root.tex should be fine; the underlying Isabelle latex utility already
includes an appropriate TEX inputs path.

If the text contains any references to Isabelle symbols (such as \<forall>)
then isabellesym.sty should be included as well. This package contains a
standard set of KTEX macro definitions \isasymfoo corresponding to \<foo>
(see Appendix A for a complete list of predefined Isabelle symbols). Users
may invent further symbols as well, just by providing BKTEX macros in a
similar fashion as in isabellesym.sty of the distribution.

For proper setup of PDF documents (with hyperlinks, bookmarks, and
thumbnail images), we recommend to include pdfsetup.sty as well. It is
safe to do so even without using PDF EIEX.

As a final step of document preparation within Isabelle, isatool
document -c is run on the resulting document directory. Thus the actual
output document is built and installed in its proper place (as linked by the
session’s index.html if option -i of usedir has been enabled, cf. §2.1). The
generated sources are deleted after successful run of KTEX and friends. Note
that a separate copy of the sources may be retained by passing an option -D
to the usedir utility when running the session (see also §2.4).

CHAPTER 2. PRESENTING THEORIES 21

2.6 Running ETEX within the Isabelle envi-
ronment — isatool latex

The latex utility provides the basic interface for Isabelle document prepa-
ration. Its usage is:

Usage: latex [OPTIONS] [FILE]

Options are:
-o FORMAT specify output format: dvi (default), dvi.gz, ps,
ps.gz, pdf, bbl, png, sty

Run LaTeX (and related tools) on FILE (default root.tex),
producing the specified output format.

Appropriate ¥ TEX-related programs are run on the input file, according to
the given output format: latex, pdflatex, dvips, bibtex (for bbl), and
thumbpdf (for png). The actual commands are determined from the settings
environment (ISABELLE_LATEX etc., see §1.1).

The sty output format causes the Isabelle style files to be updated from
the distribution. This is useful in special situations where the document
sources are to be processed another time by separate tools (cf. option -D of
the usedir utility, see §2.4).

Examples

Invoking isatool latex by hand may be occasionally useful when debugging
failed attempts of the automatic document preparation stage of batch-mode
Isabelle. The abortive process leaves the sources at a certain place within
ISABELLE_BROWSER_INFO, see the runtime error message for details. This
enables users to inspect IXTEX runs in further detail, e.g. like this:

cd ~/isabelle/browser_info/HOL/Test/document
isatool latex -o pdf

Chapter 3

Miscellaneous tools

Subsequently we describe various Isabelle related utilities, given in alphabet-
ical order.

3.1 Converting legacy ML scripts — isatool
convert

The convert utility assists in converting legacy ML proof scripts into the
new-style format of Isabelle/Isar:

Usage: convert [FILES|DIRS...]

Recursively find .ML files, converting legacy tactic scripts to
Isabelle/Isar tactic emulation.
Note: conversion is only approximated, based on some heuristics.

Renames old versions of FILES by appending "“07".
Creates new versions of FILES by appending ".thy".

The resulting theory text uses the tactic emulation facilities of Isabelle/Isar
(see also [3], especially the “Conversion guide” in the appendix). Usually
there is some manual tuning required to get an automatically converted script
work again — the success rate is around 99% for common ML scripts.

3.2 Viewing documentation — isatool doc

The doc utility displays online documentation:

Usage: doc [DOC]

View Isabelle documentation DOC, or show list of available documents.

If called without arguments, it lists all available documents. Each line starts
with an identifier, followed by a short description. Any of these identifiers
may be specified as the first argument in order to have the corresponding
document displayed.

22

CHAPTER 3. MISCELLANEOUS TOOLS 23

The ISABELLE_DOCS setting specifies the list of directories (separated by
colons) to be scanned for documentations. The program for viewing dvi files
is determined by the DVI_VIEWER setting.

3.3 Tuning proof scripts — isatool expandshort

The expandshort utility tunes ML proof scripts to enhance readability:

Usage: expandshort [FILES|DIRS...]

Recursively find .ML files, expand shorthand goal commands. Also
contracts uses of resolve_tac, dresolve_tac, eresolve_tac,
forward_tac, rewrite_goals_tac on l-element lists; furthermore
expands tabs, which are forbidden in SML string constants.

Renames old versions of files by appending

In the files or directories supplied as arguments, all occurrences of the short-
hand commands br, be etc. in proof scripts are replaced with the corre-
sponding full commands. The old versions of the files are renamed to have
the suffix “7~7.

3.4 Getting logic images — isatool findlogics

The findlogics utility traverses all directories specified in ISABELLE_PATH,
looking for Isabelle logic images. Its usage is:

Usage: findlogics
Collect heap file names from ISABELLE_PATH.

The base names of all files found on the path are printed — sorted and with
duplicates removed. Also note that lookup in ISABELLE_PATH includes the
current values of ML_SYSTEM and ML_PLATFORM. Thus switching to another
ML compiler may change the set of logic images available.

3.5 Inspecting the settings environment —
isatool getenv

The Isabelle settings environment — as provided by the site-default and
user-specific settings files — can be inspected with the getenv utility:

CHAPTER 3. MISCELLANEOUS TOOLS 24

Usage: getenv [OPTIONS] [VARNAMES ...]

Options are:
-a display complete environment
-b print values only (doesn’t work for -a)

Get value of VARNAMES from the Isabelle settings.

With the -a option, one may inspect the full process environment that
Isabelle related programs are run in. This usually contains much more vari-
ables than are actually Isabelle settings. Normally, output is a list of lines of
the form name=value. The -b option causes only the values to be printed.

Examples

Get the ML system name and the location where the compiler binaries are
supposed to reside as follows:

isatool getenv ML_SYSTEM ML_HOME
ML_SYSTEM=polyml
ML_HOME=/usr/share/polyml/x86-1inux

The next one peeks at the output directory for isabelle logic images:

isatool getenv -b ISABELLE_OUTPUT
/home/me/isabelle/heaps/polyml_x86-1inux

Here we have used the -b option to suppress the ISABELLE_OUTPUT= prefix.
The value above is what became of the following assignment in the default
settings file:

ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"

Note how the ML_IDENTIFIER value got appended automatically to each path
component. This is a special feature of ISABELLE_0OUTPUT.

3.6 Installing standalone Isabelle executables
— 1isatool install

By default, the Isabelle binaries (isabelle, isatool etc.) are just run from
their location within the distribution directory, probably indirectly by the
shell through its PATH. Other schemes of installation are supported by the
install utility:

CHAPTER 3. MISCELLANEOUS TOOLS 25

Usage: install [OPTIONS]

Options are:
-d DISTDIR use DISTDIR as Isabelle distribution
(default ISABELLE_HOME)
-k VERSION install KDE application icon on desktop
(for KDE VERSION 1 or 2)
-p DIR install standalone binaries in DIR

Install Isabelle executables with absolute references to the current
distribution directory.

The -d option overrides the current Isabelle distribution directory as de-
termined by ISABELLE_HOME.

The -p option installs executable wrapper scripts for isabelle, isatool,
Isabelle, containing proper absolute references to the Isabelle distribution
directory. A typical DIR specification would be some directory expected to
be in the shell’s PATH, such as /usr/local/bin. It is important to note that
a plain manual copy of the original Isabelle executables just would not work!

The -k option creates an Isabelle application object for the popular
K Desktop Environment (KDE), either for version 1 or 2. The icon will
appear directly on the desktop.

3.7 Creating instances of the Isabelle logo —
isatool logo

The logo utility creates any instance of the generic Isabelle logo as an En-
capsuled Postscript file (EPS):

Usage: logo [OPTIONS] NAME
Create instance NAME of the Isabelle logo (as EPS).
Options are:
-o OUTFILE set output file (default determined from NAME)

-q quiet mode

You are encouraged to use this to create a derived logo for your Isabelle
project. For example, isatool logo Bali creates isabelle_bali.eps.

3.8 Isabelle’s version of make — isatool make

The Isabelle make utility is a very simple wrapper for ordinary Unix make:

CHAPTER 3. MISCELLANEOUS TOOLS 26

Usage: make [ARGS ...]

Compile the logic in current directory using IsaMakefile.
ARGS are directly passed to the system make program.

Note that the Isabelle settings environment is also active. Thus one may
refer to its values within the IsaMakefile, e.g. $ (ISABELLE_OUTPUT). Fur-
thermore, programs started from the make file also inherit this environment.
Typically, IsaMakefiles defer the real work to the usedir utility, see §2.4.

The basic IsaMakefile convention is that the default target builds the
actual logic, including its parents if appropriate. The images target is in-
tended to build all local logic images, while the test target shall build all
related examples. The all target shall do images and test.

Examples

Refer to the IsaMakefiles of the Isabelle distribution’s object-logics as a
model for your own developments. For example, see src/FOL/IsaMakefile.

3.9 Make all logics — isatool makeall

The makeall utility applies Isabelle make to all logic directories of the dis-
tribution:

Usage: makeall [ARGS ...]
Apply isatool make to all logics (passing ARGS).

The arguments ARGS are just passed verbatim to each make invocation.

3.10 Remove awkward symbol names from
theory sources — isatool unsymbolize

The unsymbolize utility tunes Isabelle theory sources to improve readabil-
ity for plain ASCII output (e.g. in email communication). Most notably,
unsymbolize replaces awkward arrow symbols such as \<Longrightarrow>
by ==>,

CHAPTER 3. MISCELLANEOUS TOOLS 27

Usage: unsymbolize [FILES|DIRS...]
Recursively find .thy/.ML files, removing unreadable symbol names.
Note: this is an ad-hoc script; there is no systematic way to replace

symbols independently of the inner syntax of a theory!

Renames old versions of FILES by appending "~ 7".

Appendix A

Standard Isabelle symbols

Isabelle supports an infinite number of non-ASCII symbols, which are repre-
sented in source text as \<name> (where name may be any identifier). It is
left to front-end tools how to present these symbols to the user. The collec-
tion of predefined standard symbols given below is available by default for
[sabelle document output, due to appropriate definitions of \isasymname
for each \<name> in the isabellesym.sty file. Most of these symbols are
displayed properly in Proof General if used with the X-Symbol package.

Moreover, any single symbol (or ASCII character) may be prefixed by
\<~sup> for superscript and \<“sub> for subscript, such as A\<"sup>\<star>
for A*. Most symbols (and all ASCII characters) may be printed in bold by
prefixing \<"bold>, such as \<"bold>\<alpha> for a.. Note that super- and
subscripts may not be combined with bold style.

Further details of Isabelle document preparation are covered in chapter 2.

\<zero> 0 \<one> 1

\<two> 2 \<three> 3

\<four> 4 \<five> 5

\<six> 6 \<seven> 7

\<eight> 38 \<nine> ¢

\<A> A \ B
\<C> C \<D> D
\<E> & \<F> F
\<G> g \<H> H
\<I> A \<JI> J
\<K> K \<L> L
\<M> M \<N> N
\<0>) \<P> P
\<Q> Q \<R> R
\<S> S \<T> T
\<U> U \<V> V
\<W> w \<X> X
\<Y> y \<Z> Z

28

A
PPENDIX A. STANDARD ISABELLE SYMBOLS

\<a>
\<c>
\<e>
\<g>
\<i>
\<k>
\<m>
\<o>
\<q>
\<s>
\<u>
\<w>
\<y>
\<AA>
\<CC>
\<EE>
\<GG>
\<II>
\<KK>
\<MM>
\<00>
\<QQ>
\<SsS>
\<UU>
\<Ww>
\<YY>
\<aa>
\<cc>
\<ee>
\<gg>
\<ii>
\<kk>
\<mm>
\<oo>
\<qg>
\<ss>
\<uu>
\<ww>
\<yy>

CBCGQQQBW"“@ Q@ wm —
c o = b)) (&) Lo} =
[= o QL O = =0 © O

\
\<d>
\<f>
\<h>
\<j>
\<1>
\<n>
\<p>
\<r>
\<t>
\<v>
\<x>
\<z>
\<BB>
\<DD>
\<FF>
\<HH>
\<JJ>
\<LL>
\<NN>
\<PP>
\<RR>
\<TT>
\<VV>
\<XX>
\<ZZ>
\<bb>
\<dd>
\<ff>
\<hh>
\<jj>
\<11>
\<nn>
\<pp>
\<rr>
\<tt>
\<vv>
\<xx>
\<zz>

O - R R T = R B
o @ o
MRBARRILYIXRAY RN ¥ < = =T s
—— 5 oo

29

\<alpha>

\<gamma>
\<epsilon>

\<eta>

\<iota>

\<lambda>

\<nu>

\<pi>

\<sigma>
\<upsilon>

\<chi>

\<omega>

\<Delta>
\<Lambda>

\<Pi>

\<Upsilon>

\<Psi>

\<bool>

\<nat>

\<real>
\<leftarrow>
\<rightarrow>
\<Leftarrow>
\<Rightarrow>
\<leftrightarrow>
\<Leftrightarrow>
\<mapsto>
\<midarrow>
\<hookleftarrow>
\<leftharpoondown>
\<leftharpoonup>
\<rightleftharpoons>
\<up>

\<down>

\<updown>
\<langle>
\<1lceil>
\<1floor>
\<lparr>

IS¢ 101l 192838 >E= <93 X >3020

=TTl r1 1

APPENDIX A. STANDARD ISABELLE SYMBOLS

\<beta>

\<delta>

\<zeta>

\<theta>

\<kappa>

\<mu>

\<xi>

\<rho>

\<tau>

\<phi>

\<psi>

\<Gamma>

\<Theta>

\<Xi>

\<Sigma>

\<Phi>

\<Omega>
\<complex>

\<rat>

\<int>
\<longleftarrow>
\<longrightarrow>
\<Longleftarrow>
\<Longrightarrow>
\<longleftrightarrow>
\<Longleftrightarrow>
\<longmapsto>
\<Midarrow>
\<hookrightarrow>
\<rightharpoondown>
\<rightharpoonup>
\<leadsto>

\<Up>

\<Down>

\<Updown>
\<rangle>
\<rceil>
\<rfloor>
\<rparr>

— e g L £ I I ﬂ I \U ﬂ\ l T NOAOAOLDBHMINOHESS 3" MIT 3 &N 2w

30

\<1lbrakk>
\<lbrace>
\<guillemotleft>
\<Colon>
\<bottom>
\<and>

\<or>
\<forall>
\<box>
\<turnstile>
\<tturnstile>
\<stileturn>
\<le>
\<1lless>
\<lesssim>
\<lessapprox>
\<in>
\<subset>
\<subseteq>
\<sqgsubset>
\<sgsubseteq>
\<inter>
\<union>
\<squnion>
\<sqinter>
\<uplus>
\<noteqg>
\<doteqg>
\<approx>
\<cong>
\<equiv>
\<propto>
\<prec>
\<preceqg>
\<parallel>
\<plusminus>
\<times>
\<cdot>
\<bullet>

==

XH=IAAKXM IR I-HREICCOIMMOINNMANAAIN LT TOCI> =

APPENDIX A. STANDARD ISABELLE SYMBOLS

\<rbrakk>
\<rbrace>

\<guillemotright>

\<not>

\<top>

\<And>

\<0r>
\<exists>
\<diamond>
\<Turnstile>
\<TTurnstile>
\<surd>

\<ge>
\<ggreater>
\<greatersim>
\<greaterapprox>
\<notin>
\<supset>
\<supseteq>
\<sqsupset>
\<sgsupseteq>
\<Inter>
\<Union>
\<Squnion>
\<Sqinter>
\<Uplus>
\<sim>
\<simeqg>
\<asymp>
\<smile>
\<frown>
\<bowtie>
\<succ>
\<succeqg>
\<bar>
\<minusplus>
\<div>
\<star>
\<circ>

T HTIYY X)) (X R EDCCIODIUUIVURRVVY VL T T OoOUHLIS A1 Vv~

o >

31

\<dagger>
\<1hd>
\<unlhd>
\<triangleleft>
\<triangle>
\<oplus>
\<otimes>
\<odot>
\<ominus>
\<dots>

\<Sum>
\<Coprod>
\<integral>
\<clubsuit>
\<heartsuit>
\<aleph>
\<nabla>

\<Re>

\<flat>
\<sharp>
\<copyright>
\<hyphen>
\<onesuperior>
\<twosuperior>
\<threesuperior>
\<ordfeminine>
\<section>
\<exclamdown>
\<euro>

\<yen>
\<currency>
\<amalg>
\<lozenge>
\<wp>
\<struct>
\<index>
\<cedilla>
\<spacespace>

v

T OEOHMT e B et T YB3 A4Z 3O DO D > AIAATT

APPENDIX A. STANDARD ISABELLE SYMBOLS

\<ddagger>
\<rhd>

\<unrhd>
\<triangleright>
\<triangleg>
\<Oplus>
\<Otimes>
\<0dot>
\<oslash>
\<cdots>
\<Prod>
\<infinity>
\<ointegral>
\<diamondsuit>
\<spadesuit>
\<emptyset>
\<partial>
\<Im>
\<natural>
\<angle>
\<registered>
\<inverse>
\<onequarter>
\<onehalf>
\<threequarters>
\<ordmasculine>
\<paragraph>
\<questiondown>
\<pounds>
\<cent>
\<degree>
\<mho>

\<Join>
\<wrong>
\<acute>
\<dieresis>
\<hungarumlaut>

ol -di R es s O . 1O e NIl = L@I\HQ?QS"QL%E%::] @Q@@ |||>V|vv-|—|—

32

Bibliography

[1] David Aspinall. Isamode — Using Isabelle with Emacs.
http://www.proofgeneral.org/~da/Isamode/.

[2] David Aspinall. Proof General. http://www.proofgeneral.org.

[3] Lawrence C. Paulson. The Isabelle Reference Manual.
http://isabelle.in.tum.de/doc/ref.pdf.

[4] Markus Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

33

http://www.proofgeneral.org/~da/Isamode/
http://www.proofgeneral.org
http://isabelle.in.tum.de/doc/ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

Index

browser tool, 12
convert tool, 22

doc tool, 22
document tool, 19
DVI_VIEWER setting, 5

expandshort tool, 23
findlogics tool, 23
getenv tool, 23
HTML, 17

INSTALL, 1
install tool, 24
ISABELLE setting, 3, 4
Isabelle, 1, 8
isabelle, 1, 6
isabelle-interface, 8
isabelle-process, 6
ISABELLE_BIBTEX setting, 4
ISABELLE_BROWSER_INFO setting,
4,11
ISABELLE_DQCS setting, 4
ISABELLE_DVIPS setting, 4
ISABELLE_HOME setting, 2, 3
ISABELLE_HOME_USER setting, 3
ISABELLE_INTERFACE setting, 5, 8
ISABELLE_LATEX setting, 4
ISABELLE_LOGIC setting, 4
ISABELLE_QUTPUT setting, 3, 4
ISABELLE_PATH setting, 4
ISABELLE_PDFLATEX setting, 4
ISABELLE_TMP_PREFIX setting, 5

ISABELLE_TOOLS setting, 4
ISABELLE_USEDIR_OPTIONS

ting, 4, 11, 17
IsaMakefile, 17, 26
ISATOOL setting, 3, 4
isatool, 1, 5

KDE, 25

latex tool, 21
logo tool, 25

make tool, 25

makeall tool, 26

mkdir tool, 15

ML_HOME setting, 4
ML_IDENTIFIER setting, 4
ML_OPTIONS setting, 4
ML_PLATFORM setting, 4
ML_SYSTEM setting, 4

settings, 1

set-

theory browsing information, 11

theory graph browser, 12

unsymbolize tool, 26
usedir tool, 17
user interface
[samode, 8
Proof General, 9

	The Isabelle system environment
	Isabelle settings
	The Isabelle tools wrapper
	The raw Isabelle process
	The Isabelle interface wrapper

	Presenting theories
	Generating theory browser information
	Browsing theory graphs
	Creating Isabelle session directories --- isatool mkdir
	Running Isabelle sessions --- isatool usedir
	Preparing Isabelle session documents --- isatool document
	Running LaTeX within the Isabelle environment --- isatool latex

	Miscellaneous tools
	Converting legacy ML scripts --- isatool convert
	Viewing documentation --- isatool doc
	Tuning proof scripts --- isatool expandshort
	Getting logic images --- isatool findlogics
	Inspecting the settings environment --- isatool getenv
	Installing standalone Isabelle executables --- isatool install
	Creating instances of the Isabelle logo --- isatool logo
	Isabelle's version of make --- isatool make
	Make all logics --- isatool makeall
	Remove awkward symbol names from theory sources --- isatool unsymbolize

	Standard Isabelle symbols

