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Chapter 1

Introduction

1.1 Overview

The Isabelle system essentially provides a generic infrastructure for building
deductive systems (programmed in Standard ML), with a special focus on
interactive theorem proving in higher-order logics. In the olden days even
end-users would refer to certain ML functions (goal commands, tactics, tac-
ticals etc.) to pursue their everyday theorem proving tasks [9, 10].

In contrast Isar provides an interpreted language environment of its own,
which has been specifically tailored for the needs of theory and proof devel-
opment. Compared to raw ML, the Isabelle/Isar top-level provides a more
robust and comfortable development platform, with proper support for the-
ory development graphs, single-step transactions with unlimited undo, etc.
The Isabelle/Isar version of the Proof General user interface [1, 2] provides
an adequate front-end for interactive theory and proof development in this
advanced theorem proving environment.

Apart from the technical advances over bare-bones ML programming,
the main purpose of the Isar language is to provide a conceptually differ-
ent view on machine-checked proofs [15, 17]. “Isar” stands for “Intelligible
semi-automated reasoning”. Drawing from both the traditions of informal
mathematical proof texts and high-level programming languages, Isar offers a
versatile environment for structured formal proof documents. Thus properly
written Isar proofs become accessible to a broader audience than unstruc-
tured tactic scripts (which typically only provide operational information for
the machine). Writing human-readable proof texts certainly requires some
additional efforts by the writer to achieve a good presentation, both of formal
and informal parts of the text. On the other hand, human-readable formal
texts gain some value in their own right, independently of the mechanic
proof-checking process.

Despite its grand design of structured proof texts, Isar is able to assimilate
the old tactical style as an “improper” sub-language. This provides an easy
upgrade path for existing tactic scripts, as well as additional means for in-
teractive experimentation and debugging of structured proofs. Isabelle/Isar
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supports a broad range of proof styles, both readable and unreadable ones.

The Isabelle/Isar framework is generic and should work reasonably well
for any Isabelle object-logic that conforms to the natural deduction view of
the Isabelle/Pure framework. Major Isabelle logics like HOL [7], HOLCF [5],
FOL [11], and ZF [12] have already been set up for end-users. Nonetheless,
much of the existing body of theories still consist of old-style theory files
with accompanied ML code for proof scripts; this legacy will be gradually
converted in due time.

1.2 Quick start

1.2.1 Terminal sessions

Isar is already part of Isabelle. The low-level isabelle binary provides
option -I to run the Isabelle/Isar interaction loop at startup, rather than the
raw ML top-level. So the most basic way to do anything with Isabelle/Isar
is as follows:

isabelle -I HOL

> Welcome to Isabelle/HOL (Isabelle2002)

theory Foo = Main:

constdefs foo :: nmat '"foo == 1";
lemma "0 < foo" by (simp add: foo_def);
end

Note that any Isabelle/Isar command may be retracted by undo. See the
Isabelle/Isar Quick Reference (appendix A) for a comprehensive overview of
available commands and other language elements.

1.2.2 Proof General

Plain TTY-based interaction as above used to be quite feasible with tradi-
tional tactic based theorem proving, but developing Isar documents really
demands some better user-interface support. The Proof General environ-
ment by David Aspinall [1, 2] offers a generic Emacs interface for interactive
theorem provers that organizes all the cut-and-paste and forward-backward
walk through the text in a very neat way. In Isabelle/Isar, the current po-
sition within a partial proof document is equally important than the actual
proof state. Thus Proof General provides the canonical working environment
for Isabelle/Isar, both for getting acquainted (e.g. by replaying existing Isar
documents) and for production work.
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Proof General as default Isabelle interface

The Isabelle interface wrapper script provides an easy way to invoke
Proof General (including XEmacs or GNU Emacs). The default configuration
of Isabelle is smart enough to detect the Proof General distribution in several
canonical places (e.g. $ISABELLE_HOME/contrib/ProofGeneral). Thus the
capital Isabelle executable would already refer to the ProofGeneral/isar
interface without further ado.! The Isabelle interface script provides several
options; pass —7 to see its usage.

With the proper Isabelle interface setup, Isar documents may now be
edited by visiting appropriate theory files, e.g.

Isabelle (isabellehome)/src/HOL/Isar_examples/Summation.thy

Beginners may note the tool bar for navigating forward and backward
through the text (this depends on the local Emacs installation). Consult
the Proof General documentation [1] for further basic command sequences,
in particular “C-c C-return” and “C-c u”.

Proof General may be also configured manually by giving Isabelle settings
like this (see also [18]):

ISABELLE_INTERFACE=$ISABELLE_HOME/contrib/ProofGeneral/isar/interface
PROOFGENERAL_OPTIONS=""

You may have to change $ISABELLE_HOME/contrib/ProofGeneral to the
actual installation directory of Proof General.

Apart from the Isabelle command line, defaults for interface options may
be given by the PROOFGENERAL_OPTIONS setting. For example, the Emacs
executable to be used may be configured in Isabelle’s settings like this:

PROOFGENERAL_OPTIONS="-p xemacs-nomule"

Occasionally, a user’s ~/.emacs file contains code that is incompatible
with the (X)Emacs version used by Proof General, causing the interface
startup to fail prematurely. Here the -u false option helps to get the in-
terface process up and running. Note that additional Lisp customization
code may reside in proofgeneral-settings.el of $ISABELLE_HOME/etc or
$ISABELLE_HOME_USER/etc.

IThere is also a ProofGeneral/isa interface for old tactic scripts written in ML.
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The X-Symbol package

Proof General provides native support for the Emacs X-Symbol package [13],
which handles proper mathematical symbols displayed on screen. Pass option
-x true to the Isabelle interface script, or check the appropriate Proof Gen-
eral menu setting by hand. In any case, the X-Symbol package must have
been properly installed already.

Contrary to what you may expect from the documentation of X-Symbol,
the package is very easy to install and configures itself automatically. The
default configuration of Isabelle is smart enough to detect the X-Symbol pack-
age in several canonical places (e.g. $ISABELLE_HOME/contrib/x-symbol).

Using proper mathematical symbols in Isabelle theories can be very con-
venient for readability of large formulas. On the other hand, the plain ASCII
sources easily become somewhat unintelligible. For example, = would ap-
pear as \<Longrightarrow> according the default set of Isabelle symbols.
Nevertheless, the Isabelle document preparation system (see §1.3.1) will be
happy to print non-ASCII symbols properly. It is even possible to invent
additional notation beyond the display capabilities of Emacs and X-Symbol.

1.3 Isabelle/Isar theories

Isabelle/Isar offers the following main improvements over classic Isabelle.

1. A new theory format, occasionally referred to as “new-style theories”,
supporting interactive development and unlimited undo operation.

2. A formal proof document language designed to support intelligible semi-
automated reasoning. Instead of putting together unreadable tactic
scripts, the author is enabled to express the reasoning in way that is
close to usual mathematical practice. The old tactical style has been
assimilated as “improper” language elements.

3. A simple document preparation system, for typesetting formal de-
velopments together with informal text. The resulting hyper-linked
PDF documents are equally well suited for WWW presentation and as
printed copies.

The Isar proof language is embedded into the new theory format as a
proper sub-language. Proof mode is entered by stating some theorem or
lemma at the theory level, and left again with the final conclusion (e.g. via
qged). A few theory specification mechanisms also require some proof, such
as HOL’s typedef which demands non-emptiness of the representing sets.
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New-style theory files may still be associated with separate ML files con-
sisting of plain old tactic scripts. There is no longer any ML binding gener-
ated for the theory and theorems, though. ML functions theory, thm, and
thms retrieve this information from the context [10]. Nevertheless, migration
between classic Isabelle and Isabelle/Isar is relatively easy. Thus users may
start to benefit from interactive theory development and document prepara-
tion, even before they have any idea of the Isar proof language at all.

| Proof General does not support mixed interactive development of classic Isa-
® Dbelle theory files or tactic scripts, together with Isar documents. The “isa”
and “isar” versions of Proof General are handled as two different theorem proving
systems, only one of these may be active at the same time.

Manual conversion of existing tactic scripts may be done by running two
separate Proof General sessions, one for replaying the old script and the
other for the emerging Isabelle/Isar document. Also note that Isar supports
emulation commands and methods that support traditional tactic scripts
within new-style theories, see appendix B for more information.

1.3.1 Document preparation

Isabelle/Isar provides a simple document preparation system based on ex-
isting PDF-ITEX technology, with full support of hyper-links (both local
references and URLs), bookmarks, and thumbnails. Thus the results are
equally well suited for WWW browsing and as printed copies.

Isabelle generates XTEX output as part of the run of a logic session (see
also [18]). Getting started with a working configuration for common situa-
tions is quite easy by using the Isabelle mkdir and make tools. First invoke

isatool mkdir Foo

to initialize a separate directory for session Foo — it is safe to experi-
ment, since isatool mkdir never overwrites existing files. Ensure that
Foo/RO0T.ML holds ML commands to load all theories required for this ses-
sion; furthermore Foo/document/root . tex should include any special IXTEX
macro packages required for your document (the default is usually sufficient
as a start).

The session is controlled by a separate IsaMakefile (with crude source
dependencies by default). This file is located one level up from the Foo
directory location. Now invoke

isatool make Foo

to run the Foo session, with browser information and document preparation
enabled. Unless any errors are reported by Isabelle or IXTEX, the output
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will appear inside the directory ISABELLE_BROWSER_INFO, as reported by
the batch job in verbose mode.

You may also consider to tune the usedir options in IsaMakefile, for
example to change the output format from pdf to dvi, or activate the -D
option to retain a second copy of the generated KTEX sources.

See The Isabelle System Manual [18] for further details on Isabelle logic
sessions and theory presentation. The Isabelle/HOL tutorial [8] also covers
theory presentation issues.

1.3.2 How to write Isar proofs anyway?

This is one of the key questions, of course. First of all, the tactic script emu-
lation of Isabelle/Isar essentially provides a clarified version of the very same
unstructured proof style of classic Isabelle. Old-time users should quickly
become acquainted with that (slightly degenerative) view of Isar.

Writing proper Isar proof texts targeted at human readers is quite dif-
ferent, though. Experienced users of the unstructured style may even have
to unlearn some of their habits to master proof composition in Isar. In con-
trast, new users with less experience in old-style tactical proving, but a good
understanding of mathematical proof in general, often get started easier.

The present text really is only a reference manual on Isabelle/Isar, not
a tutorial. Nevertheless, we will attempt to give some clues of how the con-
cepts introduced here may be put into practice. Appendix A provides a quick
reference card of the most common Isabelle/Isar language elements. Appen-
dix B offers some practical hints on converting existing Isabelle theories and
proof scripts to the new format (without restructuring proofs).

Further issues concerning the Isar concepts are covered in the literature
[15, 19, 3, 4]. The author’s PhD thesis [17] presently provides the most com-
plete exposition of Isar foundations, techniques, and applications. A number
of example applications are distributed with Isabelle, and available via the
Isabelle WWW library (e.g. http://isabelle.in.tum.de/library/). As a general
rule of thumb, more recent Isabelle applications that also include a separate
“document” (in PDF) are more likely to consist of proper Isabelle/Isar the-
ories and proofs.


http://isabelle.in.tum.de/library/

Chapter 2

Syntax primitives

The rather generic framework of Isabelle/Isar syntax emerges from three
main syntactic categories: commands of the top-level Isar engine (covering
theory and proof elements), methods for general goal refinements (analogous
to traditional “tactics”), and attributes for operations on facts (within a cer-
tain context). Here we give a reference of basic syntactic entities underlying
Isabelle/Isar syntax in a bottom-up manner. Concrete theory and proof
language elements will be introduced later on.

In order to get started with writing well-formed Isabelle/Isar documents,
the most important aspect to be noted is the difference of inner versus outer
syntax. Inner syntax is that of Isabelle types and terms of the logic, while
outer syntax is that of Isabelle/Isar theory sources (including proofs). As a
general rule, inner syntax entities may occur only as atomic entities within
outer syntax. For example, the string "x + y" and identifier z are legal term
specifications within a theory, while x + y is not.

| Old-style Isabelle theories used to fake parts of the inner syntax of types, with

rather complicated rules when quotes may be omitted. Despite the minor
drawback of requiring quotes more often, the syntax of Isabelle/Isar is somewhat
simpler and more robust in that respect.

Printed theory documents usually omit quotes to gain readability (this
is a matter of ITEX macro setup, say via \isabellestyle, see also [18]).
Experienced users of Isabelle/Isar may easily reconstruct the lost technical
information, while mere readers need not care about quotes at all.

Isabelle/Isar input may contain any number of input termination char-
acters “;” (semicolon) to separate commands explicitly. This is particularly
useful in interactive shell sessions to make clear where the current command
is intended to end. Otherwise, the interpreter loop will continue to issue a
secondary prompt “#” until an end-of-command is clearly recognized from
the input syntax, e.g. encounter of the next command keyword.

Advanced interfaces such as Proof General [1] do not require explicit semi-

colons, the amount of input text is determined automatically by inspecting
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the present content of the Emacs text buffer. In the printed presentation of
Isabelle/Isar documents semicolons are omitted altogether for readability.

| Proof General requires certain syntax classification tables in order to achieve

properly synchronized interaction with the Isabelle/Isar process. These tables
need to be consistent with the Isabelle version and particular logic image to be used
in a running session (common object-logics may well change the outer syntax). The
standard setup should work correctly with any of the “official” logic images derived
from Isabelle/HOL (including HOLCF etc.). Users of alternative logics may need
to tell Proof General explicitly, e.g. by giving an option -k ZF (in conjunction with
-1 ZF to specify the default logic image).

2.1 Lexical matters

The Isabelle/Isar outer syntax provides token classes as presented below.
Note that some of these coincide (by full intention) with the inner lexical
syntax as presented in [10].

ident = letter quasiletter™
longident = ident.ident ... ident
symident = sym™ | symbol
nat = digit™
var = 7?ident | ?ident.nat
typefree = ’ident
typevar = Ttypefree | ?typefree . nat
string = " ... "
verbatim = {* ... *}
letter = a| ... |z|A| ... |Z
digit = 0] ... |9
quasiletter = letter | digit | _ | °
sym = V[ #[$[%[&][*[+]-]/]:]
<=l>17le| [ ||l

symbol = Y| I|A|V]| ...
The syntax of string admits any characters, including newlines; “"”
(double-quote) and “\” (backslash) need to be escaped by a backslash. Note
that ML-style control characters are not supported. The body of verbatim
may consist of any text not containing “*}”; this allows convenient inclusion
of quotes without further escapes.
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Comments take the form (x ... *) and may in principle be nested, just
as in ML. Note that these are source comments only, which are stripped after
lexical analysis of the input. The Isar document syntax also provides formal
comments that are considered as part of the text (see §2.2.2).

' Proof General does not handle nested comments properly; it is also unable to
® keep (*/{* and *) /*} apart, despite their rather different meaning. These
are inherent problems of Emacs legacy. Users should not be overly aggressive
about nesting or alternating these delimiters.

Mathematical symbols such as “V” are represented in plain ASCII as
“\<forall>”. Concerning Isabelle itself, any sequence of the form \<ident>
(or \\<ident>) is a legal symbol. Display of appropriate glyphs is a matter
of front-end tools, say the user-interface of Proof General plus the X-Symbol
package, or the KTEX macro setup of document output. A list of predefined
Isabelle symbols is given in [18, appendix A].

2.2 Common syntax entities

Subsequently, we introduce several basic syntactic entities, such as names,
terms, and theorem specifications, which have been factored out of the actual
[sar language elements to be described later.

Note that some of the basic syntactic entities introduced below (e.g.
name) act much like tokens rather than plain nonterminals (e.g. sort), es-
pecially for the sake of error messages. E.g. syntax elements like consts
referring to name or type would really report a missing name or type rather
than any of the constituent primitive tokens such as ident or string.

2.2.1 Names

Entity name usually refers to any name of types, constants, theorems etc.
that are to be declared or defined (so qualified identifiers are excluded here).
Quoted strings provide an escape for non-identifier names or those ruled out
by outer syntax keywords (e.g. "let"). Already existing objects are usually
referenced by nameref.
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name

symident

(nat)

parname

(O-uame- ()

nameref

i)

int

%

2.2.2 Comments

Large chunks of plain text are usually given verbatim, i.e. enclosed in
{* ... x}. For convenience, any of the smaller text units conforming to
nameref are admitted as well. A marginal comment is of the form -- text.
Any number of these may occur within Isabelle/Isar commands.

text

(G

nameref

comment

SN

2.2.3 Type classes, sorts and arities

Classes are specified by plain names. Sorts have a very simple inner syntax,
which is either a single class name ¢ or a list {¢, ..., ¢,} referring to the
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intersection of these classes. The syntax of type arities is given directly at
the outer level.

classdecl

—G@my :
- @ ~ nameref

sort

|

nameref

arity

]

sort

E

O+
o

simplearity

L@ sort @—f

2.2.4 Types and terms

<l

The actual inner Isabelle syntax, that of types and terms of the logic, is far
too sophisticated in order to be modelled explicitly at the outer theory level.
Basically, any such entity has to be quoted to turn it into a single token (the
parsing and type-checking is performed internally later). For convenience, a
slightly more liberal convention is adopted: quotes may be omitted for any
type or term that is already atomic at the outer level. For example, one may
just write x instead of "x". Note that symbolic identifiers (e.g. ++ or V) are
available as well, provided these have not been superseded by commands or
other keywords already (e.g. = or +).
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type

|

term
==
(var)
prop

Positional instantiations are indicated by giving a sequence of terms, or

“won

the placeholder “_” (underscore), which means to skip a position.

mst

term

.@

mnsts

Type declarations and definitions usually refer to typespec on the left-hand
side. This models basic type constructor application at the outer syntax level.
Note that only plain postfix notation is available here, but no infixes.

typespec

typefree
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2.2.5 Mixfix annotations

Mixfix annotations specify concrete inner syntax of Isabelle types and terms.
Some commands such as types (see §3.1.4) admit infixes only, while consts
(see §3.1.5) and syntax (see §3.1.6) support the full range of general mixfixes
and binders.

nfix

nat

. infix1 '
infixr

O
binder }—string) nat

structmizfiz

structure

Prios
T
&)

Here the string specifications refer to the actual mixfix template (see also
[10]), which may include literal text, spacing, blocks, and arguments (denoted
by “.7); the special symbol \<index> (printed as “I") represents an index
argument that specifies an implicit structure reference (see also §4.1.2). Infix
and binder declarations provide common abbreviations for particular mixfix
declarations. So in practice, mixfix templates mostly degenerate to literal

text for concrete syntax, such as “++” for an infix symbol, or “++1” for an
infix of an implicit structure.
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2.2.6 Proof methods

Proof methods are either basic ones, or expressions composed of methods
via “,” (sequential composition), “|” (alternative choices), “?” (try), “+”
(repeat at least once). In practice, proof methods are usually just a comma
separated list of nameref args specifications. Note that parentheses may be

dropped for single method specifications (with no arguments).

method

nameref

methods

)
&7

Proper use of Isar proof methods does not involve goal addressing. Never-
theless, specifying goal ranges may occasionally come in handy in emulating
tactic scripts. Note that [n—] refers to all goals, starting from n. All goals
may be specified by [!], which is the same as [1—].

goalspec

TEey

2.2.7 Attributes and theorems

Attributes (and proof methods, see §2.2.6) have their own “semi-inner” syn-
tax, in the sense that input conforming to args below is parsed by the at-
tribute a second time. The attribute argument specifications may be any
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sequence of atomic entities (identifiers, strings etc.), or properly bracketed
argument lists. Below atom refers to any atomic entity, including any key-
word conforming to symident.

atom

arqg

arg
attributes
© @
%—(nam erefH args

N
>/

Theorem specifications come in several flavors: azmdecl and thmdecl usu-
ally refer to axioms, assumptions or results of goal statements, while thmdef
collects lists of existing theorems. Existing theorems are given by thmref and
thmrefs, the former requires an actual singleton result. Any of these theorem
specifications may include lists of attributes both on the left and right hand
sides; attributes are applied to any immediately preceding fact. If names
are omitted, the theorems are not stored within the theorem database of the
theory or proof context; any given attributes are still applied, though.
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armdecl
o) ®
thmdecl
thmdef
thmref
thmrefs
=
thmbind

name attributes

attributes

2.2.8 Term patterns and declarations

Wherever explicit propositions (or term fragments) occur in a proof text,
casual binding of schematic term variables may be given specified via patterns
of the form “(is p; ... is p,)”. There are separate versions available for

16

terms and props. The latter provides a concl part with patterns referring

the (atomic) conclusion of a rule.

termpat

(O—(ie(term)~—0)
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proppat

O @y .

@D @ @D /

(18)~(prop)~—(concl)——(is)~(prop)

©

Declarations of local variables z :: 7 and logical propositions a : ¢ rep-
resent different views on the same principle of introducing a local scope. In
practice, one may usually omit the typing of vars (due to type-inference),
and the naming of propositions (due to implicit references of current facts).
In any case, Isar proof elements usually admit to introduce multiple such
items simultaneously.

vars
props

\PIOp /

The treatment of multiple declarations corresponds to the complementary
focus of vars versus props: in “x; ... x, :: 77 the typing refers to all variables,
while in a:¢; ... ¢, the naming refers to all propositions collectively. Isar
language elements that refer to vars or props typically admit separate typings
or namings via another level of iteration, with explicit and separators; e.g.
see fix and assume in §3.2.2.
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2.2.9 Antiquotations

thm : antiquotation
prop : antiquotation
term : antiquotation
typ : antiquotation

text : antiquotation
goals : antiquotation
subgoals : antiquotation

The text body of formal comments (see also §2.2.2) may contain antiquo-
tations of logical entities, such as theorems, terms and types, which are to be
presented in the final output produced by the Isabelle document preparation
system (see also §1.3.1).

Thus embedding of “@{term [show_types] "f(x) = a + x"}” withina
text block would cause (f::’a = ’a) (x::’a) = (a::’a) + x to appear in the
final BTEX document. Also note that theorem antiquotations may involve
attributes as well. For example, @{thm sym [no_vars]} would print the
statement where all schematic variables have been replaced by fixed ones,
which are easier to read.

antiquotation }—@—

antiquotation

——~—(thm )| options |{ thmrefs |———
"—(prop ) options | prop )—
\—(term)—{ options | ( term }—]
options [ type )—
"—(text ) options | name )—/
"—(goals )| options |/
‘—(subgoals )| options |——

options

(D )
D

L/
Co—
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option

Note that the syntax of antiquotations may not include source comments
(x ... %) or verbatim text {* ... *}.

@{thm @} prints theorems @. Note that attribute specifications may be in-
cluded as well (see also §2.2.7); the no-vars operation (see §4.3.1) would
be particularly useful to suppress printing of schematic variables.

Q@Q{prop ¢} prints a well-typed proposition ¢.
@{term t} prints a well-typed term ¢.
Q@Q{typ 7} prints a well-formed type 7.

@{text s} prints uninterpreted source text s. This is particularly useful to
print portions of text according to the Isabelle KTEX output style,
without demanding well-formedness (e.g. small pieces of terms that
should not be parsed or type-checked yet).

@{ goals} prints the current dynamic goal state. This is mainly for support
of tactic-emulation scripts within Isar — presentation of goal states
does not conform to actual human-readable proof documents. Please
do not include goal states into document output unless you really know
what you are doing!

@{subgoals} behaves almost like goals, except that it does not print the main

goal.

The following options are available to tune the output. Note that most
of these coincide with ML flags of the same names (see also [10]).

show-types = bool and show.-sorts = bool control printing of explicit type
and sort constraints.

long-names = bool forces names of types and constants etc. to be printed in
their fully qualified internal form.

eta-contract = bool prints terms in n-contracted form.
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display = bool indicates if the text is to be output as multi-line “display
material”, rather than a small piece of text without line breaks (which
is the default).

quotes = bool indicates if the output should be enclosed in double quotes.

mode = name adds name to the print mode to be used for presentation (see
also [10]). Note that the standard setup for KTEX output is already
present by default, including the modes “latex”, “zsymbols”, “symbols”.

margin = nat and indent = nat change the margin or indentation for pretty
printing of display material.

source = bool prints the source text of the antiquotation arguments, rather
than the actual value. Note that this does not affect well-formedness
checks of thm, term, etc. (only the text antiquotation admits arbitrary
output).

goals_limit = nat determines the maximum number of goals to be printed.

For boolean flags, “name = true” may be abbreviated as “name”. All of
the above flags are disabled by default, unless changed from ML.

Note that antiquotations do not only spare the author from tedious typing
of logical entities, but also achieve some degree of consistency-checking of
informal explanations with formal developments: well-formedness of terms
and types with respect to the current theory or proof context is ensured here.



Chapter 3

Basic language elements

Subsequently, we introduce the main part of Pure theory and proof com-
mands, together with fundamental proof methods and attributes. Chapter 4
describes further Isar elements provided by generic tools and packages (such
as the Simplifier) that are either part of Pure Isabelle or pre-installed in most
object logics. Chapter 5 refers to object-logic specific elements (mainly for

HOL and ZF).

[sar commands may be either proper document constructors, or improper
commands. Some proof methods and attributes introduced later are classi-
fied as improper as well. Improper Isar language elements, which are subse-
quently marked by “*”, are often helpful when developing proof documents,
while their use is discouraged for the final human-readable outcome. Typical
examples are diagnostic commands that print terms or theorems according
to the current context; other commands emulate old-style tactical theorem
proving.

3.1 Theory commands

3.1.1 Defining theories

header : toplevel — toplevel
theory : toplevel — theory
context® : toplevel — theory
end : theory — toplevel

Isabelle/Isar “new-style” theories are either defined via theory files or in-
teractively. Both theory-level specifications and proofs are handled uniformly
— occasionally definitional mechanisms even require some explicit proof as
well. In contrast, “old-style” Isabelle theories support batch processing only,
with the proof scripts collected in separate ML files.

The first “real” command of any theory has to be theory, which starts
a new theory based on the merge of existing ones. Just preceding theory,

21
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there may be an optional header declaration, which is relevant to docu-
ment preparation only; it acts very much like a special pre-theory markup
command (cf. §3.1.2 and §3.1.2). The end command concludes a theory
development; it has to be the very last command of any theory file loaded
in batch-mode. The theory context may be also changed interactively by
context without creating a new theory.

—Q:heor@—Qlame name O

—(context}—(nam@i

filespecs

name
parname

header tezt provides plain text markup just preceding the formal beginning
of a theory. In actual document preparation the corresponding KTEX
macro \isamarkupheader may be redefined to produce chapter or sec-
tion headings. See also §3.1.2 and §3.2.1 for further markup commands.

theory A = By + ---+ B,: starts a new theory A based on the merge of
existing theories By, ..., B,.

Due to inclusion of several ancestors, the overall theory structure
emerging in an Isabelle session forms a directed acyclic graph (DAG).
[sabelle’s theory loader ensures that the sources contributing to the
development graph are always up-to-date. Changed files are automat-
ically reloaded when processing theory headers interactively; batch-
mode explicitly distinguishes update_thy from use_thy, see also [10].

The optional files specification declares additional dependencies on ML
files. Files will be loaded immediately, unless the name is put in paren-
theses, which merely documents the dependency to be resolved later
in the text (typically via explicit use in the body text, see §3.1.9). In
reminiscence of the old-style theory system of Isabelle, A.thy may be



CHAPTER 3. BASIC LANGUAGE ELEMENTS 23

also accompanied by an additional file A.ML consisting of ML code that
is executed in the context of the finished theory A. That file should
not be included in the files dependency declaration, though.

context B enters an existing theory context, basically in read-only mode, so
only a limited set of commands may be performed without destroying
the theory. Just as for theory, the theory loader ensures that B is
loaded and up-to-date.

This command is occasionally useful for quick interactive experiments;

normally one should always commence a new context via theory.

end concludes the current theory definition or context switch. Note that
this command cannot be undone, but the whole theory definition has
to be retracted.

3.1.2 Markup commands

chapter : theory — theory
section : theory — theory
subsection : theory — theory
subsubsection : theory — theory
text : theory — theory

text.raw : theory — theory

Apart from formal comments (see §2.2.2), markup commands provide a
structured way to insert text into the document generated from a theory (see
[18] for more information on Isabelle’s document preparation tools).

subsection

subsubsection

(sbsoction)
(oubsubsection)-|

text_raw

chapter, section, subsection, and subsubsection mark chapter and sec-
tion headings.
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text specifies paragraphs of plain text, including references to formal entities
(see also §2.2.9 on “antiquotations”).

text_raw inserts I{TEX source into the output, without additional markup.
Thus the full range of document manipulations becomes available.

Any of these markup elements corresponds to a WTEX command with the
name prefixed by \isamarkup. For the sectioning commands this is a plain
macro with a single argument, e.g. \isamarkupchapter{...} for chapter.
The text markup results in a K'TEX environment \begin{isamarkuptext}

\end{isamarkuptext}, while text_-raw causes the text to be inserted
directly into the KTEX source.

Additional markup commands are available for proofs (see §3.2.1). Also
note that the header declaration (see §3.1.1) admits to insert section markup
just preceding the actual theory definition.

3.1.3 Type classes and sorts

classes : theory — theory
classrel : theory — theory (aziomatic!)
defaultsort : theory — theory

—

—(clas srel)—(nameref ﬂ
S

—@efaultsort)—{ sort ’7

classes ¢ C ¢ declares class ¢ to be a subclass of existing classes ¢. Cyclic
class structures are ruled out.

classrel ¢; C ¢y states a subclass relation between existing classes ¢; and
co. This is done axiomatically! The instance command (see §4.1.1)
provides a way to introduce proven class relations.

defaultsort s makes sort s the new default sort for any type variables
given without sort constraints. Usually, the default sort would be only
changed when defining a new object-logic.
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3.1.4 Primitive types and type abbreviations
types : theory — theory

typedecl : theory — theory
nonterminals : theory — theory
arities : theory — theory (aziomatic!)

—Q:ypedecl)—' typespec I

nonterminals ' name l

mamere ()

types (@)t = 7 introduces type synonym (@)t for existing type 7. Unlike ac-
tual type definitions, as are available in Isabelle/HOL for example, type
synonyms are just purely syntactic abbreviations without any logical
significance. Internally, type synonyms are fully expanded.

typedecl (@)t declares a new type constructor ¢, intended as an actual log-
ical type. Note that the Isabelle/HOL object-logic overrides typedecl
by its own version (§5.2.1).

nonterminals ¢ declares 0-ary type constructors ¢ to act as purely syntactic
types, i.e. nonterminal symbols of Isabelle’s inner syntax of terms or

types.

arities ¢ :: (S)s augments Isabelle’s order-sorted signature of types by new
type constructor arities. This is done axiomatically! The instance
command (see §4.1.1) provides a way to introduce proven type arities.
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3.1.5 Constants and simple definitions

consts : theory — theory
defs : theory — theory
constdefs : theory — theory

==y

—@ [ I axmdecl }—Cprop)T
—(constdef S>T—{ constdecl }—(prop)T

constdecl

) e

consts c¢ :: 0 declares constant ¢ to have any instance of type scheme o.
The optional mixfix annotations may attach concrete syntax to the
constants declared.

defs name : eqn introduces eqn as a definitional axiom for some existing
constant. See [10, §6] for more details on the form of equations admitted
as constant definitions.

The overloaded option declares definitions to be potentially overloaded.
Unless this option is given, a warning message would be issued for
any definitional equation with a more special type than that of the
corresponding constant declaration.

constdefs ¢ :: 0 egn combines declarations and definitions of constants, us-
ing the canonical name c-def for the definitional axiom.

3.1.6 Syntax and translations

syntax : theory — theory
translations : theory — theory
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o

name}—(output
—Ctranslat ions transpat

Q0008

transpat

!

string

o nameref 0

syntax (mode) decls is similar to consts decls, except that the actual log-
ical signature extension is omitted. Thus the context free grammar of
Isabelle’s inner syntax may be augmented in arbitrary ways, indepen-
dently of the logic. The mode argument refers to the print mode that
the grammar rules belong; unless the output indicator is given, all
productions are added both to the input and output grammar.

translations rules specifies syntactic translation rules (i.e. macros): parse /
print rules (=), parse rules (—), or print rules (~—). Translation pat-
terns may be prefixed by the syntactic category to be used for parsing;

the default is logic.

3.1.7 Axioms and theorems

axioms : theory — theory (aziomatic!)
lemmas : theory — theory
theorems : theory — theory
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axmdecl HPTO@T
thmrefs
and )

axioms a : ¢ introduces arbitrary statements as axioms of the meta-logic.
In fact, axioms are “axiomatic theorems”, and may be referred later
just as any other theorem.

theorems

Axioms are usually only introduced when declaring new logical systems.
Everyday work is typically done the hard way, with proper definitions
and proven theorems.

lemmas a = b retrieves and stores existing facts in the theory context, or
the specified locale (see also §4.1.2). Typical applications would also
involve attributes, to declare Simplifier rules, for example.

theorems is essentially the same as lemmas, but marks the result as a
different kind of facts.

3.1.8 Name spaces

global : theory — theory
local : theory — theory
hide : theory — theory

=

I[sabelle organizes any kind of name declarations (of types, constants,
theorems etc.) by separate hierarchically structured name spaces. Normally
the user does not have to control the behavior of name spaces by hand, yet
the following commands provide some way to do so.

global and local change the current name declaration mode. Initially, theo-
ries start in local mode, causing all names to be automatically qualified
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by the theory name. Changing this to global causes all names to be
declared without the theory prefix, until local is declared again.

Note that global names are prone to get hidden accidently later, when
qualified names of the same base name are introduced.

hide space names removes declarations from a given name space (which may
be class, type, or const). Hidden objects remain valid within the logic,
but are inaccessible from user input. In output, the special qualifier
“?7” is prefixed to the full internal name. Unqualified (global) names
may not be hidden.

3.1.9 Incorporating ML code

use : - — -
ML : - — -
ML_command : - — -

ML_setup : theory — theory
setup : theory — theory
method_setup : theory — theory

use name

@ { text )

ML_command

ML_setup

—Cmethod-setup)—(name

use file reads and executes ML commands from file. The current theory
context (if present) is passed down to the ML session, but may not be
modified. Furthermore, the file name is checked with the files depen-
dency declaration given in the theory header (see also §3.1.1).

ML text and ML_command text execute ML commands from text. The
theory context is passed in the same way as for use, but may not be
changed. Note that the output of ML.command is less verbose than
plain ML.
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ML_setup text executes ML commands from text. The theory context is
passed down to the ML session, and fetched back afterwards. Thus
text may actually change the theory as a side effect.

setup tert changes the current theory context by applying text, which refers
to an ML expression of type (theory -> theory) list. The setup
command is the canonical way to initialize any object-logic specific
tools and packages written in ML.

method_setup name = text description defines a proof method in the cur-
rent theory. The given text has to be an ML expression of type
Args.src -> Proof.context -> Proof.method. Parsing concrete
method syntax from Args.src input can be quite tedious in general.
The following simple examples are for methods without any explicit
arguments, or a list of theorems, respectively.

Method.no_args (Method.METHOD (fn facts => foobar_tac))
Method.thms_args (fn thms => Method.METHOD (fn facts => foobar_tac))
Method.ctxt_args (fn ctxt => Method.METHOD (fn facts => foobar_tac))
Method.thms_ctxt_args (fn thms => fn ctxt =>

Method .METHOD (fn facts => foobar_tac))

Note that mere tactic emulations may ignore the facts parameter
above. Proper proof methods would do something appropriate with
the list of current facts, though. Single-rule methods usually do strict
forward-chaining (e.g. by using Method.multi_resolves), while auto-
matic ones just insert the facts using Method.insert_tac before ap-
plying the main tactic.

3.1.10 Syntax translation functions

parse.ast_translation : theory — theory
parse_translation : theory — theory
print_translation : theory — theory
typed-print_translation : theory — theory
print_ast_translation : theory — theory
token.translation : theory — theory
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ﬂparse-ast-translation) va @
%arse-trmslation)—/
\—@rint_translatio@—/
%typed_print_translation)—/
LCprint_ ast_translat ion>—/
L(token-translation}—/

Syntax translation functions written in ML admit almost arbitrary ma-
nipulations of Isabelle’s inner syntax. Any of the above commands have a
single text argument that refers to an ML expression of appropriate type.

val parse_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list

val typed_print_translation :

(string * (bool -> typ -> term list -> term)) list
val print_ast_translation : (string * (ast list -> ast)) list
val token_translation :

(string * string * (string -> string * real)) list

See [10, §8] for more information on syntax transformations.

3.1.11 Oracles

oracle : theory — theory

Oracles provide an interface to external reasoning systems, without giving
up control completely — each theorem carries a derivation object recording
any oracle invocation. See [10, §6] for more information.

—(oracle name

oracle name = text declares oracle name to be ML function text, which has
to be of type Sign.sg * Object.T -> term.
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3.2 Proof commands

Proof commands perform transitions of Isar/VM machine configurations,
which are block-structured, consisting of a stack of nodes with three main
components: logical proof context, current facts, and open goals. Isar/VM
transitions are typed according to the following three different modes of op-
eration:

proof (prove) means that a new goal has just been stated that is now to be
proven; the next command may refine it by some proof method, and
enter a sub-proof to establish the actual result.

proof (state) is like a nested theory mode: the context may be augmented by
stating additional assumptions, intermediate results etc.

proof (chain) is intermediate between proof (state) and proof (prove): exist-
ing facts (i.e. the contents of the special “this” register) have been just
picked up in order to be used when refining the goal claimed next.

The proof mode indicator may be read as a verb telling the writer what
kind of operation may be performed next. The corresponding typings of
proof commands restricts the shape of well-formed proof texts to particular
command sequences. So dynamic arrangements of commands eventually turn
out as static texts of a certain structure. Appendix A gives a simplified
grammar of the overall (extensible) language emerging that way.

3.2.1 Markup commands

sect : proof — proof
subsect : proof — proof
subsubsect : proof — proof
txt : proof — proof
txt-raw : proof — proof

These markup commands for proof mode closely correspond to the ones
of theory mode (see §3.1.2).
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txt

3.2.2 Context elements

fix : proof(state) — proof (state)
assume : proof (state) — proof (state)
presume : proof(state) — proof (state)
def : proof(state) — proof (state)

The logical proof context consists of fixed variables and assumptions. The
former closely correspond to Skolem constants, or meta-level universal quan-
tification as provided by the Isabelle/Pure logical framework. Introducing
some arbitrary, but fized variable via “fix z” results in a local value that may
be used in the subsequent proof as any other variable or constant. Further-
more, any result - ¢[z] exported from the context will be universally closed
wrt. = at the outermost level: = Az . ¢ (this is expressed using Isabelle’s
meta-variables).

Similarly, introducing some assumption y has two effects. On the one
hand, a local theorem is created that may be used as a fact in subsequent
proof steps. On the other hand, any result y F ¢ exported from the context
becomes conditional wrt. the assumption: Fy = ¢. Thus, solving an
enclosing goal using such a result would basically introduce a new subgoal
stemming from the assumption. How this situation is handled depends on
the actual version of assumption command used: while assume insists on
solving the subgoal by unification with some premise of the goal, presume
leaves the subgoal unchanged in order to be proved later by the user.

Local definitions, introduced by “def z = t”, are achieved by combining
“fix 7 with another version of assumption that causes any hypothetical
equation z = t to be eliminated by the reflexivity rule. Thus, exporting
some result z = t F [z] yields F p[t].
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def

=/

(o) (=) (i
V=e

fix 7 introduces local arbitrary, but fized variables 7.

assume a: P and presume a: P introduce local theorems @ by assump-
tion. Subsequent results applied to an enclosing goal (e.g. by show) are
handled as follows: assume expects to be able to unify with existing
premises in the goal, while presume leaves ¥ as new subgoals.

Several lists of assumptions may be given (separated by and); the
resulting list of current facts consists of all of these concatenated.

def a: z =t introduces a local (non-polymorphic) definition. In results ex-
ported from the context, z is replaced by ¢. Basically, “def z = t”
abbreviates “fix z assume z = t”, with the resulting hypothetical
equation solved by reflexivity.

The default name for the definitional equation is x_def.

The special name prems refers to all assumptions of the current context
as a list of theorems.

3.2.3 Facts and forward chaining

note : proof(state) — proof (state)

then : proof(state) — proof (chain)
from : proof(state) — proof (chain)
with : proof (state) — proof (chain)
using : proof (prove) — proof (prove)

New facts are established either by assumption or proof of local state-
ments. Any fact will usually be involved in further proofs, either as explicit
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arguments of proof methods, or when forward chaining towards the next
goal via then (and variants); from and with are composite forms involving
note. The using elements augments the collection of used facts after a goal
has been stated. Note that the special theorem name this refers to the most
recently established facts, but only before issuing a follow-up claim.

—@ thmrefs
and

C@—

note a = b recalls existing facts b, binding the result as a. Note that at-
tributes may be involved as well, both on the left and right hand sides.

then indicates forward chaining by the current facts in order to establish
the goal to be claimed next. The initial proof method invoked to refine
that will be offered the facts to do “anything appropriate” (see also
§3.2.5). For example, method rule (see §3.2.6) would typically do an
elimination rather than an introduction. Automatic methods usually
insert the facts into the goal state before operation. This provides a
simple scheme to control relevance of facts in automated proof search.

from b abbreviates “note b then”; thus then is equivalent to “from this”.

with b abbreviates “from b and this”; thus the forward chaining is from
earlier facts together with the current ones.

using b augments the facts being currently indicated for use by a subsequent
refinement step (such as apply or proof).

Forward chaining with an empty list of theorems is the same as not
chaining at all. Thus “from nothing” has no effect apart from entering
prove(chain) mode, since nothing is bound to the empty list of theorems.

Basic proof methods (such as rule) expect multiple facts to be given
in their proper order, corresponding to a prefix of the premises of the rule
involved. Note that positions may be easily skipped using something like
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from _ a b, for example. This involves the trivial rule PROP ¢y = PROP v,
which happens to be bound in Isabelle/Pure as “_” (underscore).

Automated methods (such as simp or auto) just insert any given facts
before their usual operation. Depending on the kind of procedure involved,
the order of facts is less significant here.

3.2.4 Goal statements

lemma : theory — proof (prove)
theorem : theory — proof (prove)
corollary : theory — proof (prove)

have : proof(state) | proof (chain) — proof (prove)
show : proof (state) | proof (chain) — proof (prove)
hence : proof(state) — proof (prove)

thus : proof(state) — proof (prove)

From a theory context, proof mode is entered by an initial goal command
such as lemma, theorem, or corollary. Within a proof, new claims may
be introduced locally as well; four variants are available here to indicate
whether forward chaining of facts should be performed initially (via then),
and whether the final result is meant to solve some pending goal.

Goals may consist of multiple statements, resulting in a list of facts even-
tually. A pending multi-goal is internally represented as a meta-level con-
junction (printed as &&), which is usually split into the corresponding num-
ber of sub-goals prior to an initial method application, via proof (§3.2.5) or
apply (§3.2.9). The induct method covered in §4.3.5 acts on multiple claims
simultaneously.

Claims at the theory level may be either in short or long form. A short
goal merely consists of several simultaneous propositions (often just one). A
long goal includes an explicit context specification for the subsequent conclu-
sions, involving local parameters; here the role of each part of the statement
is explicitly marked by separate keywords (see also §4.1.2).

J
i

longgoal

. theorem ‘
c

orollary



CHAPTER 3. BASIC LANGUAGE ELEMENTS 37

Ca

longgoal

shows
thndec

lemma a: P enters proof mode with @ as main goal, eventually resulting
in some fact = @ to be put back into the theory context, or into the
specified locale (cf. §4.1.2). An additional context specification may
build up an initial proof context for the subsequent claim; this includes
local definitions and syntax as well, see the definition of conteztelem in
§4.1.2.

theorem a: @ and corollary a: @ are essentially the same as lemma a: P,
but the facts are internally marked as being of a different kind. This
discrimination acts like a formal comment.

have a: ¥ claims a local goal, eventually resulting in a fact within the cur-
rent logical context. This operation is completely independent of any
pending sub-goals of an enclosing goal statements, so have may be
freely used for experimental exploration of potential results within a
proof body.

show a: P is like have a: @ plus a second stage to refine some pending
sub-goal for each one of the finished result, after having been exported
into the corresponding context (at the head of the sub-proof of this
show command).

To accommodate interactive debugging, resulting rules are printed be-
fore being applied internally. Even more, interactive execution of show
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predicts potential failure and displays the resulting error as a warning
beforehand. Watch out for the following message:

Problem! Local statement will fail to solve any pending goal

hence abbreviates “then have”, i.e. claims a local goal to be proven by
forward chaining the current facts. Note that hence is also equivalent
to “from this have”.

thus abbreviates “then show”. Note that thus is also equivalent to
“from this show”.

Any goal statement causes some term abbreviations (such as 7thesis) to
be bound automatically, see also §3.2.7. Furthermore, the local context of a
(non-atomic) goal is provided via the rule-context case.

| Isabelle/Isar suffers theory-level goal statements to contain unbound schematic

variables, although this does not conform to the aim of human-readable proof
documents! The main problem with schematic goals is that the actual outcome is
usually hard to predict, depending on the behavior of the proof methods applied
during the course of reasoning. Note that most semi-automated methods heavily
depend on several kinds of implicit rule declarations within the current theory
context. As this would also result in non-compositional checking of sub-proofs,
local goals are not allowed to be schematic at all. Nevertheless, schematic goals
do have their use in Prolog-style interactive synthesis of proven results, usually
by stepwise refinement via emulation of traditional Isabelle tactic scripts (see also
§3.2.9). In any case, users should know what they are doing.

3.2.5 Initial and terminal proof steps

proof : proof(prove) — proof (state)
qed : proof(state) — proof (state) | theory
by : proof(prove) — proof (state) | theory
. proof (prove) — proof (state) | theory
.+ proof (prove) — proof (state) | theory
sorry : proof (prove) — proof (state) | theory

Arbitrary goal refinement via tactics is considered harmful. Properly, the
Isar framework admits proof methods to be invoked in two places only.

1. An initial refinement step proof m; reduces a newly stated goal to a
number of sub-goals that are to be solved later. Facts are passed to my
for forward chaining, if so indicated by proof (chain) mode.
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2. A terminal conclusion step qed ms is intended to solve remaining goals.
No facts are passed to my.

The only other (proper) way to affect pending goals in a proof body is by
show, which involves an explicit statement of what is to be solved eventually.
Thus we avoid the fundamental problem of unstructured tactic scripts that
consist of numerous consecutive goal transformations, with invisible effects.

As a general rule of thumb for good proof style, initial proof methods
should either solve the goal completely, or constitute some well-understood
reduction to new sub-goals. Arbitrary automatic proof tools that are prone
leave a large number of badly structured sub-goals are no help in continuing
the proof document in an intelligible manner.

Unless given explicitly by the user, the default initial method is “rule”,
which applies a single standard elimination or introduction rule according to
the topmost symbol involved. There is no separate default terminal method.
Any remaining goals are always solved by assumption in the very last step.

{ ged

‘N
>/

sorry

i

proof m; refines the goal by proof method my; facts for forward chaining
are passed if so indicated by proof (chain) mode.

qged my refines any remaining goals by proof method my and concludes the
sub-proof by assumption. If the goal had been show (or thus), some
pending sub-goal is solved as well by the rule resulting from the result
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exported into the enclosing goal context. Thus qed may fail for two
reasons: either my fails, or the resulting rule does not fit to any pend-
ing goal' of the enclosing context. Debugging such a situation might
involve temporarily changing show into have, or weakening the local
context by replacing occurrences of assume by presume.

by m; my is a terminal proof; it abbreviates proof m; qed msy, but
with backtracking across both methods. Debugging an unsuccessful
by m; my commands might be done by expanding its definition; in
many cases proof m; (or even apply m,) is already sufficient to see
the problem.

[43 2
.

is a default proof; it abbreviates by rule.

“ is a trivial proof; it abbreviates by this.

sorry is a fake proof pretending to solve the pending claim without fur-
ther ado. This only works in interactive development, or if the
quick_and_dirty flag is enabled. Facts emerging from fake proofs
are not the real thing. Internally, each theorem container is tainted by
an oracle invocation, which is indicated as “[!]” in the printed result.

The most important application of sorry is to support experimentation
and top-down proof development.

3.2.6 Fundamental methods and attributes

The following proof methods and attributes refer to basic logical operations
of Isar. Further methods and attributes are provided by several generic and
object-logic specific tools and packages (see chapters 4 and 5).

— : method
assumption : method
this : method
rule : method
rules : method

ntro . attribute

elim : attribute

dest : attribute

rule : attribute

OF : attribute
of : attribute

! This includes any additional “strong” assumptions as introduced by assume.
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L@f

rulemod

®
@
%

rule del

(7)ot

#

conel)-()

—” does nothing but insert the forward chaining facts as premises into the
goal. Note that command proof without any method actually performs
a single reduction step using the rule method; thus a plain do-nothing
proof step would be “proof —” rather than proof alone.

44

assumption solves some goal by a single assumption step. All given facts
are guaranteed to participate in the refinement; this means there may
be only 0 or 1 in the first place. Recall that ged (see §3.2.5) already
concludes any remaining sub-goals by assumption, so structured proofs
usually need not quote the assumption method at all.
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this applies all of the current facts directly as rules. Recall that “.” (dot)

abbreviates “by this”.

rule @ applies some rule given as argument in backward manner; facts are

rules

ntro,

used to reduce the rule before applying it to the goal. Thus rule without
facts is plain introduction, while with facts it becomes elimination.

When no arguments are given, the rule method tries to pick appropriate
rules automatically, as declared in the current context using the intro,
elim, dest attributes (see below). This is the default behavior of proof
and “..” (double-dot) steps (see §3.2.5).

performs intuitionistic proof search, depending on specifically declared
rules from the context, or given as explicit arguments. Chained facts
are inserted into the goal before commencing proof search; “rules!”
means to include the current prems as well.

44‘77

Rules need to be classified as intro, elim, or dest; here the indica-
tor refers to “safe” rules, which may be applied aggressively (without
considering back-tracking later). Rules declared with “?” are ignored
in proof search (the single-step rule method still observes these). An
explicit weight annotation may be given as well; otherwise the number
of rule premises will be taken into account here.

elim, and dest declare introduction, elimination, and destruct rules,
to be used with the rule and rules methods. Note that the latter will
ignore rules declared with “?”, while “!I” are used most aggressively.

The classical reasoner (see §4.3.4) introduces its own variants of these
attributes; use qualified names to access the present versions of Isa-
belle/Pure, i.e. Pure.intro or CPure.intro.

rule del undeclares introduction, elimination, or destruct rules.

OF @ applies some theorem to given rules @ (in parallel). This corresponds

to the MRS operator in ML [10, §5], but note the reversed order. Po-

sitions may be effectively skipped by including “.” (underscore) as ar-
gument.

of t performs positional instantiation. The terms ¢ are substituted for any

schematic variables occurring in a theorem from left to right; “_” (un-
derscore) indicates to skip a position. Arguments following a “concl:”
specification refer to positions of the conclusion of a rule.
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3.2.7 Term abbreviations

let : proof (state) — proof (state)
is : syntax

Abbreviations may be either bound by explicit let p = ¢ statements,
or by annotating assumptions or goal statements with a list of patterns
“(is py ... is p,)”. In both cases, higher-order matching is invoked to bind
extra-logical term variables, which may be either named schematic variables
of the form 7z, or nameless dummies “_” (underscore). Note that in the let
form the patterns occur on the left-hand side, while the is patterns are in
postfix position.

Polymorphism of term bindings is handled in Hindley-Milner style, similar
to ML. Type variables referring to local assumptions or open goal statements
are fized, while those of finished results or bound by let may occur in arbitrary
instances later. Even though actual polymorphism should be rarely used in
practice, this mechanism is essential to achieve proper incremental type-
inference, as the user proceeds to build up the Isar proof text from left to
right.

Term abbreviations are quite different from local definitions as introduced
via def (see §3.2.2). The latter are visible within the logic as actual equa-
tions, while abbreviations disappear during the input process just after type
checking. Also note that def does not support polymorphism.

and )

The syntax of is patterns follows termpat or proppat (see §2.2.8).

let p =t binds any text variables in patters p by simultaneous higher-order
matching against terms ¢.

(is P) resembles let, but matches 7 against the preceding statement. Also
note that is is not a separate command, but part of others (such as
assume, have etc.).

Some automatic term abbreviations for goals and facts are available as
well. For any open goal, 7thesis refers to its object-level statement, abstracted
over any meta-level parameters (if present). Likewise, 7this is bound for fact



CHAPTER 3. BASIC LANGUAGE ELEMENTS 44

statements resulting from assumptions or finished goals. In case 7this refers
to an object-logic statement that is an application f(¢), then ¢ is bound to
the special text variable “...” (three dots). The canonical application of the
latter are calculational proofs (see §4.2.2).

3.2.8 Block structure

next : proof(state) — proof (state)
{ : proof(state) — proof (state)
} : proof (state) — proof (state)

While Isar is inherently block-structured, opening and closing blocks is
mostly handled rather casually, with little explicit user-intervention. Any
local goal statement automatically opens two blocks, which are closed again
when concluding the sub-proof (by ged etc.). Sections of different context
within a sub-proof may be switched via next, which is just a single block-
close followed by block-open again. The effect of next is to reset the local
proof context; there is no goal focus involved here!

For slightly more advanced applications, there are explicit block paren-
theses as well. These typically achieve a stronger forward style of reasoning.

next switches to a fresh block within a sub-proof, resetting the local context
to the initial one.

{ and } explicitly open and close blocks. Any current facts pass through “{”
unchanged, while “}” causes any result to be exported into the enclosing
context. Thus fixed variables are generalized, assumptions discharged,
and local definitions unfolded (cf. §3.2.2). There is no difference of
assume and presume in this mode of forward reasoning — in contrast
to plain backward reasoning with the result exported at show time.

3.2.9 Emulating tactic scripts

The Isar provides separate commands to accommodate tactic-style proof
scripts within the same system. While being outside the orthodox Isar proof
language, these might come in handy for interactive exploration and debug-
ging, or even actual tactical proof within new-style theories (to benefit from
document preparation, for example). See also §4.3.2 for actual tactics, that
have been encapsulated as proof methods. Proper proof methods may be
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used in scripts, too.

apply” : proof (prove) — proof (prove)

apply-end® : proof (state) — proof (state)
done™ : proof (prove) — proof (state)
defer” : proof — proof

prefer® : proof — proof
back® : proof — proof
declare™ : theory — theory

end

apply-

:

defer

o)

declare thmrefs

apply m applies proof method m in initial position, but unlike proof it
retains “proof (prove)” mode. Thus consecutive method applications
may be given just as in tactic scripts.

@

Facts are passed to m as indicated by the goal’s forward-chain mode,
and are consumed afterwards. Thus any further apply command would
always work in a purely backward manner.

apply-end (m) applies proof method m as if in terminal position. Basically,
this simulates a multi-step tactic script for qed, but may be given
anywhere within the proof body.

No facts are passed to m. Furthermore, the static context is that of
the enclosing goal (as for actual gqed). Thus the proof method may not
refer to any assumptions introduced in the current body, for example.

done completes a proof script, provided that the current goal state is solved
completely. Note that actual structured proof commands (e.g. “.” or
sorry) may be used to conclude proof scripts as well.
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defer n and prefer n shuffle the list of pending goals: defer puts off goal n
to the end of the list (n = 1 by default), while prefer brings goal n to
the top.

back does back-tracking over the result sequence of the latest proof com-
mand. Basically, any proof command may return multiple results.

declare thms declares theorems to the current theory context (or the speci-
fied locale, see also §4.1.2). No theorem binding is involved here, unlike
theorems or lemmas (cf. §3.1.7), so declare only has the effect of
applying attributes as included in the theorem specification.

Any proper Isar proof method may be used with tactic script commands
such as apply. A few additional emulations of actual tactics are provided as
well; these would be never used in actual structured proofs, of course.

3.2.10 Meta-linguistic features

oops : proof — theory

The oops command discontinues the current proof attempt, while con-
sidering the partial proof text as properly processed. This is conceptually
quite different from “faking” actual proofs via sorry (see §3.2.5): oops does
not observe the proof structure at all, but goes back right to the theory
level. Furthermore, oops does not produce any result theorem — there is no
intended claim to be able to complete the proof anyhow.

A typical application of oops is to explain Isar proofs within the system
itself, in conjunction with the document preparation tools of Isabelle de-
scribed in [18]. Thus partial or even wrong proof attempts can be discussed
in a logically sound manner. Note that the Isabelle KTEX macros can be
easily adapted to print something like “...” instead of an “oops” keyword.

The oops command is undo-able, unlike kill (see §3.3.3). The effect is
to get back to the theory just before the opening of the proof.
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3.3 Other commands

3.3.1 Diagnostics

*

pr* : - — -
thm™ : theory | proof — theory | proof
term* : theory | proof — theory | proof
prop* : theory | proof — theory | proof

typ* : theory | proof — theory | proof

These diagnostic commands assist interactive development. Note that
undo does not apply here, the theory or proof configuration is not changed.

(o)

N

() [t }—
—@ { term

(trp) (type)—

modes

Oy

pr goals, prems prints the current proof state (if present), including the proof
context, current facts and goals. The optional limit arguments affect
the number of goals and premises to be displayed, which is initially 10
for both. Omitting limit values leaves the current setting unchanged.
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thm @ retrieves theorems from the current theory or proof context. Note
that any attributes included in the theorem specifications are applied to
a temporary context derived from the current theory or proof; the result
is discarded, i.e. attributes involved in @ do not have any permanent
effect.

term ¢t and prop ¢ read, type-check and print terms or propositions ac-
cording to the current theory or proof context; the inferred type of ¢ is
output as well. Note that these commands are also useful in inspecting
the current environment of term abbreviations.

typ 7 reads and prints types of the meta-logic according to the current the-
ory or proof context.

All of the diagnostic commands above admit a list of modes to be spec-
ified, which is appended to the current print mode (see also [10]). Thus
the output behavior may be modified according particular print mode fea-
tures. For example, pr (latex zsymbols symbols) would print the current
proof state with mathematical symbols and special characters represented in
ITEX source, according to the Isabelle style [18].

Note that antiquotations (cf. §2.2.9) provide a more systematic way to
include formal items into the printed text document.

3.3.2 Inspecting the context

print_.commands® : - — -
print_syntax™ : theory | proof — theory | proof
print_-methods™ : theory | proof — theory | proof
print_attributes®™ : theory | proof — theory | proof

print_theorems™ : theory | proof — theory | proof

thms_containing™ : theory | proof — theory | proof

thms_deps® : theory | proof — theory | proof
print_facts™ : proof — proof

print_binds* : proof — proof

—(thms-containing)

—(thm_ deps }— thmrefs ‘—
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These commands print certain parts of the theory and proof context.
Note that there are some further ones available, such as for the set of rules
declared for simplifications.

print_commands prints Isabelle’s outer theory syntax, including keywords
and command.

print_syntax prints the inner syntax of types and terms, depending on the
current context. The output can be very verbose, including grammar
tables and syntax translation rules. See [10, §7, §8] for further infor-
mation on Isabelle’s inner syntax.

print_methods prints all proof methods available in the current theory
context.

print_attributes prints all attributes available in the current theory con-
text.
print_-theorems prints theorems available in the current theory context.

In interactive mode this actually refers to the theorems left by the last
transaction; this allows to inspect the result of advanced definitional
packages, such as datatype.

thms_containing ¢ retrieves theorems from the theory context containing
all of the constants occurring in the terms ¢. Note that giving the
empty list yields all theorems of the current theory.

thm-deps @ visualizes dependencies of facts, using Isabelle’s graph browser
tool (see also [18]).

print_facts prints any named facts of the current context, including as-
sumptions and local results.

print_binds prints all term abbreviations present in the context.

3.3.3 History commands

undo™ : - — .
redo™ : . — -
kill*™* . . — .

The Isabelle/Isar top-level maintains a two-stage history, for theory and
proof state transformation. Basically, any command can be undone using
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undo, excluding mere diagnostic elements. Its effect may be revoked via
redo, unless the corresponding undo step has crossed the beginning of a
proof or theory. The kill command aborts the current history node alto-
gether, discontinuing a proof or even the whole theory. This operation is not
undo-able.

| History commands should never be used with user interfaces such as Proof Gen-
® eral [1, 2], which takes care of stepping forth and back itself. Interfering by
manual undo, redo, or even kill commands would quickly result in utter confu-
sion.

3.3.4 System operations

cd”

pwd”

use_thy™
use-thy.only™
update_thy”
update_thy_only”

L1l

cd name changes the current directory of the Isabelle process.
pwd prints the current working directory.

use_thy, use_thy_only, update_thy, update_-thy._-only load some the-
ory given as name argument. These commands are basically the same
as the corresponding ML functions? (see also [10, §1,86]). Note that
both the ML and Isar versions may load new- and old-style theories
alike.

These system commands are scarcely used when working with the
Proof General interface, since loading of theories is done transparently.

2The ML versions also change the implicit theory context to that of the theory loaded.
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Generic tools and packages

4.1 Theory specification commands

4.1.1 Axiomatic type classes

axclass : theory — theory
instance : theory — proof (prove)
intro-classes : method

Axiomatic type classes are provided by Isabelle/Pure as a definitional
interface to type classes (cf. §3.1.3). Thus any object logic may make use of
this light-weight mechanism of abstract theories [14]. There is also a tutorial
on using axiomatic type classes in Isabelle [16] that is part of the standard
Isabelle documentation.

—(axclass)—' classdecl }T—{ axmdecl }—Cprop)—T

instance nameref nameref

simplearity

axclass ¢ C ¢ azxms defines an axiomatic type class as the intersection of
existing classes, with additional axioms holding. Class axioms may not
contain more than one type variable. The class axioms (with implicit
sort constraints added) are bound to the given names. Furthermore a
class introduction rule is generated (being bound as c.intro); this rule
is employed by method intro-classes to support instantiation proofs of
this class.

The “axioms” are stored as theorems according to the given name spec-
ifications, adding the class name ¢ as name space prefix; the same facts
are also stored collectively as c.azioms.

o1
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instance ¢; C ¢; and instance ¢ :: (3)c¢ setup a goal stating a class relation
or type arity. The proof would usually proceed by intro-classes, and
then establish the characteristic theorems of the type classes involved.
After finishing the proof, the theory will be augmented by a type sig-
nature declaration corresponding to the resulting theorem.

intro-classes repeatedly expands all class introduction rules of this theory.
Note that this method usually needs not be named explicitly, as it is
already included in the default proof step (of proof etc.). In particular,
instantiation of trivial (syntactic) classes may be performed by a single
“..7 proof step.

4.1.2 Locales and local contexts

Locales are named local contexts, consisting of a list of declaration elements
that are modeled after the Isar proof context commands (cf. §3.2.2).

Localized commands

Existing locales may be augmented later on by adding new facts. Note that
the actual context definition may not be changed! Several theory commands
that produce facts in some way are available in “localized” versions, referring
to a named locale instead of the global theory context.

locale

(O—~(am)~(name)-())

Emerging facts of localized commands are stored in two versions, both in
the target locale and the theory (after export). The latter view produces a
qualified binding, using the locale name as a name space prefix.

For example, “lemmas (in loc) a = b” retrieves facts b from the locale
context of loc and augments its body by an appropriate “notes” element (see
below). The exported view of a, after discharging the locale context, is stored
as loc.a within the global theory. A localized goal “lemma (in loc) a : ¢”
works similarly, only that the fact emerges through the subsequent proof,
which may refer to the full infrastructure of the locale context (covering
local parameters with typing and concrete syntax, assumptions, definitions
etc.). Most notably, fact declarations of the locale are active during the proof
as well (e.g. local simp rules).
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Locale specifications

locale : theory — theory
print_locale® : theory | proof — theory | proof
print_locales™ : theory | proof — theory | proof

—ClocaleD—CnameD

©
—(print-locale)—{ localeexpr }—

localeexpr

contextexpr

contextelem

contexterpr

(O contestonpr |0

\—{ contextexpr }T{L@—T/
(+)

N
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contextelem
fizes
name
assumes
defines
notes
@ thmrefs

includes

—(includesH contextexpr ’—

o4
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locale loc = import + body defines new locale loc as a context consisting
of a certain view of existing locales (import) plus some additional ele-
ments (body). Both import and body are optional; the degenerate form
locale loc defines an empty locale, which may still be useful to collect
declarations of facts later on. Type-inference on locale expressions au-
tomatically takes care of the most general typing that the combined
context elements may acquire.

The import consists of a structured context expression, consisting of
references to existing locales, renamed contexts, or merged contexts.
Renaming uses positional notation: ¢ 7 means that (a prefix) the fixed
parameters of context ¢ are named according to 7; a “_” (underscore).
means to skip that position. Also note that concrete syntax only works
with the original name. Merging proceeds from left-to-right, suppress-
ing any duplicates stemming from different paths through the import
hierarchy.

The body consists of basic context elements, further context expressions
may be included as well.

fixes z :: 7 (mz) declares a local parameter of type 7 and mixfix an-
notation mz (both are optional). The special syntax declaration
“(structure)” means that x may be referenced implicitly in this
context.

assumes a: @ introduces local premises, similar to assume within a
proof (cf. §3.2.2).

defines a: © =t defines a previously declared parameter. This is close
to def within a proof (cf. §3.2.2), but defines takes an equational
proposition instead of variable-term pair. The left-hand side of the
equation may have additional arguments, e.g. “defines f 7 = t”.

notes a = b reconsiders facts within a local context. Most notably,
this may include arbitrary declarations in any attribute specifica-
tions included here, e.g. a local simp rule.

includes ¢ copies the specified context in a statically scoped manner.

In contrast, the initial import specification of a locale expression
maintains a dynamic relation to the locales being referenced (ben-
efiting from any later fact declarations in the obvious manner).

Note that “(is p)” patterns given in the syntax of assumes and defines
above are actually illegal in locale definitions. In the long goal format
of §3.2.4, term bindings may be included as expected, though.
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print_locale import + body prints the specified locale expression in a flat-
tened form. The notable special case print-locale loc just prints the
contents of the named locale, but keep in mind that type-inference will
normalize type variables according to the usual alphabetical order.

print_locales prints the names of all locales of the current theory.

4.2 Derived proof schemes

4.2.1 Generalized elimination

obtain : proof(state) — proof (prove)

Generalized elimination means that additional elements with certain
properties may be introduced in the current context, by virtue of a locally
proven “soundness statement”. Technically speaking, the obtain language
element is like a declaration of fix and assume (see also see §3.2.2), together
with a soundness proof of its additional claim. According to the nature of
existential reasoning, assumptions get eliminated from any result exported
from the context later, provided that the corresponding parameters do not
occur in the conclusion.

obtain

where props

and

obtain is defined as a derived Isar command as follows, where b shall
refer to (optional) facts indicated for forward chaining.

(facts b)
obtain 7 where a: § (proof) =
have A thesis . (AT . P = thesis) = thesis
proof succeed
fix thesis
assume that [intro?]: N\T .p = thesis
thus thesis
apply —
using b (proof)
qed
fix 7 assume™* a: @
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Typically, the soundness proof is relatively straight-forward, often just by
canonical automated tools such as “by simp” or “by blast”. Accordingly, the
“that” reduction above is declared as simplification and introduction rule.

In a sense, obtain represents at the level of Isar proofs what would be
meta-logical existential quantifiers and conjunctions. This concept has a
broad range of useful applications, ranging from plain elimination (or in-
troduction) of object-level existentials and conjunctions, to elimination over
results of symbolic evaluation of recursive definitions, for example. Also note
that obtain without parameters acts much like have, where the result is
treated as a genuine assumption.

4.2.2 Calculational reasoning

also : proof(state) — proof (state)
finally : proof (state) — proof (chain)
moreover : proof(state) — proof (state)
ultimately : proof (state) — proof (chain)
print_trans_rules® : theory | proof — theory | proof
trans : attribute
sym : attribute
symmetric : attribute

Calculational proof is forward reasoning with implicit application of tran-
sitivity rules (such those of =, <, <). Isabelle/Isar maintains an auxiliary
register calculation for accumulating results obtained by transitivity com-
posed with the current result. Command also updates calculation involving
this, while finally exhibits the final calculation by forward chaining towards
the next goal statement. Both commands require valid current facts, i.e. may
occur only after commands that produce theorems such as assume, note,
or some finished proof of have, show etc. The moreover and ultimately
commands are similar to also and finally, but only collect further results in
calculation without applying any rules yet.

Also note that the implicit term abbreviation “...” has its canonical appli-
cation with calculational proofs. It refers to the argument of the preceding
statement. (The argument of a curried infix expression happens to be its
right-hand side.)

Isabelle/Isar calculations are implicitly subject to block structure in the
sense that new threads of calculational reasoning are commenced for any
new block (as opened by a local goal, for example). This means that, apart
from being able to nest calculations, there is no separate begin-calculation
command required.
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The Isar calculation proof commands may be defined as follows:!

alsoy = note calculation = this
also,;1 = note calculation = trans [OF calculation this]
finally = also from calculation
moreover = note calculation = calculation this
ultimately = moreover from calculation

also

trans
ldell

also (@) maintains the auxiliary calculation register as follows. The first
occurrence of also in some calculational thread initializes calculation by
this. Any subsequent also on the same level of block-structure updates
calculation by some transitivity rule applied to calculation and this (in
that order). Transitivity rules are picked from the current context,
unless alternative rules are given as explicit arguments.

finally (@) maintaining calculation in the same way as also, and concludes
the current calculational thread. The final result is exhibited as fact
for forward chaining towards the next goal. Basically, finally just
abbreviates also from calculation. Note that “finally show ?thesis .”
and “finally have ¢ .” are typical idioms for concluding calculational
proofs.

moreover and ultimately are analogous to also and finally, but collect
results only, without applying rules.

print_trans_rules prints the list of transitivity rules (for calculational com-
mands also and finally) and symmetry rules (for the symmetric oper-
ation and single step elimination patters) of the current context.

trans declares theorems as transitivity rules.

'We suppress internal bookkeeping such as proper handling of block-structure.
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sym declares symmetry rules.

symmetric resolves a theorem with some rule declared as sym in the cur-
rent context. For example, “assume [symmetric]: © = y” produces a
swapped fact derived from that assumption.

In structured proof texts it is often more appropriate to use an explicit
single-step elimination proof, such as “assume =z = y hence y =z ..”.
The very same rules known to symmetric are declared as elim? as well.

4.3 Proof tools

4.3.1 Miscellaneous methods and attributes

unfold : method
fold : method

msert : method
erule* : method
drule® : method
frule* : method
succeed : method

fail . method

|

unfold @ and fold @ expand (or fold back again) the given meta-level defini-
tions throughout all goals; any chained facts provided are inserted into
the goal and subject to rewriting as well.

insert @ inserts theorems as facts into all goals of the proof state. Note that
current facts indicated for forward chaining are ignored.
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erule @, drule @, and frule @ are similar to the basic rule method (see
§3.2.6), but apply rules by elim-resolution, destruct-resolution, and
forward-resolution, respectively [10]. The optional natural number ar-
gument (default 0) specifies additional assumption steps to be per-
formed here.

Note that these methods are improper ones, mainly serving for ex-
perimentation and tactic script emulation. Different modes of basic
rule application are usually expressed in Isar at the proof language
level, rather than via implicit proof state manipulations. For example,
a proper single-step elimination would be done using the plain rule
method, with forward chaining of current facts.

succeed yields a single (unchanged) result; it is the identity of the “,” method
combinator (cf. §2.2.6).

fail yields an empty result sequence; it is the identity of the “|” method
combinator (cf. §2.2.6).

tagged : attribute
untagged : attribute

THEN : attribute
COMP : attribute
where : attribute

unfolded : attribute
folded - attribute

elim-format : attribute
standard® : attribute
no-vars® : attribute

=2

—(unt agged)—(name)i

O-Go-@
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tagged name args and untagged name add and remove tags of some theo-
rem. Tags may be any list of strings that serve as comment for some
tools (e.g. lemma causes the tag “lemma” to be added to the result).
The first string is considered the tag name, the rest its arguments. Note
that untag removes any tags of the same name.

THEN a and COMP a compose rules by resolution. THEN resolves with
the first premise of a (an alternative position may be also specified);
the COMP version skips the automatic lifting process that is normally
intended (cf. RS and COMP in [10, §5]).

where T =t perform named instantiation of schematic variables occurring
in a theorem. Unlike instantiation tactics such as rule_tac (see §3.2.9),
actual schematic variables have to be specified on the left-hand side

(e.g. Tx3).

unfolded @ and folded @ expand and fold back again the given meta-level
definitions throughout a rule.

elim_format turns a destruction rule into elimination rule format, by resolv-
ing with the rule PROP A = (PROP A = PROP B) = PROP B.

Note that the Classical Reasoner (§4.3.4) provides its own version of
this operation.

standard puts a theorem into the standard form of object-rules at the out-
ermost theory level. Note that this operation violates the local proof
context (including active locales).

no-vars replaces schematic variables by free ones; this is mainly for tuning
output of pretty printed theorems.
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4.3.2 Further tactic emulations

The following improper proof methods emulate traditional tactics. These
admit direct access to the goal state, which is normally considered harmful!
In particular, this may involve both numbered goal addressing (default 1),
and dynamic instantiation within the scope of some subgoal.

! Dynamic instantiations are read and type-checked according to a subgoal of the

current dynamic goal state, rather than the static proof context! In particular,
locally fixed variables and term abbreviations may not be included in the term
specifications. Thus schematic variables are left to be solved by unification with
certain parts of the subgoal involved.

Note that the tactic emulation proof methods in Isabelle/Isar are consis-
tently named foo-tac.

rule-tac* : method
erule-tac*® : method
drule-tac* : method
frule_tac* : method
cut-tac* : method
thin-tac* : method
subgoal-tac* : method
rename-tac* : method
rotate-tac* : method
tactic* : method

erule_tac

drule_tac

I insts H thmref

frule_tac

cut_tac

thin_tac

— subgoal_tac) @

il
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— rotate_tac

insts
© (i
nd

\and)

rule-tac etc. do resolution of rules with explicit instantiation. This works
the same way as the ML tactics res_inst_tac etc. (see [10, §3]).

Multiple rules may be only given if there is no instantiation; then
rule-tac is the same as resolve_tac in ML (see [10, §3]).

cut-tac inserts facts into the proof state as assumption of a subgoal, see also
cut_facts_tac in [10, §3]. Note that the scope of schematic variables
is spread over the main goal statement. Instantiations may be given as
well, see also ML tactic cut_inst_tac in [10, §3].

thin-tac ¢ deletes the specified assumption from a subgoal; note that ¢ may
contain schematic variables. See also thin_tac in [10, §3].

subgoal-tac ¢ adds ¢ as an assumption to a subgoal. See also subgoal_tac
and subgoals_tac in [10, §3].

rename-tac T renames parameters of a goal according to the list 7, which
refers to the suffix of variables.

rotate-tac n rotates the assumptions of a goal by n positions: from right to
left if n is positive, and from left to right if n is negative; the default
value is 1. See also rotate_tac in [10, §3].

tactic text produces a proof method from any ML text of type tactic. Apart
from the usual ML environment and the current implicit theory context,
the ML code may refer to the following locally bound values:
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val ctxt : Proof.context
val facts : thm list
val thm : string -> thm

val thms : string -> thm list

Here ctxt refers to the current proof context, facts indicates any
current facts for forward-chaining, and thm / thms retrieve named facts
(including global theorems) from the context.

4.3.3 The Simplifier

Simplification methods

opt

simp : method
simp-all : method

no-.asm

. no_asm_simp '

no.asm.use
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stmpmod

del /

only

e

cong

e
(de1)

~—{ split J

=9
del

simp invokes Isabelle’s simplifier, after declaring additional rules according
to the arguments given. Note that the only modifier first removes all
other rewrite rules, congruences, and looper tactics (including splits),
and then behaves like add.

The cong modifiers add or delete Simplifier congruence rules (see also
[10]), the default is to add.

The split modifiers add or delete rules for the Splitter (see also [10]),
the default is to add. This works only if the Simplifier method has been
properly setup to include the Splitter (all major object logics such HOL,
HOLCF, FOL, ZF do this already).

stmp-all is similar to simp, but acts on all goals (backwards from the last
to the first one).

By default the Simplifier methods take local assumptions fully into ac-
count, using equational assumptions in the subsequent normalization process,
or simplifying assumptions themselves (cf. asm_full_simp_tac in [10, §10]).
In structured proofs this is usually quite well behaved in practice: just the lo-
cal premises of the actual goal are involved, additional facts may be inserted
via explicit forward-chaining (using then, from etc.). The full context of as-
sumptions is only included if the “!” (bang) argument is given, which should
be used with some care, though.
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Additional Simplifier options may be specified to tune the behavior fur-
ther (mostly for unstructured scripts with many accidental local facts):
“(no-asm)” means assumptions are ignored completely (cf. simp_tac),
“(no-asm-simp)” means assumptions are used in the simplification of
the conclusion but are not themselves simplified (cf. asm_simp_tac), and
“(no-asm-use)” means assumptions are simplified but are not used in the
simplification of each other or the conclusion (cf. full_simp_tac).

The Splitter package is usually configured to work as part of the Sim-
plifier. The effect of repeatedly applying split_tac can be simulated by
“(stimp only: split: @)”. There is also a separate split method available for
single-step case splitting.

Declaring rules

print_simpset™ : theory | proof — theory | proof
simp :  attribute
cong : attribute
split : attribute

=9
del

print_simpset prints the collection of rules declared to the Simplifier, which
is also known as “simpset” internally [10]. This is a diagnostic com-
mand; undo does not apply.

simp declares simplification rules.
cong declares congruence rules.

split declares case split rules.

Forward simplification

simplified : attribute

—{ simplified
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opt

O)
Q)

no-_asm-simp

no.asm-use

simplified @ causes a theorem to be simplified, either by exactly the specified
rules @, or the implicit Simplifier context if no arguments are given.
The result is fully simplified by default, including assumptions and
conclusion; the options no-asm etc. tune the Simplifier in the same
way as the for the simp method.

Note that forward simplification restricts the simplifier to its most ba-
sic operation of term rewriting; solver and looper tactics [10] are not
involved here. The simplified attribute should be only rarely required
under normal circumstances.

Low-level equational reasoning

subst* : method
hypsubst* . method
split* : method

—Csubst)—{ thmref }7

OG-

These methods provide low-level facilities for equational reasoning that
are intended for specialized applications only. Normally, single step calcu-
lations would be performed in a structured text (see also §4.2.2), while the
Simplifier methods provide the canonical way for automated normalization
(see §4.3.3).

subst a performs a single substitution step using rule a, which may be either
a meta or object equality.

hypsubst performs substitution using some assumption; this only works for
equations of the form z = ¢t where z is a free or bound variable.
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split @ performs single-step case splitting using rules thms. By default, split-
ting is performed in the conclusion of a goal; the asm option indicates
to operate on assumptions instead.

Note that the simp method already involves repeated application of
split rules as declared in the current context.

4.3.4 The Classical Reasoner

Basic methods

rule : method
contradiction : method
mtro : method

elim . method

rule as offered by the classical reasoner is a refinement over the primitive
one (see §3.2.6). Both versions essentially work the same, but the

classical version observes the classical rule context in addition to that
of Isabelle/Pure.

Common object logics (HOL, ZF, etc.) declare a rich collection of
classical rules (even if these would qualify as intuitionistic ones), but
only few declarations to the rule context of Isabelle/Pure (§3.2.6).

contradiction solves some goal by contradiction, deriving any result from
both =A and A. Chained facts, which are guaranteed to participate,
may appear in either order.

intro and elim repeatedly refine some goal by intro- or elim-resolution, after
having inserted any chained facts. Exactly the rules given as arguments
are taken into account; this allows fine-tuned decomposition of a proof
problem, in contrast to common automated tools.
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Automated methods

blast : method
fast : method
slow : method
best : method
safe : method
clarify . method

o) \a/) (e
—~{fast)—
e o) o

clamod

®

blast refers to the classical tableau prover (see blast_tac in [10, §11]). The
optional argument specifies a user-supplied search bound (default 20).

fast, slow, best, safe, and clarify refer to the generic classical reasoner. See
fast_tac, slow_tac, best_tac, safe_tac, and clarify_tac in [10,
§11] for more information.

Any of the above methods support additional modifiers of the context
of classical rules. Their semantics is analogous to the attributes given be-
fore. Facts provided by forward chaining are inserted into the goal before
commencing proof search. The “!” argument causes the full context of as-
sumptions to be included as well.
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Combined automated methods

auto : method
force . method
clarssmp : method
fastsimp : method
slowsimp : method

bestsimp : method

fastsimp

slowsimp

bestsimp

[
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clasimpmod
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auto, force, clarsimp, fastsimp, slowsimp, and bestsimp provide access to
Isabelle’s combined simplification and classical reasoning tactics. These
correspond to auto_tac, force_tac, clarsimp_tac, and Classical
Reasoner tactics with the Simplifier added as wrapper, see [10, §11] for
more information. The modifier arguments correspond to those given
in §4.3.3 and §4.3.4. Just note that the ones related to the Simplifier
are prefixed by simp here.

Facts provided by forward chaining are inserted into the goal before do-
ing the search. The “!” argument causes the full context of assumptions
to be included as well.
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Declaring rules

print_claset™ : theory | proof — theory | proof

intro :  attribute
elim : attribute
dest : attribute
rule : attribute

iff : attribute

()

N
iff
e S

del

print_claset prints the collection of rules declared to the Classical Reasoner,
which is also known as “simpset” internally [10]. This is a diagnostic
command; undo does not apply.

intro, eltim, and dest declare introduction, elimination, and destruction
rules, respectively. By default, rules are considered as unsafe (i.e. not
applied blindly without backtracking), while a single “!I” classifies as
safe. Rule declarations marked by “?” coincide with those of Isa-
belle/Pure, cf. §3.2.6 (i.e. are only applied in single steps of the rule
method).

rule del deletes introduction, elimination, or destruction rules from the con-
text.

iff declares logical equivalences to the Simplifier and the Classical reasoner at
the same time. Non-conditional rules result in a “safe” introduction and
elimination pair; conditional ones are considered “unsafe”. Rules with
negative conclusion are automatically inverted (using — elimination
internally).
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The “?” version of iff declares rules to the Isabelle/Pure context only,
and omits the Simplifier declaration.

Classical operations

elim-format : attribute
swapped : attribute

elim-format turns a destruction rule into elimination rule format; this opera-
tion is similar to the the intuitionistic version (§4.3.1), but each premise
of the resulting rule acquires an additional local fact of the negated
main thesis; according to the classical principle (w4 = A) = A.

swapped turns an introduction rule into an elimination, by resolving with

the classical swap principle (-B = A) = (-A = B).

4.3.5 Proof by cases and induction

Rule contexts

case : proof(state) — proof (state)
print_cases® : proof — proof
case-names : attribute
params : attribute
consumes : attribute

Basically, Isar proof contexts are built up explicitly using commands like
fix, assume etc. (see §3.2.2). In typical verification tasks this can become
hard to manage, though. In particular, a large number of local contexts may
emerge from case analysis or induction over inductive sets and types.

The case command provides a shorthand to refer to certain parts of
logical context symbolically. Proof methods may provide an environment of
named “cases” of the form c¢:Z,%. Then the effect of “case ¢” is that of
“fix 7 assume c¢: P’. Term bindings may be covered as well, such as 7case
for the intended conclusion.

Normally the “terminology” of a case value (i.e. the parameters 7) are
marked as hidden. Using the explicit form “case (¢ T)” enables proof writers
to choose their own names for the subsequent proof text.

It is important to note that case does not provide direct means to peek
at the current goal state, which is generally considered non-observable in
Isar. The text of the cases basically emerge from standard elimination or



CHAPTER 4. GENERIC TOOLS AND PACKAGES 74

induction rules, which in turn are derived from previous theory specifications
in a canonical way (say from inductive definitions).

Named cases may be exhibited in the current proof context only if both
the proof method and the rules involved support this. Case names and pa-
rameters of basic rules may be declared by hand as well, by using appropriate
attributes. Thus variant versions of rules that have been derived manually
may be used in advanced case analysis later.

4@&86

caseref I

caseref

caseref

nameref
attributes
case_names ll

(conenanes)
()

consumes < 7

case (¢ T) invokes a named local context c¢: T, @, as provided by an appropri-
ate proof method (such as cases and induct, see §4.3.5). The command
“case (¢ T)” abbreviates “fix T assume c¢: @”.

EJ

print_cases prints all local contexts of the current state, using Isar proof
language notation. This is a diagnostic command; undo does not apply.
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case-names ¢ declares names for the local contexts of premises of some the-
orem; ¢ refers to the suffiz of the list of premises.

params Py ... P, renames the innermost parameters of premises 1,...,n of
some theorem. An empty list of names may be given to skip positions,
leaving the present parameters unchanged.

Note that the default usage of case rules does not directly expose pa-
rameters to the proof context (see also §4.3.5).

consumes n declares the number of “major premises” of a rule, i.e. the num-
ber of facts to be consumed when it is applied by an appropriate proof
method (cf. §4.3.5). The default value of consumes is n = 1, which is
appropriate for the usual kind of cases and induction rules for induc-
tive sets (cf. §5.2.6). Rules without any consumes declaration given are
treated as if consumes 0 had been specified.

Note that explicit consumes declarations are only rarely needed; this
is already taken care of automatically by the higher-level cases and
induct declarations, see also §4.3.5.

Proof methods

cases : method
mduct : method

The cases and induct methods provide a uniform interface to case anal-
ysis and induction over datatypes, inductive sets, and recursive functions.
The corresponding rules may be specified and instantiated in a casual man-
ner. Furthermore, these methods provide named local contexts that may
be invoked via the case proof command within the subsequent proof text.
This accommodates compact proof texts even when reasoning about large
specifications.

—Cinduct)—{ spec }—

spec

args
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I insts f

rule

nameref

cases insts R applies method rule with an appropriate case distinction theo-
rem, instantiated to the subjects insts. Symbolic case names are bound
according to the rule’s local contexts.

The rule is determined as follows, according to the facts and arguments
passed to the cases method:

facts arguments rule
cases classical case split
cases t datatype exhaustion (type of )
Faec A cases ... inductive set elimination (of A)
cases ... R explicit rule R

Several instantiations may be given, referring to the suffix of premises of
the case rule; within each premise, the prefiz of variables is instantiated.
In most situations, only a single term needs to be specified; this refers
to the first variable of the last premise (it is usually the same for all
cases).

The “(open)” option causes the parameters of the new local contexts to
be exposed to the current proof context. Thus local variables stemming
from distant parts of the theory development may be introduced in an
implicit manner, which can be quite confusing to the reader. Further-
more, this option may cause unwanted hiding of existing local variables,
resulting in less robust proof texts.
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induct insts R is analogous to the cases method, but refers to induction
rules, which are determined as follows:

facts arguments rule

induct Pz ... datatype induction (type of z)
Fze A induct ... set induction (of A)

induct ... R explicit rule R

Several instantiations may be given, each referring to some part of a
mutual inductive definition or datatype — only related partial induc-
tion rules may be used together, though. Any of the lists of terms
P, x, ... refers to the suffiz of variables present in the induction rule.
This enables the writer to specify only induction variables, or both
predicates and variables, for example.

The “(open)” option works the same way as for cases.

Above methods produce named local contexts, as determined by the in-
stantiated rule as specified in the text. Beyond that, the induct method
guesses further instantiations from the goal specification itself. Any persist-
ing unresolved schematic variables of the resulting rule will render the the
corresponding case invalid. The term binding ?case for the conclusion will
be provided with each case, provided that term is fully specified.

The print_cases command prints all named cases present in the current
proof state.

It is important to note that there is a fundamental difference of the cases
and induct methods in handling of non-atomic goal statements: cases just
applies a certain rule in backward fashion, splitting the result into new goals
with the local contexts being augmented in a purely monotonic manner.

In contrast, induct passes the full goal statement through the “recursive”
course involved in the induction. Thus the original statement is basically
replaced by separate copies, corresponding to the induction hypotheses and
conclusion; the original goal context is no longer available. This behavior
allows strengthened induction predicates to be expressed concisely as meta-
level rule statements, i.e. AT . = v to indicate “variable” parameters
T and “recursive” assumptions $. Also note that local definitions may be
expressed as AT . n = t[T] = ¢[n], with induction over n.

Facts presented to either method are consumed according to the number
of “major premises” of the rule involved (see also §4.3.5), which is usually
0 for plain cases and induction rules of datatypes etc. and 1 for rules of
inductive sets and the like. The remaining facts are inserted into the goal
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verbatim before the actual cases or induct rule is applied (thus facts may be
even passed through an induction).

Declaring rules

print_induct_rules® : theory | proof — theory | proof
cases : attribute
induct :  attribute

—Cinduct)—{ spec }7

nameref

print_induct_rules prints cases and induct rules for sets and types of the
current context.

cases and induct (as attributes) augment the corresponding context of rules
for reasoning about inductive sets and types, using the corresponding
methods of the same name. Certain definitional packages of object-
logics usually declare emerging cases and induction rules as expected,
so users rarely need to intervene.

Manual rule declarations usually include the the case-names and ps
attributes to adjust names of cases and parameters of a rule (see §4.3.5);
the consumes declaration is taken care of automatically: consumes 0
is specified for “type” rules and consumes 1 for “set” rules.
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Object-logic specific elements

5.1 General logic setup

judgment : theory — theory

atomize : method
atomize : attribute
rule-format : attribute

rulify : attribute

The very starting point for any Isabelle object-logic is a “truth judg-
ment” that links object-level statements to the meta-logic (with its minimal
language of prop that covers universal quantification A and implication =).

Common object-logics are sufficiently expressive to internalize rule state-
ments over A\ and = within their own language. This is useful in certain
situations where a rule needs to be viewed as an atomic statement from the
meta-level perspective, e.g. Az .z € A = P(x) versus Vo € A. P(z).

From the following language elements, only the atomize method and
rule-format attribute are occasionally required by end-users, the rest is for
those who need to setup their own object-logic. In the latter case exist-
ing formulations of Isabelle/FOL or Isabelle/HOL may be taken as realistic
examples.

Generic tools may refer to the information provided by object-logic dec-
larations internally.

—Cj udgmentH constdecl }—

(O -

— rule_format
© O

79
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judgment ¢ :: 0 (mz) declares constant ¢ as the truth judgment of the cur-
rent object-logic. Its type o should specify a coercion of the category of
object-level propositions to prop of the Pure meta-logic; the mixfix an-
notation (mz) would typically just link the object language (internally
of syntactic category logic) with that of prop. Only one judgment
declaration may be given in any theory development.

atomize (as a method) rewrites any non-atomic premises of a sub-goal, us-
ing the meta-level equations declared via atomize (as an attribute)
beforehand. As a result, heavily nested goals become amenable to
fundamental operations such as resolution (cf. the rule method) and
proof-by-assumption (cf. assumption). Giving the “(full)” option here
means to turn the whole subgoal into an object-statement (if possible),
including the outermost parameters and assumptions as well.

A typical collection of atomize rules for a particular object-logic would
provide an internalization for each of the connectives of A, =, and
=. Meta-level conjunction expressed in the manner of minimal higher-
order logic as APROP C'. (A = B = PROP () = PROPC
should be covered as well (this is particularly important for locales, see
§4.1.2).

rule-format rewrites a theorem by the equalities declared as rulify rules in
the current object-logic. By default, the result is fully normalized, in-
cluding assumptions and conclusions at any depth. The no-asm option
restricts the transformation to the conclusion of a rule.

In common object-logics (HOL, FOL, ZF), the effect of rule-format is
to replace (bounded) universal quantification (V) and implication (—)
by the corresponding rule statements over A and =—>.

5.2 HOL

5.2.1 Primitive types

typedecl : theory — theory
typedef : theory — proof (prove)

—CtypedeclH typespec I
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typedef } abstype }—@—{ repset }7
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typedecl (@)t is similar to the original typedecl of Isabelle/Pure (see

§3.1.4), but also declares type arity t :: (type, ..., type)type, making
t an actual HOL type constructor.

typedef (a)t = A sets up a goal stating non-emptiness of the set A. After

finishing the proof, the theory will be augmented by a Gordon/HOL-
style type definition, which establishes a bijection between the repre-
senting set A and the new type t.

Technically, typedef defines both a type ¢ and a set (term constant) of
the same name (an alternative base name may be given in parentheses).
The injection from type to set is called Rep-t, its inverse Abs-t (this
may be changed via an explicit morphisms declaration).

Theorems Rep-t, Rep-t-inverse, and Abs-t_inverse provide the most
basic characterization as a corresponding injection/surjection pair (in
both directions). Rules Rep-t-inject and Abs-t_inject provide a
slightly more convenient view on the injectivity part, suitable for
automated proof tools (e.g. in simp or iff declarations). Rules
Rep_t_cases/Rep-t_induct, and Abs_t_cases/Abs-t_induct provide al-
ternative views on surjectivity; these are already declared as set or type
rules for the generic cases and induct methods.

Note that raw type declarations are rarely used in practice; the main

application is with experimental (or even axiomatic!) theory fragments. In-
stead of primitive HOL type definitions, user-level theories usually refer to
higher-level packages such as record (see §5.2.3) or datatype (see §5.2.4).
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5.2.2 Adhoc tuples

split_format* : attribute

— split_format

split_format D, ... P, puts expressions of low-level tuple types into canonical
form as specified by the arguments given; p, refers to occurrences in
premise i of the rule. The “(complete)” option causes all arguments in
function applications to be represented canonically according to their
tuple type structure.

Note that these operations tend to invent funny names for new local
parameters to be introduced.

5.2.3 Records

In principle, records merely generalize the concept of tuples, where com-
ponents may be addressed by labels instead of just position. The logical
infrastructure of records in Isabelle/HOL is slightly more advanced, though,
supporting truly extensible record schemes. This admits operations that are
polymorphic with respect to record extension, yielding “object-oriented” ef-
fects like (single) inheritance. See also [6] for more details on object-oriented
verification and record subtyping in HOL.

Basic concepts

Isabelle/HOL supports both fized and schematic records at the level of terms
and types. The notation is as follows:

‘ record terms ‘ record types
fixed (z =a, y=0>0) (z A,y B
schematic | (z=a,y=0b,...=m|) | (z A,y B, ... M|

The ASCII representation of (z = a) is (| x = a |).
A fixed record (z = a, y = b)) has field z of value a and field y of value b.

The corresponding type is (z :: A, y :: BJ), assuming that a :: A and b :: B.
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A record scheme like (z = a, y = b, ... = m|) contains fields z and y
as before, but also possibly further fields as indicated by the “...” notation
(which is actually part of the syntax). The improper field “...” of a record

scheme is called the more part. Logically it is just a free variable, which is
occasionally referred to as “row variable” in the literature. The more part of a
record scheme may be instantiated by zero or more further components. For
example, the previous scheme may get instantiated to (z = a, y = b, z =
¢, ... = m/|), where m’ refers to a different more part. Fixed records are
special instances of record schemes, where “...” is properly terminated by
the () :: unit element. Actually, (z = a, y = b|) is just an abbreviation for

(z=a,y=0b,...=()).
Two key observations make extensible records in a simply typed language
like HOL feasible:

1. the more part is internalized, as a free term or type variable,

2. field names are externalized, they cannot be accessed within the logic
as first-class values.

In Isabelle/HOL record types have to be defined explicitly, fixing their
field names and types, and their (optional) parent record. Afterwards,
records may be formed using above syntax, while obeying the canonical
order of fields as given by their declaration. The record package provides
several standard operations like selectors and updates. The common setup
for various generic proof tools enable succinct reasoning patterns. See also
the Isabelle/HOL tutorial [8] for further instructions on using records in
practice.

Record specifications

record : theory — theory

—(record)—{ typespec }—@ [%

record (@)t =7+ ¢ :: @ defines extensible record type (@)t, derived from
the optional parent record 7 by adding new field components ¢ :: 7.

The type variables of 7 and @ need to be covered by the (distinct)
parameters a@. Type constructor ¢ has to be new, while 7 needs to
specify an instance of an existing record type. At least one new field €
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has to be specified. Basically, field names need to belong to a unique
record. This is not a real restriction in practice, since fields are qualified
by the record name internally.

The parent record specification 7 is optional; if omitted ¢ becomes
a root record. The hierarchy of all records declared within a theory
context forms a forest structure, i.e. a set of trees starting with a root
record each. There is no way to merge multiple parent records!

For convenience, (@) t is made a type abbreviation for the fixed record
type (¢ :: @), likewise is (@, () t-scheme made an abbreviation for

(e, ...:().

Record operations

Any record definition of the form presented above produces certain standard
operations. Selectors and updates are provided for any field, including the
improper one “more”. There are also cumulative record constructor func-
tions. To simplify the presentation below, we assume for now that (@) ¢ is a
root record with fields ¢ :: 7.

Selectors and updates are available for any field (including “more”):

c 2 (cua,.. nl) =0
ci-update o= (TcuoT,...:()=>(c=:7,...:()

There is special syntax for application of updates: r (z := a]) abbreviates
term z_-update a r. Further notation for repeated updates is also available:
r(z := al) (y := b)) (2 := ¢|) may be written r (z := a, y := b, z := ¢|). Note
that because of postfix notation the order of fields shown here is reverse than
in the actual term. Since repeated updates are just function applications,
fields may be freely permuted in (z := a, y := b, z := ¢|), as far as logical
equality is concerned. Thus commutativity of independent updates can be
proven within the logic for any two fields, but not as a general theorem.

The make operation provides a cumulative record constructor function:

t.make :: T = (¢:7T)

We now reconsider the case of non-root records, which are derived of
some parent. In general, the latter may depend on another parent as well,
resulting in a list of ancestor records. Appending the lists of fields of all
ancestors results in a certain field prefix. The record package automatically
takes care of this by lifting operations over this context of ancestor fields.
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Assuming that (@) ¢ has ancestor fields b :: p, the above record operations
will get the following types:

C; 2 (bupciT,... () = oy
ci-update = o; = (bup,cuo,... ()= (b=pecuo,... ()
t.make w p=0o=(b:p,c:7)

Some further operations address the extension aspect of a derived record
scheme specifically: fields produces a record fragment consisting of exactly
the new fields introduced here (the result may serve as a more part elsewhere);
extend takes a fixed record and adds a given more part; truncate restricts a
record scheme to a fixed record.

t.fields 2 o= (c:7T)
textend = (dupcuo)=(=(d:pc:T,... ()
t.truncate = (d:p,cuo,... ()= (d:p, T

Note that t.make and t.fields actually coincide for root records.

Derived rules and proof tools

The record package proves several results internally, declaring these facts to
appropriate proof tools. This enables users to reason about record structures
quite conveniently. Assume that t is a record type as specified above.

1. Standard conversions for selectors or updates applied to record con-
structor terms are made part of the default Simplifier context; thus
proofs by reduction of basic operations merely require the simp method
without further arguments. These rules are available as t.simps, too.

2. Selectors applied to updated records are automatically reduced by an
internal simplification procedure, which is also part of the standard
Simplifier setup.

3. Inject equations of a form analogous to ((z,y) = (', 9)) =z = /Ay =
y' are declared to the Simplifier and Classical Reasoner as iff rules.
These rules are available as t.iffs.

4. The introduction rule for record equality analogous to x r = x ' =
yr=yr = ...= r =r"is declared to the Simplifier, and as the
basic rule context as “intro?”. The rule is called t.equality.
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5. Representations of arbitrary record expressions as canonical construc-
tor terms are provided both in cases and induct format (cf. the generic
proof methods of the same name, §4.3.5). Several variations are avail-
able, for fixed records, record schemes, more parts etc.

The generic proof methods are sufficiently smart to pick the most sensi-
ble rule according to the type of the indicated record expression: users
just need to apply something like “(cases r)” to a certain proof prob-
lem.

6. The derived record operations t.make, t.fields, t.extend, t.truncate are
not treated automatically, but usually need to be expanded by hand,
using the collective fact t.defs.

5.2.4 Datatypes

datatype : theory — theory
rep-datatype : theory — theory

—Cdat atype dtspec
(and)

— rep-datatype @

dtspec

[ typespec | COIlS
cons
dtrules

—CdistinctH thmrefs HinjectH thmrefs HinductionH thmrefs ’7

datatype defines inductive datatypes in HOL.
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rep-datatype represents existing types as inductive ones, generating the
standard infrastructure of derived concepts (primitive recursion etc.).

The induction and exhaustion theorems generated provide case names
according to the constructors involved, while parameters are named after
the types (see also §4.3.5).

See [7] for more details on datatypes, but beware of the old-style the-
ory syntax being used there! Apart from proper proof methods for case-
analysis and induction, there are also emulations of ML tactics case_tac
and induct_tac available, see §5.2.8; these admit to refer directly to the
internal structure of subgoals (including internally bound parameters).

5.2.5 Recursive functions

primrec : theory — theory
recdef : theory — theory
recdef_tc* : theory — proof (prove)

c permissive o

< > [+ |
recdef_tc tc

equation
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hints

- N
O G o
recdefmod

:

recdef_simp

(it

(&

clasimpmod

tc
(Omat)-(2)

primrec defines primitive recursive functions over datatypes, see also [7].

recdef defines general well-founded recursive functions (using the TFL pack-
age), see also [7]. The “(permissive)” option tells TFL to recover from
failed proof attempts, returning unfinished results. The recdef - simp,
recdef -cong, and recdef -wf hints refer to auxiliary rules to be used in
the internal automated proof process of TFL. Additional clasimpmod
declarations (cf. §4.3.4) may be given to tune the context of the Sim-
plifier (cf. §4.3.3) and Classical reasoner (cf. §4.3.4).

recdef_tc ¢ (1) recommences the proof for leftover termination condition
number i (default 1) as generated by a recdef definition of constant c.

Note that in most cases, recdef is able to finish its internal proofs
without manual intervention.

Both kinds of recursive definitions accommodate reasoning by induction
(cf. §4.3.5): rule c.induct (where ¢ is the name of the function definition)
refers to a specific induction rule, with parameters named according to the
user-specified equations. Case names of primrec are that of the datatypes
involved, while those of recdef are numbered (starting from 1).

The equations provided by these packages may be referred later as the-
orem list f.simps, where f is the (collective) name of the functions defined.
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Individual equations may be named explicitly as well; note that for recdef
each specification given by the user may result in several theorems.

Hints for recdef may be also declared globally, using the following at-
tributes.

recdef -simp : attribute
recdef_cong : attribute
recdef -wf : attribute

recdef_simp
. recdef_cong '
recdef_wf

5.2.6 (Co)Inductive sets

inductive : theory — theory
coinductive : theory — theory
mono : attribute

sets H intros I
monos

mono

ntros

intros prop

@
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monos

—@onos thmrefs }—

inductive and coinductive define (co)inductive sets from the given intro-
duction rules.

mono declares monotonicity rules. These rule are involved in the automated
monotonicity proof of inductive.

See [7] for further information on inductive definitions in HOL, but note
that this covers the old-style theory format.

5.2.7 Arithmetic proof support

arith : method
arith-split : attribute

o)

The arith method decides linear arithmetic problems (on types nat, int,
real). Any current facts are inserted into the goal before running the proce-
dure. The “!I” argument causes the full context of assumptions to be included.
The arith-split attribute declares case split rules to be expanded before the
arithmetic procedure is invoked.

Note that a simpler (but faster) version of arithmetic reasoning is already
performed by the Simplifier.

5.2.8 Cases and induction: emulating tactic scripts

The following important tactical tools of Isabelle/HOL have been ported to
Isar. These should be never used in proper proof texts!

case-tac*® : method

mduct-tac* : method

mnd-cases* : method
inductive_cases : theory — theory
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— induct_-tac 1 f
=

=

—(inductive-cases) { prop )
)

{ and

rule

(rite) (|

case-tac and induct-tac admit to reason about inductive datatypes only
(unless an alternative rule is given explicitly). Furthermore, case-tac
does a classical case split on booleans; induct-tac allows only variables
to be given as instantiation. These tactic emulations feature both goal
addressing and dynamic instantiation. Note that named rule cases are

not provided as would be by the proper induct and cases proof methods
(see §4.3.5).

ind-cases and inductive_cases provide an interface to the internal
mk_cases operation. Rules are simplified in an unrestricted forward
manner.

While ind-cases is a proof method to apply the result immediately as
elimination rules, inductive_cases provides case split theorems at the
theory level for later use,

5.2.9 Executable code

Isabelle/Pure provides a generic infrastructure to support code generation
from executable specifications, both functional and relational programs. Isa-
belle/HOL instantiates these mechanisms in a way that is amenable to end-
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user applications. See [7] for further information (this actually covers the
new-style theory format as well).

generate_code : theory — theory

consts_code : theory — theory

types-code : theory — theory
code : attribute

—(generate_code
'

template

0ty —

template

(O-Gmng)-(D

5.3 HOLCF

consts-code

5.3.1 Mixfix syntax for continuous operations

consts : theory — theory
constdefs : theory — theory

HOLCEF provides a separate type for continuous functions o« — (3, with
an explicit application operator f - x. Isabelle mixfix syntax normally refers
directly to the pure meta-level function type o = (3, with application f z.
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The HOLCF variants of consts and constdefs have the same outer syn-
tax as the pure versions (cf. §3.1.5). Internally, declarations involving contin-
uous function types are treated specifically, transforming the syntax template
accordingly and generating syntax translation rules for the abstract and con-
crete representation of application.

The behavior for plain meta-level function types is unchanged. Mixed
continuous and meta-level application is not supported.

5.3.2 Recursive domains

domain : theory — theory
()
dmspec

typespec = : cons :

cons
dtrules

—CdistinctH thmrefs }—Cinject)—{ thmrefs }—(induction)—' thmrefs ’7

Recursive domains in HOLCF are analogous to datatypes in classical
HOL (cf. §5.2.4). Mutual recursion is supported, but no nesting nor arbitrary
branching. Domain constructors may be strict (default) or lazy, the latter
admits to introduce infinitary objects in the typical LCF manner (e.g. lazy
lists). See also [5] for a general discussion of HOLCF domains.

5.4 ZF

5.4.1 Type checking

The ZF logic is essentially untyped, so the concept of “type checking” is
performed as logical reasoning about set-membership statements. A special
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method assists users in this task; a version of this is already declared as a
“solver” in the standard Simplifier setup.

print_tcset™ : theory | proof — theory | proof
typecheck : method
TC : attribute

(TC)
(19)
print_tcset prints the collection of typechecking rules of the current context.

Note that the component built into the Simplifier only knows about
those rules being declared globally in the theory!

typecheck attempts to solve any pending type-checking problems in subgoals.

TC adds or deletes type-checking rules from the context.

5.4.2 (Co)Inductive sets and datatypes
Set definitions

In ZF everything is a set. The generic inductive package also provides a spe-
cific view for “datatype” specifications. Coinductive definitions are available
in both cases, too.

inductive : theory — theory
coinductive : theory — theory
datatype : theory — theory
codatatype : theory — theory

domains H intros H hints }7

‘ inductive '
coinductive

domains

term )

— G @O @
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miros
thmdecl

hints
monos

1—(monos thmrefs }—f
condefs

1Ccon_defs thmrefs }—[
typeintros

1Q:ype_intros thmrefs J
typeelims

L(type_elims thmrefs }—f

In the following diagram monos, typeintros, and typeelims are the same
as above.

I dtspec hints }7
(and)

datatype
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domain

T

dtspec
=
con
oTEoye
hints

typeintros typeelims

See [12] for further information on inductive definitions in HOL, but note
that this covers the old-style theory format.

Primitive recursive functions

primrec : theory — theory

Cases and induction: emulating tactic scripts

The following important tactical tools of Isabelle/ZF have been ported to
Isar. These should be never used in proper proof texts!

case_tac* : method
mduct_tac* : method
ind-cases™ : method

inductive_cases : theory — theory



CHAPTER 5. OBJECT-LOGIC SPECIFIC ELEMENTS

case.tac name j

=

—(induct ive-cases) prop
) |

{ and

97



Appendix A

Isabelle/Isar quick reference

A.1 Proof commands

A.1.1 Primitives and basic syntax

fix 7 augment context by A7 .0

assume a: P augment context by = O

then indicate forward chaining of facts

have a: ¢ prove local result

show a: ¢ prove local result, establishing some goal
using @ indicate use of additional facts

proof m; ... qed my apply proof methods

{...} declare explicit blocks

next switch implicit blocks

note a = b reconsider facts

let p =1t abbreviate terms by higher-order matching

= theorem name: prop proof
| lemma name: prop proof
| types ... | consts ... | defs ... | ...

theory-stmt

proof = prfx* proof method stmt* qed method

apply method
using name™

{ stmt* }

next

note name = name™

prfe. =
|
|
|
| let term = term
|
|
|
|
|

stmt

fix var®

assume name: prop™
then goal-stmt

goal

have name: prop proof
show name: prop proof

goal

98
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A.1.2 Abbreviations and synonyms

by m; my = proof m; qed my
= by rule
. = by this
hence = then have
thus = then show
from @ = note this =@ then
with @ = from @ and this
from this = then
from this have = hence
from this show = thus

A.1.3 Derived elements

alsoy = note calculation = this
also,.; =~ mnote calculation = trans [OF calculation this]
finally =~ also from calculation
moreover = note calculation = calculation this
ultimately ~ moreover from calculation
presume a: ¥ ~ assume a. ¢
def a: 1=t =~ fixx assume a: z =1t
obtain 7 where a: ¥ ~ ... fix 7 assume a: P
case ¢ ~ fix 7T assume c: ¥
sorry = by cheating

A.1.4 Diagnostic commands

pr print current state

thm @ print theorems

term ¢t print term

prop ¢ print meta-level proposition
typ 7 print meta-level type
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A.2 Proof methods

Single steps (forward-chaining facts)

assumption
this

rule @

rule
contradiction
cases t
mduct T

apply some assumption

apply current facts

apply some rule

apply standard rule (default for proof)
apply — elimination rule (any order)
case analysis (provides cases)

proof by induction (provides cases)

Repeated steps (inserting facts)

mtro @
tro-classes
elim a

unfold @

Automated proof tools (inserting facts, or even prems!)

rules

simp, simp-all
blast, fast
auto, force
arith

no rules

introduction rules
class introduction rules
elimination rules
definitions

intuitionistic proof search
Simplifier (+ Splitter)
Classical Reasoner

Simplifier + Classical Reasoner
Arithmetic procedure

100
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A.3 Attributes

Operations
OF @

of t
symmetric
THEN b
rule-format
elim-format

Declarations
stmp

intro, elim, dest
uf

split

trans

sym

rule applied to facts (skipping “.")

rule applied to terms (skipping “.”)

resolution with symmetry rule

resolution with another rule

result put into standard rule format

destruct rule turned into elimination rule format

Simplifier rule

Pure or Classical Reasoner rule
Simplifier + Classical Reasoner rule
case split rule

transitivity rule

symmetry rule

A.4 Emulating tactic scripts

A.4.1 Commands

apply m
apply-end (m)
done

defer n

prefer n

back

declare

apply proof method at initial position
apply proof method near terminal position
complete proof

move subgoal to end

move subgoal to beginning

backtrack last command

declare rules in current theory
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A.4.2 Methods

rule-tac insts
erule_tac insts
drule_tac insts
frule_tac insts
cut-tac insts
thin-tac ¢
subgoal-tac ¢
rename-tac T
rotate-tac n
tactic text
case-tac t
induct_tac T
ind-cases t

resolution (with instantiation)
elim-resolution (with instantiation)
destruct-resolution (with instantiation)
forward-resolution (with instantiation)
insert facts (with instantiation)

delete assumptions

new claims

rename suffix of goal parameters
rotate assumptions of goal

arbitrary ML tactic

exhaustion (datatypes)

induction (datatypes)

exhaustion + simplification (inductive sets)
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Isabelle/Isar conversion guide

Subsequently, we give a few practical hints on working in a mixed environ-
ment of old Isabelle ML proof scripts and new Isabelle/Isar theories. There
are basically three ways to cope with this issue.

1. Do not convert old sources at all, but communicate directly at the level
of internal theory and theorem values.

2. Port old-style theory files to new-style ones (very easy), and ML proof
scripts to Isar tactic-emulation scripts (quite easy).

3. Actually redo ML proof scripts as human-readable Isar proof texts
(probably hard, depending who wrote the original scripts).

B.1 No conversion

Internally, Isabelle is able to handle both old and new-style theories at the
same time; the theory loader automatically detects the input format. In
any case, the results are certain internal ML values of type theory and thm.
These may be accessed from either classic Isabelle or Isabelle/Isar, provided
that some minimal precautions are observed.

B.1.1 Referring to theorem and theory values

thm : xstring -> thm
thms : xstring -> thm list
the_context : unit -> theory
theory : string -> theory

These functions provide general means to refer to logical objects from ML.
Old-style theories used to emit many ML bindings of theorems and theories,
but this is no longer done in new-style Isabelle/Isar theories.

thm name and thms name retrieve theorems stored in the current theory
context, including any ancestor node.
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The convention of old-style theories was to bind any theorem as an ML
value as well. New-style theories no longer do this, so ML code may
require thm "foo" rather than just foo.

the_context() refers to the current theory context.

Old-style theories often use the ML binding thy, which is dynamically
created by the ML code generated from old theory source. This is
no longer the recommended way in any case! Function the_context
should be used for old scripts as well.

theory name retrieves the named theory from the global theory-loader
database.

The ML code generated from old-style theories would include an ML
binding name.thy as part of an ML structure.

B.1.2 Storing theorem values

qed : string -> unit
bind_thm : string * thm -> unit
bind_thms : string * thm list -> unit

ML proof scripts have to be well-behaved by storing theorems properly
within the current theory context, in order to enable new-style theories to
retrieve these later.

ged name is the canonical way to conclude a proof script in ML. This already
manages entry in the theorem database of the current theory context.

bind-thm (name, thm) and bind-thms (name, thms) store theorems that
have been produced in ML in an ad-hoc manner.

Note that the original “LCF-system” approach of binding theorem val-
ues on the ML toplevel only has long been given up in Isabelle! Despite of
this, old legacy proof scripts occasionally contain code such as val foo =
result(); which is ill-behaved in several respects. Apart from preventing
access from Isar theories, it also omits the result from the WWW presenta-
tion, for example.

B.1.3 ML declarations in Isar

ML : - — -
ML_setup : theory — theory
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Isabelle/Isar theories may contain ML declarations as well. For example,
an old-style theorem binding may be mimicked as follows.

ML {* val foo = thm "foo" %}

Note that this command cannot be undone, so invalid theorem bindings in
ML may persist. Also note that the current theory may not be modified; use
ML_setup for declarations that act on the current context.

B.2 Porting theories and proof scripts

Porting legacy theory and ML files to proper Isabelle/Isar theories has several
advantages. For example, the Proof General user interface [1] for Isabelle/Isar
is more robust and more comfortable to use than the version for classic
[sabelle. This is due to the fact that the generic ML toplevel has been
replaced by a separate Isar interaction loop, with full control over input
synchronization and error conditions.

Furthermore, the Isabelle document preparation system (see also [18])
only works properly with new-style theories. Output of old-style sources is
at the level of individual characters (and symbols), without proper document
markup as in Isabelle/Isar theories.

B.2.1 Theories

Basically, the Isabelle/Isar theory syntax is a proper superset of the classic
one. Only a few quirks and legacy problems have been eliminated, resulting
in simpler rules and less special cases. The main changes of theory syntax
are as follows.

e Quoted strings may contain arbitrary white space, and span several
lines without requiring \ ...\ escapes.

e Names may always be quoted.

The old syntax would occasionally demand plain identifiers vs. quoted
strings to accommodate certain syntactic features.

e Types and terms have to be atomic as far as the theory syntax is
concerned; this typically requires quoting of input strings, e.g. “z+3”.

The old theory syntax used to fake part of the syntax of types in order to
require less quoting in common cases; this was hard to predict, though.
On the other hand, Isar does not require quotes for simple terms, such
as plain identifiers z, numerals 1, or symbols V (input as \<forall>).
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e Theorem declarations require an explicit colon to separate the name
from the statement (the name is usually optional). Cf. the syntax of
defs in §3.1.5, or theorem in §3.1.7.

Note that Isabelle/Isar error messages are usually quite explicit about
the problem at hand. So in cases of doubt, input syntax may be just as well
tried out interactively.

B.2.2 Goal statements
Simple goals

In ML the canonical a goal statement together with a complete proof script
is as follows:

Goal "";
by taci;
ged "name";
This form may be turned into an Isar tactic-emulation script like this:
lemma name: "p"
apply meth;
done

Note that the main statement may be theorem or corollary as well. See
§B.2.3 for further details on how to convert actual tactic expressions into
proof methods.

Classic Isabelle provides many variant forms of goal commands, see also
[10] for further details. The second most common one is Goalw, which ex-
pands definitions before commencing the actual proof script.

Goalw [defi, ...] "o";
This may be replaced by using the unfold proof method explicitly.

lemma name: "p"

apply (unfold def; ...)
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Deriving rules

Deriving non-atomic meta-level propositions requires special precautions in
classic Isabelle: the primitive goal command decomposes a statement into
the atomic conclusion and a list of assumptions, which are exhibited as ML
values of type thm. After the proof is finished, these premises are discharged
again, resulting in the original rule statement. The “long format” of Isa-
belle/Isar goal statements admits to emulate this technique nicely. The gen-
eral ML goal statement for derived rules looks like this:

val [prem;, ...] = goal "p; — ... = P";
by tacy;

qed n a n
This form may be turned into a tactic-emulation script as follows:

lemma a:
assumes prem;: "p1" and ...
shows "¢"

apply meth;
done

In practice, actual rules are often rather direct consequences of corre-
sponding atomic statements, typically stemming from the definition of a new
concept. In that case, the general scheme for deriving rules may be greatly
simplified, using one of the standard automated proof tools, such as simp,
blast, or auto. This could work as follows:

lemma "p; = ... = Y"
by (unfold defs) blast

Note that classic Isabelle would support this form only in the special case
where @1, ...are atomic statements (when using the standard Goal com-
mand). Otherwise the special treatment of rules would be applied, disturbing
this simple setup.

Occasionally, derived rules would be established by first proving an appro-
priate atomic statement (using V and — of the object-logic), and putting
the final result into “rule format”. In classic Isabelle this would usually
proceed as follows:
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Goal Il(pll;
by tacy;

qed_spec_mp "name";

The operation performed by ged_spec_mp is also performed by the Isar at-
tribute “rule-format”, see also §5.1. Thus the corresponding Isar text may
look like this:

lemma name [rule-format]: "o"
apply meth;

done

Note plain “rule-format” actually performs a slightly different operation: it
fully replaces object-level implication and universal quantification through-
out the whole result statement. This is the right thing in most cases. For
historical reasons, qed_spec_mp would only operate on the conclusion; one
may get this exact behavior by using “rule-format (no-asm)” instead.

Actually “rule_format” is a bit unpleasant to work with, since the fi-
nal result statement is not shown in the text. An alternative is to state
the resulting rule in the intended form in the first place, and have the ini-
tial refinement step turn it into internal object-logic form using the atomize
method indicated below. The remaining script is unchanged.

lemma name: "A\T .9 = "

apply (atomize (full))
apply meth;

done

In many situations the atomize step above is actually unnecessary, espe-
cially if the subsequent script mainly consists of automated tools.

B.2.3 Tactics

Isar Proof methods closely resemble traditional tactics, when used in un-
structured sequences of apply commands (cf. §B.2.2). Isabelle/Isar provides
emulations for all major ML tactics of classic Isabelle — mostly for the sake
of easy porting of existing developments, as actual Isar proof texts would
demand much less diversity of proof methods.
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Unlike tactic expressions in ML, Isar proof methods provide proper con-
crete syntax for additional arguments, options, modifiers etc. Thus a typi-
cal method text is usually more concise than the corresponding ML tactic.
Furthermore, the Isar versions of classic Isabelle tactics often cover several
variant forms by a single method with separate options to tune the behav-
ior. For example, method simp replaces all of simp_tac / asm_simp_tac /
full_simp_tac / asm_full_simp_tac, there is also concrete syntax for aug-
menting the Simplifier context (the current “simpset”) in a convenient way.

Resolution tactics

Classic Isabelle provides several variant forms of tactics for single-step rule
applications (based on higher-order resolution). The space of resolution tac-
tics has the following main dimensions.

1. The “mode” of resolution: intro, elim, destruct, or forward (e.g.
resolve_tac, eresolve_tac, dresolve_tac, forward_tac).

2. Optional explicit instantiation (e.g. resolve_tac vs. res_inst_tac).
3. Abbreviations for singleton arguments (e.g. resolve_tac vs. rtac).

Basically, the set of Isar tactic emulations rule_tac, erule_tac, drule-tac,
frule-tac (see §4.3.2) would be sufficient to cover the four modes, either
with or without instantiation, and either with single or multiple arguments.
Although it is more convenient in most cases to use the plain rule method
(see §3.2.6), or any of its “improper” variants erule, drule, frule (see §4.3.1).
Note that explicit goal addressing is only supported by the actual rule-tac
version.

With this in mind, plain resolution tactics may be ported as follows.

rtac a1l rule a

resolve_tac [ap,...] 1 rule ay ...

res_inst_tac [(z1,t4),...] a1  rule-tac zy =t and ... in a
rtac a i rule-tac [i] a

resolve_tac [ay,...] @ rule-tac [i] a1 ...
res_inst_tac [(z1,t),...] a1 rule-tac [i] ;y =t and ... in a

Note that explicit goal addressing may be usually avoided by changing
the order of subgoals with defer or prefer (see §3.2.9).
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Some further (less frequently used) combinations of basic resolution tac-
tics may be expressed as follows.

ares_tac [ay,...] 1 assumption | rule a; ...
eatac a n 1 erule (n) a
datac a n 1 drule (n) a
fatac a n 1 frule (n) a

Simplifier tactics

The main Simplifier tactics Simp_tac, simp_tac and variants (cf. [10]) are
all covered by the simp and simp-all methods (see §4.3.3). Note that there
is no individual goal addressing available, simplification acts either on the
first goal (simp) or all goals (simp-all).

Asm_full_simp_tac 1 s1mp

ALLGOALS Asm_full_simp_tac  simp-all

Simp_tac 1 simp (no-asm)
Asm_simp_tac 1 simp (no-asm-simp)
Full_simp_tac 1 simp (no-asm-use)

Isar also provides separate method modifier syntax for augmenting the
Simplifier context (see §4.3.3), which is known as the “simpset” in ML. A
typical ML expression with simpset changes looks like this:

asm_full_simp_tac (simpset () addsimps [a;, ...] delsimps [b;, ...]) 1
The corresponding Isar text is as follows:
simp add : a; ... del: by ...

Global declarations of Simplifier rules (e.g. Addsimps) are covered by appli-
cation of attributes, see §B.2.4 for more information.

Classical Reasoner tactics

The Classical Reasoner provides a rather large number of variations of au-
tomated tactics, such as Blast_tac, Fast_tac, Clarify_tac etc. (see [10]).
The corresponding Isar methods usually share the same base name, such as
blast, fast, clarify etc. (see §4.3.4).

Similar to the Simplifier, there is separate method modifier syntax for
augmenting the Classical Reasoner context, which is known as the “claset”
in ML. A typical ML expression with claset changes looks like this:
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blast_tac (claset () addIs [a;, ...] addSEs [b;, ...1) 1
The corresponding Isar text is as follows:
blast intro : a; ... elim!: by ...
Global declarations of Classical Reasoner rules (e.g. AddIs) are covered by

application of attributes, see §B.2.4 for more information.

Miscellaneous tactics

There are a few additional tactics defined in various theories of Isabelle/HOL,
some of these also in Isabelle/FOL or Isabelle/ZF. The most common ones
of these may be ported to Isar as follows.

stac a 1 subst a
hyp_subst_tac 1 hypsubst
strip_tac 1 ~ intro strip
split_all_tac 1 simp (no-asm-simp) only : split-tupled-all
~ simp only : split_tupled-all
< clarify
Tacticals

Classic Isabelle provides a huge amount of tacticals for combination and
modification of existing tactics. This has been greatly reduced in Isar, pro-
viding the bare minimum of combinators only: “” (sequential composition),
“” (alternative choices), “?” (try), “+” (repeat at least once). These are
usually sufficient in practice; if all fails, arbitrary ML tactic code may be

invoked via the tactic method (see §4.3.2).

Common ML tacticals may be expressed directly in Isar as follows:

tac; THEN taco methy, meths
tac; ORELSE tacs methy | methy
TRY tac meth?
REPEAT1 tac meth+
REPEAT tac (meth+)?
EVERY [taci,...]  methy,...
FIRST [tacy,.. .| methy | ...

CHANGED (see [10]) is usually not required in Isar, since most basic proof
methods already fail unless there is an actual change in the goal state. Nev-
ertheless, “?” (try) may be used to accept unchanged results as well.
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ALLGOALS, SOMEGOAL etc. (see [10]) are not available in Isar, since there
is no direct goal addressing. Nevertheless, some basic methods address all
goals internally, notably simp-all (see §4.3.3). Also note that ALLGOALS may
be often replaced by “+” (repeat at least once), although this usually has a
different operational behavior, such as solving goals in a different order.

Iterated resolution, such as REPEAT (FIRSTGOAL (resolve_tac ...)),is
usually better expressed using the intro and elim methods of Isar (see §4.3.4).

B.2.4 Declarations and ad-hoc operations

Apart from proof commands and tactic expressions, almost all of the re-
maining ML code occurring in legacy proof scripts are either global context
declarations (such as Addsimps) or ad-hoc operations on theorems (such as
RS). In Isar both of these are covered by theorem expressions with attributes.

Theorem operations may be attached as attributes in the very place where
theorems are referenced, say within a method argument. The subsequent ML
combinators may be expressed directly in Isar as follows.

thm, RS thms thmy [THEN thmg|

thmy RSN (¢, thms) thmy [THEN [i] thmy]

thm, COMP thms thmy [COMP thms)|

[thmy, ...] MRS thm thm [OF thmy ...]
read_instantiate [(z,t),...] thm  thm [where 11 = t; and ...
make_elim thm thm [elim-format]
standard thm thm [standard]

Note that OF' is often more readable as THEN; likewise positional in-
stantiation with of is often more appropriate than where.

The special ML command ged_spec_mp of Isabelle/HOL and FOL may
be replaced by passing the result of a proof through rule-format.

Global ML declarations may be expressed using the declare command
(see §3.2.9) together with appropriate attributes. The most common ones
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are as follows.

Addsimps [thm)] declare thm [simp]
Delsimps [thm] declare thm [simp del]
Addsplits [thm]|  declare thm [split]
Delsplits [thm]  declare thm [split del]

[

[

[

[
AddIs [thm)] declare thm [intro]
AddEs [thm)] declare thm [elim]
AddDs [thm)] declare thm [dest]
AddSIs [thm] declare thm [intro!]
AddSEs [thm| declare thm [elim!]
AddsSDs [thm] declare thm [dest!]
AddIffs [thm] declare thm [iff]

Note that explicit declare commands are rarely needed in practice; Isar
admits to declare theorems on-the-fly wherever they emerge. Consider the
following ML idiom:

Goal "¢";

qed "name";
Addsimps [name];

This may be expressed more succinctly in Isar like this:

lemma name [simp]: ¢

The name may be even omitted, although this would make it difficult to
declare the theorem otherwise later (e.g. as [simp del]).

B.3 Writing actual Isar proof texts

Porting legacy ML proof scripts into Isar tactic emulation scripts (see §B.2)
is mainly a technical issue, since the basic representation of formal “proof
script” is preserved. In contrast, converting existing Isabelle developments
into actual human-readably Isar proof texts is more involved, due to the
fundamental change of the underlying paradigm.

This issue is comparable to that of converting programs written in a
low-level programming languages (say Assembler) into higher-level ones (say
Haskell). In order to accomplish this, one needs a working knowledge of the
target language, as well an understanding of the original idea of the piece of
code expressed in the low-level language.



APPENDIX B. ISABELLE/ISAR CONVERSION GUIDE 114

As far as Isar proofs are concerned, it is usually much easier to re-use
only definitions and the main statements, while following the arrangement
of proof scripts only very loosely. Ideally, one would also have some informal
proof outlines available for guidance as well. In the worst case, obscure proof
scripts would have to be re-engineered by tracing forth and backwards, and
by educated guessing!

This is a possible schedule to embark on actual conversion of legacy proof
scripts into Isar proof texts.

1.
2.

Port ML scripts to Isar tactic emulation scripts (see §B.2).
Get sufficiently acquainted with Isabelle/Isar proof development.®
Recover the proof structure of a few important theorems.

Rephrase the original intention of the course of reasoning in terms of
Isar proof language elements.

Certainly, rewriting formal reasoning in Isar requires some additional

effort.

On the other hand, one gains a human-readable representation of

machine-checked formal proof. Depending on the context of application, this
might be even indispensable to start with!

1 As there is still no Isar tutorial around, it is best to look at existing Isar examples,
see also §1.3.2.
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sorry (command), 38
sort (syntax), 11

split (attribute), 66

split (method), 67
split-format (HOL attribute), 82
standard (attribute), 60
string (syntax), 8
structmixfix (syntax), 13
subgoal-tac (method), 62
subgoals (antiquotation), 18

attributes, 15
axmdecl, 15
clamod, 69
clasimpmod, 70
classdecl, 11
comment, 10
constdecl, 26
contextelem, 53
contextexpr, 53
goalspec, 14
ident, 8

infix, 13

inst, 12

insts, 12

int, 9

locale, 52
longident, 8
method, 14
mixfix, 13
name, 9
nameref, 9

nat, 8
parname, 9
prop, 11
proppat, 16
props, 17
simplearity, 11
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simpmod, 64
sort, 11
string, 8
structmixfix, 13
symident, 8
term, 11
termpat, 16
text, 10
thmdecl, 15
thmdef, 15
thmrefs, 15
type, 11
typefree, 8
typespec, 12
typevar, 8
var, 8
vars, 17
verbatim, 8
syntax (command), 26

tactic (method), 62
tagged (attribute), 60
TC (attribute), 94
term (antiquotation), 18
term (command), 47
term (syntax), 11
term abbreviations, 43
termpat (syntax), 16
text (antiquotation), 18
text (command), 23
text (syntax), 10
text-raw (command), 23
THEN (attribute), 60
then (command), 34
theorem (command), 36
Theorems

_. 36,55

calculation, 57

nothing, 35

prems, 34

this, 35
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theorems (command), 27

theory (command), 21

thesis (variable), 43

thin-tac (method), 62

this (method), 40

this (theorem), 35

this (variable), 43

thm (antiquotation), 18

thm (command), 47

thm-deps (command), 48

thmdecl (syntax), 15

thmdef (syntax), 15

thmrefs (syntax), 15

thms-containing (command), 48

thus (command), 36

token-translation (command), 30

trans (attribute), 57

translations (command), 26

txt (command), 32

txt-raw (command), 32

typ (antiquotation), 18

typ (command), 47

type (syntax), 11

typecheck (attribute), 94

typed-print-translation (com-
mand), 30

typedecl (command), 25

typedecl (HOL command), 80

typedef (HOL command), 80

typefree (syntax), 8

types (command), 25

types-code (command), 92

typespec (syntax), 12

typevar (syntax), 8

ultimately (command), 57
undo (command), 49
unfold (method), 59
unfolded (attribute), 60
untagged (attribute), 60
update-thy (command), 50
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update-thy-only (command), 50
use (command), 29

use-thy (command), 50
use-thy-only (command), 50
using (command), 34

var (syntax), 8
Variables

.44
43

case, 77

thesis, 43

this, 43
vars (syntax), 17
verbatim (syntax), 8

where (attribute), 60
with (command), 34
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