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Preface

This volume is a self-contained introduction to interactive proof in higher-
order logic (HOL), using the proof assistant Isabelle 2002. Compared with
existing Isabelle documentation, it provides a direct route into higher-order
logic, which most people prefer these days. It bypasses first-order logic and
minimizes discussion of meta-theory. It is written for potential users rather
than for our colleagues in the research world.

Another departure from previous documentation is that we describe
Markus Wenzel’s proof script notation instead of ML tactic scripts. The lat-
ter make it easier to introduce new tactics on the fly, but hardly anybody
does that. Wenzel’s dedicated syntax is elegant, replacing for example eight
simplification tactics with a single method, namely simp, with associated op-
tions.

The book has three parts.

– The first part, Elementary Techniques, shows how to model functional
programs in higher-order logic. Early examples involve lists and the natural
numbers. Most proofs are two steps long, consisting of induction on a
chosen variable followed by the auto tactic. But even this elementary part
covers such advanced topics as nested and mutual recursion.

– The second part, Logic and Sets, presents a collection of lower-level
tactics that you can use to apply rules selectively. It also describes Isa-
belle/HOL’s treatment of sets, functions and relations and explains how to
define sets inductively. One of the examples concerns the theory of model
checking, and another is drawn from a classic textbook on formal languages.

– The third part, Advanced Material, describes a variety of other topics.
Among these are the real numbers, records and overloading. Esoteric tech-
niques are described involving induction and recursion. A whole chapter is
devoted to an extended example: the verification of a security protocol.

The typesetting relies on Wenzel’s theory presentation tools. An anno-
tated source file is run, typesetting the theory in the form of a LATEX source
file. This book is derived almost entirely from output generated in this way.
The final chapter of Part I explains how users may produce their own formal
documents in a similar fashion.
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Isabelle’s web site1 contains links to the download area and to documen-
tation and other information. Most Isabelle sessions are now run from within
David Aspinall’s wonderful user interface, Proof General2, even together with
the X-Symbol3 package for XEmacs. This book says very little about Proof
General, which has its own documentation. In order to run Isabelle, you will
need a Standard ML compiler. We recommend Poly/ML4, which is free and
gives the best performance. The other fully supported compiler is Standard
ML of New Jersey5.

This tutorial owes a lot to the constant discussions with and the valuable
feedback from the Isabelle group at Munich: Stefan Berghofer, Olaf Müller,
Wolfgang Naraschewski, David von Oheimb, Leonor Prensa Nieto, Cornelia
Pusch, Norbert Schirmer and Martin Strecker. Stephan Merz was also kind
enough to read and comment on a draft version. We received comments from
Stefano Bistarelli, Gergely Buday and Tanja Vos.

The research has been funded by many sources, including the dfg grants
Ni 491/2, Ni 491/3, Ni 491/4 and the epsrc grants GR/K57381, GR/K77051,
GR/M75440, GR/R01156/01 and by the esprit working groups 21900 and
IST-1999-29001 (the Types project).

1 http://isabelle.in.tum.de/
2 http://www.proofgeneral.org/
3 http://www.fmi.uni-passau.de/∼wedler/x-symbol/
4 http://www.polyml.org/
5 http://cm.bell-labs.com/cm/cs/what/smlnj/index.html
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Part I

Elementary Techniques





1. The Basics

1.1 Introduction

This book is a tutorial on how to use the theorem prover Isabelle/HOL as a
specification and verification system. Isabelle is a generic system for imple-
menting logical formalisms, and Isabelle/HOL is the specialization of Isabelle
for HOL, which abbreviates Higher-Order Logic. We introduce HOL step by
step following the equation

HOL = Functional Programming + Logic.

We do not assume that you are familiar with mathematical logic. However, we
do assume that you are used to logical and set theoretic notation, as covered
in a good discrete mathematics course [31], and that you are familiar with
the basic concepts of functional programming [5, 13, 27, 32]. Although this
tutorial initially concentrates on functional programming, do not be misled:
HOL can express most mathematical concepts, and functional programming
is just one particularly simple and ubiquitous instance.

Isabelle [26] is implemented in ML [17]. This has influenced some of Isa-
belle/HOL’s concrete syntax but is otherwise irrelevant for us: this tutorial
is based on Isabelle/Isar [33], an extension of Isabelle which hides the im-
plementation language almost completely. Thus the full name of the system
should be Isabelle/Isar/HOL, but that is a bit of a mouthful.

There are other implementations of HOL, in particular the one by Mike
Gordon et al., which is usually referred to as “the HOL system” [10]. For
us, HOL refers to the logical system, and sometimes its incarnation Isa-
belle/HOL.

A tutorial is by definition incomplete. Currently the tutorial only intro-
duces the rudiments of Isar’s proof language. To fully exploit the power of
Isar, in particular the ability to write readable and structured proofs, you
need to consult the Isabelle/Isar Reference Manual [33] and Wenzel’s PhD
thesis [34] which discusses many proof patterns. If you want to use Isabelle’s
ML level directly (for example for writing your own proof procedures) see
the Isabelle Reference Manual [23]; for details relating to HOL see the Isa-
belle/HOL manual [22]. All manuals have a comprehensive index.
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1.2 Theories

Working with Isabelle means creating theories. Roughly speaking, a theory
is a named collection of types, functions, and theorems, much like a module
in a programming language or a specification in a specification language. In
fact, theories in HOL can be either. The general format of a theory T is

theory T = B1 + · · · + Bn:
declarations, definitions, and proofs
end

where B1, . . . , Bn are the names of existing theories that T is based on and
declarations, definitions, and proofs represents the newly introduced concepts
(types, functions etc.) and proofs about them. The Bi are the direct parent
theories of T. Everything defined in the parent theories (and their parents,
recursively) is automatically visible. To avoid name clashes, identifiers can
be qualified by theory names as in T.f and B.f. Each theory T must reside
in a theory file named T.thy.

This tutorial is concerned with introducing you to the different linguistic
constructs that can fill the declarations, definitions, and proofs above. A com-
plete grammar of the basic constructs is found in the Isabelle/Isar Reference
Manual [33].

HOL’s theory collection is available online at

http://isabelle.in.tum.de/library/HOL/

and is recommended browsing. Note that most of the theories are based
on classical Isabelle without the Isar extension. This means that they look
slightly different than the theories in this tutorial, and that all proofs are in
separate ML files.

! HOL contains a theory Main , the union of all the basic predefined theories like
arithmetic, lists, sets, etc. Unless you know what you are doing, always include

Main as a direct or indirect parent of all your theories.

There is also a growing Library [4] of useful theories that are not part of
Main but can to be included among the parents of a theory and will then be
loaded automatically.

1.3 Types, Terms and Formulae

Embedded in a theory are the types, terms and formulae of HOL. HOL is
a typed logic whose type system resembles that of functional programming
languages like ML or Haskell. Thus there are

base types, in particular bool , the type of truth values, and nat , the type of
natural numbers.

http://isabelle.in.tum.de/library/HOL/
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type constructors, in particular list , the type of lists, and set , the type of
sets. Type constructors are written postfix, e.g. (nat)list is the type
of lists whose elements are natural numbers. Parentheses around single
arguments can be dropped (as in nat list), multiple arguments are sep-
arated by commas (as in (bool,nat)ty).

function types, denoted by⇒. In HOL⇒ represents total functions only. As
is customary, τ1 ⇒ τ2 ⇒ τ3 means τ1 ⇒ (τ2 ⇒ τ3). Isabelle also sup-
ports the notation [τ1, . . . , τn] ⇒ τ which abbreviates τ1 ⇒ · · · ⇒ τn

⇒ τ .
type variables, denoted by ’a , ’b etc., just like in ML. They give rise to

polymorphic types like ’a ⇒ ’a, the type of the identity function.

! Types are extremely important because they prevent us from writing nonsense.
Isabelle insists that all terms and formulae must be well-typed and will print an

error message if a type mismatch is encountered. To reduce the amount of explicit
type information that needs to be provided by the user, Isabelle infers the type of
all variables automatically (this is called type inference) and keeps quiet about
it. Occasionally this may lead to misunderstandings between you and the system.
If anything strange happens, we recommend that you set the flag show_types .
Isabelle will then display type information that is usually suppressed. Simply type

ML "set show_types"

This can be reversed by ML "reset show_types". Various other flags, which we
introduce as we go along, can be set and reset in the same manner.

Terms are formed as in functional programming by applying functions
to arguments. If f is a function of type τ1 ⇒ τ2 and t is a term of type
τ1 then f t is a term of type τ2. HOL also supports infix functions like +

and some basic constructs from functional programming, such as conditional
expressions:

if b then t1 else t2 Here b is of type bool and t1 and t2 are of the same
type.

let x = t in u is equivalent to u where all occurrences of x have been re-
placed by t . For example, let x = 0 in x+x is equivalent to 0+0. Multiple
bindings are separated by semicolons: let x1 = t1; . . . ; xn = tn in u.

case e of c1 ⇒ e1 | . . . | cn ⇒ en evaluates to ei if e is of the form ci .

Terms may also contain λ-abstractions. For example, λx. x+1 is the func-
tion that takes an argument x and returns x+1. Instead of λx.λy.λz. t we
can write λx y z. t .

Formulae are terms of type bool . There are the basic constants True

and False and the usual logical connectives (in decreasing order of priority):
¬, ∧, ∨, and −→, all of which (except the unary ¬) associate to the right.
In particular A −→ B −→ C means A −→ (B −→ C) and is thus logically
equivalent to A ∧ B −→ C (which is (A ∧ B) −→ C).

Equality is available in the form of the infix function = of type ’a ⇒ ’a

⇒ bool. Thus t1 = t2 is a formula provided t1 and t2 are terms of the same
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type. If t1 and t2 are of type bool then = acts as if-and-only-if. The formula
t1 6= t2 is merely an abbreviation for ¬(t1 = t2).

Quantifiers are written as ∀ x. P and ∃ x. P . There is even ∃! x. P , which
means that there exists exactly one x that satisfies P . Nested quantifications
can be abbreviated: ∀ x y z. P means ∀ x.∀ y.∀ z. P .

Despite type inference, it is sometimes necessary to attach explicit type
constraints to a term. The syntax is t::τ as in x < (y::nat). Note that
:: binds weakly and should therefore be enclosed in parentheses. For in-
stance, x < y::nat is ill-typed because it is interpreted as (x < y)::nat. Type
constraints may be needed to disambiguate expressions involving overloaded
functions such as +, * and <. Section 8.4.1 discusses overloading, while Ta-
ble A.2 presents the most important overloaded function symbols.

In general, HOL’s concrete syntax tries to follow the conventions of func-
tional programming and mathematics. Here are the main rules that you
should be familiar with to avoid certain syntactic traps:

– Remember that f t u means (f t) u and not f(t u) !
– Isabelle allows infix functions like +. The prefix form of function application

binds more strongly than anything else and hence f x + y means (f x) + y

and not f(x+y).
– Remember that in HOL if-and-only-if is expressed using equality. But

equality has a high priority, as befitting a relation, while if-and-only-if
typically has the lowest priority. Thus, ¬ ¬ P = P means ¬¬(P = P) and
not (¬¬P) = P. When using = to mean logical equivalence, enclose both
operands in parentheses, as in (A ∧ B) = (B ∧ A).

– Constructs with an opening but without a closing delimiter bind very
weakly and should therefore be enclosed in parentheses if they appear in
subterms, as in (λx. x) = f. This includes if, let, case, λ, and quantifiers.

– Never write λx.x or ∀ x.x=x because x.x is always taken as a single qualified
identifier. Write λx. x and ∀ x. x=x instead.

– Identifiers may contain the characters _ and ’, except at the beginning.

For the sake of readability, we use the usual mathematical symbols
throughout the tutorial. Their ascii-equivalents are shown in table A.1 in
the appendix.

! A particular problem for novices can be the priority of operators. If you are
unsure, use additional parentheses. In those cases where Isabelle echoes your

input, you can see which parentheses are dropped — they were superfluous. If you
are unsure how to interpret Isabelle’s output because you don’t know where the
(dropped) parentheses go, set the flag show_brackets :

ML "set show_brackets"; . . .; ML "reset show_brackets";
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1.4 Variables

Isabelle distinguishes free and bound variables, as is customary. Bound vari-
ables are automatically renamed to avoid clashes with free variables. In ad-
dition, Isabelle has a third kind of variable, called a schematic variable or
unknown, which must a ? as its first character. Logically, an unknown is a
free variable. But it may be instantiated by another term during the proof
process. For example, the mathematical theorem x = x is represented in Isa-
belle as ?x = ?x, which means that Isabelle can instantiate it arbitrarily. This
is in contrast to ordinary variables, which remain fixed. The programming
language Prolog calls unknowns logical variables.

Most of the time you can and should ignore unknowns and work with
ordinary variables. Just don’t be surprised that after you have finished the
proof of a theorem, Isabelle will turn your free variables into unknowns. It
indicates that Isabelle will automatically instantiate those unknowns suitably
when the theorem is used in some other proof. Note that for readability we
often drop the ?s when displaying a theorem.

! For historical reasons, Isabelle accepts ? as an ASCII representation of the
∃ symbol. However, the ? character must then be followed by a space, as in

? x. f(x) = 0. Otherwise, ?x is interpreted as a schematic variable. The preferred
ASCII representation of the ∃ symbol is EX .

1.5 Interaction and Interfaces

Interaction with Isabelle can either occur at the shell level or through more
advanced interfaces. To keep the tutorial independent of the interface, we
have phrased the description of the interaction in a neutral language. For
example, the phrase “to abandon a proof” means to type oops at the shell
level, which is explained the first time the phrase is used. Other interfaces
perform the same act by cursor movements and/or mouse clicks. Although
shell-based interaction is quite feasible for the kind of proof scripts currently
presented in this tutorial, the recommended interface for Isabelle/Isar is the
Emacs-based Proof General [1, 2].

Some interfaces (including the shell level) offer special fonts with mathe-
matical symbols. For those that do not, remember that ascii-equivalents are
shown in table A.1 in the appendix.

Finally, a word about semicolons. Commands may but need not be ter-
minated by semicolons. At the shell level it is advisable to use semicolons
to enforce that a command is executed immediately; otherwise Isabelle may
wait for the next keyword before it knows that the command is complete.
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1.6 Getting Started

Assuming you have installed Isabelle, you start it by typing isabelle -I
HOL in a shell window.1 This presents you with Isabelle’s most basic ascii

interface. In addition you need to open an editor window to create theory
files. While you are developing a theory, we recommend that you type each
command into the file first and then enter it into Isabelle by copy-and-paste,
thus ensuring that you have a complete record of your theory. As mentioned
above, Proof General offers a much superior interface. If you have installed
Proof General, you can start it by typing Isabelle.

1 Simply executing isabelle -I starts the default logic, which usually is already
HOL. This is controlled by the ISABELLE_LOGIC setting, see The Isabelle System
Manual for more details.



2. Functional Programming in HOL

This chapter describes how to write functional programs in HOL and how
to verify them. However, most of the constructs and proof procedures in-
troduced are general and recur in any specification or verification task. We
really should speak of functional modelling rather than functional program-
ming : our primary aim is not to write programs but to design abstract models
of systems. HOL is a specification language that goes well beyond what can
be expressed as a program. However, for the time being we concentrate on
the computable.

If you are a purist functional programmer, please note that all functions in
HOL must be total: they must terminate for all inputs. Lazy data structures
are not directly available.

2.1 An Introductory Theory

Functional programming needs datatypes and functions. Both of them can be
defined in a theory with a syntax reminiscent of languages like ML or Haskell.
As an example consider the theory in figure 2.1. We will now examine it line
by line.
theory ToyList = PreList:

HOL already has a predefined theory of lists called List — ToyList is merely
a small fragment of it chosen as an example. In contrast to what is recom-
mended in Sect. 1.2, ToyList is not based on Main but on PreList, a theory
that contains pretty much everything but lists, thus avoiding ambiguities
caused by defining lists twice.

datatype ’a list = Nil ("[]")

| Cons ’a "’a list" ( infixr "#" 65)

The datatype list introduces two constructors Nil and Cons , the empty list
and the operator that adds an element to the front of a list. For example,
the term Cons True (Cons False Nil) is a value of type bool list, namely
the list with the elements True and False. Because this notation quickly
becomes unwieldy, the datatype declaration is annotated with an alternative
syntax: instead of Nil and Cons x xs we can write [] and x # xs . In fact,
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theory ToyList = PreList:

datatype ’a list = Nil ("[]")
| Cons ’a "’a list" (infixr "#" 65)

consts app :: "’a list => ’a list => ’a list" (infixr "@" 65)
rev :: "’a list => ’a list"

primrec
"[] @ ys = ys"
"(x # xs) @ ys = x # (xs @ ys)"

primrec
"rev [] = []"
"rev (x # xs) = (rev xs) @ (x # [])"

Fig. 2.1. A Theory of Lists

this alternative syntax is the familiar one. Thus the list Cons True (Cons

False Nil) becomes True # False # []. The annotation infixr means that #

associates to the right: the term x # y # z is read as x # (y # z) and not as
(x # y) # z. The 65 is the priority of the infix #.

! Syntax annotations are can be powerful, but they are difficult to master and
are never necessary. You could drop them from theory ToyList and go back

to the identifiers Nil and Cons. Novices should avoid using syntax annotations in
their own theories.

Next, two functions app and rev are declared:

consts app :: "’a list ⇒ ’a list ⇒ ’a list" ( infixr "@" 65)

rev :: "’a list ⇒ ’a list"

In contrast to many functional programming languages, Isabelle insists on
explicit declarations of all functions (keyword consts). Apart from the
declaration-before-use restriction, the order of items in a theory file is un-
constrained. Function app is annotated with concrete syntax too. Instead of
the prefix syntax app xs ys the infix xs @ ys becomes the preferred form.
Both functions are defined recursively:

primrec

"[] @ ys = ys"

"(x # xs) @ ys = x # (xs @ ys)"

primrec

"rev [] = []"

"rev (x # xs) = (rev xs) @ (x # [])"

The equations for app and rev hardly need comments: app appends two lists
and rev reverses a list. The keyword primrec indicates that the recursion is
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of a particularly primitive kind where each recursive call peels off a datatype
constructor from one of the arguments. Thus the recursion always terminates,
i.e. the function is total.

The termination requirement is absolutely essential in HOL, a logic of
total functions. If we were to drop it, inconsistencies would quickly arise: the
“definition” f (n) = f (n) + 1 immediately leads to 0 = 1 by subtracting f (n)
on both sides.

! As we have indicated, the requirement for total functions is an essential char-
acteristic of HOL. It is only because of totality that reasoning in HOL is com-

paratively easy. More generally, the philosophy in HOL is to refrain from asserting
arbitrary axioms (such as function definitions whose totality has not been proved)
because they quickly lead to inconsistencies. Instead, fixed constructs for introduc-
ing types and functions are offered (such as datatype and primrec) which are
guaranteed to preserve consistency.

A remark about syntax. The textual definition of a theory follows a fixed
syntax with keywords like datatype and end. Embedded in this syntax are
the types and formulae of HOL, whose syntax is extensible (see Sect. 4.1), e.g.
by new user-defined infix operators. To distinguish the two levels, everything
HOL-specific (terms and types) should be enclosed in " . . . ". To lessen this
burden, quotation marks around a single identifier can be dropped, unless
the identifier happens to be a keyword, as in

consts "end" :: "’a list ⇒ ’a"

When Isabelle prints a syntax error message, it refers to the HOL syntax as
the inner syntax and the enclosing theory language as the outer syntax.

2.2 An Introductory Proof

Assuming you have input the declarations and definitions of ToyList pre-
sented so far, we are ready to prove a few simple theorems. This will illustrate
not just the basic proof commands but also the typical proof process.

Main Goal. Our goal is to show that reversing a list twice produces the
original list.

theorem rev_rev [simp]: "rev(rev xs) = xs"

This theorem command does several things:

– It establishes a new theorem to be proved, namely rev (rev xs) = xs.
– It gives that theorem the name rev_rev, for later reference.
– It tells Isabelle (via the bracketed attribute simp) to take the eventual

theorem as a simplification rule: future proofs involving simplification will
replace occurrences of rev (rev xs) by xs.
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The name and the simplification attribute are optional. Isabelle’s response
is to print the initial proof state consisting of some header information (like
how many subgoals there are) followed by

rev (rev xs) = xs
1. rev (rev xs) = xs

For compactness reasons we omit the header in this tutorial. Until we have
finished a proof, the proof state proper always looks like this:

G
1. G1

...
n. Gn

where G is the overall goal that we are trying to prove, and the numbered
lines contain the subgoals G1, . . . , Gn that we need to prove to establish G .
Initially there is only one subgoal, which is identical with the overall goal.
Normally G is constant and only serves as a reminder. Hence we rarely show
it in this tutorial.

Let us now get back to rev (rev xs) = xs. Properties of recursively de-
fined functions are best established by induction. In this case there is nothing
obvious except induction on xs :

apply(induct_tac xs)

This tells Isabelle to perform induction on variable xs. The suffix tac stands
for tactic, a synonym for “theorem proving function”. By default, induction
acts on the first subgoal. The new proof state contains two subgoals, namely
the base case (Nil) and the induction step (Cons):

1. rev (rev []) = []
2.

∧
a list.
rev (rev list) = list =⇒ rev (rev (a # list)) = a # list

The induction step is an example of the general format of a subgoal:

i.
∧

x1 . . . xn. assumptions =⇒ conclusion

The prefix of bound variables
∧

x1 . . . xn can be ignored most of the time, or
simply treated as a list of variables local to this subgoal. Their deeper signif-
icance is explained in Chapter 5. The assumptions are the local assumptions
for this subgoal and conclusion is the actual proposition to be proved. Typical
proof steps that add new assumptions are induction and case distinction. In
our example the only assumption is the induction hypothesis rev (rev list)

= list, where list is a variable name chosen by Isabelle. If there are multiple
assumptions, they are enclosed in the bracket pair [[ and ]] and separated by
semicolons.

Let us try to solve both goals automatically:

apply(auto)
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This command tells Isabelle to apply a proof strategy called auto to all sub-
goals. Essentially, auto tries to simplify the subgoals. In our case, subgoal 1
is solved completely (thanks to the equation rev [] = []) and disappears;
the simplified version of subgoal 2 becomes the new subgoal 1:

1.
∧
a list.
rev (rev list) = list =⇒ rev (rev list @ a # []) = a # list

In order to simplify this subgoal further, a lemma suggests itself.

First Lemma. After abandoning the above proof attempt (at the shell level
type oops) we start a new proof:

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"

The keywords theorem and lemma are interchangeable and merely indi-
cate the importance we attach to a proposition. Therefore we use the words
theorem and lemma pretty much interchangeably, too.

There are two variables that we could induct on: xs and ys. Because @ is
defined by recursion on the first argument, xs is the correct one:

apply(induct_tac xs)

This time not even the base case is solved automatically:

apply(auto)

1. rev ys = rev ys @ []

Again, we need to abandon this proof attempt and prove another simple
lemma first. In the future the step of abandoning an incomplete proof before
embarking on the proof of a lemma usually remains implicit.

Second Lemma. We again try the canonical proof procedure:

lemma app_Nil2 [simp]: "xs @ [] = xs"

apply(induct_tac xs)

apply(auto)

It works, yielding the desired message No subgoals! :

xs @ [] = xs
No subgoals!

We still need to confirm that the proof is now finished:

done

As a result of that final done, Isabelle associates the lemma just proved with
its name. In this tutorial, we sometimes omit to show that final done if it is
obvious from the context that the proof is finished.

Notice that in lemma app_Nil2, as printed out after the final done, the
free variable xs has been replaced by the unknown ?xs, just as explained in
Sect. 1.4.
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Going back to the proof of the first lemma

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"

apply(induct_tac xs)

apply(auto)

we find that this time auto solves the base case, but the induction step merely
simplifies to

1.
∧
a list.
rev (list @ ys) = rev ys @ rev list =⇒
(rev ys @ rev list) @ a # [] = rev ys @ rev list @ a # []

Now we need to remember that @ associates to the right, and that # and @

have the same priority (namely the 65 in their infixr annotation). Thus the
conclusion really is

(rev ys @ rev list) @ (a # []) = rev ys @ (rev list @ (a # []))

and the missing lemma is associativity of @.

Third Lemma. Abandoning the previous attempt, the canonical proof pro-
cedure succeeds without further ado.

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"

apply(induct_tac xs)

apply(auto)

done

Now we can prove the first lemma:

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"

apply(induct_tac xs)

apply(auto)

done

Finally, we prove our main theorem:

theorem rev_rev [simp]: "rev(rev xs) = xs"

apply(induct_tac xs)

apply(auto)

done

The final end tells Isabelle to close the current theory because we are finished
with its development:

end

The complete proof script is shown in Fig. 2.2. The concatenation of
Figs. 2.1 and 2.2 constitutes the complete theory ToyList and should reside
in file ToyList.thy.
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lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induct_tac xs)
apply(auto)
done

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induct_tac xs)
apply(auto)
done

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induct_tac xs)
apply(auto)
done

theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induct_tac xs)
apply(auto)
done

end

Fig. 2.2. Proofs about Lists

Review This is the end of our toy proof. It should have familiarized you
with

– the standard theorem proving procedure: state a goal (lemma or theorem);
proceed with proof until a separate lemma is required; prove that lemma;
come back to the original goal.

– a specific procedure that works well for functional programs: induction
followed by all-out simplification via auto.

– a basic repertoire of proof commands.

! It is tempting to think that all lemmas should have the simp attribute just
because this was the case in the example above. However, in that example all

lemmas were equations, and the right-hand side was simpler than the left-hand
side — an ideal situation for simplification purposes. Unless this is clearly the case,
novices should refrain from awarding a lemma the simp attribute, which has a
global effect. Instead, lemmas can be applied locally where they are needed, which
is discussed in the following chapter.

2.3 Some Helpful Commands

This section discusses a few basic commands for manipulating the proof state
and can be skipped by casual readers.

There are two kinds of commands used during a proof: the actual proof
commands and auxiliary commands for examining the proof state and con-
trolling the display. Simple proof commands are of the form apply(method),



16 2. Functional Programming in HOL

where method is typically induct_tac or auto. All such theorem proving oper-
ations are referred to as methods, and further ones are introduced through-
out the tutorial. Unless stated otherwise, you may assume that a method
attacks merely the first subgoal. An exception is auto, which tries to solve all
subgoals.

The most useful auxiliary commands are as follows:

Undoing: undo undoes the effect of the last command; undo can be undone
by redo. Both are only needed at the shell level and should not occur in
the final theory.

Printing the current state: pr redisplays the current proof state, for example
when it has scrolled past the top of the screen.

Limiting the number of subgoals: pr n tells Isabelle to print only the first
n subgoals from now on and redisplays the current proof state. This is
helpful when there are many subgoals.

Modifying the order of subgoals: defer moves the first subgoal to the end
and prefer n moves subgoal n to the front.

Printing theorems: thm name1 . . . namen prints the named theorems.
Displaying types: We have already mentioned the flag show_types above. It

can also be useful for detecting misspellings in formulae. For example,
if show_types is set and the goal rev(rev xs) = xs is started, Isabelle
prints the additional output
variables:

xs :: ’a list

which tells us that Isabelle has correctly inferred that xs is a variable of
list type. On the other hand, had we made a typo as in rev(re xs) = xs,
the response
variables:

re :: ’a list ⇒ ’a list
xs :: ’a list

would have alerted us because of the unexpected variable re.
Reading terms and types: term string reads, type-checks and prints the

given string as a term in the current context; the inferred type is output
as well. typ string reads and prints the given string as a type in the
current context.

(Re)loading theories: When you start your interaction you must open a
named theory with the line theory T = . . . :. Isabelle automatically
loads all the required parent theories from their respective files (which
may take a moment, unless the theories are already loaded and the files
have not been modified).
If you suddenly discover that you need to modify a parent theory of your
current theory, you must first abandon your current theory (at the shell
level type kill). After the parent theory has been modified, you go back to
your original theory. When its first line theory T = . . . : is processed,
the modified parent is reloaded automatically.
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Further commands are found in the Isabelle/Isar Reference Manual [33].
We now examine Isabelle’s functional programming constructs systemat-

ically, starting with inductive datatypes.

2.4 Datatypes

Inductive datatypes are part of almost every non-trivial application of HOL.
First we take another look at an important example, the datatype of lists,
before we turn to datatypes in general. The section closes with a case study.

2.4.1 Lists

Lists are one of the essential datatypes in computing. We expect that you are
already familiar with their basic operations. Theory ToyList is only a small
fragment of HOL’s predefined theory List1. The latter contains many further
operations. For example, the functions hd (“head”) and tl (“tail”) return
the first element and the remainder of a list. (However, pattern-matching is
usually preferable to hd and tl.) Also available are higher-order functions
like map and filter. Theory List also contains more syntactic sugar: [x1,

. . . ,xn] abbreviates x1# . . . #xn#[]. In the rest of the tutorial we always
use HOL’s predefined lists by building on theory Main.

2.4.2 The General Format

The general HOL datatype definition is of the form

datatype (α1, . . . , αn) t = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

where αi are distinct type variables (the parameters), Ci are distinct con-
structor names and τij are types; it is customary to capitalize the first letter
in constructor names. There are a number of restrictions (such as that the
type should not be empty) detailed elsewhere [22]. Isabelle notifies you if you
violate them.

Laws about datatypes, such as [] 6= x#xs and (x#xs = y#ys) = (x=y

∧ xs=ys), are used automatically during proofs by simplification. The same
is true for the equations in primitive recursive function definitions.

Every2 datatype t comes equipped with a size function from t into the
natural numbers (see Sect. 2.5.1 below). For lists, size is just the length, i.e.
size [] = 0 and size(x # xs) = size xs + 1. In general, size returns

– zero for all constructors that do not have an argument of type t

1 http://isabelle.in.tum.de/library/HOL/List.html
2 Except for advanced datatypes where the recursion involves “⇒” as in Sect. 3.4.3.

http://isabelle.in.tum.de/library/HOL/List.html
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– one plus the sum of the sizes of all arguments of type t , for all other
constructors

Note that because size is defined on every datatype, it is overloaded; on lists
size is also called length , which is not overloaded. Isabelle will always show
size on lists as length.

2.4.3 Primitive Recursion

Functions on datatypes are usually defined by recursion. In fact, most of the
time they are defined by what is called primitive recursion. The keyword
primrec is followed by a list of equations

f x1 . . . (C y1 . . . yk ) . . . xn = r

such that C is a constructor of the datatype t and all recursive calls of f
in r are of the form f . . . yi . . . for some i . Thus Isabelle immediately sees
that f terminates because one (fixed!) argument becomes smaller with every
recursive call. There must be at most one equation for each constructor.
Their order is immaterial. A more general method for defining total recursive
functions is introduced in Sect. 3.5.

Exercise 2.4.1 Define the datatype of binary trees:

datatype ’a tree = Tip | Node "’a tree" ’a "’a tree"

Define a function mirror that mirrors a binary tree by swapping subtrees
recursively. Prove

lemma mirror_mirror: "mirror(mirror t) = t"

Define a function flatten that flattens a tree into a list by traversing it in
infix order. Prove

lemma "flatten(mirror t) = rev(flatten t)"

2.4.4 Case Expressions

HOL also features case -expressions for analyzing elements of a datatype. For
example,

case xs of [] ⇒ [] | y # ys ⇒ y

evaluates to [] if xs is [] and to y if xs is y # ys. (Since the result in both
branches must be of the same type, it follows that y is of type ’a list and
hence that xs is of type ’a list list.)

In general, if e is a term of the datatype t defined in Sect. 2.4.2 above,
the corresponding case -expression analyzing e is
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case e of C1 x11 . . . x1k1 ⇒ e1

...
| Cm xm1 . . . xmkm

⇒ em

! All constructors must be present, their order is fixed, and nested patterns are
not supported. Violating these restrictions results in strange error messages.

Nested patterns can be simulated by nested case -expressions: instead of

case xs of [] => [] | [x] => x | x # (y # zs) => y

write

case xs of [] ⇒ []
| x # ys ⇒ case ys of [] ⇒ x | y # zs ⇒ y

Note that case -expressions may need to be enclosed in parentheses to
indicate their scope

2.4.5 Structural Induction and Case Distinction

Induction is invoked by induct_tac , as we have seen above; it works for any
datatype. In some cases, induction is overkill and a case distinction over all
constructors of the datatype suffices. This is performed by case_tac . Here is
a trivial example:

lemma "(case xs of [] ⇒ [] | y#ys ⇒ xs) = xs"

apply(case_tac xs)

results in the proof state

1. xs = [] =⇒ (case xs of [] ⇒ [] | y # ys ⇒ xs) = xs
2.

∧
a list.
xs = a # list =⇒ (case xs of [] ⇒ [] | y # ys ⇒ xs) = xs

which is solved automatically:

apply(auto)

Note that we do not need to give a lemma a name if we do not intend
to refer to it explicitly in the future. Other basic laws about a datatype
are applied automatically during simplification, so no special methods are
provided for them.

! Induction is only allowed on free (or
∧

-bound) variables that should not occur
among the assumptions of the subgoal; see Sect. 9.3.1 for details. Case distinc-

tion (case_tac) works for arbitrary terms, which need to be quoted if they are
non-atomic. However, apart from

∧
-bound variables, the terms must not contain

variables that are bound outside. For example, given the goal ∀ xs. xs = [] ∨
(∃ y ys. xs = y # ys), case_tac xs will not work as expected because Isabelle
interprets the xs as a new free variable distinct from the bound xs in the goal.



20 2. Functional Programming in HOL

2.4.6 Case Study: Boolean Expressions

The aim of this case study is twofold: it shows how to model boolean expres-
sions and some algorithms for manipulating them, and it demonstrates the
constructs introduced above.

Modelling Boolean Expressions. We want to represent boolean expres-
sions built up from variables and constants by negation and conjunction. The
following datatype serves exactly that purpose:

datatype boolex = Const bool | Var nat | Neg boolex

| And boolex boolex

The two constants are represented by Const True and Const False. Variables
are represented by terms of the form Var n, where n is a natural number
(type nat). For example, the formula P0 ∧ ¬P1 is represented by the term
And (Var 0) (Neg (Var 1)).

The Value of a Boolean Expression. The value of a boolean expression
depends on the value of its variables. Hence the function value takes an addi-
tional parameter, an environment of type nat ⇒ bool, which maps variables
to their values:

consts value :: "boolex ⇒ (nat ⇒ bool) ⇒ bool"

primrec

"value (Const b) env = b"

"value (Var x) env = env x"

"value (Neg b) env = (¬ value b env)"

"value (And b c) env = (value b env ∧ value c env)"

If-Expressions. An alternative and often more efficient (because in a cer-
tain sense canonical) representation are so-called If-expressions built up from
constants (CIF), variables (VIF) and conditionals (IF):

datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex

The evaluation of If-expressions proceeds as for boolex :

consts valif :: "ifex ⇒ (nat ⇒ bool) ⇒ bool"

primrec

"valif (CIF b) env = b"

"valif (VIF x) env = env x"

"valif (IF b t e) env = (if valif b env then valif t env

else valif e env)"

Converting Boolean and If-Expressions. The type boolex is close to
the customary representation of logical formulae, whereas ifex is designed
for efficiency. It is easy to translate from boolex into ifex :
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consts bool2if :: "boolex ⇒ ifex"

primrec

"bool2if (Const b) = CIF b"

"bool2if (Var x) = VIF x"

"bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)"

"bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)"

At last, we have something we can verify: that bool2if preserves the value
of its argument:

lemma "valif (bool2if b) env = value b env"

The proof is canonical:

apply(induct_tac b)

apply(auto)

done

In fact, all proofs in this case study look exactly like this. Hence we do not
show them below.

More interesting is the transformation of If-expressions into a normal
form where the first argument of IF cannot be another IF but must be a
constant or variable. Such a normal form can be computed by repeatedly
replacing a subterm of the form IF (IF b x y) z u by IF b (IF x z u) (IF

y z u), which has the same value. The following primitive recursive functions
perform this task:

consts normif :: "ifex ⇒ ifex ⇒ ifex ⇒ ifex"

primrec

"normif (CIF b) t e = IF (CIF b) t e"

"normif (VIF x) t e = IF (VIF x) t e"

"normif (IF b t e) u f = normif b (normif t u f) (normif e u f)"

consts norm :: "ifex ⇒ ifex"

primrec

"norm (CIF b) = CIF b"

"norm (VIF x) = VIF x"

"norm (IF b t e) = normif b (norm t) (norm e)"

Their interplay is tricky; we leave it to you to develop an intuitive under-
standing. Fortunately, Isabelle can help us to verify that the transformation
preserves the value of the expression:

theorem "valif (norm b) env = valif b env"

The proof is canonical, provided we first show the following simplification
lemma, which also helps to understand what normif does:

lemma [simp]:

"∀ t e. valif (normif b t e) env = valif (IF b t e) env"
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Note that the lemma does not have a name, but is implicitly used in the
proof of the theorem shown above because of the [simp] attribute.

But how can we be sure that norm really produces a normal form in the
above sense? We define a function that tests If-expressions for normality:

consts normal :: "ifex ⇒ bool"

primrec

"normal(CIF b) = True"

"normal(VIF x) = True"

"normal(IF b t e) = (normal t ∧ normal e ∧
(case b of CIF b ⇒ True | VIF x ⇒ True | IF x y z ⇒ False))"

Now we prove normal (norm b). Of course, this requires a lemma about nor-
mality of normif :

lemma [simp]: "∀ t e. normal(normif b t e) = (normal t ∧ normal e)"

How do we come up with the required lemmas? Try to prove the main
theorems without them and study carefully what auto leaves unproved. This
can provide the clue. The necessity of universal quantification (∀ t e) in the
two lemmas is explained in Sect. 3.2

Exercise 2.4.2 We strengthen the definition of a normal If-expression as
follows: the first argument of all IFs must be a variable. Adapt the above
development to this changed requirement. (Hint: you may need to formulate
some of the goals as implications (−→) rather than equalities (=).)

2.5 Some Basic Types

This section introduces the types of natural numbers and ordered pairs. Also
described is type option, which is useful for modelling exceptional cases.

2.5.1 Natural Numbers

The type nat of natural numbers is predefined to have the constructors 0

and Suc . It behaves as if it were declared like this:
datatype nat = 0 | Suc nat

In particular, there are case -expressions, for example
case n of 0 ⇒ 0 | Suc m ⇒ m

primitive recursion, for example

consts sum :: "nat ⇒ nat"

primrec "sum 0 = 0"

"sum (Suc n) = Suc n + sum n"
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and induction, for example

lemma "sum n + sum n = n*(Suc n)"

apply(induct_tac n)

apply(auto)

done

The arithmetic operations + , - , * , div , mod , min and max are predefined,
as are the relations ≤ and < . As usual, m - n = 0 if m < n. There is even a
least number operation LEAST . For example, (LEAST n. 0 < n) = Suc 0.

! The constants 0 and 1 and the operations + , - , * , min , max , ≤ and < are
overloaded: they are available not just for natural numbers but for other types

as well. For example, given the goal x + 0 = x, there is nothing to indicate that you
are talking about natural numbers. Hence Isabelle can only infer that x is of some
arbitrary type where 0 and + are declared. As a consequence, you will be unable
to prove the goal. To alert you to such pitfalls, Isabelle flags numerals without a
fixed type in its output: x + (0 ::’a) = x. (In the absence of a numeral, it may
take you some time to realize what has happened if show_types is not set). In this
particular example, you need to include an explicit type constraint, for example x+0
= (x::nat). If there is enough contextual information this may not be necessary:
Suc x = x automatically implies x::nat because Suc is not overloaded.

For details on overloading see Sect. 8.4.1. Table A.2 in the appendix shows the
most important overloaded operations.

! Constant 1::nat is defined to equal Suc 0. This definition (see Sect. 2.6.2) is
unfolded automatically by some tactics (like auto, simp and arith) but not by

others (especially the single step tactics in Chapter 5). If you need the full set of
numerals, see Sect. 8.1.1. Novices are advised to stick to 0 and Suc.

Both auto and simp (a method introduced below, Sect. 3.1) prove simple
arithmetic goals automatically:

lemma " [[ ¬ m < n; m < n + (1::nat) ]] =⇒ m = n"

For efficiency’s sake, this built-in prover ignores quantified formulae, logi-
cal connectives, and all arithmetic operations apart from addition. In conse-
quence, auto cannot prove this slightly more complex goal:

lemma "¬ m < n ∧ m < n + (1::nat) =⇒ m = n"

The method arith is more general. It attempts to prove the first subgoal
provided it is a quantifier-free linear arithmetic formula. Such formulas
may involve the usual logical connectives (¬, ∧, ∨, −→), the relations =, ≤
and <, and the operations +, -, min and max. For example,

lemma "min i (max j (k*k)) = max (min (k*k) i) (min i (j::nat))"

apply(arith)

succeeds because k * k can be treated as atomic. In contrast,

lemma "n*n = n =⇒ n=0 ∨ n=1"



24 2. Functional Programming in HOL

is not proved even by arith because the proof relies on properties of multi-
plication.

! The running time of arith is exponential in the number of occurrences of - ,
min and max because they are first eliminated by case distinctions.
Even for linear arithmetic formulae, arith is incomplete. If divisibility plays

a role, it may fail to prove a valid formula, for example m+m 6= n+n+(1::nat).
Fortunately, such examples are rare.

2.5.2 Pairs

HOL also has ordered pairs: (a1,a2) is of type τ1 × τ2 provided each ai

is of type τi . The functions fst and snd extract the components of a pair:
fst(x,y) = x and snd(x,y) = y. Tuples are simulated by pairs nested to the
right: (a1,a2,a3) stands for (a1,(a2,a3)) and τ1 × τ2 × τ3 for τ1 × (τ2 × τ3).
Therefore we have fst(snd(a1,a2,a3)) = a2.

Remarks:

– There is also the type unit , which contains exactly one element denoted
by () . This type can be viewed as a degenerate product with 0 components.

– Products, like type nat, are datatypes, which means in particular that
induct_tac and case_tac are applicable to terms of product type. Both
replace the term by a pair of variables.

– Tuples with more than two or three components become unwieldy; records
are preferable.

For more information on pairs and records see Chapter 8.

2.5.3 Datatype option

Our final datatype is very simple but still eminently useful:

datatype ’a option = None | Some ’a

Frequently one needs to add a distinguished element to some existing type.
For example, type t option can model the result of a computation that may
either terminate with an error (represented by None) or return some value
v (represented by Some v). Similarly, nat extended with ∞ can be modeled
by type nat option. In both cases one could define a new datatype with
customized constructors like Error and Infinity, but it is often simpler to
use option. For an application see Sect. 3.4.4.
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2.6 Definitions

A definition is simply an abbreviation, i.e. a new name for an existing con-
struction. In particular, definitions cannot be recursive. Isabelle offers defini-
tions on the level of types and terms. Those on the type level are called type
synonyms; those on the term level are simply called definitions.

2.6.1 Type Synonyms

Type synonyms are similar to those found in ML. They are created by a
types command:
types number = nat

gate = "bool ⇒ bool ⇒ bool"

(’a,’b)alist = "(’a × ’b)list"

Internally all synonyms are fully expanded. As a consequence Isabelle’s out-
put never contains synonyms. Their main purpose is to improve the read-
ability of theories. Synonyms can be used just like any other type. Here, we
declare two constants of type gate :

consts nand :: gate
xor :: gate

2.6.2 Constant Definitions

The constants nand and xor above are non-recursive and can be defined
directly:

defs nand_def: "nand A B ≡ ¬(A ∧ B)"

xor_def: "xor A B ≡ A ∧ ¬B ∨ ¬A ∧ B"

Here defs is a keyword and nand_def and xor_def are user-supplied names.
The symbol ≡ is a special form of equality that must be used in constant
definitions. Pattern-matching is not allowed: each definition must be of the
form f x1 . . . xn ≡ t . Section 3.1.6 explains how definitions are used in proofs.

A constdefs command combines the effects of consts and defs. For
instance, we can introduce nand and xor by a single command:

constdefs nor :: gate

"nor A B ≡ ¬(A ∨ B)"

xor2 :: gate

"xor2 A B ≡ (A ∨ B) ∧ (¬A ∨ ¬B)"

The default name of each definition is f _def, where f is the name of the
defined constant.
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! A common mistake when writing definitions is to introduce extra free variables
on the right-hand side. Consider the following, flawed definition (where dvd

means “divides”):

"prime p ≡ 1 < p ∧ (m dvd p −→ m = 1 ∨ m = p)"

Isabelle rejects this “definition” because of the extra m on the right-hand side, which
would introduce an inconsistency (why?). The correct version is

"prime p ≡ 1 < p ∧ (∀ m. m dvd p −→ m = 1 ∨ m = p)"

2.7 The Definitional Approach

As we pointed out at the beginning of the chapter, asserting arbitrary ax-
ioms such as f (n) = f (n) + 1 can easily lead to contradictions. In order to
avoid this danger, we advocate the definitional rather than the axiomatic ap-
proach: introduce new concepts by definitions. However, Isabelle/HOL seems
to support many richer definitional constructs, such as primrec. The point
is that Isabelle reduces such constructs to first principles. For example, each
primrec function definition is turned into a proper (nonrecursive!) definition
from which the user-supplied recursion equations are automatically proved.
This process is hidden from the user, who does not have to understand the
details. Other commands described later, like recdef and inductive, work
similarly. This strict adherence to the definitional approach reduces the risk
of soundness errors.
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The purpose of this chapter is to deepen your understanding of the con-
cepts encountered so far and to introduce advanced forms of datatypes and
recursive functions. The first two sections give a structured presentation of
theorem proving by simplification (Sect. 3.1) and discuss important heuris-
tics for induction (Sect. 3.2). You can skip them if you are not planning to
perform proofs yourself. We then present a case study: a compiler for ex-
pressions (Sect. 3.3). Advanced datatypes, including those involving function
spaces, are covered in Sect. 3.4; it closes with another case study, search trees
(“tries”). Finally we introduce recdef, a general form of recursive function
definition that goes well beyond primrec (Sect. 3.5).

3.1 Simplification

So far we have proved our theorems by auto, which simplifies all subgoals.
In fact, auto can do much more than that. To go beyond toy examples, you
need to understand the ingredients of auto. This section covers the method
that auto always applies first, simplification.

Simplification is one of the central theorem proving tools in Isabelle and
many other systems. The tool itself is called the simplifier. This section
introduces the many features of the simplifier and is required reading if you
intend to perform proofs. Later on, Sect. 9.1 explains some more advanced
features and a little bit of how the simplifier works. The serious student should
read that section as well, in particular to understand why the simplifier did
something unexpected.

3.1.1 What is Simplification?

In its most basic form, simplification means repeated application of equations
from left to right. For example, taking the rules for @ and applying them to
the term [0,1] @ [] results in a sequence of simplification steps:

(0#1#[]) @ [] ; 0#((1#[]) @ []) ; 0#(1#([] @ [])) ; 0#1#[]

This is also known as term rewriting and the equations are referred to as
rewrite rules. “Rewriting” is more honest than “simplification” because the
terms do not necessarily become simpler in the process.
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The simplifier proves arithmetic goals as described in Sect. 2.5.1 above.
Arithmetic expressions are simplified using built-in procedures that go be-
yond mere rewrite rules. New simplification procedures can be coded and
installed, but they are definitely not a matter for this tutorial.

3.1.2 Simplification Rules

To facilitate simplification, the attribute [simp] declares theorems to be sim-
plification rules, which the simplifier will use automatically. In addition,
datatype and primrec declarations (and a few others) implicitly declare
some simplification rules. Explicit definitions are not declared as simplifica-
tion rules automatically!

Nearly any theorem can become a simplification rule. The simplifier will
try to transform it into an equation. For example, the theorem ¬ P is turned
into P = False. The details are explained in Sect. 9.1.2.

The simplification attribute of theorems can be turned on and off:

declare theorem-name[simp]
declare theorem-name[simp del]

Only equations that really simplify, like rev (rev xs) = xs and xs @ [] = xs,
should be declared as default simplification rules. More specific ones should
only be used selectively and should not be made default. Distributivity laws,
for example, alter the structure of terms and can produce an exponential
blow-up instead of simplification. A default simplification rule may need to
be disabled in certain proofs. Frequent changes in the simplification status of
a theorem may indicate an unwise use of defaults.

! Simplification can run forever, for example if both f (x ) = g(x ) and g(x ) = f (x )
are simplification rules. It is the user’s responsibility not to include simplification

rules that can lead to nontermination, either on their own or in combination with
other simplification rules.

! It is inadvisable to toggle the simplification attribute of a theorem from a parent
theory A in a child theory B for good. The reason is that if some theory C

is based both on B and (via a differnt path) on A, it is not defined what the
simplification attribute of that theorem will be in C : it could be either.

3.1.3 The simp Method

The general format of the simplification method is

simp list of modifiers

where the list of modifiers fine tunes the behaviour and may be empty. Spe-
cific modifiers are discussed below. Most if not all of the proofs seen so far



3.1 Simplification 29

could have been performed with simp instead of auto, except that simp at-
tacks only the first subgoal and may thus need to be repeated — use simp_all

to simplify all subgoals. If nothing changes, simp fails.

3.1.4 Adding and Deleting Simplification Rules

If a certain theorem is merely needed in a few proofs by simplification, we do
not need to make it a global simplification rule. Instead we can modify the
set of simplification rules used in a simplification step by adding rules to it
and/or deleting rules from it. The two modifiers for this are

add: list of theorem names
del: list of theorem names

Or you can use a specific list of theorems and omit all others:

only: list of theorem names

In this example, we invoke the simplifier, adding two distributive laws:

apply(simp add: mod_mult_distrib add_mult_distrib)

3.1.5 Assumptions

By default, assumptions are part of the simplification process: they are used
as simplification rules and are simplified themselves. For example:

lemma " [[ xs @ zs = ys @ xs; [] @ xs = [] @ [] ]] =⇒ ys = zs"

apply simp

done

The second assumption simplifies to xs = [], which in turn simplifies the first
assumption to zs = ys, thus reducing the conclusion to ys = ys and hence
to True.

In some cases, using the assumptions can lead to nontermination:

lemma "∀ x. f x = g (f (g x)) =⇒ f [] = f [] @ []"

An unmodified application of simp loops. The culprit is the simplification rule
f x = g (f (g x)), which is extracted from the assumption. (Isabelle notices
certain simple forms of nontermination but not this one.) The problem can
be circumvented by telling the simplifier to ignore the assumptions:

apply(simp (no_asm))

done

Three modifiers influence the treatment of assumptions:

(no_asm) means that assumptions are completely ignored.
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(no_asm_simp) means that the assumptions are not simplified but are used
in the simplification of the conclusion.

(no_asm_use) means that the assumptions are simplified but are not used in
the simplification of each other or the conclusion.

Both (no_asm_simp) and (no_asm_use) run forever on the problematic subgoal
above. Only one of the modifiers is allowed, and it must precede all other
modifiers.

! Assumptions are simplified in a left-to-right fashion. If an assumption can help
in simplifying one to the left of it, this may get overlooked. In such cases you

have to rotate the assumptions explicitly: apply(rotate_tac n) causes a cyclic
shift by n positions from right to left, if n is positive, and from left to right, if n is
negative. Beware that such rotations make proofs quite brittle.

3.1.6 Rewriting with Definitions

Constant definitions (Sect. 2.6.2) can be used as simplification rules, but by
default they are not: the simplifier does not expand them automatically.
Definitions are intended for introducing abstract concepts and not merely as
abbreviations. Of course, we need to expand the definition initially, but once
we have proved enough abstract properties of the new constant, we can forget
its original definition. This style makes proofs more robust: if the definition
has to be changed, only the proofs of the abstract properties will be affected.

For example, given

constdefs xor :: "bool ⇒ bool ⇒ bool"

"xor A B ≡ (A ∧ ¬B) ∨ (¬A ∧ B)"

we may want to prove

lemma "xor A (¬A)"

Typically, we begin by unfolding some definitions:

apply(simp only: xor_def)

In this particular case, the resulting goal

1. A ∧ ¬ ¬ A ∨ ¬ A ∧ ¬ A

can be proved by simplification. Thus we could have proved the lemma out-
right by

apply(simp add: xor_def)

Of course we can also unfold definitions in the middle of a proof.

! If you have defined f x y ≡ t then you can only unfold occurrences of f with at
least two arguments. This may be helpful for unfolding f selectively, but it may

also get in the way. Defining f ≡ λx y . t allows to unfold all occurrences of f .
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There is also the special method unfold which merely unfolds one or
several definitions, as in apply(unfold xor_def). This is can be useful in
situations where simp does too much. Warning: unfold acts on all subgoals!

3.1.7 Simplifying let-Expressions

Proving a goal containing let -expressions almost invariably requires the let -
constructs to be expanded at some point. Since let . . . = . . . in . . . is just
syntactic sugar for the predefined constant Let, expanding let -constructs
means rewriting with Let_def :

lemma "(let xs = [] in xs@ys@xs) = ys"

apply(simp add: Let_def)

done

If, in a particular context, there is no danger of a combinatorial explosion
of nested lets, you could even simplify with Let_def by default:

declare Let_def [simp]

3.1.8 Conditional Simplification Rules

So far all examples of rewrite rules were equations. The simplifier also accepts
conditional equations, for example

lemma hd_Cons_tl[simp]: "xs 6= [] =⇒ hd xs # tl xs = xs"

apply(case_tac xs, simp, simp)

done

Note the use of “,” to string together a sequence of methods. Assuming
that the simplification rule (rev xs = []) = (xs = []) is present as well, the
lemma below is proved by plain simplification:

lemma "xs 6= [] =⇒ hd(rev xs) # tl(rev xs) = rev xs"

The conditional equation hd_Cons_tl above can simplify hd (rev xs) # tl

(rev xs) to rev xs because the corresponding precondition rev xs 6= [] sim-
plifies to xs 6= [], which is exactly the local assumption of the subgoal.

3.1.9 Automatic Case Splits

Goals containing if -expressions are usually proved by case distinction on the
boolean condition. Here is an example:

lemma "∀ xs. if xs = [] then rev xs = [] else rev xs 6= []"

The goal can be split by a special method, split :

apply(split split_if)
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1. ∀ xs. (xs = [] −→ rev xs = []) ∧ (xs 6= [] −→ rev xs 6= [])

where split_if is a theorem that expresses splitting of ifs. Because splitting
the ifs is usually the right proof strategy, the simplifier does it automatically.
Try apply(simp) on the initial goal above.

This splitting idea generalizes from if to case . Let us simplify a case
analysis over lists:

lemma "(case xs of [] ⇒ zs | y#ys ⇒ y#(ys@zs)) = xs@zs"

apply(split list.split)

1. (xs = [] −→ zs = xs @ zs) ∧
(∀ a list. xs = a # list −→ a # list @ zs = xs @ zs)

The simplifier does not split case -expressions, as it does if -expressions, be-
cause with recursive datatypes it could lead to nontermination. Instead, the
simplifier has a modifier split for adding splitting rules explicitly. The lemma
above can be proved in one step by

apply(simp split: list.split)

whereas apply(simp) alone will not succeed.
Every datatype t comes with a theorem t.split which can be declared

to be a split rule either locally as above, or by giving it the split attribute
globally:

declare list.split [split]

The split attribute can be removed with the del modifier, either locally

apply(simp split del: split_if)

or globally:

declare list.split [split del]

Polished proofs typically perform splitting within simp rather than in-
voking the split method. However, if a goal contains several if and case

expressions, the split method can be helpful in selectively exploring the
effects of splitting.

The split rules shown above are intended to affect only the subgoal’s
conclusion. If you want to split an if or case -expression in the assumptions,
you have to apply split_if_asm or t.split_asm :

lemma "if xs = [] then ys 6= [] else ys = [] =⇒ xs @ ys 6= []"

apply(split split_if_asm)

Unlike splitting the conclusion, this step creates two separate subgoals, which
here can be solved by simp_all :

1. [[xs = []; ys 6= [] ]] =⇒ xs @ ys 6= []
2. [[xs 6= []; ys = [] ]] =⇒ xs @ ys 6= []
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If you need to split both in the assumptions and the conclusion, use t.splits
which subsumes t.split and t.split_asm. Analogously, there is if_splits.

! The simplifier merely simplifies the condition of an if but not the then or
else parts. The latter are simplified only after the condition reduces to True

or False, or after splitting. The same is true for case -expressions: only the selector
is simplified at first, until either the expression reduces to one of the cases or it is
split.

3.1.10 Tracing

Using the simplifier effectively may take a bit of experimentation. Set the
trace_simp flag to get a better idea of what is going on:

ML "set trace_simp"

lemma "rev [a] = []"

apply(simp)

produces the trace

Applying instance of rewrite rule:
rev (?x1 # ?xs1) == rev ?xs1 @ [?x1]
Rewriting:
rev [a] == rev [] @ [a]
Applying instance of rewrite rule:
rev [] == []
Rewriting:
rev [] == []
Applying instance of rewrite rule:
[] @ ?y == ?y
Rewriting:
[] @ [a] == [a]
Applying instance of rewrite rule:
?x3 # ?t3 = ?t3 == False
Rewriting:
[a] = [] == False

The trace lists each rule being applied, both in its general form and the
instance being used. For conditional rules, the trace lists the rule it is trying
to rewrite and gives the result of attempting to prove each of the rule’s
conditions. Many other hints about the simplifier’s actions will appear.

In more complicated cases, the trace can be quite lengthy. Invocations of
the simplifier are often nested, for instance when solving conditions of rewrite
rules. Thus it is advisable to reset it:

ML "reset trace_simp"
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3.2 Induction Heuristics

The purpose of this section is to illustrate some simple heuristics for inductive
proofs. The first one we have already mentioned in our initial example:

Theorems about recursive functions are proved by induction.

In case the function has more than one argument

Do induction on argument number i if the function is defined by
recursion in argument number i.

When we look at the proof of (xs@ys) @ zs = xs @ (ys@zs) in Sect. 2.2 we
find

– @ is recursive in the first argument
– xs occurs only as the first argument of @
– both ys and zs occur at least once as the second argument of @

Hence it is natural to perform induction on xs.
The key heuristic, and the main point of this section, is to generalize the

goal before induction. The reason is simple: if the goal is too specific, the
induction hypothesis is too weak to allow the induction step to go through.
Let us illustrate the idea with an example.

Function rev has quadratic worst-case running time because it calls func-
tion @ for each element of the list and @ is linear in its first argument. A linear
time version of rev reqires an extra argument where the result is accumulated
gradually, using only # :

consts itrev :: "’a list ⇒ ’a list ⇒ ’a list"

primrec

"itrev [] ys = ys"

"itrev (x#xs) ys = itrev xs (x#ys)"

The behaviour of itrev is simple: it reverses its first argument by stacking
its elements onto the second argument, and returning that second argument
when the first one becomes empty. Note that itrev is tail-recursive: it can
be compiled into a loop.

Naturally, we would like to show that itrev does indeed reverse its first
argument provided the second one is empty:

lemma "itrev xs [] = rev xs"

There is no choice as to the induction variable, and we immediately simplify:

apply(induct_tac xs, simp_all)

Unfortunately, this attempt does not prove the induction step:

1.
∧
a list.
itrev list [] = rev list =⇒ itrev list [a] = rev list @ [a]
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The induction hypothesis is too weak. The fixed argument, [], prevents it
from rewriting the conclusion. This example suggests a heuristic:

Generalize goals for induction by replacing constants by variables.

Of course one cannot do this näıvely: itrev xs ys = rev xs is just not true.
The correct generalization is

lemma "itrev xs ys = rev xs @ ys"

If ys is replaced by [], the right-hand side simplifies to rev xs, as required.
In this instance it was easy to guess the right generalization. Other situ-

ations can require a good deal of creativity.
Although we now have two variables, only xs is suitable for induction,

and we repeat our proof attempt. Unfortunately, we are still not there:

1.
∧
a list.
itrev list ys = rev list @ ys =⇒
itrev list (a # ys) = rev list @ a # ys

The induction hypothesis is still too weak, but this time it takes no intuition
to generalize: the problem is that ys is fixed throughout the subgoal, but the
induction hypothesis needs to be applied with a # ys instead of ys. Hence
we prove the theorem for all ys instead of a fixed one:

lemma "∀ ys. itrev xs ys = rev xs @ ys"

This time induction on xs followed by simplification succeeds. This leads to
another heuristic for generalization:

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases, The variables that should be quantified are typically those that
change in recursive calls.

A final point worth mentioning is the orientation of the equation we just
proved: the more complex notion (itrev) is on the left-hand side, the sim-
pler one (rev) on the right-hand side. This constitutes another, albeit weak
heuristic that is not restricted to induction:

The right-hand side of an equation should (in some sense) be simpler
than the left-hand side.

This heuristic is tricky to apply because it is not obvious that rev xs @ ys is
simpler than itrev xs ys. But see what happens if you try to prove rev xs

@ ys = itrev xs ys !
If you have tried these heuristics and still find your induction does not go

through, and no obvious lemma suggests itself, you may need to generalize
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your proposition even further. This requires insight into the problem at hand
and is beyond simple rules of thumb. Additionally, you can read Sect. 9.3 to
learn about some advanced techniques for inductive proofs.

Exercise 3.2.1 In Exercise 2.4.1 we defined a function flatten from trees
to lists. The straightforward version of flatten is based on @ and is thus,
like rev, quadratic. A linear time version of flatten again reqires an extra
argument, the accumulator:

consts flatten2 :: "’a tree => ’a list => ’a list"

Define flatten2 and prove

lemma "flatten2 t [] = flatten t"

3.3 Case Study: Compiling Expressions

The task is to develop a compiler from a generic type of expressions (built
from variables, constants and binary operations) to a stack machine. This
generic type of expressions is a generalization of the boolean expressions
in Sect. 2.4.6. This time we do not commit ourselves to a particular type of
variables or values but make them type parameters. Neither is there a fixed set
of binary operations: instead the expression contains the appropriate function
itself.

types ’v binop = "’v ⇒ ’v ⇒ ’v"

datatype (’a,’v)expr = Cex ’v

| Vex ’a

| Bex "’v binop" "(’a,’v)expr" "(’a,’v)expr"

The three constructors represent constants, variables and the application of
a binary operation to two subexpressions.

The value of an expression with respect to an environment that maps
variables to values is easily defined:

consts value :: "(’a,’v)expr ⇒ (’a ⇒ ’v) ⇒ ’v"

primrec

"value (Cex v) env = v"

"value (Vex a) env = env a"

"value (Bex f e1 e2) env = f (value e1 env) (value e2 env)"

The stack machine has three instructions: load a constant value onto the
stack, load the contents of an address onto the stack, and apply a binary
operation to the two topmost elements of the stack, replacing them by the
result. As for expr, addresses and values are type parameters:
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datatype (’a,’v) instr = Const ’v

| Load ’a

| Apply "’v binop"

The execution of the stack machine is modelled by a function exec that
takes a list of instructions, a store (modelled as a function from addresses
to values, just like the environment for evaluating expressions), and a stack
(modelled as a list) of values, and returns the stack at the end of the execution
— the store remains unchanged:

consts exec :: "(’a,’v)instr list ⇒ (’a⇒’v) ⇒ ’v list ⇒ ’v list"

primrec

"exec [] s vs = vs"

"exec (i#is) s vs = (case i of

Const v ⇒ exec is s (v#vs)

| Load a ⇒ exec is s ((s a)#vs)

| Apply f ⇒ exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))"

Recall that hd and tl return the first element and the remainder of a list.
Because all functions are total, hd is defined even for the empty list, although
we do not know what the result is. Thus our model of the machine always
terminates properly, although the definition above does not tell us much
about the result in situations where Apply was executed with fewer than two
elements on the stack.

The compiler is a function from expressions to a list of instructions. Its
definition is obvious:

consts comp :: "(’a,’v)expr ⇒ (’a,’v)instr list"

primrec

"comp (Cex v) = [Const v]"

"comp (Vex a) = [Load a]"

"comp (Bex f e1 e2) = (comp e2) @ (comp e1) @ [Apply f]"

Now we have to prove the correctness of the compiler, i.e. that the exe-
cution of a compiled expression results in the value of the expression:

theorem "exec (comp e) s [] = [value e s]"

This theorem needs to be generalized:

theorem "∀ vs. exec (comp e) s vs = (value e s) # vs"

It will be proved by induction on e followed by simplification. First, we
must prove a lemma about executing the concatenation of two instruction
sequences:

lemma exec_app[simp]:

"∀ vs. exec (xs@ys) s vs = exec ys s (exec xs s vs)"

This requires induction on xs and ordinary simplification for the base cases.
In the induction step, simplification leaves us with a formula that contains
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two case -expressions over instructions. Thus we add automatic case splitting,
which finishes the proof:

apply(induct_tac xs, simp, simp split: instr.split)

Note that because both simp_all and auto perform simplification, they can
be modified in the same way as simp. Thus the proof can be rewritten as

apply(induct_tac xs, simp_all split: instr.split)

Although this is more compact, it is less clear for the reader of the proof.
We could now go back and prove exec (comp e) s [] = [value e s]

merely by simplification with the generalized version we just proved. How-
ever, this is unnecessary because the generalized version fully subsumes its
instance.

3.4 Advanced Datatypes

This section presents advanced forms of datatypes: mutual and nested re-
cursion. A series of examples will culminate in a treatment of the trie data
structure.

3.4.1 Mutual Recursion

Sometimes it is necessary to define two datatypes that depend on each other.
This is called mutual recursion. As an example consider a language of
arithmetic and boolean expressions where

– arithmetic expressions contain boolean expressions because there are con-
ditional expressions like “if m < n then n −m else m − n”, and

– boolean expressions contain arithmetic expressions because of comparisons
like “m < n”.

In Isabelle this becomes

datatype ’a aexp = IF "’a bexp" "’a aexp" "’a aexp"

| Sum "’a aexp" "’a aexp"

| Diff "’a aexp" "’a aexp"

| Var ’a

| Num nat

and ’a bexp = Less "’a aexp" "’a aexp"

| And "’a bexp" "’a bexp"

| Neg "’a bexp"

Type aexp is similar to expr in Sect. 3.3, except that we have added an IF

constructor, fixed the values to be of type nat and declared the two binary
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operations Sum and Diff. Boolean expressions can be arithmetic comparisons,
conjunctions and negations. The semantics is given by two evaluation func-
tions:

consts evala :: "’a aexp ⇒ (’a ⇒ nat) ⇒ nat"

evalb :: "’a bexp ⇒ (’a ⇒ nat) ⇒ bool"

Both take an expression and an environment (a mapping from variables ’a

to values nat) and return its arithmetic/boolean value. Since the datatypes
are mutually recursive, so are functions that operate on them. Hence they
need to be defined in a single primrec section:

primrec

"evala (IF b a1 a2) env =

(if evalb b env then evala a1 env else evala a2 env)"

"evala (Sum a1 a2) env = evala a1 env + evala a2 env"

"evala (Diff a1 a2) env = evala a1 env - evala a2 env"

"evala (Var v) env = env v"

"evala (Num n) env = n"

"evalb (Less a1 a2) env = (evala a1 env < evala a2 env)"

"evalb (And b1 b2) env = (evalb b1 env ∧ evalb b2 env)"

"evalb (Neg b) env = (¬ evalb b env)"

In the same fashion we also define two functions that perform substitution:

consts substa :: "(’a ⇒ ’b aexp) ⇒ ’a aexp ⇒ ’b aexp"

substb :: "(’a ⇒ ’b aexp) ⇒ ’a bexp ⇒ ’b bexp"

The first argument is a function mapping variables to expressions, the sub-
stitution. It is applied to all variables in the second argument. As a result,
the type of variables in the expression may change from ’a to ’b. Note that
there are only arithmetic and no boolean variables.

primrec

"substa s (IF b a1 a2) =

IF (substb s b) (substa s a1) (substa s a2)"

"substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)"

"substa s (Diff a1 a2) = Diff (substa s a1) (substa s a2)"

"substa s (Var v) = s v"

"substa s (Num n) = Num n"

"substb s (Less a1 a2) = Less (substa s a1) (substa s a2)"

"substb s (And b1 b2) = And (substb s b1) (substb s b2)"

"substb s (Neg b) = Neg (substb s b)"

Now we can prove a fundamental theorem about the interaction between
evaluation and substitution: applying a substitution s to an expression a
and evaluating the result in an environment env yields the same result as



40 3. More Functional Programming

evaluation a in the environment that maps every variable x to the value of
s(x ) under env . If you try to prove this separately for arithmetic or boolean
expressions (by induction), you find that you always need the other theorem
in the induction step. Therefore you need to state and prove both theorems
simultaneously:

lemma "evala (substa s a) env = evala a (λx. evala (s x) env) ∧
evalb (substb s b) env = evalb b (λx. evala (s x) env)"

apply(induct_tac a and b)

The resulting 8 goals (one for each constructor) are proved in one fell swoop:

apply simp_all

In general, given n mutually recursive datatypes τ1, . . . , τn , an inductive
proof expects a goal of the form

P1(x1) ∧ · · · ∧ Pn(xn)

where each variable xi is of type τi . Induction is started by
apply(induct_tac x1 and . . . and xn)

Exercise 3.4.1 Define a function norma of type ’a aexp ⇒ ’a aexp that re-
places IFs with complex boolean conditions by nested IFs; it should eliminate
the constructors And and Neg, leaving only Less. Prove that norma preserves
the value of an expression and that the result of norma is really normal, i.e.
no more Ands and Negs occur in it. (Hint: proceed as in Sect. 2.4.6 and read
the discussion of type annotations following lemma subst_id below).

3.4.2 Nested Recursion

So far, all datatypes had the property that on the right-hand side of their
definition they occurred only at the top-level: directly below a constructor.
Now we consider nested recursion, where the recursive datatype occurs nested
in some other datatype (but not inside itself!). Consider the following model
of terms where function symbols can be applied to a list of arguments:

datatype (’v,’f)"term" = Var ’v | App ’f "(’v,’f)term list"

Note that we need to quote term on the left to avoid confusion with the
Isabelle command term. Parameter ’v is the type of variables and ’f the
type of function symbols. A mathematical term like f (x , g(y)) becomes App

f [Var x, App g [Var y]], where f, g, x, y are suitable values, e.g. numbers
or strings.

What complicates the definition of term is the nested occurrence of term
inside list on the right-hand side. In principle, nested recursion can be elim-
inated in favour of mutual recursion by unfolding the offending datatypes,
here list. The result for term would be something like
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datatype (’v,’f)"term" = Var ’v | App ’f "(’v,’f)term_list"
and (’v,’f)term_list = Nil | Cons "(’v,’f)term" "(’v,’f)term_list"

Although we do not recommend this unfolding to the user, it shows how to
simulate nested recursion by mutual recursion. Now we return to the initial
definition of term using nested recursion.

Let us define a substitution function on terms. Because terms involve term
lists, we need to define two substitution functions simultaneously:

consts

subst :: "(’v⇒(’v,’f)term) ⇒ (’v,’f)term ⇒ (’v,’f)term"

substs:: "(’v⇒(’v,’f)term) ⇒ (’v,’f)term list ⇒ (’v,’f)term list"

primrec

"subst s (Var x) = s x"

subst_App:

"subst s (App f ts) = App f (substs s ts)"

"substs s [] = []"

"substs s (t # ts) = subst s t # substs s ts"

Individual equations in a primrec definition may be named as shown for
subst_App. The significance of this device will become apparent below.

Similarly, when proving a statement about terms inductively, we need
to prove a related statement about term lists simultaneously. For example,
the fact that the identity substitution does not change a term needs to be
strengthened and proved as follows:

lemma subst_id: "subst Var t = (t ::(’v,’f)term) ∧
substs Var ts = (ts::(’v,’f)term list)"

apply(induct_tac t and ts, simp_all)

done

Note that Var is the identity substitution because by definition it leaves vari-
ables unchanged: subst Var (Var x) = Var x. Note also that the type anno-
tations are necessary because otherwise there is nothing in the goal to enforce
that both halves of the goal talk about the same type parameters (’v,’f).
As a result, induction would fail because the two halves of the goal would be
unrelated.

Exercise 3.4.2 The fact that substitution distributes over composition can
be expressed roughly as follows:

subst (f ◦ g) t = subst f (subst g t)

Correct this statement (you will find that it does not type-check), strengthen
it, and prove it. (Note: ◦ is function composition; its definition is found in
theorem o_def).
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Exercise 3.4.3 Define a function trev of type (’v, ’f) term ⇒ (’v, ’f)

term that recursively reverses the order of arguments of all function symbols
in a term. Prove that trev (trev t) = t.

The experienced functional programmer may feel that our definition of
subst is too complicated in that substs is unnecessary. The App -case can be
defined directly as

subst s (App f ts) = App f (map (subst s) ts)

where map is the standard list function such that map f [x1,...,xn] = [f

x1,...,f xn]. This is true, but Isabelle insists on the conjunctive format.
Fortunately, we can easily prove that the suggested equation holds:

lemma [simp]: "subst s (App f ts) = App f (map (subst s) ts)"

apply(induct_tac ts, simp_all)

done

What is more, we can now disable the old defining equation as a simplification
rule:

declare subst_App [simp del]

The advantage is that now we have replaced substs by map, we can profit from
the large number of pre-proved lemmas about map. Unfortunately inductive
proofs about type term are still awkward because they expect a conjunction.
One could derive a new induction principle as well (see Sect. 9.3.3), but sim-
pler is to stop using primrec and to define functions with recdef instead.
Simple uses of recdef are described in Sect. 3.5 below, and later (Sect. 9.2.2)
we shall see how recdef can handle nested recursion.

Of course, you may also combine mutual and nested recursion of data-
types. For example, constructor Sum in Sect. 3.4.1 could take a list of expres-
sions as its argument: Sum "’a aexp list".

3.4.3 The Limits of Nested Recursion

How far can we push nested recursion? By the unfolding argument above,
we can reduce nested to mutual recursion provided the nested recursion only
involves previously defined datatypes. This does not include functions:

datatype t = C "t ⇒ bool"

This declaration is a real can of worms. In HOL it must be ruled out because
it requires a type t such that t and its power set t ⇒ bool have the same
cardinality — an impossibility. For the same reason it is not possible to allow
recursion involving the type t set, which is isomorphic to t ⇒ bool.

Fortunately, a limited form of recursion involving function spaces is per-
mitted: the recursive type may occur on the right of a function arrow, but
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never on the left. Hence the above can of worms is ruled out but the following
example of a potentially infinitely branching tree is accepted:
datatype (’a,’i)bigtree = Tip | Br ’a "’i ⇒ (’a,’i)bigtree"

Parameter ’a is the type of values stored in the Branches of the tree, whereas
’i is the index type over which the tree branches. If ’i is instantiated to bool,
the result is a binary tree; if it is instantiated to nat, we have an infinitely
branching tree because each node has as many subtrees as there are natural
numbers. How can we possibly write down such a tree? Using functional
notation! For example, the term

Br 0 (λi. Br i (λn. Tip))

of type (nat, nat) bigtree is the tree whose root is labeled with 0 and whose
ith subtree is labeled with i and has merely Tips as further subtrees.

Function map_bt applies a function to all labels in a bigtree :

consts map_bt :: "(’a ⇒ ’b) ⇒ (’a,’i)bigtree ⇒ (’b,’i)bigtree"

primrec

"map_bt f Tip = Tip"

"map_bt f (Br a F) = Br (f a) (λi. map_bt f (F i))"

This is a valid primrec definition because the recursive calls of map_bt in-
volve only subtrees obtained from F : the left-hand side. Thus termination
is assured. The seasoned functional programmer might try expressing λi.

map_bt f (F i) as map_bt f ◦ F, which Isabelle however will reject. Apply-
ing map_bt to only one of its arguments makes the termination proof less
obvious.

The following lemma has a simple proof by induction:

lemma "map_bt (g o f) T = map_bt g (map_bt f T)"

apply(induct_tac T, simp_all)

done

Because of the function type, the the proof state after induction looks un-
usual. Notice the quantified induction hypothesis:

1. map_bt (g ◦ f) Tip = map_bt g (map_bt f Tip)
2.

∧
a F. (

∧
x. map_bt (g ◦ f) (F x) = map_bt g (map_bt f (F x))) =⇒

map_bt (g ◦ f) (Br a F) = map_bt g (map_bt f (Br a F))

If you need nested recursion on the left of a function arrow, there are
alternatives to pure HOL. In the Logic for Computable Functions (LCF),
types like

datatype lam = C "lam → lam"

do indeed make sense [25]. Note the different arrow,→ instead of ⇒, express-
ing the type of continuous functions. There is even a version of LCF on top
of HOL, called HOLCF [18].
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3.4.4 Case Study: Tries

Tries are a classic search tree data structure [15] for fast indexing with strings.
Figure 3.1 gives a graphical example of a trie containing the words “all”, “an”,
“ape”, “can”, “car” and “cat”. When searching a string in a trie, the letters of
the string are examined sequentially. Each letter determines which subtrie to
search next. In this case study we model tries as a datatype, define a lookup
and an update function, and prove that they behave as expected.

l e n r t
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QQ

l n p a
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��
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�
��
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QQ

Fig. 3.1. A Sample Trie

Proper tries associate some value with each string. Since the information
is stored only in the final node associated with the string, many nodes do not
carry any value. This distinction is modeled with the help of the predefined
datatype option (see Sect. 2.5.3).

To minimize running time, each node of a trie should contain an array that
maps letters to subtries. We have chosen a representation where the subtries
are held in an association list, i.e. a list of (letter,trie) pairs. Abstracting over
the alphabet ’a and the values ’v we define a trie as follows:

datatype (’a,’v)trie = Trie "’v option" "(’a * (’a,’v)trie)list"

The first component is the optional value, the second component the associa-
tion list of subtries. This is an example of nested recursion involving products,
which is fine because products are datatypes as well. We define two selector
functions:

consts value :: "(’a,’v)trie ⇒ ’v option"

alist :: "(’a,’v)trie ⇒ (’a * (’a,’v)trie)list"

primrec "value(Trie ov al) = ov"

primrec "alist(Trie ov al) = al"

Association lists come with a generic lookup function. Its result involves type
option because a lookup can fail:

consts assoc :: "(’key * ’val)list ⇒ ’key ⇒ ’val option"

primrec "assoc [] x = None"
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"assoc (p#ps) x =

(let (a,b) = p in if a=x then Some b else assoc ps x)"

Now we can define the lookup function for tries. It descends into the trie
examining the letters of the search string one by one. As recursion on lists is
simpler than on tries, let us express this as primitive recursion on the search
string argument:

consts lookup :: "(’a,’v)trie ⇒ ’a list ⇒ ’v option"

primrec "lookup t [] = value t"

"lookup t (a#as) = (case assoc (alist t) a of

None ⇒ None

| Some at ⇒ lookup at as)"

As a first simple property we prove that looking up a string in the empty
trie Trie None [] always returns None. The proof merely distinguishes the
two cases whether the search string is empty or not:

lemma [simp]: "lookup (Trie None []) as = None"

apply(case_tac as, simp_all)

done

Things begin to get interesting with the definition of an update func-
tion that adds a new (string, value) pair to a trie, overwriting the old value
associated with that string:

consts update :: "(’a,’v)trie ⇒ ’a list ⇒ ’v ⇒ (’a,’v)trie"

primrec

"update t [] v = Trie (Some v) (alist t)"

"update t (a#as) v =

(let tt = (case assoc (alist t) a of

None ⇒ Trie None [] | Some at ⇒ at)

in Trie (value t) ((a,update tt as v) # alist t))"

The base case is obvious. In the recursive case the subtrie tt associated
with the first letter a is extracted, recursively updated, and then placed in
front of the association list. The old subtrie associated with a is still in the
association list but no longer accessible via assoc. Clearly, there is room here
for optimizations!

Before we start on any proofs about update we tell the simplifier to expand
all lets and to split all case -constructs over options:

declare Let_def[simp] option.split[split]

The reason becomes clear when looking (probably after a failed proof at-
tempt) at the body of update : it contains both let and a case distinction
over type option.

Our main goal is to prove the correct interaction of update and lookup :

theorem "∀ t v bs. lookup (update t as v) bs =

(if as=bs then Some v else lookup t bs)"
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Our plan is to induct on as ; hence the remaining variables are quantified.
From the definitions it is clear that induction on either as or bs is required.
The choice of as is guided by the intuition that simplification of lookup might
be easier if update has already been simplified, which can only happen if as
is instantiated. The start of the proof is conventional:

apply(induct_tac as, auto)

Unfortunately, this time we are left with three intimidating looking subgoals:

1. . . . =⇒ lookup . . . bs = lookup t bs
2. . . . =⇒ lookup . . . bs = lookup t bs
3. . . . =⇒ lookup . . . bs = lookup t bs

Clearly, if we want to make headway we have to instantiate bs as well now.
It turns out that instead of induction, case distinction suffices:

apply(case_tac[!] bs, auto)

done

All methods ending in tac take an optional first argument that specifies the
range of subgoals they are applied to, where [!] means all subgoals, i.e. [1-3]
in our case. Individual subgoal numbers, e.g. [2] are also allowed.

This proof may look surprisingly straightforward. However, note that this
comes at a cost: the proof script is unreadable because the intermediate
proof states are invisible, and we rely on the (possibly brittle) magic of auto
(simp_all will not do — try it) to split the subgoals of the induction up in
such a way that case distinction on bs makes sense and solves the proof.

Exercise 3.4.4 Modify update (and its type) such that it allows both in-
sertion and deletion of entries with a single function. Prove the correspond-
ing version of the main theorem above. Optimize your function such that it
shrinks tries after deletion if possible.

Exercise 3.4.5 Write an improved version of update that does not suffer
from the space leak (pointed out above) caused by not deleting overwritten
entries from the association list. Prove the main theorem for your improved
update.

Exercise 3.4.6 Conceptually, each node contains a mapping from letters to
optional subtries. Above we have implemented this by means of an association
list. Replay the development replacing (’a × (’a, ’v) trie) list with ’a

⇒ (’a, ’v) trie option.
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3.5 Total Recursive Functions

Although many total functions have a natural primitive recursive definition,
this is not always the case. Arbitrary total recursive functions can be defined
by means of recdef : you can use full pattern-matching, recursion need not
involve datatypes, and termination is proved by showing that the arguments
of all recursive calls are smaller in a suitable (user supplied) sense. In this
section we restrict ourselves to measure functions; more advanced termination
proofs are discussed in Sect. 9.2.1.

3.5.1 Defining Recursive Functions

Here is a simple example, the Fibonacci function:

consts fib :: "nat ⇒ nat"

recdef fib "measure(λn. n)"

"fib 0 = 0"

"fib (Suc 0) = 1"

"fib (Suc(Suc x)) = fib x + fib (Suc x)"

The definition of fib is accompanied by a measure function λn. n which
maps the argument of fib to a natural number. The requirement is that in
each equation the measure of the argument on the left-hand side is strictly
greater than the measure of the argument of each recursive call. In the case
of fib this is obviously true because the measure function is the identity and
Suc (Suc x) is strictly greater than both x and Suc x.

Slightly more interesting is the insertion of a fixed element between any
two elements of a list:

consts sep :: "’a × ’a list ⇒ ’a list"

recdef sep "measure (λ(a,xs). length xs)"

"sep(a, []) = []"

"sep(a, [x]) = [x]"

"sep(a, x#y#zs) = x # a # sep(a,y#zs)"

This time the measure is the length of the list, which decreases with the
recursive call; the first component of the argument tuple is irrelevant. The
details of tupled λ-abstractions λ(x1, . . . ,xn) are explained in Sect. 8.2, but
for now your intuition is all you need.

Pattern matching need not be exhaustive:

consts last :: "’a list ⇒ ’a"

recdef last "measure (λxs. length xs)"

"last [x] = x"

"last (x#y#zs) = last (y#zs)"

Overlapping patterns are disambiguated by taking the order of equations
into account, just as in functional programming:
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consts sep1 :: "’a × ’a list ⇒ ’a list"

recdef sep1 "measure (λ(a,xs). length xs)"

"sep1(a, x#y#zs) = x # a # sep1(a,y#zs)"

"sep1(a, xs) = xs"

To guarantee that the second equation can only be applied if the first one
does not match, Isabelle internally replaces the second equation by the two
possibilities that are left: sep1 (a, []) = [] and sep1 (a, [x]) = [x]. Thus
the functions sep and sep1 are identical.

! recdef only takes the first argument of a (curried) recursive function into ac-
count. This means both the termination measure and pattern matching can

only use that first argument. In general, you will therefore have to combine several
arguments into a tuple. In case only one argument is relevant for termination, you
can also rearrange the order of arguments as in the following definition:

consts sep2 :: "’a list ⇒ ’a ⇒ ’a list"

recdef sep2 "measure length"

"sep2 (x#y#zs) = (λa. x # a # sep2 (y#zs) a)"

"sep2 xs = (λa. xs)"

Because of its pattern-matching syntax, recdef is also useful for the defi-
nition of non-recursive functions, where the termination measure degenerates
to the empty set {} :

consts swap12 :: "’a list ⇒ ’a list"
recdef swap12 "{}"

"swap12 (x#y#zs) = y#x#zs"
"swap12 zs = zs"

3.5.2 Proving Termination

When a function f is defined via recdef, Isabelle tries to prove its termination
with the help of the user-supplied measure. Each of the examples above is
simple enough that Isabelle can automatically prove that the argument’s
measure decreases in each recursive call. As a result, f .simps will contain the
defining equations (or variants derived from them) as theorems. For example,
look (via thm) at sep.simps and sep1.simps to see that they define the
same function. What is more, those equations are automatically declared as
simplification rules.

Isabelle may fail to prove the termination condition for some recursive
call. Let us try to define Quicksort:

consts qs :: "nat list ⇒ nat list"

recdef qs "measure length"

"qs [] = []"

"qs(x#xs) = qs(filter (λy. y≤x) xs) @ [x] @ qs(filter (λy. x<y) xs)"
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where filter is predefined and filter P xs is the list of elements of xs

satisfying P. This definition of qs fails, and Isabelle prints an error message
showing you what it was unable to prove:

length (filter ... xs) < Suc (length xs)

We can either prove this as a separate lemma, or try to figure out which
existing lemmas may help. We opt for the second alternative. The theory
of lists contains the simplification rule length (filter P xs) ≤ length xs,
which is already close to what we need, except that we still need to turn
< Suc into ≤ for the simplification rule to apply. Lemma less_Suc_eq_le

does just that: (m < Suc n) = (m ≤ n).
Now we retry the above definition but supply the lemma(s) just found

(or proved). Because recdef ’s termination prover involves simplification, we
include in our second attempt a hint: the recdef_simp attribute says to use
less_Suc_eq_le as a simplification rule.

recdef qs "measure length"

"qs [] = []"

"qs(x#xs) = qs(filter (λy. y≤x) xs) @ [x] @ qs(filter (λy. x<y) xs)"

(hints recdef_simp: less_Suc_eq_le)

This time everything works fine. Now qs.simps contains precisely the stated
recursion equations for qs and they have become simplification rules. Thus
we can automatically prove results such as this one:

theorem "qs[2,3,0] = qs[3,0,2]"

apply(simp)

done

More exciting theorems require induction, which is discussed below.
If the termination proof requires a lemma that is of general use, you can

turn it permanently into a simplification rule, in which case the above hint
is not necessary. But in the case of less_Suc_eq_le this would be of dubious
value.

3.5.3 Simplification and Recursive Functions

Once we have proved all the termination conditions, the recdef recursion
equations become simplification rules, just as with primrec. In most cases
this works fine, but there is a subtle problem that must be mentioned: simpli-
fication may not terminate because of automatic splitting of if. Let us look
at an example:

consts gcd :: "nat×nat ⇒ nat"

recdef gcd "measure (λ(m,n).n)"

"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
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According to the measure function, the second argument should decrease
with each recursive call. The resulting termination condition

n 6= 0 =⇒ m mod n < n

is proved automatically because it is already present as a lemma in HOL. Thus
the recursion equation becomes a simplification rule. Of course the equation
is nonterminating if we are allowed to unfold the recursive call inside the
else branch, which is why programming languages and our simplifier don’t
do that. Unfortunately the simplifier does something else that leads to the
same problem: it splits each if -expression unless its condition simplifies to
True or False. For example, simplification reduces

gcd (m, n) = k

in one step to

(if n = 0 then m else gcd (n, m mod n)) = k

where the condition cannot be reduced further, and splitting leads to

(n = 0 −→ m = k) ∧ (n 6= 0 −→ gcd (n, m mod n) = k)

Since the recursive call gcd (n, m mod n) is no longer protected by an if,
it is unfolded again, which leads to an infinite chain of simplification steps.
Fortunately, this problem can be avoided in many different ways.

The most radical solution is to disable the offending theorem split_if,
as shown in Sect. 3.1.9. However, we do not recommend this approach: you
will often have to invoke the rule explicitly when if is involved.

If possible, the definition should be given by pattern matching on the
left rather than if on the right. In the case of gcd the following alternative
definition suggests itself:

consts gcd1 :: "nat×nat ⇒ nat"

recdef gcd1 "measure (λ(m,n).n)"

"gcd1 (m, 0) = m"

"gcd1 (m, n) = gcd1(n, m mod n)"

The order of equations is important: it hides the side condition n 6= 0. Un-
fortunately, in general the case distinction may not be expressible by pattern
matching.

A simple alternative is to replace if by case, which is also available for
bool and is not split automatically:

consts gcd2 :: "nat×nat ⇒ nat"

recdef gcd2 "measure (λ(m,n).n)"

"gcd2(m,n) = (case n=0 of True ⇒ m | False ⇒ gcd2(n,m mod n))"

This is probably the neatest solution next to pattern matching, and it is
always available.

A final alternative is to replace the offending simplification rules by de-
rived conditional ones. For gcd it means we have to prove these lemmas:
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lemma [simp]: "gcd (m, 0) = m"

apply(simp)

done

lemma [simp]: "n 6= 0 =⇒ gcd(m, n) = gcd(n, m mod n)"

apply(simp)

done

Simplification terminates for these proofs because the condition of the if

simplifies to True or False. Now we can disable the original simplification
rule:
declare gcd.simps [simp del]

3.5.4 Induction and Recursive Functions

Assuming we have defined our function such that Isabelle could prove termi-
nation and that the recursion equations (or some suitable derived equations)
are simplification rules, we might like to prove something about our function.
Since the function is recursive, the natural proof principle is again induction.
But this time the structural form of induction that comes with datatypes
is unlikely to work well — otherwise we could have defined the function by
primrec. Therefore recdef automatically proves a suitable induction rule
f .induct that follows the recursion pattern of the particular function f . We
call this recursion induction. Roughly speaking, it requires you to prove
for each recdef equation that the property you are trying to establish holds
for the left-hand side provided it holds for all recursive calls on the right-
hand side. Here is a simple example involving the predefined map functional
on lists:

lemma "map f (sep(x,xs)) = sep(f x, map f xs)"

Note that map f xs is the result of applying f to all elements of xs. We prove
this lemma by recursion induction over sep :

apply(induct_tac x xs rule: sep.induct)

The resulting proof state has three subgoals corresponding to the three
clauses for sep :
1.

∧
a. map f (sep (a, [])) = sep (f a, map f [])

2.
∧
a x. map f (sep (a, [x])) = sep (f a, map f [x])

3.
∧
a x y zs.
map f (sep (a, y # zs)) = sep (f a, map f (y # zs)) =⇒
map f (sep (a, x # y # zs)) = sep (f a, map f (x # y # zs))

The rest is pure simplification:

apply simp_all

done
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Try proving the above lemma by structural induction, and you find that
you need an additional case distinction. What is worse, the names of vari-
ables are invented by Isabelle and have nothing to do with the names in the
definition of sep.

In general, the format of invoking recursion induction is

apply(induct_tac x1 . . . xn rule: f .induct)

where x1 . . . xn is a list of free variables in the subgoal and f the name
of a function that takes an n-tuple. Usually the subgoal will contain the
term f (x1, . . . , xn) but this need not be the case. The induction rules do not
mention f at all. Here is sep.induct :

[[
∧
a. P a [];∧
a x. P a [x];∧
a x y zs. P a (y # zs) =⇒ P a (x # y # zs) ]]

=⇒ P u v

It merely says that in order to prove a property P of u and v you need to
prove it for the three cases where v is the empty list, the singleton list, and
the list with at least two elements. The final case has an induction hypothesis:
you may assume that P holds for the tail of that list.



4. Presenting Theories

By now the reader should have become sufficiently acquainted with elemen-
tary theory development in Isabelle/HOL. The following interlude describes
how to present theories in a typographically pleasing manner. Isabelle pro-
vides a rich infrastructure for concrete syntax of the underlying λ-calculus
language (see Sect. 4.1), as well as document preparation of theory texts based
on existing PDF-LATEX technology (see Sect. 4.2).

As pointed out by Leibniz more than 300 years ago, notions are in princi-
ple more important than notations, but suggestive textual representation of
ideas is vital to reduce the mental effort to comprehend and apply them.

4.1 Concrete Syntax

The core concept of Isabelle’s framework for concrete syntax is that of mixfix
annotations. Associated with any kind of constant declaration, mixfixes
affect both the grammar productions for the parser and output templates for
the pretty printer.

In full generality, parser and pretty printer configuration is a subtle affair
[23]. Your syntax specifications need to interact properly with the existing
setup of Isabelle/Pure and Isabelle/HOL. To avoid creating ambiguities with
existing elements, it is particularly important to give new syntactic constructs
the right precedence.

Subsequently we introduce a few simple syntax declaration forms that
already cover many common situations fairly well.

4.1.1 Infix Annotations

Syntax annotations may be included wherever constants are declared, such
as consts and constdefs — and also datatype, which declares constructor
operations. Type-constructors may be annotated as well, although this is less
frequently encountered in practice (the infix type × comes to mind).

Infix declarations provide a useful special case of mixfixes. The following
example of the exclusive-or operation on boolean values illustrates typical
infix declarations.
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constdefs

xor :: "bool ⇒ bool ⇒ bool" ( infixl "[+]" 60)

"A [+] B ≡ (A ∧ ¬ B) ∨ (¬ A ∧ B)"

Now xor A B and A [+] B refer to the same expression internally. Any cur-
ried function with at least two arguments may be given infix syntax. For
partial applications with fewer than two operands, there is a notation using
the prefix op. For instance, xor without arguments is represented as op [+] ;
together with ordinary function application, this turns xor A into op [+] A.

The keyword infixl seen above specifies an infix operator that is nested
to the left : in iterated applications the more complex expression appears on
the left-hand side, and A [+] B [+] C stands for (A [+] B) [+] C. Similarly,
infixr means nesting to the right, reading A [+] B [+] C as A [+] (B [+] C).
A non-oriented declaration via infix would render A [+] B [+] C illegal, but
demand explicit parentheses to indicate the intended grouping.

The string "[+]" in our annotation refers to the concrete syntax to rep-
resent the operator (a literal token), while the number 60 determines the
precedence of the construct: the syntactic priorities of the arguments and
result. Isabelle/HOL already uses up many popular combinations of ASCII
symbols for its own use, including both + and ++. Longer character combina-
tions are more likely to be still available for user extensions, such as our [+].

Operator precedences have a range of 0–1000. Very low or high priorities
are reserved for the meta-logic. HOL syntax mainly uses the range of 10–100:
the equality infix = is centered at 50; logical connectives (like ∨ and ∧) are
below 50; algebraic ones (like + and *) are above 50. User syntax should
strive to coexist with common HOL forms, or use the mostly unused range
100–900.

4.1.2 Mathematical Symbols

Concrete syntax based on ASCII characters has inherent limitations. Math-
ematical notation demands a larger repertoire of glyphs. Several standards
of extended character sets have been proposed over decades, but none has
become universally available so far. Isabelle has its own notion of symbols
as the smallest entities of source text, without referring to internal encodings.
There are three kinds of such “generalized characters”:

1. 7-bit ASCII characters
2. named symbols: \<ident>
3. named control symbols: \<^ident>

Here ident may be any identifier according to the usual Isabelle conven-
tions. This results in an infinite store of symbols, whose interpretation is left
to further front-end tools. For example, the user-interface of Proof General
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+ X-Symbol and the Isabelle document processor (see Sect. 4.2) display the
\<forall> symbol as ∀ .

A list of standard Isabelle symbols is given in [35, appendix A]. You
may introduce your own interpretation of further symbols by configuring the
appropriate front-end tool accordingly, e.g. by defining certain LATEX macros
(see also Sect. 4.2.4). There are also a few predefined control symbols, such
as \<^sub> and \<^sup> for sub- and superscript of the subsequent printable
symbol, respectively. For example, A\<^sup>\<star> is output as A?.

Replacing our definition of xor by the following specifies a Isabelle symbol
for the new operator:

constdefs

xor :: "bool ⇒ bool ⇒ bool" ( infixl "⊕" 60)

"A ⊕ B ≡ (A ∧ ¬ B) ∨ (¬ A ∧ B)"

The X-Symbol package within Proof General provides several input methods
to enter ⊕ in the text. If all fails one may just type a named entity \<oplus>
by hand; the corresponding symbol will be displayed after further input.

More flexible is to provide alternative syntax forms through the print
mode concept [23]. By convention, the mode of “xsymbols” is enabled when-
ever Proof General’s X-Symbol mode or LATEX output is active. Now consider
the following hybrid declaration of xor :

constdefs

xor :: "bool ⇒ bool ⇒ bool" ( infixl "[+]" 60)

"A [+] B ≡ (A ∧ ¬ B) ∨ (¬ A ∧ B)"

syntax (xsymbols)

xor :: "bool ⇒ bool ⇒ bool" ( infixl "⊕" 60)

The syntax command introduced here acts like consts, but without
declaring a logical constant. The print mode specification of syntax, here
(xsymbols), is optional. Also note that its type merely serves for syntactic
purposes, and is not checked for consistency with the real constant.

We may now write A [+] B or A ⊕ B in input, while output uses the nicer
syntax of xsymbols whenever that print mode is active. Such an arrange-
ment is particularly useful for interactive development, where users may type
ASCII text and see mathematical symbols displayed during proofs.

4.1.3 Prefix Annotations

Prefix syntax annotations are another form of mixfixes [23], without any
template arguments or priorities — just some literal syntax. The following
example associates common symbols with the constructors of a datatype.
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datatype currency =

Euro nat ("¤")

| Pounds nat ("£")

| Yen nat ("U")
| Dollar nat ("$")

Here the mixfix annotations on the rightmost column happen to consist of a
single Isabelle symbol each: \<euro>, \<pounds>, \<yen>, and $. Recall that
a constructor like Euro actually is a function nat ⇒ currency. The expression
Euro 10 will be printed as ¤ 10 ; only the head of the application is subject to
our concrete syntax. This rather simple form already achieves conformance
with notational standards of the European Commission.

Prefix syntax works the same way for consts or constdefs.

4.1.4 Syntax Translations

Mixfix syntax annotations merely decorate particular constant application
forms with concrete syntax, for instance replacing xor A B by A ⊕ B. Oc-
casionally, the relationship between some piece of notation and its internal
form is more complicated. Here we need syntax translations.

Using the syntax, command we introduce uninterpreted notational ele-
ments. Then translations relate input forms to complex logical expressions.
This provides a simple mechanism for syntactic macros; even heavier trans-
formations may be written in ML [23].

A typical use of syntax translations is to introduce relational notation for
membership in a set of pair, replacing (x, y) ∈ sim by x ≈ y.

consts

sim :: "(’a × ’a) set"

syntax

"_sim" :: "’a ⇒ ’a ⇒ bool" ( infix "≈" 50)

translations

"x ≈ y" 
 "(x, y) ∈ sim"

Here the name of the dummy constant _sim does not matter, as long as it
is not used elsewhere. Prefixing an underscore is a common convention. The
translations declaration already uses concrete syntax on the left-hand side;
internally we relate a raw application _sim x y with (x, y) ∈ sim.

Another common application of syntax translations is to provide variant
versions of fundamental relational expressions, such as 6= for negated equali-
ties. The following declaration stems from Isabelle/HOL itself:

syntax "_not_equal" :: "’a ⇒ ’a ⇒ bool" ( infixl " 6=" 50)

translations "x 6= y" 
 "¬ (x = y)"
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Normally one would introduce derived concepts like this within the logic,
using consts + defs instead of syntax + translations. The present for-
mulation has the virtue that expressions are immediately replaced by the
“definition” upon parsing; the effect is reversed upon printing.

This sort of translation is appropriate when the defined concept is a trivial
variation on an existing one. On the other hand, syntax translations do not
scale up well to large hierarchies of concepts. Translations do not replace
definitions!

4.2 Document Preparation

Isabelle/Isar is centered around the concept of formal proof documents.
The outcome of a formal development effort is meant to be a human-readable
record, presented as browsable PDF file or printed on paper. The overall
document structure follows traditional mathematical articles, with sections,
intermediate explanations, definitions, theorems and proofs.

The Isabelle document preparation system essentially acts as a front-
end to LATEX. After checking specifications and proofs formally, the theory
sources are turned into typesetting instructions in a schematic manner. This
lets you write authentic reports on theory developments with little effort:
many technical consistency checks are handled by the system.

Here is an example to illustrate the idea of Isabelle document preparation.

The following datatype definition of ’a bintree models binary
trees with nodes being decorated by elements of type ’a.

datatype ’a bintree =

Leaf | Branch ’a "’a bintree" "’a bintree"

The datatype induction rule generated here is of the form
[[P Leaf;∧

a bintree1 bintree2.
[[P bintree1; P bintree2 ]] =⇒ P (Branch a bintree1 bintree2) ]]

=⇒ P bintree

The above document output has been produced as follows:

text {*
The following datatype definition of @{text "’a bintree"}
models binary trees with nodes being decorated by elements
of type @{typ ’a}.

*}

datatype ’a bintree =
Leaf | Branch ’a "’a bintree" "’a bintree"
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text {*
\noindent The datatype induction rule generated here is
of the form @{thm [display] bintree.induct [no_vars]}

*}

Here we have augmented the theory by formal comments (using text blocks),
the informal parts may again refer to formal entities by means of “antiquota-
tions” (such as @{text "’a bintree"} or @{typ ’a}), see also Sect. 4.2.3.

4.2.1 Isabelle Sessions

In contrast to the highly interactive mode of Isabelle/Isar theory develop-
ment, the document preparation stage essentially works in batch-mode. An
Isabelle session consists of a collection of source files that may contribute
to an output document. Each session is derived from a single parent, usu-
ally an object-logic image like HOL. This results in an overall tree structure,
which is reflected by the output location in the file system (usually rooted at
~/isabelle/browser_info).

The easiest way to manage Isabelle sessions is via isatool mkdir (gen-
erates an initial session source setup) and isatool make (run sessions con-
trolled by IsaMakefile). For example, a new session MySession derived from
HOL may be produced as follows:

isatool mkdir HOL MySession
isatool make

The isatool make job also informs about the file-system location of
the ultimate results. The above dry run should be able to produce some
document.pdf (with dummy title, empty table of contents etc.). Any failure
at this stage usually indicates technical problems of the LATEX installation.1

The detailed arrangement of the session sources is as follows.

– Directory MySession holds the required theory files T1.thy, . . . , Tn.thy.
– File MySession/ROOT.ML holds appropriate ML commands for loading all

wanted theories, usually just “use_thy"Ti";” for any Ti in leaf position
of the dependency graph.

– Directory MySession/document contains everything required for the LATEX
stage; only root.tex needs to be provided initially.
The latter file holds appropriate LATEX code to commence a document
(\documentclass etc.), and to include the generated files Ti.tex for each
theory. Isabelle will generate a file session.tex holding LATEX commands
to include all generated theory output files in topologically sorted order, so
\input{session} in the body of root.tex does the job in most situations.

1 Especially make sure that pdflatex is present; if in doubt one may fall back on
DVI output by changing usedir options in IsaMakefile [35].
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– IsaMakefile holds appropriate dependencies and invocations of Isabelle
tools to control the batch job. In fact, several sessions may be managed
by the same IsaMakefile. See the Isabelle System Manual [35] for further
details, especially on isatool usedir and isatool make.

One may now start to populate the directory MySession, and the file
MySession/ROOT.ML accordingly. The file MySession/document/root.tex
should also be adapted at some point; the default version is mostly self-
explanatory. Note that \isabellestyle enables fine-tuning of the general
appearance of characters and mathematical symbols (see also Sect. 4.2.4).

Especially observe the included LATEX packages isabelle (mandatory),
isabellesym (required for mathematical symbols), and the final pdfsetup
(provides sane defaults for hyperref, including URL markup). All three are
distributed with Isabelle. Further packages may be required in particular
applications, say for unusual mathematical symbols.

Any additional files for the LATEX stage go into the MySession/document
directory as well. In particular, adding a file named root.bib causes an au-
tomatic run of bibtex to process a bibliographic database; see also isatool
document [35].

Any failure of the document preparation phase in an Isabelle batch ses-
sion leaves the generated sources in their target location, identified by the
accompanying error message. This lets you trace LATEX problems with the
generated files at hand.

4.2.2 Structure Markup

The large-scale structure of Isabelle documents follows existing LATEX conven-
tions, with chapters, sections, subsubsections etc. The Isar language includes
separate markup commands, which do not affect the formal meaning of a
theory (or proof), but result in corresponding LATEX elements.

There are separate markup commands depending on the textual context:
in header position (just before theory), within the theory body, or within a
proof. The header needs to be treated specially here, since ordinary theory
and proof commands may only occur after the initial theory specification.

header theory proof default meaning
chapter \chapter

header section sect \section
subsection subsect \subsection
subsubsection subsubsect \subsubsection

From the Isabelle perspective, each markup command takes a single text
argument (delimited by " . . . " or {* . . . *}). After stripping any surrounding
white space, the argument is passed to a LATEX macro \isamarkupXYZ for
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command XYZ. These macros are defined in isabelle.sty according to
the meaning given in the rightmost column above.

The following source fragment illustrates structure markup of a theory.
Note that LATEX labels may be included inside of section headings as well.

header {* Some properties of Foo Bar elements *}

theory Foo_Bar = Main:

subsection {* Basic definitions *}

consts
foo :: . . .
bar :: . . .

defs . . .

subsection {* Derived rules *}

lemma fooI: . . .
lemma fooE: . . .

subsection {* Main theorem \label{sec:main-theorem} *}

theorem main: . . .

end

You may occasionally want to change the meaning of markup commands,
say via \renewcommand in root.tex. For example, \isamarkupheader is a
good candidate for some tuning. We could move it up in the hierarchy to
become \chapter.

\renewcommand{\isamarkupheader}[1]{\chapter{#1}}

Now we must change the document class given in root.tex to something
that supports chapters. A suitable command is \documentclass{report}.

The LATEX macro \isabellecontext is maintained to hold the name of
the current theory context. This is particularly useful for document headings:

\renewcommand{\isamarkupheader}[1]
{\chapter{#1}\markright{THEORY~\isabellecontext}}

Make sure to include something like \pagestyle{headings} in root.tex;
the document should have more than two pages to show the effect.

4.2.3 Formal Comments and Antiquotations

Isabelle source comments, which are of the form (* . . . *), essentially act
like white space and do not really contribute to the content. They mainly
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serve technical purposes to mark certain oddities in the raw input text. In
contrast, formal comments are portions of text that are associated with
formal Isabelle/Isar commands (marginal comments), or as standalone
paragraphs within a theory or proof context (text blocks).

Marginal comments are part of each command’s concrete syntax [23]; the
common form is “-- text” where text is delimited by ". . ." or {* . . . *} as
before. Multiple marginal comments may be given at the same time. Here is
a simple example:

lemma "A --> A"

— a triviality of propositional logic

— (should not really bother)

by (rule impI) — implicit assumption step involved here

The above output has been produced as follows:

lemma "A --> A"
-- "a triviality of propositional logic"
-- "(should not really bother)"
by (rule impI) -- "implicit assumption step involved here"

From the LATEX viewpoint, “--” acts like a markup command, associated
with the macro \isamarkupcmt (taking a single argument).

Text blocks are introduced by the commands text and txt, for the-
ory and proof contexts, respectively. Each takes again a single text argu-
ment, which is interpreted as a free-form paragraph in LATEX (surrounded
by some additional vertical space). This behavior may be changed by re-
defining the LATEX environments of isamarkuptext or isamarkuptxt, re-
spectively (via \renewenvironment) The text style of the body is determined
by \isastyletext and \isastyletxt; the default setup uses a smaller font
within proofs. This may be changed as follows:

\renewcommand{\isastyletxt}{\isastyletext}

The text part of Isabelle markup commands essentially inserts quoted ma-
terial into a formal text, mainly for instruction of the reader. An antiquo-
tation is again a formal object embedded into such an informal portion. The
interpretation of antiquotations is limited to some well-formedness checks,
with the result being pretty printed to the resulting document. Quoted text
blocks together with antiquotations provide an attractive means of referring
to formal entities, with good confidence in getting the technical details right
(especially syntax and types).

The general syntax of antiquotations is as follows: @{name arguments},
or @{name [options] arguments} for a comma-separated list of options con-
sisting of a name or name=value each. The syntax of arguments depends on
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the kind of antiquotation, it generally follows the same conventions for types,
terms, or theorems as in the formal part of a theory.

This sentence demonstrates quotations and antiquotations: λx y. x is a
well-typed term.

The output above was produced as follows:
text {*

This sentence demonstrates quotations and antiquotations:
@{term "%x y. x"} is a well-typed term.

*}

The notational change from the ASCII character % to the symbol λ reveals
that Isabelle printed this term, after parsing and type-checking. Document
preparation enables symbolic output by default.

The next example includes an option to modify Isabelle’s show_types flag.
The antiquotation @{term [show_types] "%x y. x"} produces the output
λ(x ::’a) y ::’b. x. Type inference has figured out the most general typings in
the present theory context. Terms may acquire different typings due to con-
straints imposed by their environment; within a proof, for example, variables
are given the same types as they have in the main goal statement.

Several further kinds of antiquotations and options are available [35]. Here
are a few commonly used combinations:

@{typ τ} print type τ
@{term t} print term t
@{prop φ} print proposition φ
@{prop [display] φ} print large proposition φ (with linebreaks)
@{prop [source] φ} check proposition φ, print its input
@{thm a} print fact a
@{thm a [no_vars]} print fact a, fixing schematic variables
@{thm [source] a} check availability of fact a, print its name
@{text s} print uninterpreted text s

Note that no_vars given above is not an antiquotation option, but an
attribute of the theorem argument given here. This might be useful with a
diagnostic command like thm, too.

The @{text s} antiquotation is particularly interesting. Embedding un-
interpreted text within an informal body might appear useless at first sight.
Here the key virtue is that the string s is processed as Isabelle output, inter-
preting Isabelle symbols appropriately.

For example, @{text "\<forall>\<exists>"} produces ∀∃ , according
to the standard interpretation of these symbol (cf. Sect. 4.2.4). Thus we
achieve consistent mathematical notation in both the formal and informal
parts of the document very easily, independently of the term language of Isa-
belle. Manual LATEX code would leave more control over the typesetting, but
is also slightly more tedious.



4.2 Document Preparation 63

4.2.4 Interpretation of Symbols

As has been pointed out before (Sect. 4.1.2), Isabelle symbols are the smallest
syntactic entities — a straightforward generalization of ASCII characters.
While Isabelle does not impose any interpretation of the infinite collection of
named symbols, LATEX documents use canonical glyphs for certain standard
symbols [35, appendix A].

The LATEX code produced from Isabelle text follows a simple scheme. You
can tune the final appearance by redefining certain macros, say in root.tex
of the document.

1. 7-bit ASCII characters: letters A . . . Z and a . . . z are output directly,
digits are passed as an argument to the \isadigit macro, other charac-
ters are replaced by specifically named macros of the form \isacharXYZ.

2. Named symbols: \<XYZ> is turned into {\isasymXYZ}; note the additional
braces.

3. Named control symbols: \<^XYZ> is turned into \isactrlXYZ; subsequent
symbols may act as arguments if the control macro is defined accordingly.

You may occasionally wish to give new LATEX interpretations of named
symbols. This merely requires an appropriate definition of \isasymXYZ,
for \<XYZ> (see isabelle.sty for working examples). Control symbols are
slightly more difficult to get right, though.

The \isabellestyle macro provides a high-level interface to tune the
general appearance of individual symbols. For example, \isabellestyle{it}
uses the italics text style to mimic the general appearance of the LATEX math
mode; double quotes are not printed at all. The resulting quality of type-
setting is quite good, so this should be the default style for work that gets
distributed to a broader audience.

4.2.5 Suppressing Output

By default, Isabelle’s document system generates a LATEX file for each theory
that gets loaded while running the session. The generated session.tex will
include all of these in order of appearance, which in turn gets included by
the standard root.tex. Certainly one may change the order or suppress
unwanted theories by ignoring session.tex and load individual files directly
in root.tex. On the other hand, such an arrangement requires additional
maintenance whenever the collection of theories changes.

Alternatively, one may tune the theory loading process in ROOT.ML it-
self: traversal of the theory dependency graph may be fine-tuned by adding
use_thy invocations, although topological sorting still has to be observed.
Moreover, the ML operator no_document temporarily disables document gen-
eration while executing a theory loader command. Its usage is like this:
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no_document use_thy "T";

Theory output may be suppressed more selectively. Research articles and
slides usually do not include the formal content in full. Delimiting ignored
material by the special source comments (*<*) and (*>*) tells the docu-
ment preparation system to suppress these parts; the formal checking of the
theory is unchanged, of course.

In this example, we hide a theory’s theory and end brackets:

(*<*)
theory T = Main:
(*>*)

...
(*<*)
end
(*>*)

Text may be suppressed in a fine-grained manner. We may even hide vital
parts of a proof, pretending that things have been simpler than they really
were. For example, this “fully automatic” proof is actually a fake:

lemma "x 6= (0::int) =⇒ 0 < x * x"

by (auto)

Here the real source of the proof has been as follows:

by (auto(*<*)simp add: int_less_le(*>*))

Suppressing portions of printed text demands care. You should not mis-
represent the underlying theory development. It is easy to invalidate the
visible text by hiding references to questionable axioms.

Authentic reports of Isabelle/Isar theories, say as part of a library, should
suppress nothing. Other users may need the full information for their own
derivative work. If a particular formalization appears inadequate for general
public coverage, it is often more appropriate to think of a better way in the
first place.

Some technical subtleties of the (*<*) (*>*) elements need to be kept
in mind, too — the system performs few sanity checks here. Arguments of
markup commands and formal comments must not be hidden, otherwise pre-
sentation fails. Open and close parentheses need to be inserted carefully; it
is easy to hide the wrong parts, especially after rearranging the theory text.
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5. The Rules of the Game

This chapter outlines the concepts and techniques that underlie reasoning
in Isabelle. Until now, we have proved everything using only induction and
simplification, but any serious verification project require more elaborate
forms of inference. The chapter also introduces the fundamentals of predicate
logic. The first examples in this chapter will consist of detailed, low-level proof
steps. Later, we shall see how to automate such reasoning using the methods
blast, auto and others. Backward or goal-directed proof is our usual style,
but the chapter also introduces forward reasoning, where one theorem is
transformed to yield another.

5.1 Natural Deduction

In Isabelle, proofs are constructed using inference rules. The most familiar
inference rule is probably modus ponens:

P → Q P
Q

This rule says that from P → Q and P we may infer Q .
Natural deduction is an attempt to formalize logic in a way that mirrors

human reasoning patterns. For each logical symbol (say, ∧), there are two
kinds of rules: introduction and elimination rules. The introduction rules
allow us to infer this symbol (say, to infer conjunctions). The elimination
rules allow us to deduce consequences from this symbol. Ideally each rule
should mention one symbol only. For predicate logic this can be done, but
when users define their own concepts they typically have to refer to other
symbols as well. It is best not to be dogmatic.

Natural deduction generally deserves its name. It is easy to use. Each proof
step consists of identifying the outermost symbol of a formula and applying
the corresponding rule. It creates new subgoals in an obvious way from parts
of the chosen formula. Expanding the definitions of constants can blow up
the goal enormously. Deriving natural deduction rules for such constants
lets us reason in terms of their key properties, which might otherwise be
obscured by the technicalities of its definition. Natural deduction rules also
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lend themselves to automation. Isabelle’s classical reasoner accepts any
suitable collection of natural deduction rules and uses them to search for
proofs automatically. Isabelle is designed around natural deduction and many
of its tools use the terminology of introduction and elimination rules.

5.2 Introduction Rules

An introduction rule tells us when we can infer a formula containing a specific
logical symbol. For example, the conjunction introduction rule says that if
we have P and if we have Q then we have P ∧Q . In a mathematics text, it
is typically shown like this:

P Q
P ∧Q

The rule introduces the conjunction symbol (∧) in its conclusion. In Isabelle
proofs we mainly reason backwards. When we apply this rule, the subgoal
already has the form of a conjunction; the proof step makes this conjunction
symbol disappear.

In Isabelle notation, the rule looks like this:
[[?P; ?Q ]] =⇒ ?P ∧ ?Q (conjI)

Carefully examine the syntax. The premises appear to the left of the arrow
and the conclusion to the right. The premises (if more than one) are grouped
using the fat brackets. The question marks indicate schematic variables
(also called unknowns): they may be replaced by arbitrary formulas. If we
use the rule backwards, Isabelle tries to unify the current subgoal with the
conclusion of the rule, which has the form ?P ∧ ?Q. (Unification is discussed
below, Sect. 5.8.) If successful, it yields new subgoals given by the formulas
assigned to ?P and ?Q.

The following trivial proof illustrates how rules work. It also introduces
a style of indentation. If a command adds a new subgoal, then the next
command’s indentation is increased by one space; if it proves a subgoal, then
the indentation is reduced. This provides the reader with hints about the
subgoal structure.
lemma conj_rule: " [[P; Q ]] =⇒ P ∧ (Q ∧ P)"
apply (rule conjI)
apply assumption

apply (rule conjI)
apply assumption

apply assumption

At the start, Isabelle presents us with the assumptions (P and Q) and with
the goal to be proved, P ∧ (Q ∧ P). We are working backwards, so when we
apply conjunction introduction, the rule removes the outermost occurrence
of the ∧ symbol. To apply a rule to a subgoal, we apply the proof method
rule — here with conjI, the conjunction introduction rule.
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1. [[P; Q ]] =⇒ P
2. [[P; Q ]] =⇒ Q ∧ P

Isabelle leaves two new subgoals: the two halves of the original conjunction.
The first is simply P, which is trivial, since P is among the assumptions.
We can apply the assumption method, which proves a subgoal by finding a
matching assumption.
1. [[P; Q ]] =⇒ Q ∧ P

We are left with the subgoal of proving Q ∧ P from the assumptions P and Q.
We apply rule conjI again.
1. [[P; Q ]] =⇒ Q
2. [[P; Q ]] =⇒ P

We are left with two new subgoals, Q and P, each of which can be proved
using the assumption method.

5.3 Elimination Rules

Elimination rules work in the opposite direction from introduction rules. In
the case of conjunction, there are two such rules. From P ∧ Q we infer P .
also, from P ∧Q we infer Q :

P ∧Q
P

P ∧Q
Q

Now consider disjunction. There are two introduction rules, which resem-
ble inverted forms of the conjunction elimination rules:

P
P ∨Q

Q
P ∨Q

What is the disjunction elimination rule? The situation is rather different
from conjunction. From P ∨ Q we cannot conclude that P is true and we
cannot conclude that Q is true; there are no direct elimination rules of the sort
that we have seen for conjunction. Instead, there is an elimination rule that
works indirectly. If we are trying to prove something else, say R, and we know
that P ∨ Q holds, then we have to consider two cases. We can assume that
P is true and prove R and then assume that Q is true and prove R a second
time. Here we see a fundamental concept used in natural deduction: that of
the assumptions. We have to prove R twice, under different assumptions.
The assumptions are local to these subproofs and are visible nowhere else.

In a logic text, the disjunction elimination rule might be shown like this:

P ∨Q

[P ]....
R

[Q ]....
R

R
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The assumptions [P ] and [Q ] are bracketed to emphasize that they are local
to their subproofs. In Isabelle notation, the already-familiar =⇒ syntax serves
the same purpose:

[[?P ∨ ?Q; ?P =⇒ ?R; ?Q =⇒ ?R ]] =⇒ ?R (disjE)

When we use this sort of elimination rule backwards, it produces a case
split. (We have seen this before, in proofs by induction.) The following proof
illustrates the use of disjunction elimination.

lemma disj_swap: "P ∨ Q =⇒ Q ∨ P"
apply (erule disjE)
apply (rule disjI2)
apply assumption

apply (rule disjI1)
apply assumption

We assume P ∨ Q and must prove Q ∨ P . Our first step uses the disjunction
elimination rule, disjE . We invoke it using erule , a method designed to work
with elimination rules. It looks for an assumption that matches the rule’s
first premise. It deletes the matching assumption, regards the first premise as
proved and returns subgoals corresponding to the remaining premises. When
we apply erule to disjE, only two subgoals result. This is better than applying
it using rule to get three subgoals, then proving the first by assumption:
the other subgoals would have the redundant assumption P ∨ Q . Most of
the time, erule is the best way to use elimination rules, since it replaces
an assumption by its subformulas; only rarely does the original assumption
remain useful.

1. P =⇒ Q ∨ P
2. Q =⇒ Q ∨ P

These are the two subgoals returned by erule. The first assumes P and the
second assumes Q. Tackling the first subgoal, we need to show Q ∨ P . The
second introduction rule (disjI2) can reduce this to P, which matches the
assumption. So, we apply the rule method with disjI2 . . .

1. P =⇒ P
2. Q =⇒ Q ∨ P

. . . and finish off with the assumption method. We are left with the other
subgoal, which assumes Q.

1. Q =⇒ Q ∨ P

Its proof is similar, using the introduction rule disjI1.
The result of this proof is a new inference rule disj_swap, which is neither

an introduction nor an elimination rule, but which might be useful. We can
use it to replace any goal of the form Q ∨ P by a one of the form P ∨Q .
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5.4 Destruction Rules: Some Examples

Now let us examine the analogous proof for conjunction.

lemma conj_swap: "P ∧ Q =⇒ Q ∧ P"
apply (rule conjI)
apply (drule conjunct2)
apply assumption

apply (drule conjunct1)
apply assumption

Recall that the conjunction elimination rules — whose Isabelle names are
conjunct1 and conjunct2 — simply return the first or second half of a con-
junction. Rules of this sort (where the conclusion is a subformula of a premise)
are called destruction rules because they take apart and destroy a premise.1

The first proof step applies conjunction introduction, leaving two sub-
goals:

1. P ∧ Q =⇒ Q
2. P ∧ Q =⇒ P

To invoke the elimination rule, we apply a new method, drule. Think of
the d as standing for destruction (or direct, if you prefer). Applying the
second conjunction rule using drule replaces the assumption P ∧ Q by Q.

1. Q =⇒ Q
2. P ∧ Q =⇒ P

The resulting subgoal can be proved by applying assumption. The other sub-
goal is similarly proved, using the conjunct1 rule and the assumption method.

Choosing among the methods rule, erule and drule is up to you. Isabelle
does not attempt to work out whether a rule is an introduction rule or an
elimination rule. The method determines how the rule will be interpreted.
Many rules can be used in more than one way. For example, disj_swap can
be applied to assumptions as well as to goals; it replaces any assumption of
the form P ∨Q by a one of the form Q ∨ P .

Destruction rules are simpler in form than indirect rules such as disjE,
but they can be inconvenient. Each of the conjunction rules discards half of
the formula, when usually we want to take both parts of the conjunction
as new assumptions. The easiest way to do so is by using an alternative
conjunction elimination rule that resembles disjE . It is seldom, if ever, seen
in logic books. In Isabelle syntax it looks like this:

[[?P ∧ ?Q; [[?P; ?Q ]] =⇒ ?R ]] =⇒ ?R (conjE)

Exercise 5.4.1 Use the rule conjE to shorten the proof above.
1 This Isabelle terminology has no counterpart in standard logic texts, although

the distinction between the two forms of elimination rule is well known. Girard
[9, page 74], for example, writes “The elimination rules [for ∨ and ∃] are very
bad. What is catastrophic about them is the parasitic presence of a formula [R]
which has no structural link with the formula which is eliminated.”
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5.5 Implication

At the start of this chapter, we saw the rule modus ponens. It is, in fact, a
destruction rule. The matching introduction rule looks like this in Isabelle:

(?P =⇒ ?Q) =⇒ ?P −→ ?Q (impI)

And this is modus ponens:

[[?P −→ ?Q; ?P ]] =⇒ ?Q (mp)

Here is a proof using the implication rules. This lemma performs a sort
of uncurrying, replacing the two antecedents of a nested implication by a
conjunction. The proof illustrates how assumptions work. At each proof step,
the subgoals inherit the previous assumptions, perhaps with additions or
deletions. Rules such as impI and disjE add assumptions, while applying
erule or drule deletes the matching assumption.

lemma imp_uncurry: "P −→ (Q −→ R) =⇒ P ∧ Q −→ R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption

apply (drule mp)
apply assumption

apply assumption

First, we state the lemma and apply implication introduction (rule impI),
which moves the conjunction to the assumptions.

1. [[P −→ Q −→ R; P ∧ Q ]] =⇒ R

Next, we apply conjunction elimination (erule conjE), which splits this con-
junction into two parts.

1. [[P −→ Q −→ R; P; Q ]] =⇒ R

Now, we work on the assumption P −→ (Q −→ R), where the parentheses
have been inserted for clarity. The nested implication requires two applica-
tions of modus ponens: drule mp. The first use yields the implication Q −→
R, but first we must prove the extra subgoal P, which we do by assumption.

1. [[P; Q ]] =⇒ P
2. [[P; Q; Q −→ R ]] =⇒ R

Repeating these steps for Q −→ R yields the conclusion we seek, namely R.

1. [[P; Q; Q −→ R ]] =⇒ R

The symbols =⇒ and −→ both stand for implication, but they differ in
many respects. Isabelle uses =⇒ to express inference rules; the symbol is
built-in and Isabelle’s inference mechanisms treat it specially. On the other
hand, −→ is just one of the many connectives available in higher-order logic.
We reason about it using inference rules such as impI and mp, just as we
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reason about the other connectives. You will have to use −→ in any context
that requires a formula of higher-order logic. Use =⇒ to separate a theorem’s
preconditions from its conclusion.

The by command is useful for proofs like these that use assumption heav-
ily. It executes an apply command, then tries to prove all remaining subgoals
using assumption. Since (if successful) it ends the proof, it also replaces the
done symbol. For example, the proof above can be shortened:

lemma imp_uncurry: "P −→ (Q −→ R) =⇒ P ∧ Q −→ R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption

by (drule mp)

We could use by to replace the final apply and done in any proof, but
typically we use it to eliminate calls to assumption. It is also a nice way of
expressing a one-line proof.

5.6 Negation

Negation causes surprising complexity in proofs. Its natural deduction rules
are straightforward, but additional rules seem necessary in order to han-
dle negated assumptions gracefully. This section also illustrates the intro

method: a convenient way of applying introduction rules.
Negation introduction deduces ¬P if assuming P leads to a contradiction.

Negation elimination deduces any formula in the presence of ¬P together
with P :

(?P =⇒ False) =⇒ ¬ ?P (notI)
[[¬ ?P; ?P ]] =⇒ ?R (notE)

Classical logic allows us to assume ¬P when attempting to prove P :

(¬ ?P =⇒ ?P) =⇒ ?P (classical)

The implications P → Q and ¬Q → ¬P are logically equivalent, and
each is called the contrapositive of the other. Four further rules support
reasoning about contrapositives. They differ in the placement of the negation
symbols:

[[?Q; ¬ ?P =⇒ ¬ ?Q ]] =⇒ ?P (contrapos_pp)
[[?Q; ?P =⇒ ¬ ?Q ]] =⇒ ¬ ?P (contrapos_pn)
[[¬ ?Q; ¬ ?P =⇒ ?Q ]] =⇒ ?P (contrapos_np)
[[¬ ?Q; ?P =⇒ ?Q ]] =⇒ ¬ ?P (contrapos_nn)

These rules are typically applied using the erule method, where their effect
is to form a contrapositive from an assumption and the goal’s conclusion.

The most important of these is contrapos_np. It is useful for applying
introduction rules to negated assumptions. For instance, the assumption
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¬(P → Q) is equivalent to the conclusion P → Q and we might want to
use conjunction introduction on it. Before we can do so, we must move that
assumption so that it becomes the conclusion. The following proof demon-
strates this technique:

lemma " [[¬(P−→Q); ¬(R−→Q) ]] =⇒ R"
apply (erule_tac Q = "R−→Q" in contrapos_np)
apply (intro impI)
by (erule notE)

There are two negated assumptions and we need to exchange the conclusion
with the second one. The method erule contrapos_np would select the first
assumption, which we do not want. So we specify the desired assumption
explicitly using a new method, erule_tac. This is the resulting subgoal:

1. [[¬ (P −→ Q); ¬ R ]] =⇒ R −→ Q

The former conclusion, namely R, now appears negated among the assump-
tions, while the negated formula R −→ Q becomes the new conclusion.

We can now apply introduction rules. We use the intro method, which
repeatedly applies the given introduction rules. Here its effect is equivalent
to rule impI.

1. [[¬ (P −→ Q); ¬ R; R ]] =⇒ Q

We can see a contradiction in the form of assumptions ¬ R and R, which
suggests using negation elimination. If applied on its own, notE will select
the first negated assumption, which is useless. Instead, we invoke the rule
using the by command. Now when Isabelle selects the first assumption, it
tries to prove P −→ Q and fails; it then backtracks, finds the assumption ¬ R

and finally proves R by assumption. That concludes the proof.

The following example may be skipped on a first reading. It involves a
peculiar but important rule, a form of disjunction introduction:

(¬ ?Q =⇒ ?P) =⇒ ?P ∨ ?Q (disjCI)

This rule combines the effects of disjI1 and disjI2. Its great advantage
is that we can remove the disjunction symbol without deciding which dis-
junction to prove. This treatment of disjunction is standard in sequent and
tableau calculi.

lemma "(P ∨ Q) ∧ R =⇒ P ∨ (Q ∧ R)"
apply (intro disjCI conjI)
apply (elim conjE disjE)
apply assumption

by (erule contrapos_np, rule conjI)

The first proof step uses intro to apply the introduction rules disjCI and
conjI. The resulting subgoal has the negative assumption ¬(Q ∧ R) .

1. [[(P ∨ Q) ∧ R; ¬ (Q ∧ R) ]] =⇒ P



5.7 Interlude: the Basic Methods for Rules 75

Next we apply the elim method, which repeatedly applies elimination rules;
here, the elimination rules given in the command. One of the subgoals is
trivial (apply assumption), leaving us with one other:

1. [[¬ (Q ∧ R); R; Q ]] =⇒ P

Now we must move the formula Q ∧ R to be the conclusion. The combination

(erule contrapos_np, rule conjI)

is robust: the conjI forces the erule to select a conjunction. The two subgoals
are the ones we would expect from applying conjunction introduction to
Q ∧ R :

1. [[R; Q; ¬ P ]] =⇒ Q
2. [[R; Q; ¬ P ]] =⇒ R

They are proved by assumption, which is implicit in the by command.

5.7 Interlude: the Basic Methods for Rules

We have seen examples of many tactics that operate on individual rules. It
may be helpful to review how they work given an arbitrary rule such as this:

P1 . . . Pn

Q

Below, we refer to P1 as the major premise. This concept applies only to
elimination and destruction rules. These rules act upon an instance of their
major premise, typically to replace it by subformulas of itself.

Suppose that the rule above is called R . Here are the basic rule methods,
most of which we have already seen:

– Method rule R unifies Q with the current subgoal, replacing it by n new
subgoals: instances of P1, . . . , Pn . This is backward reasoning and is ap-
propriate for introduction rules.

– Method erule R unifies Q with the current subgoal and simultaneously
unifies P1 with some assumption. The subgoal is replaced by the n−1 new
subgoals of proving instances of P2, . . . , Pn , with the matching assump-
tion deleted. It is appropriate for elimination rules. The method (rule R,

assumption) is similar, but it does not delete an assumption.
– Method drule R unifies P1 with some assumption, which it then deletes.

The subgoal is replaced by the n − 1 new subgoals of proving P2, . . . , Pn ;
an nth subgoal is like the original one but has an additional assumption:
an instance of Q . It is appropriate for destruction rules.

– Method frule R is like drule R except that the matching assumption is
not deleted. (See Sect. 5.9.5 below.)
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Other methods apply a rule while constraining some of its variables. The
typical form is

rule_tac v1 = t1 and . . . and vk = tk in R

This method behaves like rule R, while instantiating the variables v1, . . . , vk

as specified. We similarly have erule_tac , drule_tac and frule_tac . These
methods also let us specify which subgoal to operate on. By default it is
the first subgoal, as with nearly all methods, but we can specify that rule R

should be applied to subgoal number i :

rule_tac [i] R

5.8 Unification and Substitution

As we have seen, Isabelle rules involve schematic variables, which begin with
a question mark and act as placeholders for terms. Unification refers to the
process of making two terms identical, possibly by replacing their schematic
variables by terms. The simplest case is when the two terms are already the
same. Next simplest is pattern-matching, which replaces variables in only
one of the terms. The rule method typically matches the rule’s conclusion
against the current subgoal. In the most complex case, variables in both
terms are replaced; the rule method can do this if the goal itself contains
schematic variables. Other occurrences of the variables in the rule or proof
state are updated at the same time.

Schematic variables in goals represent unknown terms. Given a goal such
as ∃x .P , they let us proceed with a proof. They can be filled in later, some-
times in stages and often automatically.

Unification is well known to Prolog programmers. Isabelle uses higher-
order unification, which works in the typed λ-calculus. The general case is
undecidable, but for our purposes, the differences from ordinary unification
are straightforward. It handles bound variables correctly, avoiding capture.
The two terms λx. ?P and λx. t x are not unifiable; replacing ?P by t x is
forbidden because the free occurrence of x would become bound. The two
terms λx. f(x,z) and λy. f(y,z) are trivially unifiable because they differ
only by a bound variable renaming.

! Higher-order unification sometimes must invent λ-terms to replace function
variables, which can lead to a combinatorial explosion. However, Isabelle proofs

tend to involve easy cases where there are few possibilities for the λ-term being
constructed. In the easiest case, the function variable is applied only to bound
variables, as when we try to unify λx y. f(?h x y) and λx y. f(x+y+a). The
only solution is to replace ?h by λx y. x+y+a. Such cases admit at most one unifier,
like ordinary unification. A harder case is unifying ?h a with a+b ; it admits two
solutions for ?h, namely λx. a+b and λx. x+b. Unifying ?h a with a+a+b admits
four solutions; their number is exponential in the number of occurrences of a in the
second term.
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5.8.1 Substitution and the subst Method

Isabelle also uses function variables to express substitution. A typical sub-
stitution rule allows us to replace one term by another if we know that two
terms are equal.

s = t P [s/x ]
P [t/x ]

The rule uses a notation for substitution: P [t/x ] is the result of replacing x
by t in P . The rule only substitutes in the positions designated by x . For
example, it can derive symmetry of equality from reflexivity. Using x = s
for P replaces just the first s in s = s by t :

s = t s = s
t = s

The Isabelle version of the substitution rule looks like this:

[[?t = ?s; ?P ?s ]] =⇒ ?P ?t (ssubst)

Crucially, ?P is a function variable. It can be replaced by a λ-term with
one bound variable, whose occurrences identify the places in which s will be
replaced by t . The proof above requires the term λx. x=s.

The simp method replaces equals by equals, but the substitution rule gives
us more control. The subst method is the easiest way to use the substitution
rule. Suppose a proof has reached this point:

1. [[P x y z; Suc x < y ]] =⇒ f z = x * y

Now we wish to apply a commutative law:

?m * ?n = ?n * ?m (mult_commute)

Isabelle rejects our first attempt:

apply (simp add: mult_commute)

The simplifier notices the danger of looping and refuses to apply the rule.2

The subst method applies mult_commute exactly once.

apply (subst mult_commute)
1. [[P x y z; Suc x < y ]] =⇒ f z = y * x

As we wanted, x * y has become y * x.

The subst method is convenient, but to see how it works, let us examine
an explicit use of the rule ssubst. Consider this proof:

lemma " [[x = f x; odd(f x) ]] =⇒ odd x"
by (erule ssubst)

2 More precisely, it only applies such a rule if the new term is smaller under a
specified ordering; here, x * y is already smaller than y * x.



78 5. The Rules of the Game

The simplifier might loop, replacing x by f x and then by f(f x) and so
forth. (Here simp can see the danger and would re-orient the equality, but
in more complicated cases it can be fooled.) When we apply substitution,
Isabelle replaces every x in the subgoal by f x just once: it cannot loop.
The resulting subgoal is trivial by assumption, so the by command proves it
implicitly.

We are using the erule method it in a novel way. Hitherto, the conclusion
of the rule was just a variable such as ?R, but it may be any term. The con-
clusion is unified with the subgoal just as it would be with the rule method.
At the same time erule looks for an assumption that matches the rule’s first
premise, as usual. With ssubst the effect is to find, use and delete an equality
assumption.

5.8.2 Unification and Its Pitfalls

Higher-order unification can be tricky. Here is an example, which you may
want to skip on your first reading:

lemma " [[x = f x; triple (f x) (f x) x ]] =⇒ triple x x x"
apply (erule ssubst)
back
back
back
back
apply assumption
done

By default, Isabelle tries to substitute for all the occurrences. Applying erule

ssubst yields this subgoal:

1. triple (f x) (f x) x =⇒ triple (f x) (f x) (f x)

The substitution should have been done in the first two occurrences of x

only. Isabelle has gone too far. The back command allows us to reject this
possibility and demand a new one:

1. triple (f x) (f x) x =⇒ triple x (f x) (f x)

Now Isabelle has left the first occurrence of x alone. That is promising but
it is not the desired combination. So we use back again:

1. triple (f x) (f x) x =⇒ triple (f x) x (f x)

This also is wrong, so we use back again:

1. triple (f x) (f x) x =⇒ triple x x (f x)

And this one is wrong too. Looking carefully at the series of alternatives, we
see a binary countdown with reversed bits: 111, 011, 101, 001. Invoke back
again:

1. triple (f x) (f x) x =⇒ triple (f x) (f x) x
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At last, we have the right combination! This goal follows by assumption.

This example shows that unification can do strange things with function
variables. We were forced to select the right unifier using the back command.
That is all right during exploration, but back should never appear in the final
version of a proof. You can eliminate the need for back by giving Isabelle
less freedom when you apply a rule.

One way to constrain the inference is by joining two methods in a apply
command. Isabelle applies the first method and then the second. If the second
method fails then Isabelle automatically backtracks. This process continues
until the first method produces an output that the second method can use.
We get a one-line proof of our example:

lemma " [[x = f x; triple (f x) (f x) x ]] =⇒ triple x x x"
apply (erule ssubst, assumption)
done

The by command works too, since it backtracks when proving subgoals by
assumption:

lemma " [[x = f x; triple (f x) (f x) x ]] =⇒ triple x x x"
by (erule ssubst)

The most general way to constrain unification is by instantiating variables
in the rule. The method rule_tac is similar to rule, but it makes some of
the rule’s variables denote specified terms. Also available are drule_tac and
erule_tac. Here we need erule_tac since above we used erule.

lemma " [[x = f x; triple (f x) (f x) x ]] =⇒ triple x x x"
by (erule_tac P = "λu. triple u u x" in ssubst)

To specify a desired substitution requires instantiating the variable ?P with
a λ-expression. The bound variable occurrences in λu. P u u x indicate that
the first two arguments have to be substituted, leaving the third unchanged.
With this instantiation, backtracking is neither necessary nor possible.

An alternative to rule_tac is to use rule with a theorem modified us-
ing of, described in Sect. 5.14 below. But rule_tac, unlike of, can express
instantiations that refer to

∧
-bound variables in the current subgoal.

5.9 Quantifiers

Quantifiers require formalizing syntactic substitution and the notion of arbi-
trary value. Consider the universal quantifier. In a logic book, its introduction
rule looks like this:

P
∀x .P

Typically, a proviso written in English says that x must not occur in the as-
sumptions. This proviso guarantees that x can be regarded as arbitrary, since
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it has not been assumed to satisfy any special conditions. Isabelle’s under-
lying formalism, called the meta-logic, eliminates the need for English. It
provides its own universal quantifier (

∧
) to express the notion of an arbitrary

value. We have already seen another symbol of the meta-logic, namely =⇒,
which expresses inference rules and the treatment of assumptions. The only
other symbol in the meta-logic is ≡, which can be used to define constants.

5.9.1 The Universal Introduction Rule

Returning to the universal quantifier, we find that having a similar quantifier
as part of the meta-logic makes the introduction rule trivial to express:

(
∧
x. ?P x) =⇒ ∀ x. ?P x (allI)

The following trivial proof demonstrates how the universal introduction
rule works.

lemma "∀ x. P x −→ P x"
apply (rule allI)
by (rule impI)

The first step invokes the rule by applying the method rule allI.

1.
∧
x. P x −→ P x

Note that the resulting proof state has a bound variable, namely x. The rule
has replaced the universal quantifier of higher-order logic by Isabelle’s meta-
level quantifier. Our goal is to prove P x −→ P x for arbitrary x ; it is an
implication, so we apply the corresponding introduction rule (impI).

1.
∧
x. P x =⇒ P x

This last subgoal is implicitly proved by assumption.

5.9.2 The Universal Elimination Rule

Now consider universal elimination. In a logic text, the rule looks like this:

∀x .P
P [t/x ]

The conclusion is P with t substituted for the variable x . Isabelle expresses
substitution using a function variable:

∀ x. ?P x =⇒ ?P ?x (spec)

This destruction rule takes a universally quantified formula and removes the
quantifier, replacing the bound variable x by the schematic variable ?x. Re-
call that a schematic variable starts with a question mark and acts as a
placeholder: it can be replaced by any term.

The universal elimination rule is also available in the standard elimination
format. Like conjE, it never appears in logic books:
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[[∀ x. ?P x; ?P ?x =⇒ ?R ]] =⇒ ?R (allE)

The methods drule spec and erule allE do precisely the same inference.
To see how ∀-elimination works, let us derive a rule about reducing the

scope of a universal quantifier. In mathematical notation we write

∀x .P → Q
P → ∀x .Q

with the proviso “x not free in P .” Isabelle’s treatment of substitution makes
the proviso unnecessary. The conclusion is expressed as P −→ (∀ x. Q x).
No substitution for the variable P can introduce a dependence upon x : that
would be a bound variable capture. Let us walk through the proof.

lemma "(∀ x. P −→ Q x) =⇒ P −→ (∀ x. Q x)"

First we apply implies introduction (impI), which moves the P from the con-
clusion to the assumptions. Then we apply universal introduction (allI).

apply (rule impI, rule allI)
1.

∧
x. [[∀ x. P −→ Q x; P ]] =⇒ Q x

As before, it replaces the HOL quantifier by a meta-level quantifier, producing
a subgoal that binds the variable x. The leading bound variables (here x)
and the assumptions (here ∀ x. P −→ Q x and P) form the context for the
conclusion, here Q x. Subgoals inherit the context, although assumptions can
be added or deleted (as we saw earlier), while rules such as allI add bound
variables.

Now, to reason from the universally quantified assumption, we apply the
elimination rule using the drule method. This rule is called spec because it
specializes a universal formula to a particular term.

apply (drule spec)
1.

∧
x. [[P; P −→ Q (?x2 x) ]] =⇒ Q x

Observe how the context has changed. The quantified formula is gone, re-
placed by a new assumption derived from its body. We have removed the
quantifier and replaced the bound variable by the curious term ?x2 x. This
term is a placeholder: it may become any term that can be built from x.
(Formally, ?x2 is an unknown of function type, applied to the argument x.)
This new assumption is an implication, so we can use modus ponens on it,
which concludes the proof.

by (drule mp)

Let us take a closer look at this last step. Modus ponens yields two subgoals:
one where we prove the antecedent (in this case P) and one where we may
assume the consequent. Both of these subgoals are proved by the assumption

method, which is implicit in the by command. Replacing the by command
by apply (drule mp, assumption) would have left one last subgoal:

1.
∧
x. [[P; Q (?x2 x) ]] =⇒ Q x
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The consequent is Q applied to that placeholder. It may be replaced by any
term built from x, and here it should simply be x. The assumption need not
be identical to the conclusion, provided the two formulas are unifiable.

5.9.3 The Existential Quantifier

The concepts just presented also apply to the existential quantifier, whose
introduction rule looks like this in Isabelle:

?P ?x =⇒ ∃ x. ?P x (exI)

If we can exhibit some x such that P(x ) is true, then ∃x .P(x ) is also true.
It is a dual of the universal elimination rule, and logic texts present it using
the same notation for substitution.

The existential elimination rule looks like this in a logic text:

∃x .P

[P ]....
Q

Q

It looks like this in Isabelle:

[[∃ x. ?P x;
∧
x. ?P x =⇒ ?Q ]] =⇒ ?Q (exE)

Given an existentially quantified theorem and some formula Q to prove, it
creates a new assumption by removing the quantifier. As with the universal
introduction rule, the textbook version imposes a proviso on the quantified
variable, which Isabelle expresses using its meta-logic. It is enough to have a
universal quantifier in the meta-logic; we do not need an existential quantifier
to be built in as well.

Exercise 5.9.1 Prove the lemma

∃x .P ∧Q(x ) =⇒ P ∧ (∃x .Q(x )).

Hint : the proof is similar to the one just above for the universal quantifier.

5.9.4 Renaming an Assumption: rename_tac

When you apply a rule such as allI, the quantified variable becomes a new
bound variable of the new subgoal. Isabelle tries to avoid changing its name,
but sometimes it has to choose a new name in order to avoid a clash. The
result may not be ideal:

lemma "x < y =⇒ ∀ x y. P x (f y)"
apply (intro allI)
1.

∧
xa ya. x < y =⇒ P xa (f ya)
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The names x and y were already in use, so the new bound variables are called
xa and ya. You can rename them by invoking rename_tac :
apply (rename_tac v w)
1.

∧
v w. x < y =⇒ P v (f w)

Recall that rule_tac instantiates a theorem with specified terms. These terms
may involve the goal’s bound variables, but beware of referring to variables
like xa. A future change to your theories could change the set of names pro-
duced at top level, so that xa changes to xb or reverts to x. It is safer to
rename automatically-generated variables before mentioning them.

If the subgoal has more bound variables than there are names given to
rename_tac, the rightmost ones are renamed.

5.9.5 Reusing an Assumption: frule

Note that drule spec removes the universal quantifier and — as usual with
elimination rules — discards the original formula. Sometimes, a universal
formula has to be kept so that it can be used again. Then we use a new
method: frule. It acts like drule but copies rather than replaces the selected
assumption. The f is for forward.

In this example, going from P a to P(h(h a)) requires two uses of the
quantified assumption, one for each h in h(h a).
lemma " [[∀ x. P x −→ P (h x); P a ]] =⇒ P(h (h a))"

Examine the subgoal left by frule :
apply (frule spec)
1. [[∀ x. P x −→ P (h x); P a; P ?x −→ P (h ?x) ]] =⇒ P (h (h a))

It is what drule would have left except that the quantified assumption is still
present. Next we apply mp to the implication and the assumption P a :
apply (drule mp, assumption)
1. [[∀ x. P x −→ P (h x); P a; P (h a) ]] =⇒ P (h (h a))

We have created the assumption P(h a), which is progress. To continue the
proof, we apply spec again. We shall not need it again, so we can use drule.
apply (drule spec)
1. [[P a; P (h a); P ?x2 −→ P (h ?x2) ]] =⇒ P (h (h a))

The new assumption bridges the gap between P(h a) and P(h(h a)).
by (drule mp)

A final remark. Replacing this by command with
apply (drule mp, assumption)

would not work: it would add a second copy of P(h a) instead of the desired
assumption, P(h(h a)). The by command forces Isabelle to backtrack until it
finds the correct one. Alternatively, we could have used the apply command
and bundled the drule mp with two calls of assumption. Or, of course, we
could have given the entire proof to auto.
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5.9.6 Instantiating a Quantifier Explicitly

We can prove a theorem of the form ∃x .P x by exhibiting a suitable term t
such that P t is true. Dually, we can use an assumption of the form ∀x .P x to
generate a new assumption P t for a suitable term t . In many cases, Isabelle
makes the correct choice automatically, constructing the term by unification.
In other cases, the required term is not obvious and we must specify it our-
selves. Suitable methods are rule_tac, drule_tac and erule_tac.

We have seen (just above, Sect. 5.9.5) a proof of this lemma:

lemma " [[∀ x. P x −→ P (h x); P a ]] =⇒ P(h (h a))"

We had reached this subgoal:

1. [[∀ x. P x −→ P (h x); P a; P (h a) ]] =⇒ P (h (h a))

The proof requires instantiating the quantified assumption with the term h a.

apply (drule_tac x = "h a" in spec)
1. [[P a; P (h a); P (h a) −→ P (h (h a)) ]] =⇒ P (h (h a))

We have forced the desired instantiation.

Existential formulas can be instantiated too. The next example uses the
divides relation of number theory:

?m dvd ?n ≡ ∃ k. ?n = ?m * k (dvd_def)

Let us prove that multiplication of natural numbers is monotone with
respect to the divides relation:

lemma mult_dvd_mono: " [[i dvd m; j dvd n ]] =⇒ i*j dvd (m*n :: nat)"
apply (simp add: dvd_def)

Unfolding the definition of divides has left this subgoal:

1. [[∃ k. m = i * k; ∃ k. n = j * k ]] =⇒ ∃ k. m * n = i * j * k

Next, we eliminate the two existential quantifiers in the assumptions:

apply (erule exE)
1.

∧
k. [[∃ k. n = j * k; m = i * k ]] =⇒ ∃ k. m * n = i * j * k

apply (erule exE)
1.

∧
k ka. [[m = i * k; n = j * ka ]] =⇒ ∃ k. m * n = i * j * k

The term needed to instantiate the remaining quantifier is k*ka. But ka is an
automatically-generated name. As noted above, references to such variable
names makes a proof less resilient to future changes. So, first we rename the
most recent variable to l :

apply (rename_tac l)
1.

∧
k l. [[m = i * k; n = j * l ]] =⇒ ∃ k. m * n = i * j * k

We instantiate the quantifier with k*l :

apply (rule_tac x="k*l" in exI)
1.

∧
k ka. [[m = i * k; n = j * ka ]] =⇒ m * n = i * j * (k * ka)
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The rest is automatic, by arithmetic.

apply simp
done

5.10 Description Operators

HOL provides two description operators. A definite description formalizes
the word “the,” as in “the greatest divisior of n.” It returns an arbitrary
value unless the formula has a unique solution. An indefinite description
formalizes the word “some,” as in “some member of S .” It differs from a
definite description in not requiring the solution to be unique: it uses the
axiom of choice to pick any solution.

! Description operators can be hard to reason about. Novices should try to avoid
them. Fortunately, descriptions are seldom required.

5.10.1 Definite Descriptions

A definite description is traditionally written ιx .P(x ). It denotes the x such
that P(x ) is true, provided there exists a unique such x ; otherwise, it re-
turns an arbitrary value of the expected type. Isabelle uses THE for the Greek
letter ι.

We reason using this rule, where a is the unique solution:

[[P a;
∧
x. P x =⇒ x = a ]] =⇒ (THE x. P x) = a (the_equality)

For instance, we can define the cardinality of a finite set A to be that n
such that A is in one-to-one correspondence with {1, . . . ,n}. We can then
prove that the cardinality of the empty set is zero (since n = 0 satisfies the
description) and proceed to prove other facts.

A more challenging example illustrates how Isabelle/HOL defines the least
number operator, which denotes the least x satisfying P :

(LEAST x. P x) = (THE x. P x ∧ (∀ y. P y −→ x ≤ y))

Let us prove the analogue of the_equality for LEAST .

theorem Least_equality:
" [[P (k::nat); ∀ x. P x −→ k ≤ x ]] =⇒ (LEAST x. P x) = k"

apply (simp add: Least_def)

1. [[P k; ∀ x. P x −→ k ≤ x ]]
=⇒ (THE x. P x ∧ (∀ y. P y −→ x ≤ y)) = k

The first step has merely unfolded the definition.
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apply (rule the_equality)

1. [[P k; ∀ x. P x −→ k ≤ x ]] =⇒ P k ∧ (∀ y. P y −→ k ≤ y)
2.

∧
x. [[P k; ∀ x. P x −→ k ≤ x; P x ∧ (∀ y. P y −→ x ≤ y) ]]

=⇒ x = k

As always with the_equality, we must show existence and uniqueness of the
claimed solution, k. Existence, the first subgoal, is trivial. Uniqueness, the
second subgoal, follows by antisymmetry:

[[x ≤ y; y ≤ x ]] =⇒ x = y (order_antisym)

The assumptions imply both k ≤ x and x ≤ k. One call to auto does it all:

by (auto intro: order_antisym)

5.10.2 Indefinite Descriptions

An indefinite description is traditionally written εx .P(x ) and is known as
Hilbert’s ε-operator. It denotes some x such that P(x ) is true, provided one
exists. Isabelle uses SOME for the Greek letter ε.

Here is the definition of inv , which expresses inverses of functions:

inv f ≡ λy. SOME x. f x = y (inv_def)

Using SOME rather than THE makes inv f behave well even if f is not injective.
As it happens, most useful theorems about inv do assume the function to be
injective.

The inverse of f, when applied to y, returns some x such that f x = y.
For example, we can prove inv Suc really is the inverse of the Suc function

lemma "inv Suc (Suc n) = n"
by (simp add: inv_def)

The proof is a one-liner: the subgoal simplifies to a degenerate application of
SOME, which is then erased. In detail, the left-hand side simplifies to SOME x.

Suc x = Suc n, then to SOME x. x = n and finally to n.
We know nothing about what inv Suc returns when applied to zero. The

proof above still treats SOME as a definite description, since it only reasons
about situations in which the value is described uniquely. Indeed, SOME satis-
fies this rule:

[[P a;
∧
x. P x =⇒ x = a ]] =⇒ (SOME x. P x) = a (some_equality)

To go further is tricky and requires rules such as these:

P x =⇒ P (SOME x. P x) (someI)
[[P a;

∧
x. P x =⇒ Q x ]] =⇒ Q (SOME x. P x) (someI2)

Rule someI is basic: if anything satisfies P then so does SOME x. P x . The
repetition of P in the conclusion makes it difficult to apply in a backward
proof, so the derived rule someI2 is also provided.

For example, let us prove the axiom of choice:
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theorem axiom_of_choice: "(∀ x. ∃ y. P x y) =⇒ ∃ f. ∀ x. P x (f x)"
apply (rule exI, rule allI)

1.
∧
x. ∀ x. ∃ y. P x y =⇒ P x (?f x)

We have applied the introduction rules; now it is time to apply the elimination
rules.

apply (drule spec, erule exE)

1.
∧
x y. P (?x2 x) y =⇒ P x (?f x)

The rule someI automatically instantiates f to λx. SOME y. P x y , which is
the choice function. It also instantiates ?x2 x to x.

by (rule someI)

Historical Note. The original purpose of Hilbert’s ε-operator was to ex-
press an existential destruction rule:

∃x .P
P [(εx .P)/ x ]

This rule is seldom used for that purpose — it can cause exponential blow-up
— but it is occasionally used as an introduction rule for ε-operator. Its name
in HOL is someI_ex .

5.11 Some Proofs That Fail

Most of the examples in this tutorial involve proving theorems. But not every
conjecture is true, and it can be instructive to see how proofs fail. Here we
attempt to prove a distributive law involving the existential quantifier and
conjunction.

lemma "(∃ x. P x) ∧ (∃ x. Q x) =⇒ ∃ x. P x ∧ Q x"

The first steps are routine. We apply conjunction elimination to break the as-
sumption into two existentially quantified assumptions. Applying existential
elimination removes one of the quantifiers.

apply (erule conjE)
apply (erule exE)
1.

∧
x. [[∃ x. Q x; P x ]] =⇒ ∃ x. P x ∧ Q x

When we remove the other quantifier, we get a different bound variable in
the subgoal. (The name xa is generated automatically.)

apply (erule exE)
1.

∧
x xa. [[P x; Q xa ]] =⇒ ∃ x. P x ∧ Q x
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The proviso of the existential elimination rule has forced the variables to
differ: we can hardly expect two arbitrary values to be equal! There is no
way to prove this subgoal. Removing the conclusion’s existential quantifier
yields two identical placeholders, which can become any term involving the
variables x and xa. We need one to become x and the other to become xa,
but Isabelle requires all instances of a placeholder to be identical.

apply (rule exI)
apply (rule conjI)
1.

∧
x xa. [[P x; Q xa ]] =⇒ P (?x3 x xa)

2.
∧
x xa. [[P x; Q xa ]] =⇒ Q (?x3 x xa)

We can prove either subgoal using the assumption method. If we prove the
first one, the placeholder changes into x.

apply assumption
1.

∧
x xa. [[P x; Q xa ]] =⇒ Q x

We are left with a subgoal that cannot be proved. Applying the assumption

method results in an error message:

*** empty result sequence -- proof command failed

When interacting with Isabelle via the shell interface, you can abandon a
proof using the oops command.

Here is another abortive proof, illustrating the interaction between bound
variables and unknowns. If R is a reflexive relation, is there an x such that
R x y holds for all y? Let us see what happens when we attempt to prove it.

lemma "∀ y. R y y =⇒ ∃ x. ∀ y. R x y"

First, we remove the existential quantifier. The new proof state has an un-
known, namely ?x.

apply (rule exI)
1. ∀ y. R y y =⇒ ∀ y. R ?x y

It looks like we can just apply assumption, but it fails. Isabelle refuses to
substitute y, a bound variable, for ?x ; that would be a bound variable capture.
We can still try to finish the proof in some other way. We remove the universal
quantifier from the conclusion, moving the bound variable y into the subgoal.
But note that it is still bound!

apply (rule allI)
1.

∧
y. ∀ y. R y y =⇒ R ?x y

Finally, we try to apply our reflexivity assumption. We obtain a new assump-
tion whose identical placeholders may be replaced by any term involving y.

apply (drule spec)
1.

∧
y. R (?z2 y) (?z2 y) =⇒ R ?x y



5.12 Proving Theorems Using the blast Method 89

This subgoal can only be proved by putting y for all the placeholders, making
the assumption and conclusion become R y y. Isabelle can replace ?z2 y by
y ; this involves instantiating ?z2 to the identity function. But, just as two
steps earlier, Isabelle refuses to substitute y for ?x. This example is typical
of how Isabelle enforces sound quantifier reasoning.

5.12 Proving Theorems Using the blast Method

It is hard to prove many theorems using the methods described above. A
proof may be hundreds of steps long. You may need to search among different
ways of proving certain subgoals. Often a choice that proves one subgoal
renders another impossible to prove. There are further complications that we
have not discussed, concerning negation and disjunction. Isabelle’s classical
reasoner is a family of tools that perform such proofs automatically. The
most important of these is the blast method.

In this section, we shall first see how to use the classical reasoner in its
default mode and then how to insert additional rules, enabling it to work in
new problem domains.

We begin with examples from pure predicate logic. The following exam-
ple is known as Andrew’s challenge. Peter Andrews designed it to be hard
to prove by automatic means. It is particularly hard for a resolution prover,
where converting the nested biconditionals to clause form produces a combi-
natorial explosion [30]. However, the blast method proves it in a fraction of
a second.
lemma "((∃ x. ∀ y. p(x)=p(y)) = ((∃ x. q(x))=(∀ y. p(y)))) =

((∃ x. ∀ y. q(x)=q(y)) = ((∃ x. p(x))=(∀ y. q(y))))"
by blast

The next example is a logic problem composed by Lewis Carroll. The blast

method finds it trivial. Moreover, it turns out that not all of the assumptions
are necessary. We can experiment with variations of this formula and see
which ones can be proved.
lemma "(∀ x. honest(x) ∧ industrious(x) −→ healthy(x)) ∧

¬ (∃ x. grocer(x) ∧ healthy(x)) ∧
(∀ x. industrious(x) ∧ grocer(x) −→ honest(x)) ∧
(∀ x. cyclist(x) −→ industrious(x)) ∧
(∀ x. ¬healthy(x) ∧ cyclist(x) −→ ¬honest(x))
−→ (∀ x. grocer(x) −→ ¬cyclist(x))"

by blast

The blast method is also effective for set theory, which is described in the
next chapter. The formula below may look horrible, but the blast method
proves it in milliseconds.
lemma "(

⋃
i∈I. A(i)) ∩ (

⋃
j∈J. B(j)) =

(
⋃
i∈I.

⋃
j∈J. A(i) ∩ B(j))"

by blast
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Few subgoals are couched purely in predicate logic and set theory. We can
extend the scope of the classical reasoner by giving it new rules. Extending
it effectively requires understanding the notions of introduction, elimination
and destruction rules. Moreover, there is a distinction between safe and un-
safe rules. A safe rule is one that can be applied backwards without losing
information; an unsafe rule loses information, perhaps transforming the sub-
goal into one that cannot be proved. The safe/unsafe distinction affects the
proof search: if a proof attempt fails, the classical reasoner backtracks to the
most recent unsafe rule application and makes another choice.

An important special case avoids all these complications. A logical equiv-
alence, which in higher-order logic is an equality between formulas, can be
given to the classical reasoner and simplifier by using the attribute iff . You
should do so if the right hand side of the equivalence is simpler than the
left-hand side.

For example, here is a simple fact about list concatenation. The result of
appending two lists is empty if and only if both of the lists are themselves
empty. Obviously, applying this equivalence will result in a simpler goal.
When stating this lemma, we include the iff attribute. Once we have proved
the lemma, Isabelle will make it known to the classical reasoner (and to the
simplifier).

lemma [iff]: "(xs@ys = []) = (xs=[] ∧ ys=[])"
apply (induct_tac xs)
apply (simp_all)
done

This fact about multiplication is also appropriate for the iff attribute:

(?m * ?n = 0) = (?m = 0 ∨ ?n = 0)

A product is zero if and only if one of the factors is zero. The reasoning
involves a disjunction. Proving new rules for disjunctive reasoning is hard,
but translating to an actual disjunction works: the classical reasoner handles
disjunction properly.

In more detail, this is how the iff attribute works. It converts the equiv-
alence P = Q to a pair of rules: the introduction rule Q =⇒ P and the
destruction rule P =⇒ Q . It gives both to the classical reasoner as safe rules,
ensuring that all occurrences of P in a subgoal are replaced by Q . The simpli-
fier performs the same replacement, since iff gives P = Q to the simplifier.

Classical reasoning is different from simplification. Simplification is deter-
ministic. It applies rewrite rules repeatedly, as long as possible, transforming
a goal into another goal. Classical reasoning uses search and backtracking in
order to prove a goal outright.
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5.13 Other Classical Reasoning Methods

The blast method is our main workhorse for proving theorems automatically.
Other components of the classical reasoner interact with the simplifier. Still
others perform classical reasoning to a limited extent, giving the user fine
control over the proof.

Of the latter methods, the most useful is clarify . It performs all obvious
reasoning steps without splitting the goal into multiple parts. It does not
apply unsafe rules that could render the goal unprovable. By performing the
obvious steps, clarify lays bare the difficult parts of the problem, where
human intervention is necessary.

For example, the following conjecture is false:

lemma "(∀ x. P x) ∧ (∃ x. Q x) −→ (∀ x. P x ∧ Q x)"
apply clarify

The blast method would simply fail, but clarify presents a subgoal that
helps us see why we cannot continue the proof.

1.
∧
x xa. [[∀ x. P x; Q xa ]] =⇒ P x ∧ Q x

The proof must fail because the assumption Q xa and conclusion Q x refer to
distinct bound variables. To reach this state, clarify applied the introduction
rules for −→ and ∀ and the elimination rule for ∧. It did not apply the
introduction rule for ∧ because of its policy never to split goals.

Also available is clarsimp , a method that interleaves clarify and simp.
Also there is safe , which like clarify performs obvious steps but even applies
those that split goals.

The force method applies the classical reasoner and simplifier to one goal.
Unless it can prove the goal, it fails. Contrast that with the auto method,
which also combines classical reasoning with simplification. The latter’s pur-
pose is to prove all the easy subgoals and parts of subgoals. Unfortunately,
it can produce large numbers of new subgoals; also, since it proves some
subgoals and splits others, it obscures the structure of the proof tree. The
force method does not have these drawbacks. Another difference: force tries
harder than auto to prove its goal, so it can take much longer to terminate.

Older components of the classical reasoner have largely been superseded
by blast, but they still have niche applications. Most important among these
are fast and best. While blast searches for proofs using a built-in first-
order reasoner, these earlier methods search for proofs using standard Isabelle
inference. That makes them slower but enables them to work in the presence
of the more unusual features of Isabelle rules, such as type classes and function
unknowns. For example, recall the introduction rule for Hilbert’s ε-operator:

?P ?x =⇒ ?P (SOME x. ?P x) (someI)

The repeated occurrence of the variable ?P makes this rule tricky to apply.
Consider this contrived example:
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lemma " [[Q a; P a ]]
=⇒ P (SOME x. P x ∧ Q x) ∧ Q (SOME x. P x ∧ Q x)"

apply (rule someI)

We can apply rule someI explicitly. It yields the following subgoal:

1. [[Q a; P a ]] =⇒ P ?x ∧ Q ?x

The proof from this point is trivial. Could we have proved the theorem with
a single command? Not using blast : it cannot perform the higher-order uni-
fication needed here. The fast method succeeds:

apply (fast intro!: someI)

The best method is similar to fast but it uses a best-first search instead
of depth-first search. Accordingly, it is slower but is less susceptible to di-
vergence. Transitivity rules usually cause fast to loop where best can often
manage.

Here is a summary of the classical reasoning methods:

– blast works automatically and is the fastest
– clarify and clarsimp perform obvious steps without splitting the goal;

safe even splits goals
– force uses classical reasoning and simplification to prove a goal; auto is

similar but leaves what it cannot prove
– fast and best are legacy methods that work well with rules involving

unusual features

A table illustrates the relationships among four of these methods.

no split split
no simp clarify safe

simp clarsimp auto

5.14 Forward Proof: Transforming Theorems

Forward proof means deriving new facts from old ones. It is the most funda-
mental type of proof. Backward proof, by working from goals to subgoals, can
help us find a difficult proof. But it is not always the best way of presenting
the proof so found. Forward proof is particularly good for reasoning from
the general to the specific. For example, consider this distributive law for the
greatest common divisor:

k × gcd(m,n) = gcd(k ×m, k × n)

Putting m = 1 we get (since gcd(1,n) = 1 and k × 1 = k)

k = gcd(k , k × n)
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We have derived a new fact; if re-oriented, it might be useful for simplification.
After re-orienting it and putting n = 1, we derive another useful law:

gcd(k , k) = k

Substituting values for variables — instantiation — is a forward step. Re-
orientation works by applying the symmetry of equality to an equation, so it
too is a forward step.

5.14.1 Modifying a Theorem using of and THEN

Let us reproduce our examples in Isabelle. Recall that in Sect. 3.5.3 we de-
clared the recursive function gcd :

consts gcd :: "nat*nat ⇒ nat"
recdef gcd "measure ((λ(m,n).n))"

"gcd (m,n) = (if n=0 then m else gcd(n, m mod n))"

From this definition, it is possible to prove the distributive law. That takes
us to the starting point for our example.

?k * gcd (?m, ?n) = gcd (?k * ?m, ?k * ?n) (gcd_mult_distrib2)

The first step in our derivation is to replace ?m by 1. We instantiate the
theorem using of , which identifies variables in order of their appearance from
left to right. In this case, the variables are ?k, ?m and ?n. So, the expression
[of k 1] replaces ?k by k and ?m by 1.

lemmas gcd_mult_0 = gcd_mult_distrib2 [of k 1]

The keyword lemmas declares a new theorem, which can be derived from an
existing one using attributes such as [of k 1]. The command thm gcd_mult_0

displays the result:

k * gcd (1, ?n) = gcd (k * 1, k * ?n)

Something is odd: k is an ordinary variable, while ?n is schematic. We did
not specify an instantiation for ?n . In its present form, the theorem does not
allow substitution for k . One solution is to avoid giving an instantiation for
?k : instead of a term we can put an underscore (_). For example,

gcd_mult_distrib2 [of _ 1]

replaces ?m by 1 but leaves ?k unchanged.
The next step is to put the theorem gcd_mult_0 into a simplified form,

performing the steps gcd(1,n) = 1 and k × 1 = k . The simplified attribute
takes a theorem and returns the result of simplifying it, with respect to the
default simplification rules:

lemmas gcd_mult_1 = gcd_mult_0 [simplified]

Again, we display the resulting theorem:
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k = gcd (k, k * ?n)

To re-orient the equation requires the symmetry rule:
?s = ?t =⇒ ?t = ?s (sym)

The following declaration gives our equation to sym :
lemmas gcd_mult = gcd_mult_1 [THEN sym]

Here is the result:
gcd (k, k * ?n) = k

THEN sym gives the current theorem to the rule sym and returns the result-
ing conclusion. The effect is to exchange the two operands of the equality.
Typically THEN is used with destruction rules. Also useful is THEN spec, which
removes the quantifier from a theorem of the form ∀x .P , and THEN mp, which

converts the implication P → Q into the rule P
Q . Similar to mp are the follow-

ing two rules, which extract the two directions of reasoning about a boolean
equivalence:
[[?Q = ?P; ?Q ]] =⇒ ?P (iffD1)
[[?P = ?Q; ?Q ]] =⇒ ?P (iffD2)

Normally we would never name the intermediate theorems such as gcd_mult_0
and gcd_mult_1 but would combine the three forward steps:
lemmas gcd_mult = gcd_mult_distrib2 [of k 1, simplified, THEN sym]

The directives, or attributes, are processed from left to right. This declaration
of gcd_mult is equivalent to the previous one.

Such declarations can make the proof script hard to read. Better is to
state the new lemma explicitly and to prove it using a single rule method
whose operand is expressed using forward reasoning:
lemma gcd_mult [simp]: "gcd(k, k*n) = k"
by (rule gcd_mult_distrib2 [of k 1, simplified, THEN sym])

Compared with the previous proof of gcd_mult, this version shows the reader
what has been proved. Also, the result will be processed in the normal way.
In particular, Isabelle generalizes over all variables: the resulting theorem will
have ?k instead of k .

At the start of this section, we also saw a proof of gcd(k , k) = k . Here is
the Isabelle version:
lemma gcd_self [simp]: "gcd(k,k) = k"
by (rule gcd_mult [of k 1, simplified])

! To give of a nonatomic term, enclose it in quotation marks, as in [of "k*m"].
The term must not contain unknowns: an attribute such as [of "?k*m"] will

be rejected.

Exercise 5.14.1 In Sect. 5.8.1 the method subst mult_commute was applied.
How can we achieve the same effect using THEN with the rule ssubst?
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5.14.2 Modifying a Theorem using OF

Recall that of generates an instance of a rule by specifying values for its
variables. Analogous is OF, which generates an instance of a rule by specifying
facts for its premises.

We again need the divides relation of number theory, which as we recall
is defined by

?m dvd ?n ≡ ∃ k. ?n = ?m * k (dvd_def)

Suppose, for example, that we have proved the following rule. It states that
if k and n are relatively prime and if k divides m × n then k divides m.

[[gcd(?k,?n)=1; ?k dvd ?m * ?n ]] =⇒ ?k dvd ?m (relprime_dvd_mult)

We can use OF to create an instance of this rule. First, we prove an instance
of its first premise:

lemma relprime_20_81: "gcd(20,81) = 1"
by (simp add: gcd.simps)

We have evaluated an application of the gcd function by simplification. Ex-
pression evaluation involving recursive functions is not guaranteed to termi-
nate, and it can be slow; Isabelle performs arithmetic by rewriting symbolic
bit strings. Here, however, the simplification takes less than one second. We
can give this new lemma to OF. The expression

relprime_dvd_mult [OF relprime_20_81]

yields the theorem

20 dvd (?m * 81) =⇒ 20 dvd ?m

OF takes any number of operands. Consider the following facts about the
divides relation:

[[?k dvd ?m; ?k dvd ?n ]] =⇒ ?k dvd ?m + ?n (dvd_add)
?m dvd ?m (dvd_refl)

Let us supply dvd_refl for each of the premises of dvd_add :

dvd_add [OF dvd_refl dvd_refl]

Here is the theorem that we have expressed:

?k dvd (?k + ?k)

As with of, we can use the _ symbol to leave some positions unspecified:

dvd_add [OF _ dvd_refl]

The result is

?k dvd ?m =⇒ ?k dvd ?m + ?k
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You may have noticed that THEN and OF are based on the same idea,
namely to combine two rules. They differ in the order of the combination
and thus in their effect. We use THEN typically with a destruction rule to
extract a subformula of the current theorem. We use OF with a list of facts
to generate an instance of the current theorem.

Here is a summary of some primitives for forward reasoning:

– of instantiates the variables of a rule to a list of terms
– OF applies a rule to a list of theorems
– THEN gives a theorem to a named rule and returns the conclusion
– simplified applies the simplifier to a theorem
– lemmas assigns a name to the theorem produced by the attributes above

5.15 Forward Reasoning in a Backward Proof

We have seen that the forward proof directives work well within a backward
proof. There are many ways to achieve a forward style using our existing
proof methods. We shall also meet some new methods that perform forward
reasoning.

The methods drule, frule, drule_tac, etc., reason forward from a subgoal.
We have seen them already, using rules such as mp and spec to operate on
formulae. They can also operate on terms, using rules such as these:

x = y =⇒ f x = f y (arg_cong)
i ≤ j =⇒ i * k ≤ j * k (mult_le_mono1)

For example, let us prove a fact about divisibility in the natural numbers:

lemma "2 ≤ u =⇒ u*m 6= Suc(u*n)"
apply (intro notI)
1. [[2 ≤ u; u * m = Suc (u * n) ]] =⇒ False

The key step is to apply the function . . . mod u to both sides of the equation
u*m = Suc(u*n) :

apply (drule_tac f="λx. x mod u" in arg_cong)
1. [[2 ≤ u; u * m mod u = Suc (u * n) mod u ]] =⇒ False

Simplification reduces the left side to 0 and the right side to 1, yielding the
required contradiction.

apply (simp add: mod_Suc)
done

Our proof has used a fact about remainder:

Suc m mod n =
(if Suc (m mod n) = n then 0 else Suc (m mod n)) (mod_Suc)
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5.15.1 The Method insert

The insert method inserts a given theorem as a new assumption of the cur-
rent subgoal. This already is a forward step; moreover, we may (as always
when using a theorem) apply of, THEN and other directives. The new assump-
tion can then be used to help prove the subgoal.

For example, consider this theorem about the divides relation. The first
proof step inserts the distributive law for gcd. We specify its variables as
shown.

lemma relprime_dvd_mult:
" [[gcd(k,n)=1; k dvd m*n ]] =⇒ k dvd m"

apply (insert gcd_mult_distrib2 [of m k n])

In the resulting subgoal, note how the equation has been inserted:

1. [[gcd (k, n) = 1; k dvd m * n; m * gcd (k, n) = gcd (m * k, m * n) ]]
=⇒ k dvd m

The next proof step utilizes the assumption gcd(k,n) = 1 :

apply(simp)
1. [[gcd (k, n) = 1; k dvd (m * n); m = gcd (m * k, m * n) ]]

=⇒ k dvd m

Simplification has yielded an equation for m. The rest of the proof is omitted.

Here is another demonstration of insert. Division and remainder obey a
well-known law:

(?m div ?n) * ?n + ?m mod ?n = ?m (mod_div_equality)

We refer to this law explicitly in the following proof:

lemma div_mult_self_is_m:
"0<n =⇒ (m*n) div n = (m::nat)"

apply (insert mod_div_equality [of "m*n" n])
apply (simp)
done

The first step inserts the law, specifying m*n and n for its variables. Notice
that non-trivial expressions must be enclosed in quotation marks. Here is the
resulting subgoal, with its new assumption:

1. [[0 < n; (m * n) div n * n + (m * n) mod n = m * n ]]
=⇒ (m * n) div n = m

Simplification reduces (m * n) mod n to zero. Then it cancels the factor n on
both sides of the equation (m * n) div n * n = m * n, proving the theorem.

! Any unknowns in the theorem given to insert will be universally quantified in
the new assumption.
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5.15.2 The Method subgoal_tac

A related method is subgoal_tac, but instead of inserting a theorem as an
assumption, it inserts an arbitrary formula. This formula must be proved
later as a separate subgoal. The idea is to claim that the formula holds on
the basis of the current assumptions, to use this claim to complete the proof,
and finally to justify the claim. It gives the proof some structure. If you find
yourself generating a complex assumption by a long series of forward steps,
consider using subgoal_tac instead: you can state the formula you are aiming
for, and perhaps prove it automatically.

Look at the following example.
lemma " [[(z::int) < 37; 66 < 2*z; z*z 6= 1225; Q(34); Q(36) ]]

=⇒ Q(z)"
apply (subgoal_tac "z = 34 ∨ z = 36")
apply blast
apply (subgoal_tac "z 6= 35")
apply arith
apply force
done

The first assumption tells us that z is no greater than 36. The second tells
us that z is at least 34. The third assumption tells us that z cannot be 35,
since 35 × 35 = 1225. So z is either 34 or 36, and since Q holds for both of
those values, we have the conclusion.

The Isabelle proof closely follows this reasoning. The first step is to claim
that z is either 34 or 36. The resulting proof state gives us two subgoals:
1. [[z < 37; 66 < 2 * z; z * z 6= 1225; Q 34; Q 36;

z = 34 ∨ z = 36 ]]
=⇒ Q z

2. [[z < 37; 66 < 2 * z; z * z 6= 1225; Q 34; Q 36 ]]
=⇒ z = 34 ∨ z = 36

The first subgoal is trivial (blast), but for the second Isabelle needs help to
eliminate the case z=35. The second invocation of subgoal_tac leaves two
subgoals:
1. [[z < 37; 66 < 2 * z; z * z 6= 1225; Q 34; Q 36;

z 6= 35 ]]
=⇒ z = 34 ∨ z = 36

2. [[z < 37; 66 < 2 * z; z * z 6= 1225; Q 34; Q 36 ]]
=⇒ z 6= 35

Assuming that z is not 35, the first subgoal follows by linear arithmetic
(arith). For the second subgoal we apply the method force, which proceeds
by assuming that z=35 and arriving at a contradiction.

Summary of these methods:

– insert adds a theorem as a new assumption
– subgoal_tac adds a formula as a new assumption and leaves the subgoal

of proving that formula
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5.16 Managing Large Proofs

Naturally you should try to divide proofs into manageable parts. Look for
lemmas that can be proved separately. Sometimes you will observe that they
are instances of much simpler facts. On other occasions, no lemmas suggest
themselves and you are forced to cope with a long proof involving many
subgoals.

5.16.1 Tacticals, or Control Structures

If the proof is long, perhaps it at least has some regularity. Then you can
express it more concisely using tacticals, which provide control structures.
Here is a proof (it would be a one-liner using blast, but forget that) that
contains a series of repeated commands:
lemma " [[P−→Q; Q−→R; R−→S; P ]] =⇒ S"
apply (drule mp, assumption)
apply (drule mp, assumption)
apply (drule mp, assumption)
apply (assumption)
done

Each of the three identical commands finds an implication and proves its
antecedent by assumption. The first one finds P−→Q and P, concluding Q ; the
second one concludes R and the third one concludes S. The final step matches
the assumption S with the goal to be proved.

Suffixing a method with a plus sign (+) expresses one or more repetitions:
lemma " [[P−→Q; Q−→R; R−→S; P ]] =⇒ S"
by (drule mp, assumption)+

Using by takes care of the final use of assumption. The new proof is more
concise. It is also more general: the repetitive method works for a chain of
implications having any length, not just three.

Choice is another control structure. Separating two methods by a vertical
bar (|) gives the effect of applying the first method, and if that fails, trying
the second. It can be combined with repetition, when the choice must be
made over and over again. Here is a chain of implications in which most of
the antecedents are proved by assumption, but one is proved by arithmetic:
lemma " [[Q−→R; P−→Q; x<5−→P; Suc x < 5 ]] =⇒ R"
by (drule mp, (assumption|arith))+

The arith method can prove x < 5 from x +1 < 5, but it cannot duplicate the
effect of assumption. Therefore, we combine these methods using the choice
operator.

A postfixed question mark (?) expresses zero or one repetitions of a
method. It can also be viewed as the choice between executing a method
and doing nothing. It is useless at top level but can be valuable within other
control structures; for example, (m+)? performs zero or more repetitions of
method m.
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5.16.2 Subgoal Numbering

Another problem in large proofs is contending with huge subgoals or many
subgoals. Induction can produce a proof state that looks like this:

1. bigsubgoal1
2. bigsubgoal2
3. bigsubgoal3
4. bigsubgoal4
5. bigsubgoal5
6. bigsubgoal6

If each bigsubgoal is 15 lines or so, the proof state will be too big to scroll
through. By default, Isabelle displays at most 10 subgoals. The pr command
lets you change this limit:

pr 2
1. bigsubgoal1
2. bigsubgoal2
A total of 6 subgoals...

All methods apply to the first subgoal. Sometimes, not only in a large
proof, you may want to focus on some other subgoal. Then you should try
the commands defer or prefer.

In the following example, the first subgoal looks hard, while the others
look as if blast alone could prove them:

1. hard
2. ¬ ¬ P =⇒ P
3. Q =⇒ Q

The defer command moves the first subgoal into the last position.

defer 1
1. ¬ ¬ P =⇒ P
2. Q =⇒ Q
3. hard

Now we apply blast repeatedly to the easy subgoals:

apply blast+
1. hard

Using defer, we have cleared away the trivial parts of the proof so that we
can devote attention to the difficult part.

The prefer command moves the specified subgoal into the first position.
For example, if you suspect that one of your subgoals is invalid (not a theo-
rem), then you should investigate that subgoal first. If it cannot be proved,
then there is no point in proving the other subgoals.

1. ok1
2. ok2
3. doubtful
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We decide to work on the third subgoal.
prefer 3
1. doubtful
2. ok1
3. ok2

If we manage to prove doubtful, then we can work on the other subgoals,
confident that we are not wasting our time. Finally we revise the proof script
to remove the prefer command, since we needed it only to focus our ex-
ploration. The previous example is different: its use of defer stops trivial
subgoals from cluttering the rest of the proof. Even there, we should consider
proving hard as a preliminary lemma. Always seek ways to streamline your
proofs.

Summary:

– the control structures +, ? and | help express complicated proofs
– the pr command can limit the number of subgoals to display
– the defer and prefer commands move a subgoal to the last or first position

Exercise 5.16.1 Explain the use of ? and + in this proof.
lemma " [[P∧Q−→R; P−→Q; P ]] =⇒ R"
by (drule mp, intro?, assumption+)+

5.17 Proving the Correctness of Euclid’s Algorithm

A brief development will demonstrate the techniques of this chapter, includ-
ing blast applied with additional rules. We shall also see case_tac used to
perform a Boolean case split.

Let us prove that gcd computes the greatest common divisor of its two
arguments. We use induction: gcd.induct is the induction rule returned by
recdef. We simplify using rules proved in Sect. 3.5.3, since rewriting by the
definition of gcd can loop.
lemma gcd_dvd_both: "(gcd(m,n) dvd m) ∧ (gcd(m,n) dvd n)"

The induction formula must be a conjunction. In the inductive step, each
conjunct establishes the other.
apply (induct_tac m n rule: gcd.induct)
1.

∧
m n. n 6= 0 −→

gcd (n, m mod n) dvd n ∧ gcd (n, m mod n) dvd m mod n
=⇒ gcd (m, n) dvd m ∧ gcd (m, n) dvd n

The conditional induction hypothesis suggests doing a case analysis on
n=0. We apply case_tac with type bool — and not with a datatype, as we have
done until now. Since nat is a datatype, we could have written case_tac n

instead of case_tac "n=0". However, the definition of gcd makes a Boolean
decision:
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"gcd (m,n) = (if n=0 then m else gcd(n, m mod n))"

Proofs about a function frequently follow the function’s definition, so we
perform case analysis over the same formula.

apply (case_tac "n=0")
1.

∧
m n. [[n 6= 0 −→

gcd (n, m mod n) dvd n ∧ gcd (n, m mod n) dvd m mod n;
n = 0 ]]

=⇒ gcd (m, n) dvd m ∧ gcd (m, n) dvd n
2.

∧
m n. [[n 6= 0 −→

gcd (n, m mod n) dvd n ∧ gcd (n, m mod n) dvd m mod n;
n 6= 0 ]]

=⇒ gcd (m, n) dvd m ∧ gcd (m, n) dvd n

Simplification leaves one subgoal:

apply (simp_all)
1.

∧
m n. [[0 < n;

gcd (n, m mod n) dvd n ∧ gcd (n, m mod n) dvd m mod n ]]
=⇒ gcd (n, m mod n) dvd m

Here, we can use blast. One of the assumptions, the induction hypothesis, is
a conjunction. The two divides relationships it asserts are enough to prove
the conclusion, for we have the following theorem at our disposal:

[[?k dvd (?m mod ?n); ?k dvd ?n ]] =⇒ ?k dvd ?m (dvd_mod_imp_dvd)

This theorem can be applied in various ways. As an introduction rule, it
would cause backward chaining from the conclusion (namely ?k dvd ?m) to
the two premises, which also involve the divides relation. This process does
not look promising and could easily loop. More sensible is to apply the rule
in the forward direction; each step would eliminate an occurrence of the mod

symbol, so the process must terminate.

apply (blast dest: dvd_mod_imp_dvd)
done

Attaching the dest attribute to dvd_mod_imp_dvd tells blast to use it as de-
struction rule; that is, in the forward direction.

We have proved a conjunction. Now, let us give names to each of the two
halves:

lemmas gcd_dvd1 [iff] = gcd_dvd_both [THEN conjunct1]
lemmas gcd_dvd2 [iff] = gcd_dvd_both [THEN conjunct2]

Here we see lemmas used with the iff attribute, which supplies the new
theorems to the classical reasoner and the simplifier. Recall that THEN is
frequently used with destruction rules; THEN conjunct1 extracts the first half
of a conjunctive theorem. Given gcd_dvd_both it yields

gcd (?m1, ?n1) dvd ?m1

The variable names ?m1 and ?n1 arise because Isabelle renames schematic
variables to prevent clashes. The second lemmas declaration yields
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gcd (?m1, ?n1) dvd ?n1

To complete the verification of the gcd function, we must prove that it
returns the greatest of all the common divisors of its arguments. The proof
is by induction, case analysis and simplification.

lemma gcd_greatest [rule_format]:
"k dvd m −→ k dvd n −→ k dvd gcd(m,n)"

The goal is expressed using HOL implication, −→, because the induction
affects the two preconditions. The directive rule_format tells Isabelle to re-
place each −→ by =⇒ before storing the eventual theorem. This directive can
also remove outer universal quantifiers, converting the theorem into the usual
format for inference rules. It can replace any series of applications of THEN to
the rules mp and spec. We did not have to write this:

lemma gcd_greatest [THEN mp, THEN mp]:
"k dvd m −→ k dvd n −→ k dvd gcd(m,n)"

Because we are again reasoning about gcd, we perform the same induction
and case analysis as in the previous proof:

apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n=0")
1.

∧
m n. [[n 6= 0 −→

k dvd n −→ k dvd m mod n −→ k dvd gcd (n, m mod n);
n = 0 ]]

=⇒ k dvd m −→ k dvd n −→ k dvd gcd (m, n)
2.

∧
m n. [[n 6= 0 −→

k dvd n −→ k dvd m mod n −→ k dvd gcd (n, m mod n);
n 6= 0 ]]

=⇒ k dvd m −→ k dvd n −→ k dvd gcd (m, n)

Simplification proves both subgoals.

apply (simp_all add: dvd_mod)
done

In the first, where n=0, the implication becomes trivial: k dvd gcd (m, n)

goes to k dvd m. The second subgoal is proved by an unfolding of gcd, using
this rule about divides:

[[?f dvd ?m; ?f dvd ?n ]] =⇒ ?f dvd ?m mod ?n (dvd_mod)

The facts proved above can be summarized as a single logical equivalence.
This step gives us a chance to see another application of blast.

theorem gcd_greatest_iff [iff]:
"(k dvd gcd(m,n)) = (k dvd m ∧ k dvd n)"

by (blast intro!: gcd_greatest intro: dvd_trans)

This theorem concisely expresses the correctness of the gcd function. We state
it with the iff attribute so that Isabelle can use it to remove some occur-
rences of gcd. The theorem has a one-line proof using blast supplied with
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two additional introduction rules. The exclamation mark (intro!) signifies
safe rules, which are applied aggressively. Rules given without the exclama-
tion mark are applied reluctantly and their uses can be undone if the search
backtracks. Here the unsafe rule expresses transitivity of the divides relation:

[[?m dvd ?n; ?n dvd ?p ]] =⇒ ?m dvd ?p (dvd_trans)

Applying dvd_trans as an introduction rule entails a risk of looping, for it
multiplies occurrences of the divides symbol. However, this proof relies on
transitivity reasoning. The rule gcd greatest is safe to apply aggressively
because it yields simpler subgoals. The proof implicitly uses gcd_dvd1 and
gcd_dvd2 as safe rules, because they were declared using iff.



6. Sets, Functions and Relations

This chapter describes the formalization of typed set theory, which is the
basis of much else in HOL. For example, an inductive definition yields a set,
and the abstract theories of relations regard a relation as a set of pairs. The
chapter introduces the well-known constants such as union and intersection,
as well as the main operations on relations, such as converse, composition
and transitive closure. Functions are also covered. They are not sets in HOL,
but many of their properties concern sets: the range of a function is a set,
and the inverse image of a function maps sets to sets.

This chapter will be useful to anybody who plans to develop a substantial
proof. sets are convenient for formalizing computer science concepts such
as grammars, logical calculi and state transition systems. Isabelle can prove
many statements involving sets automatically.

This chapter ends with a case study concerning model checking for the
temporal logic CTL. Most of the other examples are simple. The chapter
presents a small selection of built-in theorems in order to point out some key
properties of the various constants and to introduce you to the notation.

Natural deduction rules are provided for the set theory constants, but
they are seldom used directly, so only a few are presented here.

6.1 Sets

HOL’s set theory should not be confused with traditional, untyped set theory,
in which everything is a set. Our sets are typed. In a given set, all elements
have the same type, say τ , and the set itself has type τ set .

We begin with intersection, union and complement. In addition to
the membership relation, there is a symbol for its negation. These points
can be seen below.

Here are the natural deduction rules for intersection. Note the resemblance
to those for conjunction.
[[c ∈ A; c ∈ B ]] =⇒ c ∈ A ∩ B (IntI)
c ∈ A ∩ B =⇒ c ∈ A (IntD1)
c ∈ A ∩ B =⇒ c ∈ B (IntD2)

Here are two of the many installed theorems concerning set complement.
Note that it is denoted by a minus sign.
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(c ∈ - A) = (c /∈ A) (Compl_iff)
- (A ∪ B) = - A ∩ - B (Compl_Un)

Set difference is the intersection of a set with the complement of another
set. Here we also see the syntax for the empty set and for the universal set.

A ∩ (B - A) = {} (Diff_disjoint)
A ∪ - A = UNIV (Compl_partition)

The subset relation holds between two sets just if every element of one
is also an element of the other. This relation is reflexive. These are its natural
deduction rules:

(
∧
x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B (subsetI)

[[A ⊆ B; c ∈ A ]] =⇒ c ∈ B (subsetD)

In harder proofs, you may need to apply subsetD giving a specific term for c.
However, blast can instantly prove facts such as this one:

(A ∪ B ⊆ C) = (A ⊆ C ∧ B ⊆ C) (Un_subset_iff)

Here is another example, also proved automatically:

lemma "(A ⊆ -B) = (B ⊆ -A)"
by blast

This is the same example using ascii syntax, illustrating a pitfall:

lemma "(A <= -B) = (B <= -A)"

The proof fails. It is not a statement about sets, due to overloading; the
relation symbol <= can be any relation, not just subset. In this general form,
the statement is not valid. Putting in a type constraint forces the variables
to denote sets, allowing the proof to succeed:

lemma "((A:: ’a set) <= -B) = (B <= -A)"

Section 8.4 below describes overloading. Incidentally, A ⊆ -B asserts that the
sets A and B are disjoint.

Two sets are equal if they contain the same elements. This is the principle
of extensionality for sets.

(
∧
x. (x ∈ A) = (x ∈ B)) =⇒ A = B (set_ext)

Extensionality can be expressed as A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A). The
following rules express both directions of this equivalence. Proving a set equa-
tion using equalityI allows the two inclusions to be proved independently.

[[A ⊆ B; B ⊆ A ]] =⇒ A = B (equalityI)

[[A = B; [[A ⊆ B; B ⊆ A ]] =⇒ P ]] =⇒ P (equalityE)
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6.1.1 Finite Set Notation

Finite sets are expressed using the constant insert , which is a form of union:

insert a A = {a} ∪ A (insert_is_Un)

The finite set expression {a,b} abbreviates insert a (insert b {}). Many
facts about finite sets can be proved automatically:

lemma "{a,b} ∪ {c,d} = {a,b,c,d}"
by blast

Not everything that we would like to prove is valid. Consider this attempt:

lemma "{a,b} ∩ {b,c} = {b}"
apply auto

The proof fails, leaving the subgoal b=c. To see why it fails, consider a correct
version:

lemma "{a,b} ∩ {b,c} = (if a=c then {a,b} else {b})"
apply simp
by blast

Our mistake was to suppose that the various items were distinct. Another
remark: this proof uses two methods, namely simp and blast . Calling simp

eliminates the if -then -else expression, which blast cannot break down. The
combined methods (namely force and auto) can prove this fact in one step.

6.1.2 Set Comprehension

The set comprehension {x. P} expresses the set of all elements that satisfy the
predicate P. Two laws describe the relationship between set comprehension
and the membership relation:

(a ∈ {x. P x}) = P a (mem_Collect_eq)
{x. x ∈ A} = A (Collect_mem_eq)

Facts such as these have trivial proofs:

lemma "{x. P x ∨ x ∈ A} = {x. P x} ∪ A"

lemma "{x. P x −→ Q x} = -{x. P x} ∪ {x. Q x}"

Isabelle has a general syntax for comprehension, which is best described
through an example:

lemma "{p*q | p q. p∈prime ∧ q∈prime} =
{z. ∃ p q. z = p*q ∧ p∈prime ∧ q∈prime}"

The left and right hand sides of this equation are identical. The syntax used
in the left-hand side abbreviates the right-hand side: in this case, all numbers
that are the product of two primes. The syntax provides a neat way of ex-
pressing any set given by an expression built up from variables under specific
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constraints. The drawback is that it hides the true form of the expression,
with its existential quantifiers.

Remark. We do not need sets at all. They are essentially equivalent to
predicate variables, which are allowed in higher-order logic. The main benefit
of sets is their notation; we can write x∈A and {z. P} where predicates would
require writing A(x) and λz. P.

6.1.3 Binding Operators

Universal and existential quantifications may range over sets, with the obvi-
ous meaning. Here are the natural deduction rules for the bounded universal
quantifier. Occasionally you will need to apply bspec with an explicit instan-
tiation of the variable x :

(
∧
x. x ∈ A =⇒ P x) =⇒ ∀ x∈A. P x (ballI)

[[∀ x∈A. P x; x ∈ A ]] =⇒ P x (bspec)

Dually, here are the natural deduction rules for the bounded existential quan-
tifier. You may need to apply bexI with an explicit instantiation:

[[P x; x ∈ A ]] =⇒ ∃ x∈A. P x (bexI)
[[∃ x∈A. P x;

∧
x. [[x ∈ A; P x ]] =⇒ Q ]] =⇒ Q (bexE)

Unions can be formed over the values of a given set. The syntax is⋃
x∈A. B or UN x∈A. B in ascii. Indexed union satisfies this basic law:

(b ∈ (
⋃
x∈A. B x)) = (∃ x∈A. b ∈ B x) (UN_iff)

It has two natural deduction rules similar to those for the existential quanti-
fier. Sometimes UN_I must be applied explicitly:

[[a ∈ A; b ∈ B a ]] =⇒ b ∈ (
⋃
x∈A. B x) (UN_I)

[[b ∈ (
⋃
x∈A. B x);

∧
x. [[x ∈ A; b ∈ B x ]] =⇒ R ]] =⇒ R (UN_E)

The following built-in syntax translation (see Sect. 4.1.4) lets us express the
union over a type:

(
⋃
x. B x) 
 (

⋃
x∈UNIV. B x)

We may also express the union of a set of sets, written Union C in ascii:

(A ∈
⋃
C) = (∃ X∈C. A ∈ X) (Union_iff)

Intersections are treated dually, although they seem to be used less often
than unions. The syntax below would be INT x: A. B and Inter C in ascii.
Among others, these theorems are available:

(b ∈ (
⋂
x∈A. B x)) = (∀ x∈A. b ∈ B x) (INT_iff)

(A ∈
⋂
C) = (∀ X∈C. A ∈ X) (Inter_iff)

Isabelle uses logical equivalences such as those above in automatic proof.
Unions, intersections and so forth are not simply replaced by their definitions.
Instead, membership tests are simplified. For example, x ∈ A∪B is replaced
by x ∈ A ∨ x ∈ B .
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The internal form of a comprehension involves the constant Collect ,
which occasionally appears when a goal or theorem is displayed. For example,
Collect P is the same term as {x. P x}. The same thing can happen with
quantifiers: All P is ∀ z. P x and Ex P is ∃ z. P x ; also Ball A P is ∀ z∈A. P

x and Bex A P is ∃ z∈A. P x. For indexed unions and intersections, you may
see the constants UNION and INTER . The internal constant for εx .P(x ) is Eps .

We have only scratched the surface of Isabelle/HOL’s set theory, which
provides hundreds of theorems for your use.

6.1.4 Finiteness and Cardinality

The predicate finite holds of all finite sets. Isabelle/HOL includes many
familiar theorems about finiteness and cardinality (card). For example, we
have theorems concerning the cardinalities of unions, intersections and the
powerset:
[[finite A; finite B ]]
=⇒ card A + card B = card (A ∪ B) + card (A ∩ B) (card_Un_Int)

finite A =⇒ card (Pow A) = 2 ^ card A (card_Pow)

finite A =⇒
card {B. B ⊆ A ∧ card B = k} = card A choose k (n_subsets)

Writing |A| as n, the last of these theorems says that the number of k -element
subsets of A is

(
n
k

)
.

! The term finite A is defined via a syntax translation as an abbreviation for
A ∈ Finites, where the constant Finites denotes the set of all finite sets of

a given type. There is no constant finite.

6.2 Functions

This section describes a few concepts that involve functions. Some of the more
important theorems are given along with the names. A few sample proofs
appear. Unlike with set theory, however, we cannot simply state lemmas and
expect them to be proved using blast.

6.2.1 Function Basics

Two functions are equal if they yield equal results given equal arguments.
This is the principle of extensionality for functions:
(
∧
x. f x = g x) =⇒ f = g (ext)

Function update is useful for modelling machine states. It has the obvi-
ous definition and many useful facts are proved about it. In particular, the
following equation is installed as a simplification rule:
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(f(x:=y)) z = (if z = x then y else f z) (fun_upd_apply)

Two syntactic points must be noted. In (f(x:=y)) z we are applying an
updated function to an argument; the outer parentheses are essential. A series
of two or more updates can be abbreviated as shown on the left-hand side of
this theorem:

f(x:=y, x:=z) = f(x:=z) (fun_upd_upd)

Note also that we can write f(x:=z) with only one pair of parentheses when
it is not being applied to an argument.

The identity function and function composition are defined:

id ≡ λx. x (id_def)
f ◦ g ≡ λx. f (g x) (o_def)

Many familiar theorems concerning the identity and composition are proved.
For example, we have the associativity of composition:

f ◦ (g ◦ h) = f ◦ g ◦ h (o_assoc)

6.2.2 Injections, Surjections, Bijections

A function may be injective, surjective or bijective:

inj_on f A ≡ ∀ x∈A. ∀ y∈A. f x = f y −→ x = y (inj_on_def)
surj f ≡ ∀ y. ∃ x. y = f x (surj_def)
bij f ≡ inj f ∧ surj f (bij_def)

The second argument of inj_on lets us express that a function is injective over
a given set. This refinement is useful in higher-order logic, where functions are
total; in some cases, a function’s natural domain is a subset of its domain type.
Writing inj f abbreviates inj_on f UNIV, for when f is injective everywhere.

The operator inv expresses the inverse of a function. In general the
inverse may not be well behaved. We have the usual laws, such as these:

inj f =⇒ inv f (f x) = x (inv_f_f)
surj f =⇒ f (inv f y) = y (surj_f_inv_f)
bij f =⇒ inv (inv f) = f (inv_inv_eq)

Theorems involving these concepts can be hard to prove. The following
example is easy, but it cannot be proved automatically. To begin with, we
need a law that relates the equality of functions to equality over all arguments:

(f = g) = (∀ x. f x = g x) (expand_fun_eq)

This is just a restatement of extensionality. Our lemma states that an injec-
tion can be cancelled from the left side of function composition:

lemma "inj f =⇒ (f o g = f o h) = (g = h)"
apply (simp add: expand_fun_eq inj_on_def)
apply auto
done
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The first step of the proof invokes extensionality and the definitions of
injectiveness and composition. It leaves one subgoal:

1. ∀ x y. f x = f y −→ x = y =⇒
(∀ x. f (g x) = f (h x)) = (∀ x. g x = h x)

This can be proved using the auto method.

6.2.3 Function Image

The image of a set under a function is a most useful notion. It has the
obvious definition:

f ‘ A ≡ {y. ∃ x∈A. y = f x} (image_def)

Here are some of the many facts proved about image:

(f ◦ g) ‘ r = f ‘ g ‘ r (image_compose)
f‘(A ∪ B) = f‘A ∪ f‘B (image_Un)
inj f =⇒ f‘(A ∩ B) = f‘A ∩ f‘B (image_Int)

Laws involving image can often be proved automatically. Here are two
examples, illustrating connections with indexed union and with the general
syntax for comprehension:

lemma "f‘A ∪ g‘A = (
⋃
x∈A. {f x, g x})

lemma "f ‘ {(x,y). P x y} = {f(x,y) | x y. P x y}"

A function’s range is the set of values that the function can take on. It
is, in fact, the image of the universal set under that function. There is no
constant range. Instead, range abbreviates an application of image to UNIV :

range f 
 f‘UNIV

Few theorems are proved specifically for range ; in most cases, you should
look for a more general theorem concerning images.

Inverse image is also useful. It is defined as follows:

f -‘ B ≡ {x. f x ∈ B} (vimage_def)

This is one of the facts proved about it:

f -‘ (- A) = - f -‘ A (vimage_Compl)

6.3 Relations

A relation is a set of pairs. As such, the set operations apply to them. For
instance, we may form the union of two relations. Other primitives are defined
specifically for relations.
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6.3.1 Relation Basics

The identity relation, also known as equality, has the obvious definition:

Id ≡ {p. ∃ x. p = (x,x)} (Id_def)

Composition of relations (the infix O) is also available:

r O s ≡ {(x,z). ∃ y. (x,y) ∈ s ∧ (y,z) ∈ r} (rel_comp_def)

This is one of the many lemmas proved about these concepts:

R O Id = R (R_O_Id)

Composition is monotonic, as are most of the primitives appearing in this
chapter. We have many theorems similar to the following one:

[[r’ ⊆ r; s’ ⊆ s ]] =⇒ r’ O s’ ⊆ r O s (rel_comp_mono)

The converse or inverse of a relation exchanges the roles of the two
operands. We use the postfix notation r−1 or r^-1 in ASCII.

((a,b) ∈ r−1) = ((b,a) ∈ r) (converse_iff)

Here is a typical law proved about converse and composition:

(r O s)−1 = s−1 O r−1 (converse_rel_comp)

The image of a set under a relation is defined analogously to image under
a function:

(b ∈ r ‘‘ A) = (∃ x∈A. (x,b) ∈ r) (Image_iff)

It satisfies many similar laws.
The domain and range of a relation are defined in the standard way:

(a ∈ Domain r) = (∃ y. (a,y) ∈ r) (Domain_iff)
(a ∈ Range r) = (∃ y. (y,a) ∈ r) (Range_iff)

Iterated composition of a relation is available. The notation overloads that
of exponentiation. Two simplification rules are installed:

R ^ 0 = Id
R ^ Suc n = R O R^n

6.3.2 The Reflexive and Transitive Closure

The reflexive and transitive closure of the relation r is written with a
postfix syntax. In ASCII we write r^* and in symbol notation r∗. It is the
least solution of the equation

r∗ = Id ∪ (r O r∗) (rtrancl_unfold)

Among its basic properties are three that serve as introduction rules:

(a, a) ∈ r∗ (rtrancl_refl)
p ∈ r =⇒ p ∈ r∗ (r_into_rtrancl)
[[(a,b) ∈ r∗; (b,c) ∈ r∗]] =⇒ (a,c) ∈ r∗ (rtrancl_trans)
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Induction over the reflexive transitive closure is available:

[[(a, b) ∈ r∗; P a;
∧
y z. [[(a, y) ∈ r∗; (y, z) ∈ r; P y ]] =⇒ P z ]]

=⇒ P b (rtrancl_induct)

Idempotence is one of the laws proved about the reflexive transitive closure:

(r∗)∗ = r∗ (rtrancl_idemp)

The transitive closure is similar. The ASCII syntax is r^+. It has two
introduction rules:

p ∈ r =⇒ p ∈ r+ (r_into_trancl)
[[(a, b) ∈ r+; (b, c) ∈ r+]] =⇒ (a, c) ∈ r+ (trancl_trans)

The induction rule resembles the one shown above. A typical lemma states
that transitive closure commutes with the converse operator:

(r−1)+ = (r+)−1 (trancl_converse)

6.3.3 A Sample Proof

The reflexive transitive closure also commutes with the converse operator. Let
us examine the proof. Each direction of the equivalence is proved separately.
The two proofs are almost identical. Here is the first one:

lemma rtrancl_converseD: "(x,y) ∈ (r−1)∗ =⇒ (y,x) ∈ r∗"
apply (erule rtrancl_induct)
apply (rule rtrancl_refl)

apply (blast intro: rtrancl_trans)
done

The first step of the proof applies induction, leaving these subgoals:

1. (x, x) ∈ r∗

2.
∧
y z. [[(x,y) ∈ (r−1)∗; (y,z) ∈ r−1; (y,x) ∈ r∗]]

=⇒ (z,x) ∈ r∗

The first subgoal is trivial by reflexivity. The second follows by first elimi-
nating the converse operator, yielding the assumption (z,y) ∈ r, and then
applying the introduction rules shown above. The same proof script handles
the other direction:

lemma rtrancl_converseI: "(y,x) ∈ r∗ =⇒ (x,y) ∈ (r−1)∗"
apply (erule rtrancl_induct)
apply (rule rtrancl_refl)

apply (blast intro: rtrancl_trans)
done

Finally, we combine the two lemmas to prove the desired equation:

lemma rtrancl_converse: "(r−1)∗ = (r∗)−1"
by (auto intro: rtrancl_converseI dest: rtrancl_converseD)
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! This trivial proof requires auto rather than blast because of a subtle issue
involving ordered pairs. Here is a subgoal that arises internally after the rules

equalityI and subsetI have been applied:

1.
∧
x. x ∈ (r−1)∗ =⇒ x ∈ (r∗)−1

We cannot apply rtrancl_converseD . It refers to ordered pairs, while x is a vari-
able of product type. The simp and blast methods can do nothing, so let us try
clarify :

1.
∧
a b. (a,b) ∈ (r−1)∗ =⇒ (b,a) ∈ r∗

Now that x has been replaced by the pair (a,b), we can proceed. Other methods
that split variables in this way are force, auto, fast and best. Section 8.2 will
discuss proof techniques for ordered pairs in more detail.

6.4 Well-Founded Relations and Induction

A well-founded relation captures the notion of a terminating process. Each
recdef declaration must specify a well-founded relation that justifies the
termination of the desired recursive function. Most of the forms of induc-
tion found in mathematics are merely special cases of induction over a well-
founded relation.

Intuitively, the relation ≺ is well-founded if it admits no infinite de-
scending chains

· · · ≺ a2 ≺ a1 ≺ a0.

Well-foundedness can be hard to show. The various formulations are all com-
plicated. However, often a relation is well-founded by construction. HOL pro-
vides theorems concerning ways of constructing a well-founded relation. The
most familiar way is to specify a measure function f into the natural num-
bers, when x ≺ y ⇐⇒ f x < f y; we write this particular relation as
measure f.

! You may want to skip the rest of this section until you need to perform a
complex recursive function definition or induction. The induction rule returned

by recdef is good enough for most purposes. We use an explicit well-founded
induction only in Sect. 9.3.4.

Isabelle/HOL declares less_than as a relation object, that is, a set of
pairs of natural numbers. Two theorems tell us that this relation behaves as
expected and that it is well-founded:
((x,y) ∈ less_than) = (x < y) (less_than_iff)
wf less_than (wf_less_than)

The notion of measure generalizes to the inverse image of a relation.
Given a relation r and a function f, we express a new relation using f as a
measure. An infinite descending chain on this new relation would give rise
to an infinite descending chain on r. Isabelle/HOL defines this concept and
proves a theorem stating that it preserves well-foundedness:
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inv_image r f ≡ {(x,y). (f x, f y) ∈ r} (inv_image_def)
wf r =⇒ wf (inv_image r f) (wf_inv_image)

A measure function involves the natural numbers. The relation measure

size justifies primitive recursion and structural induction over a datatype.
Isabelle/HOL defines measure as shown:

measure ≡ inv_image less_than (measure_def)
wf (measure f) (wf_measure)

Of the other constructions, the most important is the lexicographic
product of two relations. It expresses the standard dictionary ordering over
pairs. We write ra <*lex*> rb, where ra and rb are the two operands. The
lexicographic product satisfies the usual definition and it preserves well-
foundedness:

ra <*lex*> rb ≡
{((a,b),(a’,b’)). (a,a’) ∈ ra ∨

a=a’ ∧ (b,b’) ∈ rb} (lex_prod_def)

[[wf ra; wf rb ]] =⇒ wf (ra <*lex*> rb) (wf_lex_prod)

These constructions can be used in a recdef declaration (Sect. 3.5.3) to
define the well-founded relation used to prove termination.

The multiset ordering, useful for hard termination proofs, is available
in the Library [4]. Baader and Nipkow [3, Sect. 2.5] discuss it.

Induction comes in many forms, including traditional mathematical in-
duction, structural induction on lists and induction on size. All are instances
of the following rule, for a suitable well-founded relation ≺:

[∀y . y ≺ x → P(y)]....
P(x )
P(a)

To show P(a) for a particular term a, it suffices to show P(x ) for arbi-
trary x under the assumption that P(y) holds for y ≺ x . Intuitively, the
well-foundedness of ≺ ensures that the chains of reasoning are finite.

In Isabelle, the induction rule is expressed like this:

[[wf r;
∧
x. ∀ y. (y,x) ∈ r −→ P y =⇒ P x ]] =⇒ P a (wf_induct)

Here wf r expresses that the relation r is well-founded.
Many familiar induction principles are instances of this rule. For example,

the predecessor relation on the natural numbers is well-founded; induction
over it is mathematical induction. The “tail of” relation on lists is well-
founded; induction over it is structural induction.
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6.5 Fixed Point Operators

Fixed point operators define sets recursively. They are invoked implicitly
when making an inductive definition, as discussed in Chap. 7 below. However,
they can be used directly, too. The least or strongest fixed point yields an
inductive definition; the greatest or weakest fixed point yields a coinductive
definition. Mathematicians may wish to note that the existence of these fixed
points is guaranteed by the Knaster-Tarski theorem.

! Casual readers should skip the rest of this section. We use fixed point operators
only in Sect. 6.6.

The theory applies only to monotonic functions. Isabelle’s definition of
monotone is overloaded over all orderings:

mono f ≡ ∀ A B. A ≤ B −→ f A ≤ f B (mono_def)

For fixed point operators, the ordering will be the subset relation: if A ⊆ B
then we expect f (A) ⊆ f (B). In addition to its definition, monotonicity has
the obvious introduction and destruction rules:

(
∧
A B. A ≤ B =⇒ f A ≤ f B) =⇒ mono f (monoI)

[[mono f; A ≤ B ]] =⇒ f A ≤ f B (monoD)

The most important properties of the least fixed point are that it is a
fixed point and that it enjoys an induction rule:

mono f =⇒ lfp f = f (lfp f) (lfp_unfold)

[[a ∈ lfp f; mono f;∧
x. x ∈ f (lfp f ∩ {x. P x}) =⇒ P x ]] =⇒ P a (lfp_induct)

The induction rule shown above is more convenient than the basic one derived
from the minimality of lfp . Observe that both theorems demand mono f as
a premise.

The greatest fixed point is similar, but it has a coinduction rule:

mono f =⇒ gfp f = f (gfp f) (gfp_unfold)
[[mono f; a ∈ X; X ⊆ f (X ∪ gfp f) ]] =⇒ a ∈ gfp f (coinduct)

A bisimulation is perhaps the best-known concept defined as a greatest
fixed point. Exhibiting a bisimulation to prove the equality of two agents in
a process algebra is an example of coinduction. The coinduction rule can be
strengthened in various ways.

6.6 Case Study: Verified Model Checking

This chapter ends with a case study concerning model checking for Com-
putation Tree Logic (CTL), a temporal logic. Model checking is a popular
technique for the verification of finite state systems (implementations) with
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respect to temporal logic formulae (specifications) [7, 14]. Its foundations are
set theoretic and this section will explore them in HOL. This is done in two
steps. First we consider a simple modal logic called propositional dynamic
logic (PDL). We then proceed to the temporal logic CTL, which is used in
many real model checkers. In each case we give both a traditional semantics
(|=) and a recursive function mc that maps a formula into the set of all states
of the system where the formula is valid. If the system has a finite number
of states, mc is directly executable: it is a model checker, albeit an inefficient
one. The main proof obligation is to show that the semantics and the model
checker agree.

Our models are transition systems: sets of states with transitions between
them. Here is a simple example:
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p, q
s0
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��
��

q , r
s1 -��

��
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s2

Each state has a unique name or number (s0, s1, s2), and in each state certain
atomic propositions (p, q , r) hold. The aim of temporal logic is to formalize
statements such as “there is no path starting from s2 leading to a state
where p or q holds,” which is true, and “on all paths starting from s0, q
always holds,” which is false.

Abstracting from this concrete example, we assume there is a type of
states:

typedecl state

Command typedecl merely declares a new type but without defining it (see
Sect. 8.5.1). Thus we know nothing about the type other than its existence.
That is exactly what we need because state really is an implicit parameter
of our model. Of course it would have been more generic to make state a
type parameter of everything but declaring state globally as above reduces
clutter. Similarly we declare an arbitrary but fixed transition system, i.e. a
relation between states:

consts M :: "(state × state)set"

Again, we could have made M a parameter of everything. Finally we introduce
a type of atomic propositions

typedecl atom

and a labelling function

consts L :: "state ⇒ atom set"
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telling us which atomic propositions are true in each state.

6.6.1 Propositional Dynamic Logic — PDL

The formulae of PDL are built up from atomic propositions via negation and
conjunction and the two temporal connectives AX and EF . Since formulae are
essentially syntax trees, they are naturally modelled as a datatype:1

datatype formula = Atom atom

| Neg formula

| And formula formula

| AX formula

| EF formula

This resembles the boolean expression case study in Sect. 2.4.6. A validity
relation between states and formulae specifies the semantics:

consts valid :: "state ⇒ formula ⇒ bool" ("(_ |= _)" [80,80] 80)

The syntax annotation allows us to write s |= f instead of valid s f . The
definition of |= is by recursion over the syntax:

primrec

"s |= Atom a = (a ∈ L s)"

"s |= Neg f = (¬(s |= f))"

"s |= And f g = (s |= f ∧ s |= g)"

"s |= AX f = (∀ t. (s,t) ∈ M −→ t |= f)"

"s |= EF f = (∃ t. (s,t) ∈ M∗ ∧ t |= f)"

The first three equations should be self-explanatory. The temporal formula
AX f means that f is true in All neX t states whereas EF f means that there
Exists some Future state in which f is true. The future is expressed via ∗,
the reflexive transitive closure. Because of reflexivity, the future includes the
present.

Now we come to the model checker itself. It maps a formula into the set
of states where the formula is true. It too is defined by recursion over the
syntax:

consts mc :: "formula ⇒ state set"

primrec

"mc(Atom a) = {s. a ∈ L s}"

"mc(Neg f) = -mc f"

"mc(And f g) = mc f ∩ mc g"

"mc(AX f) = {s. ∀ t. (s,t) ∈ M −→ t ∈ mc f}"

"mc(EF f) = lfp(λT. mc f ∪ (M−1 ‘‘ T))"

1 The customary definition of PDL [11] looks quite different from ours, but the
two are easily shown to be equivalent.
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Only the equation for EF deserves some comments. Remember that the postfix
−1 and the infix ‘‘ are predefined and denote the converse of a relation and
the image of a set under a relation. Thus M−1 ‘‘ T is the set of all predecessors
of T and the least fixed point (lfp) of λT. mc f ∪ M−1 ‘‘ T is the least set
T containing mc f and all predecessors of T. If you find it hard to see that
mc (EF f) contains exactly those states from which there is a path to a state
where f is true, do not worry — this will be proved in a moment.

First we prove monotonicity of the function inside lfp in order to make
sure it really has a least fixed point.

lemma mono_ef: "mono(λT. A ∪ (M−1 ‘‘ T))"

apply(rule monoI)

apply blast

done

Now we can relate model checking and semantics. For the EF case we need a
separate lemma:

lemma EF_lemma:

"lfp(λT. A ∪ (M−1 ‘‘ T)) = {s. ∃ t. (s,t) ∈ M∗ ∧ t ∈ A}"

The equality is proved in the canonical fashion by proving that each set
includes the other; the inclusion is shown pointwise:

apply(rule equalityI)

apply(rule subsetI)

apply(simp)

Simplification leaves us with the following first subgoal

1.
∧
s. s ∈ lfp (λT. A ∪ M−1 ‘‘ T) =⇒ ∃ t. (s, t) ∈ M∗ ∧ t ∈ A

which is proved by lfp -induction:

apply(erule lfp_induct)

apply(rule mono_ef)

apply(simp)

Having disposed of the monotonicity subgoal, simplification leaves us with
the following goal:

1.
∧
x. x ∈ A ∨

x ∈ M−1 ‘‘ (lfp ( . . . ) ∩ {x. ∃ t. (x, t) ∈ M∗ ∧ t ∈ A})
=⇒ ∃ t. (x, t) ∈ M∗ ∧ t ∈ A

It is proved by blast, using the transitivity of M∗.

apply(blast intro: rtrancl_trans)

We now return to the second set inclusion subgoal, which is again proved
pointwise:

apply(rule subsetI)

apply(simp, clarify)
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After simplification and clarification we are left with
1.

∧
x t. [[(x, t) ∈ M∗; t ∈ A ]] =⇒ x ∈ lfp (λT. A ∪ M−1 ‘‘ T)

This goal is proved by induction on (s, t) ∈ M∗. But since the model
checker works backwards (from t to s), we cannot use the induction theorem
rtrancl_induct : it works in the forward direction. Fortunately the converse
induction theorem converse_rtrancl_induct already exists:

[[(a, b) ∈ r∗; P b;∧
y z. [[(y, z) ∈ r; (z, b) ∈ r∗; P z ]] =⇒ P y ]]

=⇒ P a

It says that if (a, b) ∈ r∗ and we know P b then we can infer P a provided
each step backwards from a predecessor z of b preserves P.

apply(erule converse_rtrancl_induct)

The base case
1.

∧
x t. t ∈ A =⇒ t ∈ lfp (λT. A ∪ M−1 ‘‘ T)

is solved by unrolling lfp once

apply(subst lfp_unfold[OF mono_ef])

1.
∧
x t. t ∈ A =⇒ t ∈ A ∪ M−1 ‘‘ lfp (λT. A ∪ M−1 ‘‘ T)

and disposing of the resulting trivial subgoal automatically:

apply(blast)

The proof of the induction step is identical to the one for the base case:

apply(subst lfp_unfold[OF mono_ef])

apply(blast)

done

The main theorem is proved in the familiar manner: induction followed
by auto augmented with the lemma as a simplification rule.

theorem "mc f = {s. s |= f}"

apply(induct_tac f)

apply(auto simp add: EF_lemma)

done

Exercise 6.6.1 AX has a dual operator EN (“there exists a next state such
that”)2 with the intended semantics

s |= EN f = (∃ t. (s, t) ∈ M ∧ t |= f)

Fortunately, EN f can already be expressed as a PDL formula. How?
Show that the semantics for EF satisfies the following recursion equation:
s |= EF f = (s |= f ∨ s |= EN (EF f))

2 We cannot use the customary EX : it is reserved as the ascii-equivalent of ∃ .
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6.6.2 Computation Tree Logic — CTL

The semantics of PDL only needs reflexive transitive closure. Let us be ad-
venturous and introduce a more expressive temporal operator. We extend the
datatype formula by a new constructor

| AF formula

which stands for “Always in the Future”: on all infinite paths, at some point
the formula holds. Formalizing the notion of an infinite path is easy in HOL:
it is simply a function from nat to state.

constdefs Paths :: "state ⇒ (nat ⇒ state)set"

"Paths s ≡ {p. s = p 0 ∧ (∀ i. (p i, p(i+1)) ∈ M)}"

This definition allows a succinct statement of the semantics of AF : 3

"s |= AF f = (∀ p ∈ Paths s. ∃ i. p i |= f)"

Model checking AF involves a function which is just complicated enough to
warrant a separate definition:

constdefs af :: "state set ⇒ state set ⇒ state set"

"af A T ≡ A ∪ {s. ∀ t. (s, t) ∈ M −→ t ∈ T}"

Now we define mc (AF f) as the least set T that includes mc f and all states
all of whose direct successors are in T :

"mc(AF f) = lfp(af(mc f))"

Because af is monotone in its second argument (and also its first, but that
is irrelevant), af A has a least fixed point:

lemma mono_af: "mono(af A)"

apply(simp add: mono_def af_def)

apply blast

done

All we need to prove now is mc (AF f) = {s. s |= AF f}, which states
that mc and |= agree for AF . This time we prove the two inclusions separately,
starting with the easy one:

theorem AF_lemma1:

"lfp(af A) ⊆ {s. ∀ p ∈ Paths s. ∃ i. p i ∈ A}"

In contrast to the analogous proof for EF, and just for a change, we do not
use fixed point induction. Park-induction, named after David Park, is weaker
but sufficient for this proof:

f S ⊆ S =⇒ lfp f ⊆ S (lfp_lowerbound)
3 Do not be misled: neither datatypes nor recursive functions can be extended

by new constructors or equations. This is just a trick of the presentation (see
Sect. 4.2.5). In reality one has to define a new datatype and a new function.
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The instance of the premise f S ⊆ S is proved pointwise, a decision that
clarification takes for us:

apply(rule lfp_lowerbound)

apply(clarsimp simp add: af_def Paths_def)

1.
∧
p. [[p 0 ∈ A ∨

(∀ t. (p 0, t) ∈ M −→
(∀ p. t = p 0 ∧ (∀ i. (p i, p (Suc i)) ∈ M) −→

(∃ i. p i ∈ A)));
∀ i. (p i, p (Suc i)) ∈ M ]]

=⇒ ∃ i. p i ∈ A

Now we eliminate the disjunction. The case p 0 ∈ A is trivial:

apply(erule disjE)

apply(blast)

In the other case we set t to p 1 and simplify matters:

apply(erule_tac x = "p 1" in allE)

apply(clarsimp)

1.
∧
p. [[∀ i. (p i, p (Suc i)) ∈ M;

∀ pa. p (Suc 0) = pa 0 ∧ (∀ i. (pa i, pa (Suc i)) ∈ M) −→
(∃ i. pa i ∈ A) ]]

=⇒ ∃ i. p i ∈ A

It merely remains to set pa to λi. p (i + 1), that is, p without its first
element. The rest is automatic:

apply(erule_tac x = "λi. p(i+1)" in allE)

apply force

done

The opposite inclusion is proved by contradiction: if some state s is not in
lfp (af A), then we can construct an infinite A -avoiding path starting from s.
The reason is that by unfolding lfp we find that if s is not in lfp (af A),
then s is not in A and there is a direct successor of s that is again not in
lfp (af A) . Iterating this argument yields the promised infinite A -avoiding
path. Let us formalize this sketch.

The one-step argument in the sketch above is proved by a variant of
contraposition:

lemma not_in_lfp_afD:

"s /∈ lfp(af A) =⇒ s /∈ A ∧ (∃ t. (s,t) ∈ M ∧ t /∈ lfp(af A))"

apply(erule contrapos_np)

apply(subst lfp_unfold[OF mono_af])

apply(simp add: af_def)

done
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We assume the negation of the conclusion and prove s ∈ lfp (af A). Un-
folding lfp once and simplifying with the definition of af finishes the proof.

Now we iterate this process. The following construction of the desired
path is parameterized by a predicate Q that should hold along the path:

consts path :: "state ⇒ (state ⇒ bool) ⇒ (nat ⇒ state)"

primrec

"path s Q 0 = s"

"path s Q (Suc n) = (SOME t. (path s Q n,t) ∈ M ∧ Q t)"

Element n + 1 on this path is some arbitrary successor t of element n such
that Q t holds. Remember that SOME t. R t is some arbitrary but fixed t

such that R t holds (see Sect. 5.10). Of course, such a t need not exist, but
that is of no concern to us since we will only use path when a suitable t does
exist.

Let us show that if each state s that satisfies Q has a successor that again
satisfies Q, then there exists an infinite Q -path:

lemma infinity_lemma:

" [[ Q s; ∀ s. Q s −→ (∃ t. (s,t) ∈ M ∧ Q t) ]] =⇒
∃ p∈Paths s. ∀ i. Q(p i)"

First we rephrase the conclusion slightly because we need to prove simulta-
neously both the path property and the fact that Q holds:

apply(subgoal_tac

"∃ p. s = p 0 ∧ (∀ i::nat. (p i, p(i+1)) ∈ M ∧ Q(p i))")

From this proposition the original goal follows easily:

apply(simp add: Paths_def, blast)

The new subgoal is proved by providing the witness path s Q for p :

apply(rule_tac x = "path s Q" in exI)

apply(clarsimp)

After simplification and clarification, the subgoal has the following form:

1.
∧
i. [[Q s; ∀ s. Q s −→ (∃ t. (s, t) ∈ M ∧ Q t) ]]

=⇒ (path s Q i, SOME t. (path s Q i, t) ∈ M ∧ Q t) ∈ M ∧
Q (path s Q i)

It invites a proof by induction on i :

apply(induct_tac i)

apply(simp)

After simplification, the base case boils down to

1. [[Q s; ∀ s. Q s −→ (∃ t. (s, t) ∈ M ∧ Q t) ]]
=⇒ (s, SOME t. (s, t) ∈ M ∧ Q t) ∈ M
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The conclusion looks exceedingly trivial: after all, t is chosen such that (s,

t) ∈ M holds. However, we first have to show that such a t actually exists!
This reasoning is embodied in the theorem someI2_ex :

[[∃ a. ?P a;
∧
x. ?P x =⇒ ?Q x ]] =⇒ ?Q (SOME x. ?P x)

When we apply this theorem as an introduction rule, ?P x becomes (s, x) ∈
M ∧ Q x and ?Q x becomes (s, x) ∈ M and we have to prove two subgoals:
∃ a. (s, a) ∈ M ∧ Q a, which follows from the assumptions, and (s, x) ∈
M ∧ Q x =⇒ (s, x) ∈ M, which is trivial. Thus it is not surprising that fast

can prove the base case quickly:

apply(fast intro: someI2_ex)

What is worth noting here is that we have used fast rather than blast. The
reason is that blast would fail because it cannot cope with someI2_ex : unify-
ing its conclusion with the current subgoal is non-trivial because of the nested
schematic variables. For efficiency reasons blast does not even attempt such
unifications. Although fast can in principle cope with complicated unifica-
tion problems, in practice the number of unifiers arising is often prohibitive
and the offending rule may need to be applied explicitly rather than auto-
matically. This is what happens in the step case.

The induction step is similar, but more involved, because now we face
nested occurrences of SOME. As a result, fast is no longer able to solve the
subgoal and we apply someI2_ex by hand. We merely show the proof com-
mands but do not describe the details:

apply(simp)

apply(rule someI2_ex)

apply(blast)

apply(rule someI2_ex)

apply(blast)

apply(blast)

done

Function path has fulfilled its purpose now and can be forgotten. It was
merely defined to provide the witness in the proof of the infinity_lemma.
Aficionados of minimal proofs might like to know that we could have given
the witness without having to define a new function: the term

nat_rec s (λn t. SOME u. (t, u) ∈ M ∧ Q u)

is extensionally equal to path s Q, where nat_rec is the predefined primitive
recursor on nat.

At last we can prove the opposite direction of AF_lemma1 :

theorem AF_lemma2: "{s. ∀ p ∈ Paths s. ∃ i. p i ∈ A} ⊆ lfp(af A)"

The proof is again pointwise and then by contraposition:
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apply(rule subsetI)

apply(erule contrapos_pp)

apply simp

1.
∧
x. x /∈ lfp (af A) =⇒ ∃ p∈Paths x. ∀ i. p i /∈ A

Applying the infinity_lemma as a destruction rule leaves two subgoals, the
second premise of infinity_lemma and the original subgoal:

apply(drule infinity_lemma)

1.
∧
x. ∀ s. s /∈ lfp (af A) −→ (∃ t. (s, t) ∈ M ∧ t /∈ lfp (af A))

2.
∧
x. ∃ p∈Paths x. ∀ i. p i /∈ lfp (af A) =⇒
∃ p∈Paths x. ∀ i. p i /∈ A

Both are solved automatically:

apply(auto dest: not_in_lfp_afD)

done

If you find these proofs too complicated, we recommend that you read
Sect. 9.3.4, where we show how inductive definitions lead to simpler argu-
ments.

The main theorem is proved as for PDL, except that we also derive the
necessary equality lfp(af A) = ... by combining AF_lemma1 and AF_lemma2

on the spot:

theorem "mc f = {s. s |= f}"

apply(induct_tac f)

apply(auto simp add: EF_lemma equalityI[OF AF_lemma1 AF_lemma2])

done

The language defined above is not quite CTL. The latter also includes an
until-operator EU f g with semantics “there Exists a path where f is true
U ntil g becomes true”. We need an auxiliary function:

consts until:: "state set ⇒ state set ⇒ state ⇒ state list ⇒ bool"

primrec

"until A B s [] = (s ∈ B)"

"until A B s (t#p) = (s ∈ A ∧ (s,t) ∈ M ∧ until A B t p)"

Expressing the semantics of EU is now straightforward:

s |= EU f g = (∃ p. until {t. t |= f} {t. t |= g} s p)

Note that EU is not definable in terms of the other operators!
Model checking EU is again a least fixed point construction:

mc(EU f g) = lfp(λT. mc g ∪ mc f ∩ (M−1 ‘‘ T))

Exercise 6.6.2 Extend the datatype of formulae by the above until operator
and prove the equivalence between semantics and model checking, i.e. that
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mc (EU f g) = {s. s |= EU f g}

For more CTL exercises see, for example, Huth and Ryan [14].

Let us close this section with a few words about the executability of our
model checkers. It is clear that if all sets are finite, they can be represented as
lists and the usual set operations are easily implemented. Only lfp requires
a little thought. Fortunately, theory While_Combinator in the Library [4] pro-
vides a theorem stating that in the case of finite sets and a monotone func-
tion F, the value of lfp F can be computed by iterated application of F to {}

until a fixed point is reached. It is actually possible to generate executable
functional programs from HOL definitions, but that is beyond the scope of
the tutorial.



7. Inductively Defined Sets

This chapter is dedicated to the most important definition principle after
recursive functions and datatypes: inductively defined sets.

We start with a simple example: the set of even numbers. A slightly
more complicated example, the reflexive transitive closure, is the subject
of Sect. 7.2. In particular, some standard induction heuristics are discussed.
Advanced forms of inductive definitions are discussed in Sect. 7.3. To demon-
strate the versatility of inductive definitions, the chapter closes with a case
study from the realm of context-free grammars. The first two sections are
required reading for anybody interested in mathematical modelling.

7.1 The Set of Even Numbers

The set of even numbers can be inductively defined as the least set containing
0 and closed under the operation +2. Obviously, even can also be expressed
using the divides relation (dvd). We shall prove below that the two formula-
tions coincide. On the way we shall examine the primary means of reasoning
about inductively defined sets: rule induction.

7.1.1 Making an Inductive Definition

Using consts, we declare the constant even to be a set of natural numbers.
The inductive declaration gives it the desired properties.
consts even :: "nat set"
inductive even
intros
zero[intro!]: "0 ∈ even"
step[intro!]: "n ∈ even =⇒ (Suc (Suc n)) ∈ even"

An inductive definition consists of introduction rules. The first one above
states that 0 is even; the second states that if n is even, then so is n +2. Given
this declaration, Isabelle generates a fixed point definition for even and proves
theorems about it, thus following the definitional approach (see Sect. 2.7).
These theorems include the introduction rules specified in the declaration,
an elimination rule for case analysis and an induction rule. We can refer to
these theorems by automatically-generated names. Here are two examples:
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0 ∈ even (even.zero)

n ∈ even =⇒ Suc (Suc n) ∈ even (even.step)

The introduction rules can be given attributes. Here both rules are spec-
ified as intro!, directing the classical reasoner to apply them aggressively.
Obviously, regarding 0 as even is safe. The step rule is also safe because
n + 2 is even if and only if n is even. We prove this equivalence later.

7.1.2 Using Introduction Rules

Our first lemma states that numbers of the form 2× k are even. Introduction
rules are used to show that specific values belong to the inductive set. Such
proofs typically involve induction, perhaps over some other inductive set.

lemma two_times_even[intro!]: "2*k ∈ even"
apply (induct_tac k)
apply auto

done

The first step is induction on the natural number k, which leaves two subgoals:

1. 2 * 0 ∈ even
2.

∧
n. 2 * n ∈ even =⇒ 2 * Suc n ∈ even

Here auto simplifies both subgoals so that they match the introduction rules,
which are then applied automatically.

Our ultimate goal is to prove the equivalence between the traditional
definition of even (using the divides relation) and our inductive definition.
One direction of this equivalence is immediate by the lemma just proved,
whose intro! attribute ensures it is applied automatically.

lemma dvd_imp_even: "2 dvd n =⇒ n ∈ even"
by (auto simp add: dvd_def)

7.1.3 Rule Induction

From the definition of the set even, Isabelle has generated an induction rule:

[[xa ∈ even;
P 0;∧
n. [[n ∈ even; P n ]] =⇒ P (Suc (Suc n)) ]]

=⇒ P xa (even.induct)

A property P holds for every even number provided it holds for 0 and is closed
under the operation Suc(Suc ·). Then P is closed under the introduction rules
for even, which is the least set closed under those rules. This type of inductive
argument is called rule induction.

Apart from the double application of Suc, the induction rule above resem-
bles the familiar mathematical induction, which indeed is an instance of rule
induction; the natural numbers can be defined inductively to be the least set
containing 0 and closed under Suc.
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Induction is the usual way of proving a property of the elements of an
inductively defined set. Let us prove that all members of the set even are
multiples of two.

lemma even_imp_dvd: "n ∈ even =⇒ 2 dvd n"

We begin by applying induction. Note that even.induct has the form of an
elimination rule, so we use the method erule. We get two subgoals:

apply (erule even.induct)

1. 2 dvd 0
2.

∧
n. [[n ∈ even; 2 dvd n ]] =⇒ 2 dvd Suc (Suc n)

We unfold the definition of dvd in both subgoals, proving the first one and
simplifying the second:

apply (simp_all add: dvd_def)

1.
∧
n. [[n ∈ even; ∃ k. n = 2 * k ]] =⇒ ∃ k. Suc (Suc n) = 2 * k

The next command eliminates the existential quantifier from the assumption
and replaces n by 2 * k.

apply clarify

1.
∧
n k. 2 * k ∈ even =⇒ ∃ ka. Suc (Suc (2 * k)) = 2 * ka

To conclude, we tell Isabelle that the desired value is Suc k. With this hint,
the subgoal falls to simp.

apply (rule_tac x = "Suc k" in exI, simp)

Combining the previous two results yields our objective, the equivalence
relating even and dvd.

theorem even_iff_dvd: "(n ∈ even) = (2 dvd n)"
by (blast intro: dvd_imp_even even_imp_dvd)

7.1.4 Generalization and Rule Induction

Before applying induction, we typically must generalize the induction for-
mula. With rule induction, the required generalization can be hard to find
and sometimes requires a complete reformulation of the problem. In this ex-
ample, our first attempt uses the obvious statement of the result. It fails:

lemma "Suc (Suc n) ∈ even =⇒ n ∈ even"
apply (erule even.induct)
oops

Rule induction finds no occurrences of Suc(Suc n) in the conclusion, which it
therefore leaves unchanged. (Look at even.induct to see why this happens.)
We have these subgoals:
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1. n ∈ even
2.

∧
na. [[na ∈ even; n ∈ even ]] =⇒ n ∈ even

The first one is hopeless. Rule inductions involving non-trivial terms usually
fail. How to deal with such situations in general is described in Sect. 9.3.1
below. In the current case the solution is easy because we have the necessary
inverse, subtraction:

lemma even_imp_even_minus_2: "n ∈ even =⇒ n-2 ∈ even"
apply (erule even.induct)
apply auto

done

This lemma is trivially inductive. Here are the subgoals:

1. 0 - 2 ∈ even
2.

∧
n. [[n ∈ even; n - 2 ∈ even ]] =⇒ Suc (Suc n) - 2 ∈ even

The first is trivial because 0 - 2 simplifies to 0, which is even. The second is
trivial too: Suc (Suc n) - 2 simplifies to n, matching the assumption.

Using our lemma, we can easily prove the result we originally wanted:

lemma Suc_Suc_even_imp_even: "Suc (Suc n) ∈ even =⇒ n ∈ even"
by (drule even_imp_even_minus_2, simp)

We have just proved the converse of the introduction rule even.step. This
suggests proving the following equivalence. We give it the iff attribute be-
cause of its obvious value for simplification.

lemma [iff]: "((Suc (Suc n)) ∈ even) = (n ∈ even)"
by (blast dest: Suc_Suc_even_imp_even)

7.1.5 Rule Inversion

Case analysis on an inductive definition is called rule inversion. It is fre-
quently used in proofs about operational semantics. It can be highly effective
when it is applied automatically. Let us look at how rule inversion is done in
Isabelle/HOL.

Recall that even is the minimal set closed under these two rules:

0 ∈ even
n ∈ even =⇒ Suc (Suc n) ∈ even

Minimality means that even contains only the elements that these rules force
it to contain. If we are told that a belongs to even then there are only two
possibilities. Either a is 0 or else a has the form Suc(Suc n), for some suitable
n that belongs to even. That is the gist of the cases rule, which Isabelle proves
for us when it accepts an inductive definition:

[[a ∈ even;
a = 0 =⇒ P;∧
n. [[a = Suc(Suc n); n ∈ even ]] =⇒ P ]] =⇒ P (even.cases)
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This general rule is less useful than instances of it for specific patterns. For
example, if a has the form Suc(Suc n) then the first case becomes irrelevant,
while the second case tells us that n belongs to even. Isabelle will generate
this instance for us:

inductive cases Suc_Suc_cases [elim!]: "Suc(Suc n) ∈ even"

The inductive cases command generates an instance of the cases rule for
the supplied pattern and gives it the supplied name:

[[Suc(Suc n) ∈ even; n ∈ even =⇒ P ]] =⇒ P (Suc_Suc_cases)

Applying this as an elimination rule yields one case where even.cases would
yield two. Rule inversion works well when the conclusions of the introduc-
tion rules involve datatype constructors like Suc and # (list “cons”); freeness
reasoning discards all but one or two cases.

In the inductive cases command we supplied an attribute, elim!, in-
dicating that this elimination rule can be applied aggressively. The original
cases rule would loop if used in that manner because the pattern a matches
everything.

The rule Suc_Suc_cases is equivalent to the following implication:

Suc (Suc n) ∈ even =⇒ n ∈ even

Just above we devoted some effort to reaching precisely this result. Yet we
could have obtained it by a one-line declaration, dispensing with the lemma
even_imp_even_minus_2. This example also justifies the terminology rule in-
version: the new rule inverts the introduction rule even.step. In general, a
rule can be inverted when the set of elements it introduces is disjoint from
those of the other introduction rules.

For one-off applications of rule inversion, use the ind_cases method. Here
is an example:

apply (ind_cases "Suc(Suc n) ∈ even")

The specified instance of the cases rule is generated, then applied as an
elimination rule.

To summarize, every inductive definition produces a cases rule. The in-
ductive cases command stores an instance of the cases rule for a given
pattern. Within a proof, the ind_cases method applies an instance of the
cases rule.

The even numbers example has shown how inductive definitions can be
used. Later examples will show that they are actually worth using.

7.1.6 Mutually Inductive Definitions

Just as there are datatypes defined by mutual recursion, there are sets defined
by mutual induction. As a trivial example we consider the even and odd
natural numbers:
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consts even :: "nat set"

odd :: "nat set"

inductive even odd

intros

zero: "0 ∈ even"

evenI: "n ∈ odd =⇒ Suc n ∈ even"

oddI: "n ∈ even =⇒ Suc n ∈ odd"

The mutually inductive definition of multiple sets is no different from that
of a single set, except for induction: just as for mutually recursive datatypes,
induction needs to involve all the simultaneously defined sets. In the above
case, the induction rule is called even_odd.induct (simply concatenate the
names of the sets involved) and has the conclusion

(?x ∈ even −→ ?P ?x) ∧ (?y ∈ odd −→ ?Q ?y)

If we want to prove that all even numbers are divisible by two, we have
to generalize the statement as follows:

lemma "(m ∈ even −→ 2 dvd m) ∧ (n ∈ odd −→ 2 dvd (Suc n))"

The proof is by rule induction. Because of the form of the induction theorem,
it is applied by rule rather than erule as for ordinary inductive definitions:

apply(rule even_odd.induct)

1. 2 dvd 0
2.

∧
n. [[n ∈ odd; 2 dvd Suc n ]] =⇒ 2 dvd Suc n

3.
∧
n. [[n ∈ even; 2 dvd n ]] =⇒ 2 dvd Suc (Suc n)

The first two subgoals are proved by simplification and the final one can
be proved in the same manner as in Sect. 7.1.3 where the same subgoal was
encountered before. We do not show the proof script.

7.2 The Reflexive Transitive Closure

An inductive definition may accept parameters, so it can express functions
that yield sets. Relations too can be defined inductively, since they are just
sets of pairs. A perfect example is the function that maps a relation to its
reflexive transitive closure. This concept was already introduced in Sect. 6.3,
where the operator ∗ was defined as a least fixed point because inductive
definitions were not yet available. But now they are:

consts rtc :: "(’a × ’a)set ⇒ (’a × ’a)set" ("_*" [1000] 999)

inductive "r*"

intros
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rtc_refl[iff]: "(x,x) ∈ r*"

rtc_step: " [[ (x,y) ∈ r; (y,z) ∈ r* ]] =⇒ (x,z) ∈ r*"

The function rtc is annotated with concrete syntax: instead of rtc r we can
write r*. The actual definition consists of two rules. Reflexivity is obvious and
is immediately given the iff attribute to increase automation. The second
rule, rtc_step, says that we can always add one more r -step to the left.
Although we could make rtc_step an introduction rule, this is dangerous: the
recursion in the second premise slows down and may even kill the automatic
tactics.

The above definition of the concept of reflexive transitive closure may be
sufficiently intuitive but it is certainly not the only possible one: for a start,
it does not even mention transitivity. The rest of this section is devoted to
proving that it is equivalent to the standard definition. We start with a simple
lemma:

lemma [intro]: "(x,y) ∈ r =⇒ (x,y) ∈ r*"

by(blast intro: rtc_step)

Although the lemma itself is an unremarkable consequence of the basic rules,
it has the advantage that it can be declared an introduction rule without
the danger of killing the automatic tactics because r* occurs only in the
conclusion and not in the premise. Thus some proofs that would otherwise
need rtc_step can now be found automatically. The proof also shows that
blast is able to handle rtc_step. But some of the other automatic tactics are
more sensitive, and even blast can be lead astray in the presence of large
numbers of rules.

To prove transitivity, we need rule induction, i.e. theorem rtc.induct :

[[(?xb, ?xa) ∈ ?r*;
∧
x. ?P x x;∧

x y z. [[(x, y) ∈ ?r; (y, z) ∈ ?r*; ?P y z ]] =⇒ ?P x z ]]
=⇒ ?P ?xb ?xa

It says that ?P holds for an arbitrary pair (?xb,?xa) ∈ ?r* if ?P is preserved
by all rules of the inductive definition, i.e. if ?P holds for the conclusion
provided it holds for the premises. In general, rule induction for an n-ary
inductive relation R expects a premise of the form (x1, . . . , xn) ∈ R.

Now we turn to the inductive proof of transitivity:

lemma rtc_trans: " [[ (x,y) ∈ r*; (y,z) ∈ r* ]] =⇒ (x,z) ∈ r*"

apply(erule rtc.induct)

Unfortunately, even the base case is a problem:

1.
∧
x. (y, z) ∈ r* =⇒ (x, z) ∈ r*

We have to abandon this proof attempt. To understand what is going on,
let us look again at rtc.induct. In the above application of erule, the first
premise of rtc.induct is unified with the first suitable assumption, which is
(x, y) ∈ r* rather than (y, z) ∈ r*. Although that is what we want, it is
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merely due to the order in which the assumptions occur in the subgoal, which
it is not good practice to rely on. As a result, ?xb becomes x, ?xa becomes
y and ?P becomes λu v. (u, z) ∈ r*, thus yielding the above subgoal. So
what went wrong?

When looking at the instantiation of ?P we see that it does not depend
on its second parameter at all. The reason is that in our original goal, of
the pair (x, y) only x appears also in the conclusion, but not y. Thus our
induction statement is too weak. Fortunately, it can easily be strengthened:
transfer the additional premise (y, z) ∈ r* into the conclusion:

lemma rtc_trans[rule_format]:

"(x,y) ∈ r* =⇒ (y,z) ∈ r* −→ (x,z) ∈ r*"

This is not an obscure trick but a generally applicable heuristic:

When proving a statement by rule induction on (x1, . . . , xn) ∈ R, pull
all other premises containing any of the xi into the conclusion using
−→.

A similar heuristic for other kinds of inductions is formulated in Sect. 9.3.1.
The rule_format directive turns −→ back into =⇒: in the end we obtain the
original statement of our lemma.

apply(erule rtc.induct)

Now induction produces two subgoals which are both proved automatically:
1.

∧
x. (x, z) ∈ r* −→ (x, z) ∈ r*

2.
∧
x y za.

[[(x, y) ∈ r; (y, za) ∈ r*; (za, z) ∈ r* −→ (y, z) ∈ r* ]]
=⇒ (za, z) ∈ r* −→ (x, z) ∈ r*

apply(blast)

apply(blast intro: rtc_step)

done

Let us now prove that r* is really the reflexive transitive closure of r, i.e.
the least reflexive and transitive relation containing r. The latter is easily
formalized

consts rtc2 :: "(’a × ’a)set ⇒ (’a × ’a)set"

inductive "rtc2 r"

intros

"(x,y) ∈ r =⇒ (x,y) ∈ rtc2 r"

"(x,x) ∈ rtc2 r"

" [[ (x,y) ∈ rtc2 r; (y,z) ∈ rtc2 r ]] =⇒ (x,z) ∈ rtc2 r"

and the equivalence of the two definitions is easily shown by the obvious rule
inductions:

lemma "(x,y) ∈ rtc2 r =⇒ (x,y) ∈ r*"

apply(erule rtc2.induct)
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apply(blast)

apply(blast)

apply(blast intro: rtc_trans)

done

lemma "(x,y) ∈ r* =⇒ (x,y) ∈ rtc2 r"

apply(erule rtc.induct)

apply(blast intro: rtc2.intros)

apply(blast intro: rtc2.intros)

done

So why did we start with the first definition? Because it is simpler. It
contains only two rules, and the single step rule is simpler than transitivity.
As a consequence, rtc.induct is simpler than rtc2.induct. Since inductive
proofs are hard enough anyway, we should always pick the simplest induction
schema available. Hence rtc is the definition of choice.

Exercise 7.2.1 Show that the converse of rtc_step also holds:

[[(x, y) ∈ r*; (y, z) ∈ r ]] =⇒ (x, z) ∈ r*

Exercise 7.2.2 Repeat the development of this section, but starting with
a definition of rtc where rtc_step is replaced by its converse as shown in
exercise 7.2.1.

7.3 Advanced Inductive Definitions

The premises of introduction rules may contain universal quantifiers and
monotone functions. A universal quantifier lets the rule refer to any number
of instances of the inductively defined set. A monotone function lets the rule
refer to existing constructions (such as “list of”) over the inductively defined
set. The examples below show how to use the additional expressiveness and
how to reason from the resulting definitions.

7.3.1 Universal Quantifiers in Introduction Rules

As a running example, this section develops the theory of ground terms:
terms constructed from constant and function symbols but not variables. To
simplify matters further, we regard a constant as a function applied to the
null argument list. Let us declare a datatype gterm for the type of ground
terms. It is a type constructor whose argument is a type of function symbols.

datatype ’f gterm = Apply ’f "’f gterm list"
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To try it out, we declare a datatype of some integer operations: integer con-
stants, the unary minus operator and the addition operator.
datatype integer_op = Number int | UnaryMinus | Plus

Now the type integer op gterm denotes the ground terms built over those
symbols.

The type constructor gterm can be generalized to a function over sets. It
returns the set of ground terms that can be formed over a set F of function
symbols. For example, we could consider the set of ground terms formed from
the finite set {Number 2, UnaryMinus, Plus}.

This concept is inductive. If we have a list args of ground terms over F

and a function symbol f in F, then we can apply f to args to obtain another
ground term. The only difficulty is that the argument list may be of any
length. Hitherto, each rule in an inductive definition referred to the induc-
tively defined set a fixed number of times, typically once or twice. A universal
quantifier in the premise of the introduction rule expresses that every element
of args belongs to our inductively defined set: is a ground term over F. The
function set denotes the set of elements in a given list.
consts gterms :: "’f set ⇒ ’f gterm set"
inductive "gterms F"
intros
step[intro!]: " [[∀ t ∈ set args. t ∈ gterms F; f ∈ F ]]

=⇒ (Apply f args) ∈ gterms F"

To demonstrate a proof from this definition, let us show that the function
gterms is monotone. We shall need this concept shortly.
lemma gterms_mono: "F⊆G =⇒ gterms F ⊆ gterms G"
apply clarify
apply (erule gterms.induct)
apply blast
done

Intuitively, this theorem says that enlarging the set of function symbols en-
larges the set of ground terms. The proof is a trivial rule induction. First we
use the clarify method to assume the existence of an element of gterms F.
(We could have used intro subsetI.) We then apply rule induction. Here is
the resulting subgoal:
1.

∧
x args f.

[[F ⊆ G; ∀ t∈set args. t ∈ gterms F ∧ t ∈ gterms G; f ∈ F ]]
=⇒ Apply f args ∈ gterms G

The assumptions state that f belongs to F, which is included in G, and that
every element of the list args is a ground term over G. The blast method
finds this chain of reasoning easily.

! Why do we call this function gterms instead of gterm? A constant may have
the same name as a type. However, name clashes could arise in the theorems

that Isabelle generates. Our choice of names keeps gterms.induct separate from
gterm.induct .
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Call a term well-formed if each symbol occurring in it is applied to the
correct number of arguments. (This number is called the symbol’s arity.)
We can express well-formedness by generalizing the inductive definition of
gterms. Suppose we are given a function called arity, specifying the arities
of all symbols. In the inductive step, we have a list args of such terms and a
function symbol f. If the length of the list matches the function’s arity then
applying f to args yields a well-formed term.

consts well_formed_gterm :: "(’f ⇒ nat) ⇒ ’f gterm set"
inductive "well_formed_gterm arity"
intros
step[intro!]: " [[∀ t ∈ set args. t ∈ well_formed_gterm arity;

length args = arity f ]]
=⇒ (Apply f args) ∈ well_formed_gterm arity"

The inductive definition neatly captures the reasoning above. The universal
quantification over the set of arguments expresses that all of them are well-
formed.

7.3.2 Alternative Definition Using a Monotone Function

An inductive definition may refer to the inductively defined set through an
arbitrary monotone function. To demonstrate this powerful feature, let us
change the inductive definition above, replacing the quantifier by a use of the
function lists. This function, from the Isabelle theory of lists, is analogous
to the function gterms declared above: if A is a set then lists A is the set of
lists whose elements belong to A.

In the inductive definition of well-formed terms, examine the one intro-
duction rule. The first premise states that args belongs to the lists of well-
formed terms. This formulation is more direct, if more obscure, than using a
universal quantifier.

consts well_formed_gterm’ :: "(’f ⇒ nat) ⇒ ’f gterm set"
inductive "well_formed_gterm’ arity"
intros
step[intro!]: " [[args ∈ lists (well_formed_gterm’ arity);

length args = arity f ]]
=⇒ (Apply f args) ∈ well_formed_gterm’ arity"

monos lists_mono

We cite the theorem lists_mono to justify using the function lists.1

A ⊆ B =⇒ lists A ⊆ lists B (lists_mono)

Why must the function be monotone? An inductive definition describes an
iterative construction: each element of the set is constructed by a finite num-
ber of introduction rule applications. For example, the elements of even are
constructed by finitely many applications of the rules
1 This particular theorem is installed by default already, but we include the monos

declaration in order to illustrate its syntax.
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0 ∈ even
n ∈ even =⇒ (Suc (Suc n)) ∈ even

All references to a set in its inductive definition must be positive. Applications
of an introduction rule cannot invalidate previous applications, allowing the
construction process to converge. The following pair of rules do not constitute
an inductive definition:
0 ∈ even
n /∈ even =⇒ (Suc n) ∈ even

Showing that 4 is even using these rules requires showing that 3 is not even.
It is far from trivial to show that this set of rules characterizes the even
numbers.

Even with its use of the function lists, the premise of our introduction
rule is positive:
args ∈ lists (well_formed_gterm’ arity)

To apply the rule we construct a list args of previously constructed well-
formed terms. We obtain a new term, Apply f args. Because lists is mono-
tone, applications of the rule remain valid as new terms are constructed.
Further lists of well-formed terms become available and none are taken away.

7.3.3 A Proof of Equivalence

We naturally hope that these two inductive definitions of “well-formed” co-
incide. The equality can be proved by separate inclusions in each direction.
Each is a trivial rule induction.
lemma "well_formed_gterm arity ⊆ well_formed_gterm’ arity"
apply clarify
apply (erule well_formed_gterm.induct)
apply auto
done

The clarify method gives us an element of well_formed_gterm arity on
which to perform induction. The resulting subgoal can be proved automati-
cally:
1.

∧
x args f.

[[∀ t∈set args.
t ∈ well formed gterm arity ∧ t ∈ well formed gterm’ arity;

length args = arity f ]]
=⇒ Apply f args ∈ well formed gterm’ arity

This proof resembles the one given in Sect. 7.3.1 above, especially in the form
of the induction hypothesis. Next, we consider the opposite inclusion:
lemma "well_formed_gterm’ arity ⊆ well_formed_gterm arity"
apply clarify
apply (erule well_formed_gterm’.induct)
apply auto
done
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The proof script is identical, but the subgoal after applying induction may
be surprising:
1.

∧
x args f.

[[args ∈ lists (well_formed_gterm’ arity ∩
{u. u ∈ well_formed_gterm arity});

length args = arity f ]]
=⇒ Apply f args ∈ well_formed_gterm arity

The induction hypothesis contains an application of lists. Using a monotone
function in the inductive definition always has this effect. The subgoal may
look uninviting, but fortunately lists distributes over intersection:
lists (A ∩ B) = lists A ∩ lists B (lists_Int_eq)

Thanks to this default simplification rule, the induction hypothesis is quickly
replaced by its two parts:

args ∈ lists (well_formed_gterm’ arity)
args ∈ lists (well_formed_gterm arity)

Invoking the rule well_formed_gterm.step completes the proof. The call to
auto does all this work.

This example is typical of how monotone functions can be used. In par-
ticular, many of them distribute over intersection. Monotonicity implies one
direction of this set equality; we have this theorem:
mono f =⇒ f (A ∩ B) ⊆ f A ∩ f B (mono_Int)

7.3.4 Another Example of Rule Inversion

Does gterms distribute over intersection? We have proved that this function
is monotone, so mono_Int gives one of the inclusions. The opposite inclusion
asserts that if t is a ground term over both of the sets F and G then it is also
a ground term over their intersection, F∩G.
lemma gterms_IntI:

"t ∈ gterms F =⇒ t ∈ gterms G −→ t ∈ gterms (F∩G)"

Attempting this proof, we get the assumption Apply f args ∈ gterms G,
which cannot be broken down. It looks like a job for rule inversion:
inductive cases gterm_Apply_elim [elim!]: "Apply f args ∈ gterms F"

Here is the result.
[[Apply f args ∈ gterms F;
[[∀ t∈set args. t ∈ gterms F; f ∈ F ]] =⇒ P ]]

=⇒ P (gterm_Apply_elim)

This rule replaces an assumption about Apply f args by assumptions about
f and args. No cases are discarded (there was only one to begin with) but
the rule applies specifically to the pattern Apply f args. It can be applied
repeatedly as an elimination rule without looping, so we have given the elim!

attribute.
Now we can prove the other half of that distributive law.
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lemma gterms_IntI [rule_format, intro!]:
"t ∈ gterms F =⇒ t ∈ gterms G −→ t ∈ gterms (F∩G)"

apply (erule gterms.induct)
apply blast
done

The proof begins with rule induction over the definition of gterms, which
leaves a single subgoal:
1.

∧
args f.

[[∀ t∈set args. t ∈ gterms F ∧
(t ∈ gterms G −→ t ∈ gterms (F ∩ G));

f ∈ F ]]
=⇒ Apply f args ∈ gterms G −→ Apply f args ∈ gterms (F ∩ G)

To prove this, we assume Apply f args ∈ gterms G. Rule inversion, in the
form of gterm_Apply_elim, infers that every element of args belongs to
gterms G ; hence (by the induction hypothesis) it belongs to gterms (F ∩ G).
Rule inversion also yields f ∈ G and hence f ∈ F ∩ G. All of this reasoning
is done by blast.

Our distributive law is a trivial consequence of previously-proved results:
theorem gterms_Int_eq [simp]:

"gterms (F∩G) = gterms F ∩ gterms G"
by (blast intro!: mono_Int monoI gterms_mono)

Exercise 7.3.1 A function mapping function symbols to their types is called
a signature. Given a type ranging over type symbols, we can represent a
function’s type by a list of argument types paired with the result type. Com-
plete this inductive definition:
consts well_typed_gterm:: "(’f ⇒ ’t list * ’t) ⇒ (’f gterm * ’t)set"
inductive "well_typed_gterm sig"

7.4 Case Study: A Context Free Grammar

Grammars are nothing but shorthands for inductive definitions of nontermi-
nals which represent sets of strings. For example, the production A→ Bc is
short for

w ∈ B =⇒ wc ∈ A

This section demonstrates this idea with an example due to Hopcroft and
Ullman, a grammar for generating all words with an equal number of a’s
and b’s:

S → ε | bA | aB
A → aS | bAA
B → bS | aBB
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At the end we say a few words about the relationship between the original
proof [12, p. 81] and our formal version.

We start by fixing the alphabet, which consists only of a ’s and b ’s:

datatype alfa = a | b

For convenience we include the following easy lemmas as simplification rules:

lemma [simp]: "(x 6= a) = (x = b) ∧ (x 6= b) = (x = a)"

by (case_tac x, auto)

Words over this alphabet are of type alfa list, and the three nonterminals
are declared as sets of such words:

consts S :: "alfa list set"

A :: "alfa list set"

B :: "alfa list set"

The productions above are recast as a mutual inductive definition of S, A

and B :

inductive S A B

intros

"[] ∈ S"

"w ∈ A =⇒ b#w ∈ S"

"w ∈ B =⇒ a#w ∈ S"

"w ∈ S =⇒ a#w ∈ A"

" [[ v∈A; w∈A ]] =⇒ b#v@w ∈ A"

"w ∈ S =⇒ b#w ∈ B"

" [[ v ∈ B; w ∈ B ]] =⇒ a#v@w ∈ B"

First we show that all words in S contain the same number of a ’s and b ’s.
Since the definition of S is by mutual induction, so is the proof: we show at
the same time that all words in A contain one more a than b and all words
in B contains one more b than a.

lemma correctness:

"(w ∈ S −→ size[x∈w. x=a] = size[x∈w. x=b]) ∧
(w ∈ A −→ size[x∈w. x=a] = size[x∈w. x=b] + 1) ∧
(w ∈ B −→ size[x∈w. x=b] = size[x∈w. x=a] + 1)"

These propositions are expressed with the help of the predefined filter func-
tion on lists, which has the convenient syntax [x∈xs. P x], the list of all el-
ements x in xs such that P x holds. Remember that on lists size and length

are synonymous.
The proof itself is by rule induction and afterwards automatic:

by (rule S_A_B.induct, auto)
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This may seem surprising at first, and is indeed an indication of the power
of inductive definitions. But it is also quite straightforward. For example,
consider the production A→ bAA: if v ,w ∈ A and the elements of A contain
one more a than b’s, then bvw must again contain one more a than b’s.

As usual, the correctness of syntactic descriptions is easy, but complete-
ness is hard: does S contain all words with an equal number of a ’s and b ’s? It
turns out that this proof requires the following lemma: every string with two
more a ’s than b ’s can be cut somewhere such that each half has one more a

than b. This is best seen by imagining counting the difference between the
number of a ’s and b ’s starting at the left end of the word. We start with
0 and end (at the right end) with 2. Since each move to the right increases
or decreases the difference by 1, we must have passed through 1 on our way
from 0 to 2. Formally, we appeal to the following discrete intermediate value
theorem nat0_intermed_int_val

[[∀ i. i < n −→ |f (i + 1) - f i | ≤ 1; f 0 ≤ k; k ≤ f n ]]
=⇒ ∃ i. i ≤ n ∧ f i = k

where f is of type nat ⇒ int, int are the integers, |. | is the absolute value
function2, and 1 is the integer 1 (see Sect. 8.1).

First we show that our specific function, the difference between the num-
bers of a ’s and b ’s, does indeed only change by 1 in every move to the right.
At this point we also start generalizing from a ’s and b ’s to an arbitrary prop-
erty P. Otherwise we would have to prove the desired lemma twice, once as
stated above and once with the roles of a ’s and b ’s interchanged.

lemma step1: "∀ i < size w.

|(int(size[x∈take (i+1) w. P x])-int(size[x∈take (i+1) w. ¬P x]))

- (int(size[x∈take i w. P x])-int(size[x∈take i w. ¬P x])) | ≤ 1"

The lemma is a bit hard to read because of the coercion function int :: nat

⇒ int. It is required because size returns a natural number, but subtraction
on type nat will do the wrong thing. Function take is predefined and take

i xs is the prefix of length i of xs ; below we also need drop i xs, which is
what remains after that prefix has been dropped from xs.

The proof is by induction on w, with a trivial base case, and a not so trivial
induction step. Since it is essentially just arithmetic, we do not discuss it.

apply(induct_tac w)

apply(simp)

by(force simp add: zabs_def take_Cons split: nat.split if_splits)

Finally we come to the above-mentioned lemma about cutting in half a
word with two more elements of one sort than of the other sort:

lemma part1:

"size[x∈w. P x] = size[x∈w. ¬P x]+2 =⇒
∃ i≤size w. size[x∈take i w. P x] = size[x∈take i w. ¬P x]+1"

2 See Table A.1 in the Appendix for the correct ascii syntax.
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This is proved by force with the help of the intermediate value theorem,
instantiated appropriately and with its first premise disposed of by lemma
step1 :

apply(insert nat0_intermed_int_val[OF step1, of "P" "w" "1"])

by force

Lemma part1 tells us only about the prefix take i w. An easy lemma
deals with the suffix drop i w :

lemma part2:

" [[size[x∈take i w @ drop i w. P x] =

size[x∈take i w @ drop i w. ¬P x]+2;

size[x∈take i w. P x] = size[x∈take i w. ¬P x]+1 ]]

=⇒ size[x∈drop i w. P x] = size[x∈drop i w. ¬P x]+1"

by(simp del: append_take_drop_id)

In the proof we have disabled the normally useful lemma
take n xs @ drop n xs = xs (append_take_drop_id)

to allow the simplifier to apply the following lemma instead:
[x∈xs@ys. P x] = [x∈xs. P x] @ [x∈ys. P x]

To dispose of trivial cases automatically, the rules of the inductive defini-
tion are declared simplification rules:

declare S_A_B.intros[simp]

This could have been done earlier but was not necessary so far.
The completeness theorem tells us that if a word has the same number of

a ’s and b ’s, then it is in S, and similarly for A and B :

theorem completeness:

"(size[x∈w. x=a] = size[x∈w. x=b] −→ w ∈ S) ∧
(size[x∈w. x=a] = size[x∈w. x=b] + 1 −→ w ∈ A) ∧
(size[x∈w. x=b] = size[x∈w. x=a] + 1 −→ w ∈ B)"

The proof is by induction on w. Structural induction would fail here because,
as we can see from the grammar, we need to make bigger steps than merely
appending a single letter at the front. Hence we induct on the length of w,
using the induction rule length_induct :

apply(induct_tac w rule: length_induct)

The rule parameter tells induct_tac explicitly which induction rule to use.
For details see Sect. 9.3.2 below. In this case the result is that we may assume
the lemma already holds for all words shorter than w.

The proof continues with a case distinction on w, on whether w is empty
or not.

apply(case_tac w)

apply(simp_all)
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Simplification disposes of the base case and leaves only a conjunction of two
step cases to be proved: if w = a # v and

length [x∈v . x = a] = length [x∈v . x = b] + 2

then b # v ∈ A, and similarly for w = b # v. We only consider the first case
in detail.

After breaking the conjunction up into two cases, we can apply part1 to
the assumption that w contains two more a ’s than b ’s.

apply(rule conjI)

apply(clarify)

apply(frule part1[of "λx. x=a", simplified])

apply(clarify)

This yields an index i ≤ length v such that

length [x∈take i v . x = a] = length [x∈take i v . x = b] + 1

With the help of part2 it follows that

length [x∈drop i v . x = a] = length [x∈drop i v . x = b] + 1

apply(drule part2[of "λx. x=a", simplified])

apply(assumption)

Now it is time to decompose v in the conclusion b # v ∈ A into take i v @

drop i v,

apply(rule_tac n1=i and t=v in subst[OF append_take_drop_id])

(the variables n1 and t are the result of composing the theorems subst and
append_take_drop_id) after which the appropriate rule of the grammar re-
duces the goal to the two subgoals take i v ∈ A and drop i v ∈ A :

apply(rule S_A_B.intros)

Both subgoals follow from the induction hypothesis because both take i

v and drop i v are shorter than w :

apply(force simp add: min_less_iff_disj)

apply(force split add: nat_diff_split)

The case w = b # v is proved analogously:

apply(clarify)

apply(frule part1[of "λx. x=b", simplified])

apply(clarify)

apply(drule part2[of "λx. x=b", simplified])

apply(assumption)

apply(rule_tac n1=i and t=v in subst[OF append_take_drop_id])

apply(rule S_A_B.intros)
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apply(force simp add: min_less_iff_disj)

by(force simp add: min_less_iff_disj split add: nat_diff_split)

We conclude this section with a comparison of our proof with Hopcroft
and Ullman’s [12, p. 81]. For a start, the textbook grammar, for no good
reason, excludes the empty word, thus complicating matters just a little bit:
they have 8 instead of our 7 productions.

More importantly, the proof itself is different: rather than separating the
two directions, they perform one induction on the length of a word. This
deprives them of the beauty of rule induction, and in the easy direction
(correctness) their reasoning is more detailed than our auto. For the hard
part (completeness), they consider just one of the cases that our simp_all

disposes of automatically. Then they conclude the proof by saying about the
remaining cases: “We do this in a manner similar to our method of proof
for part (1); this part is left to the reader”. But this is precisely the part
that requires the intermediate value theorem and thus is not at all similar to
the other cases (which are automatic in Isabelle). The authors are at least
cavalier about this point and may even have overlooked the slight difficulty
lurking in the omitted cases. Such errors are found in many pen-and-paper
proofs when they are scrutinized formally.
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8. More about Types

So far we have learned about a few basic types (for example bool and nat),
type abbreviations (types) and recursive datatypes (datatype). This chap-
ter will introduce more advanced material:

– More about basic types: numbers (Sect. 8.1), pairs (Sect. 8.2) and records
(Sect. 8.3), and how to reason about them.

– Type classes: how to specify and reason about axiomatic collections of
types (Sect. 8.4).

– Introducing your own types: how to introduce new types that cannot be
constructed with any of the basic methods (Sect. 8.5).

The material in this section goes beyond the needs of most novices. Serious
users should at least skim the sections on basic types and on type classes. The
latter material is fairly advanced; read the beginning to understand what it
is about, but consult the rest only when necessary.

8.1 Numbers

Until now, our numerical examples have used the type of natural numbers,
nat. This is a recursive datatype generated by the constructors zero and suc-
cessor, so it works well with inductive proofs and primitive recursive function
definitions. HOL also provides the type int of integers, which lack induc-
tion but support true subtraction. The integers are preferable to the natural
numbers for reasoning about complicated arithmetic expressions, even for
some expressions whose value is non-negative. The logic HOL-Real also has
the type real of real numbers. Isabelle has no subtyping, so the numeric
types are distinct and there are functions to convert between them. Fortu-
nately most numeric operations are overloaded: the same symbol can be used
at all numeric types. Table A.2 in the appendix shows the most important
operations, together with the priorities of the infix symbols.

Many theorems involving numeric types can be proved automatically by
Isabelle’s arithmetic decision procedure, the method arith . Linear arithmetic
comprises addition, subtraction and multiplication by constant factors; sub-
terms involving other operators are regarded as variables. The procedure can
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be slow, especially if the subgoal to be proved involves subtraction over type
nat, which causes case splits.

The simplifier reduces arithmetic expressions in other ways, such as di-
viding through by common factors. For problems that lie outside the scope
of automation, HOL provides hundreds of theorems about multiplication, di-
vision, etc., that can be brought to bear. You can locate them using Proof
General’s Find button. A few lemmas are given below to show what is avail-
able.

8.1.1 Numeric Literals

The constants 0 and 1 are overloaded. They denote zero and one, respectively,
for all numeric types. Other values are expressed by numeric literals, which
consist of one or more decimal digits optionally preceeded by a minus sign
(-). Examples are 2, -3 and 441223334678. Literals are available for the types
of natural numbers, integers and reals; they denote integer values of arbitrary
size.

Literals look like constants, but they abbreviate terms representing the
number in a two’s complement binary notation. Isabelle performs arithmetic
on literals by rewriting rather than using the hardware arithmetic. In most
cases arithmetic is fast enough, even for large numbers. The arithmetic oper-
ations provided for literals include addition, subtraction, multiplication, in-
teger division and remainder. Fractions of literals (expressed using division)
are reduced to lowest terms.

! The arithmetic operators are overloaded, so you must be careful to ensure that
each numeric expression refers to a specific type, if necessary by inserting type

constraints. Here is an example of what can go wrong:

lemma "2 * m = m + m"

Carefully observe how Isabelle displays the subgoal:

1. (2::’a) * m = m + m

The type ’a given for the literal 2 warns us that no numeric type has been specified.
The problem is underspecified. Given a type constraint such as nat, int or real,
it becomes trivial.

! Numeric literals are not constructors and therefore must not be used in pat-
terns. For example, this declaration is rejected:

recdef h "{}"
"h 3 = 2"
"h i = i"

You should use a conditional expression instead:

"h i = (if i = 3 then 2 else i)"
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8.1.2 The Type of Natural Numbers, nat

This type requires no introduction: we have been using it from the beginning.
Hundreds of theorems about the natural numbers are proved in the theories
Nat, NatArith and Divides. Only in exceptional circumstances should you
resort to induction.

Literals. The notational options for the natural numbers are confusing. Re-
call that an overloaded constant can be defined independently for each type;
the definition of 1 for type nat is

1 ≡ Suc 0 (One_nat_def)

This is installed as a simplification rule, so the simplifier will replace every
occurrence of 1::nat by Suc 0. Literals are obviously better than nested Sucs
at expressing large values. But many theorems, including the rewrite rules
for primitive recursive functions, can only be applied to terms of the form
Suc n.

The following default simplification rules replace small literals by zero and
successor:

2 + n = Suc (Suc n) (add_2_eq_Suc)
n + 2 = Suc (Suc n) (add_2_eq_Suc’)

It is less easy to transform 100 into Suc 99 (for example), and the simpli-
fier will normally reverse this transformation. Novices should express natural
numbers using 0 and Suc only.

Typical lemmas. Inequalities involving addition and subtraction alone can
be proved automatically. Lemmas such as these can be used to prove inequal-
ities involving multiplication and division:

[[i ≤ j; k ≤ l ]] =⇒ i * k ≤ j * l (mult_le_mono)
[[i < j; 0 < k ]] =⇒ i * k < j * k (mult_less_mono1)
m ≤ n =⇒ m div k ≤ n div k (div_le_mono)

Various distributive laws concerning multiplication are available:

(m + n) * k = m * k + n * k (add_mult_distrib)
(m - n) * k = m * k - n * k (diff_mult_distrib)
(m mod n) * k = (m * k) mod (n * k) (mod_mult_distrib)

Division. The infix operators div and mod are overloaded. Isabelle/HOL
provides the basic facts about quotient and remainder on the natural num-
bers:

m mod n = (if m < n then m else (m - n) mod n) (mod_if)
m div n * n + m mod n = m (mod_div_equality)

Many less obvious facts about quotient and remainder are also provided.
Here is a selection:
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a * b div c = a * (b div c) + a * (b mod c) div c (div_mult1_eq)
a * b mod c = a * (b mod c) mod c (mod_mult1_eq)
a div (b*c) = a div b div c (div_mult2_eq)
a mod (b*c) = b * (a div b mod c) + a mod b (mod_mult2_eq)
0 < c =⇒ (c * a) div (c * b) = a div b (div_mult_mult1)

Surprisingly few of these results depend upon the divisors’ being nonzero.
That is because division by zero yields zero:

a div 0 = 0 (DIVISION_BY_ZERO_DIV)
a mod 0 = a (DIVISION_BY_ZERO_MOD)

As a concession to convention, these equations are not installed as default sim-
plification rules. In div_mult_mult1 above, one of the two divisors (namely c)
must still be nonzero.

The divides relation has the standard definition, which is overloaded over
all numeric types:

m dvd n ≡ ∃ k. n = m * k (dvd_def)

Section 5.17 discusses proofs involving this relation. Here are some of the
facts proved about it:

[[m dvd n; n dvd m ]] =⇒ m = n (dvd_anti_sym)
[[k dvd m; k dvd n ]] =⇒ k dvd (m + n) (dvd_add)

Simplifier Tricks. The rule diff_mult_distrib shown above is one of the
few facts about m - n that is not subject to the condition n ≤ m. Natural
number subtraction has few nice properties; often you should remove it by
simplifying with this split rule:

P(a-b) = ((a<b −→ P 0) ∧ (∀ d. a = b+d −→ P d)) (nat_diff_split)

For example, splitting helps to prove the following fact:

lemma "(n - 2) * (n + 2) = n * n - (4::nat)"
apply (simp split: nat_diff_split, clarify)
1.

∧
d. [[n < 2; n * n = 4 + d ]] =⇒ d = 0

The result lies outside the scope of linear arithmetic, but it is easily found if
we explicitly split n<2 as n=0 or n=1 :

apply (subgoal_tac "n=0 | n=1", force, arith)
done

Suppose that two expressions are equal, differing only in associativity and
commutativity of addition. Simplifying with the following equations sorts the
terms and groups them to the right, making the two expressions identical:

m + n + k = m + (n + k) (add_assoc)
m + n = n + m (add_commute)
x + (y + z) = y + (x + z) (add_left_commute)

The name add_ac refers to the list of all three theorems; similarly there is
mult_ac. Here is an example of the sorting effect. Start with this goal:
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1. Suc (i + j * l * k + m * n) = f (n * m + i + k * j * l)

Simplify using add_ac and mult_ac :

apply (simp add: add_ac mult_ac)

Here is the resulting subgoal:

1. Suc (i + (m * n + j * (k * l))) = f (i + (m * n + j * (k * l)))

8.1.3 The Type of Integers, int

Reasoning methods resemble those for the natural numbers, but induction
and the constant Suc are not available. HOL provides many lemmas for prov-
ing inequalities involving integer multiplication and division, similar to those
shown above for type nat.

The absolute value function abs is overloaded for the numeric types. It is
defined for the integers; we have for example the obvious law

|x * y | = |x | * |y | (abs_mult)

! The absolute value bars shown above cannot be typed on a keyboard. They can
be entered using the X-symbol package. In ascii, type abs x to get |x |.

The arith method can prove facts about abs automatically, though as it
does so by case analysis, the cost can be exponential.

lemma "abs (x+y) ≤ abs x + abs (y :: int)"
by arith

Concerning simplifier tricks, we have no need to eliminate subtraction:
it is well-behaved. As with the natural numbers, the simplifier can sort the
operands of sums and products. The name zadd_ac refers to the associativity
and commutativity theorems for integer addition, while zmult_ac has the
analogous theorems for multiplication. The prefix z in many theorem names
recalls the use of Z to denote the set of integers.

For division and remainder, the treatment of negative divisors follows
mathematical practice: the sign of the remainder follows that of the divisor:

0 < b =⇒ 0 ≤ a mod b (pos_mod_sign)
0 < b =⇒ a mod b < b (pos_mod_bound)
b < 0 =⇒ a mod b ≤ 0 (neg_mod_sign)
b < 0 =⇒ b < a mod b (neg_mod_bound)

ML treats negative divisors in the same way, but most computer hardware
treats signed operands using the same rules as for multiplication. Many facts
about quotients and remainders are provided:

(a + b) div c =
a div c + b div c + (a mod c + b mod c) div c (zdiv_zadd1_eq)

(a + b) mod c = (a mod c + b mod c) mod c (zmod_zadd1_eq)
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(a * b) div c = a * (b div c) + a * (b mod c) div c (zdiv_zmult1_eq)
(a * b) mod c = a * (b mod c) mod c (zmod_zmult1_eq)

0 < c =⇒ a div (b*c) = a div b div c (zdiv_zmult2_eq)
0 < c =⇒ a mod (b*c) = b*(a div b mod c) + a mod b (zmod_zmult2_eq)

The last two differ from their natural number analogues by requiring c to
be positive. Since division by zero yields zero, we could allow c to be zero.
However, c cannot be negative: a counterexample is a = 7, b = 2 and c = −3,
when the left-hand side of zdiv_zmult2_eq is −2 while the right-hand side
is −1.

8.1.4 The Type of Real Numbers, real

The real numbers enjoy two significant properties that the integers lack. They
are dense: between every two distinct real numbers there lies another. This
property follows from the division laws, since if x < y then between them lies
(x + y)/2. The second property is that they are complete: every set of reals
that is bounded above has a least upper bound. Completeness distinguishes
the reals from the rationals, for which the set {x | x 2 < 2} has no least
upper bound. (It could only be

√
2, which is irrational.) The formalization

of completeness is complicated; rather than reproducing it here, we refer you
to the theory RComplete in directory Real. Density, however, is trivial to
express:
x < y =⇒ ∃ r. x < r ∧ r < y (real_dense)

Here is a selection of rules about the division operator. The following are
installed as default simplification rules in order to express combinations of
products and quotients as rational expressions:
x * (y / z) = x * y / z (real_times_divide1_eq)
y / z * x = y * x / z (real_times_divide2_eq)
x / (y / z) = x * z / y (real_divide_divide1_eq)
x / y / z = x / (y * z) (real_divide_divide2_eq)

Signs are extracted from quotients in the hope that complementary terms
can then be cancelled:
- x / y = - (x / y) (real_minus_divide_eq)
x / - y = - (x / y) (real_divide_minus_eq)

The following distributive law is available, but it is not installed as a
simplification rule.
(x + y) / z = x / z + y / z (real_add_divide_distrib)

As with the other numeric types, the simplifier can sort the operands of
addition and multiplication. The name real_add_ac refers to the associativ-
ity and commutativity theorems for addition, while similarly real_mult_ac

contains those properties for multiplication.
The absolute value function abs is defined for the reals, along with many

theorems such as this one about exponentiation:
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|r ^ n | = |r | ^ n (realpow_abs)

Numeric literals for type real have the same syntax as those for type
int and only express integral values. Fractions expressed using the division
operator are automatically simplified to lowest terms:

1. P ((3 / 4) * (8 / 15))
apply simp
1. P (2 / 5)

Exponentiation can express floating-point values such as 2 * 10^6, but at
present no special simplification is performed.

! Type real is only available in the logic HOL-Real, which is HOL extended with
a definitional development of the real numbers. Base your theory upon theory

Real , not the usual Main. Launch Isabelle using the command

Isabelle -l HOL-Real

Also distributed with Isabelle is HOL-Hyperreal, whose theory Hyperreal

defines the type hypreal of non-standard reals. These hyperreals include
infinitesimals, which represent infinitely small and infinitely large quantities;
they facilitate proofs about limits, differentiation and integration [8]. The
development defines an infinitely large number, omega and an infinitely small
positive number, epsilon. The relation x ≈ y means “x is infinitely close
to y .” Theory Hyperreal also defines transcendental functions such as sine,
cosine, exponential and logarithm — even the versions for type real, because
they are defined using nonstandard limits.

8.2 Pairs and Tuples

Ordered pairs were already introduced in Sect. 2.5.2, but only with a minimal
repertoire of operations: pairing and the two projections fst and snd. In
any non-trivial application of pairs you will find that this quickly leads to
unreadable nests of projections. This section introduces syntactic sugar to
overcome this problem: pattern matching with tuples.

8.2.1 Pattern Matching with Tuples

Tuples may be used as patterns in λ-abstractions, for example λ(x,y,z).x+y+z
and λ((x,y),z).x+y+z. In fact, tuple patterns can be used in most variable
binding constructs, and they can be nested. Here are some typical examples:

let (x, y) = f z in (y, x)

case xs of [] ⇒ 0 | (x, y) # zs ⇒ x + y

∀ (x,y)∈A. x=y

{(x,y,z). x=z}⋃
(x, y)∈A. {x + y}
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The intuitive meanings of these expressions should be obvious. Unfortunately,
we need to know in more detail what the notation really stands for once
we have to reason about it. Abstraction over pairs and tuples is merely a
convenient shorthand for a more complex internal representation. Thus the
internal and external form of a term may differ, which can affect proofs. If
you want to avoid this complication, stick to fst and snd and write λp. fst

p + snd p instead of λ(x,y). x+y. These terms are distinct even though they
denote the same function.

Internally, λ(x, y). t becomes split (λx y. t), where split is the un-
currying function of type (’a ⇒ ’b ⇒ ’c) ⇒ ’a × ’b ⇒ ’c defined as

split ≡ λc p. c (fst p) (snd p) (split_def)

Pattern matching in other variable binding constructs is translated similarly.
Thus we need to understand how to reason about such constructs.

8.2.2 Theorem Proving

The most obvious approach is the brute force expansion of split :

lemma "(λ(x,y).x) p = fst p"

by(simp add: split_def)

This works well if rewriting with split_def finishes the proof, as it does
above. But if it does not, you end up with exactly what we are trying to
avoid: nests of fst and snd. Thus this approach is neither elegant nor very
practical in large examples, although it can be effective in small ones.

If we consider why this lemma presents a problem, we quickly realize that
we need to replace the variable p by some pair (a, b). Then both sides of
the equation would simplify to a by the simplification rules split c (a, b)

= c a b and fst (a, b) = a. To reason about tuple patterns requires some
way of converting a variable of product type into a pair.

In case of a subterm of the form split f p this is easy: the split rule
split_split replaces p by a pair:

lemma "(λ(x,y).y) p = snd p"

apply(split split_split)

1. ∀ x y. p = (x, y) −→ y = snd p

This subgoal is easily proved by simplification. Thus we could have combined
simplification and splitting in one command that proves the goal outright:

by(simp split: split_split)

Let us look at a second example:

lemma "let (x,y) = p in fst p = x"

apply(simp only: Let_def)
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1. (λ(x, y). fst p = x) p

A paired let reduces to a paired λ-abstraction, which can be split as above.
The same is true for paired set comprehension:

lemma "p ∈ {(x,y). x=y} −→ fst p = snd p"

apply simp

1. split op = p −→ fst p = snd p

Again, simplification produces a term suitable for split_split as above. If
you are worried about the strange form of the premise: split op = is short
for λ(x,y). x=y. The same proof procedure works for

lemma "p ∈ {(x,y). x=y} =⇒ fst p = snd p"

except that we now have to use split_split_asm, because split occurs in the
assumptions.

However, splitting split is not always a solution, as no split may be
present in the goal. Consider the following function:

consts swap :: "’a × ’b ⇒ ’b × ’a"

primrec

"swap (x,y) = (y,x)"

Note that the above primrec definition is admissible because × is a datatype.
When we now try to prove

lemma "swap(swap p) = p"

simplification will do nothing, because the defining equation for swap expects
a pair. Again, we need to turn p into a pair first, but this time there is no
split in sight. In this case the only thing we can do is to split the term by
hand:

apply(case_tac p)

1.
∧
a b. p = (a, b) =⇒ swap (swap p) = p

Again, case_tac is applicable because × is a datatype. The subgoal is easily
proved by simp.

Splitting by case_tac also solves the previous examples and may thus
appear preferable to the more arcane methods introduced first. However, see
the warning about case_tac in Sect. 2.4.5.

In case the term to be split is a quantified variable, there are more op-
tions. You can split all

∧
-quantified variables in a goal with the rewrite rule

split_paired_all :

lemma "
∧
p q. swap(swap p) = q −→ p = q"

apply(simp only: split_paired_all)
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1.
∧
a b aa ba.
swap (swap (a, b)) = (aa, ba) −→ (a, b) = (aa, ba)

apply simp

done

Note that we have intentionally included only split_paired_all in the first
simplification step, and then we simplify again. This time the reason was not
merely pedagogical: split_paired_all may interfere with other functions of
the simplifier. The following command could fail (here it does not) where two
separate simp applications succeed.

apply(simp add: split_paired_all)

Finally, the simplifier automatically splits all ∀ and ∃ -quantified variables:

lemma "∀ p. ∃ q. swap p = swap q"

by simp

To turn off this automatic splitting, just disable the responsible simplification
rules:

(∀ x. P x) = (∀ a b. P (a, b)) (split_paired_All)
(∃ x. P x) = (∃ a b. P (a, b)) (split_paired_Ex)

8.3 Records

Records are familiar from programming languages. A record of n fields is
essentially an n-tuple, but the record’s components have names, which can
make expressions easier to read and reduces the risk of confusing one field
for another.

A record of Isabelle/HOL covers a collection of fields, with select and
update operations. Each field has a specified type, which may be polymorphic.
The field names are part of the record type, and the order of the fields is
significant — as it is in Pascal but not in Standard ML. If two different
record types have field names in common, then the ambiguity is resolved in
the usual way, by qualified names.

Record types can also be defined by extending other record types. Exten-
sible records make use of the reserved pseudo-field more , which is present in
every record type. Generic record operations work on all possible extensions
of a given type scheme; polymorphism takes care of structural sub-typing
behind the scenes. There are also explicit coercion functions between fixed
record types.
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8.3.1 Record Basics

Record types are not primitive in Isabelle and have a delicate internal rep-
resentation [19], based on nested copies of the primitive product type. A
record declaration introduces a new record type scheme by specifying its
fields, which are packaged internally to hold up the perception of the record
as a distinguished entity. Here is a simple example:

record point =

Xcoord :: int

Ycoord :: int

Records of type point have two fields named Xcoord and Ycoord, both of
type int. We now define a constant of type point :

constdefs

pt1 :: point

"pt1 ≡ (| Xcoord = 999, Ycoord = 23 |)"

We see above the ASCII notation for record brackets. You can also use
the symbolic brackets (| and |). Record type expressions can be also written
directly with individual fields. The type name above is merely an abbrevia-
tion.

constdefs

pt2 :: "(|Xcoord :: int, Ycoord :: int |)"
"pt2 ≡ (|Xcoord = -45, Ycoord = 97 |)"

For each field, there is a selector function of the same name. For exam-
ple, if p has type point then Xcoord p denotes the value of the Xcoord field
of p. Expressions involving field selection of explicit records are simplified
automatically:

lemma "Xcoord (|Xcoord = a, Ycoord = b |) = a"

by simp

The update operation is functional. For example, p(|Xcoord := 0 |) is a
record whose Xcoord value is zero and whose Ycoord value is copied from p.
Updates of explicit records are also simplified automatically:

lemma "(|Xcoord = a, Ycoord = b |)(|Xcoord := 0 |) =

(|Xcoord = 0, Ycoord = b |)"
by simp

! Field names are declared as constants and can no longer be used as variables. It
would be unwise, for example, to call the fields of type point simply x and y.
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8.3.2 Extensible Records and Generic Operations

Now, let us define coloured points (type cpoint) to be points extended with
a field col of type colour :

datatype colour = Red | Green | Blue

record cpoint = point +

col :: colour

The fields of this new type are Xcoord, Ycoord and col, in that order.

constdefs

cpt1 :: cpoint

"cpt1 ≡ (|Xcoord = 999, Ycoord = 23, col = Green |)"

We can define generic operations that work on arbitrary instances of a
record scheme, e.g. covering point, cpoint, and any further extensions. Every
record structure has an implicit pseudo-field, more , that keeps the extension
as an explicit value. Its type is declared as completely polymorphic: ’a. When
a fixed record value is expressed using just its standard fields, the value of
more is implicitly set to (), the empty tuple, which has type unit. Within the
record brackets, you can refer to the more field by writing “. . . ” (three dots):

lemma "Xcoord (|Xcoord = a, Ycoord = b, . . . = p |) = a"

by simp

This lemma applies to any record whose first two fields are Xcoord

and Ycoord. Note that (|Xcoord = a, Ycoord = b, . . . = () |) is exactly the
same as (|Xcoord = a, Ycoord = b |). Selectors and updates are always poly-
morphic wrt. the more part of a record scheme, its value is just ignored (for
select) or copied (for update).

The more pseudo-field may be manipulated directly as well, but the iden-
tifier needs to be qualified:

lemma "point.more cpt1 = (|col = Green |)"
by (simp add: cpt1_def)

We see that the colour part attached to this point is a rudimentary record
in its own right, namely (|col = Green |). In order to select or update col, this
fragment needs to be put back into the context of the parent type scheme,
say as more part of another point.

To define generic operations, we need to know a bit more about records.
Our definition of point above has generated two type abbreviations:

point = (|Xcoord :: int, Ycoord :: int |)
’a point_scheme = (|Xcoord :: int, Ycoord :: int, . . . :: ’a |)

Type point is for fixed records having exactly the two fields Xcoord

and Ycoord, while the polymorphic type ’a point_scheme comprises all pos-
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sible extensions to those two fields. Note that unit point_scheme coincides
with point, and (|col :: colour |) point_scheme with cpoint.

In the following example we define two operations — methods, if we regard
records as objects — to get and set any point’s Xcoord field.

constdefs

getX :: "’a point_scheme ⇒ int"

"getX r ≡ Xcoord r"

setX :: "’a point_scheme ⇒ int ⇒ ’a point_scheme"

"setX r a ≡ r(|Xcoord := a |)"

Here is a generic method that modifies a point, incrementing its Xcoord

field. The Ycoord and more fields are copied across. It works for any record
type scheme derived from point (including cpoint etc.):

constdefs

incX :: "’a point_scheme ⇒ ’a point_scheme"

"incX r ≡
(|Xcoord = Xcoord r + 1, Ycoord = Ycoord r, . . . = point.more r |)"

Generic theorems can be proved about generic methods. This trivial
lemma relates incX to getX and setX :

lemma "incX r = setX r (getX r + 1)"

by (simp add: getX_def setX_def incX_def)

! If you use the symbolic record brackets (| and |), then you must also use the
symbolic ellipsis, “. . . ”, rather than three consecutive periods, “...”. Mixing

the ASCII and symbolic versions causes a syntax error. (The two versions are more
distinct on screen than they are on paper.)

8.3.3 Record Equality

Two records are equal if all pairs of corresponding fields are equal. Concrete
record equalities are simplified automatically:

lemma "((|Xcoord = a, Ycoord = b |) = (|Xcoord = a’, Ycoord = b’ |)) =

(a = a’ ∧ b = b’)"

by simp

The following equality is similar, but generic, in that r can be any instance
of ’a point_scheme :

lemma "r(|Xcoord := a, Ycoord := b |) = r(|Ycoord := b, Xcoord := a |)"
by simp

We see above the syntax for iterated updates. We could equivalently have
written the left-hand side as r(|Xcoord := a |)(|Ycoord := b |).
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Record equality is extensional : a record is determined entirely by the
values of its fields.

lemma "r = (|Xcoord = Xcoord r, Ycoord = Ycoord r |)"
by simp

The generic version of this equality includes the pseudo-field more :

lemma "r = (|Xcoord = Xcoord r, Ycoord = Ycoord r, . . . = point.more r |)"
by simp

The simplifier can prove many record equalities automatically, but general
equality reasoning can be tricky. Consider proving this obvious fact:

lemma "r(|Xcoord := a |) = r(|Xcoord := a’ |) =⇒ a = a’"

apply simp?

oops

Here the simplifier can do nothing, since general record equality is not
eliminated automatically. One way to proceed is by an explicit forward step
that applies the selector Xcoord to both sides of the assumed record equality:

lemma "r(|Xcoord := a |) = r(|Xcoord := a’ |) =⇒ a = a’"

apply (drule_tac f = Xcoord in arg_cong)

1. Xcoord (r(|Xcoord := a |)) = Xcoord (r(|Xcoord := a’ |)) =⇒ a = a’

Now, simp will reduce the assumption to the desired conclusion.

apply simp

done

The cases method is preferable to such a forward proof. We state the
desired lemma again:

lemma "r(|Xcoord := a |) = r(|Xcoord := a’ |) =⇒ a = a’"

The cases method adds an equality to replace the named record term by
an explicit record expression, listing all fields. It even includes the pseudo-field
more, since the record equality stated here is generic for all extensions.

apply (cases r)

1.
∧
Xcoord Ycoord more.

[[r(|Xcoord := a |) = r(|Xcoord := a’ |);
r = (|Xcoord = Xcoord, Ycoord = Ycoord, . . . = more |)]]

=⇒ a = a’

Again, simp finishes the proof. Because r is now represented as an explicit
record construction, the updates can be applied and the record equality can
be replaced by equality of the corresponding fields (due to injectivity).
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apply simp

done

The generic cases method does not admit references to locally bound
parameters of a goal. In longer proof scripts one might have to fall back on
the primitive rule_tac used together with the internal field representation
rules of records. The above use of (cases r) would become (rule_tac r = r

in point.cases_scheme).

8.3.4 Extending and Truncating Records

Each record declaration introduces a number of derived operations to refer
collectively to a record’s fields and to convert between fixed record types.
They can, for instance, convert between types point and cpoint. We can add
a colour to a point or convert a cpoint to a point by forgetting its colour.

– Function make takes as arguments all of the record’s fields (including those
inherited from ancestors). It returns the corresponding record.

– Function fields takes the record’s very own fields and returns a record
fragment consisting of just those fields. This may be filled into the more

part of the parent record scheme.
– Function extend takes two arguments: a record to be extended and a record

containing the new fields.
– Function truncate takes a record (possibly an extension of the original

record type) and returns a fixed record, removing any additional fields.

These functions provide useful abbreviations for standard record expres-
sions involving constructors and selectors. The definitions, which are not
unfolded by default, are made available by the collective name of defs

(point.defs, cpoint.defs, etc.).
For example, here are the versions of those functions generated for record

point. We omit point.fields, which happens to be the same as point.make.

point.make Xcoord Ycoord ≡ (|Xcoord = Xcoord, Ycoord = Ycoord |)
point.extend r more ≡
(|Xcoord = Xcoord r, Ycoord = Ycoord r, . . . = more |)
point.truncate r ≡ (|Xcoord = Xcoord r, Ycoord = Ycoord r |)

Contrast those with the corresponding functions for record cpoint. Ob-
serve cpoint.fields in particular.

cpoint.make Xcoord Ycoord col ≡
(|Xcoord = Xcoord, Ycoord = Ycoord, col = col |)
cpoint.fields col ≡ (|col = col |)
cpoint.extend r more ≡
(|Xcoord = Xcoord r, Ycoord = Ycoord r, col = col r, . . . = more |)
cpoint.truncate r ≡
(|Xcoord = Xcoord r, Ycoord = Ycoord r, col = col r |)
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To demonstrate these functions, we declare a new coloured point by
extending an ordinary point. Function point.extend augments pt1 with a
colour value, which is converted into an appropriate record fragment by
cpoint.fields.

constdefs

cpt2 :: cpoint

"cpt2 ≡ point.extend pt1 (cpoint.fields Green)"

The coloured points cpt1 and cpt2 are equal. The proof is trivial, by
unfolding all the definitions. We deliberately omit the definition of pt1 in
order to reveal the underlying comparison on type point.

lemma "cpt1 = cpt2"

apply (simp add: cpt1_def cpt2_def point.defs cpoint.defs)

1. Xcoord pt1 = 999 ∧ Ycoord pt1 = 23

apply (simp add: pt1_def)

done

In the example below, a coloured point is truncated to leave a point. We
use the truncate function of the target record.

lemma "point.truncate cpt2 = pt1"

by (simp add: pt1_def cpt2_def point.defs)

Exercise 8.3.1 Extend record cpoint to have a further field, intensity, of
type nat. Experiment with generic operations (using polymorphic selectors
and updates) and explicit coercions (using extend, truncate etc.) among the
three record types.

Exercise 8.3.2 (For Java programmers.) Model a small class hierarchy using
records.

8.4 Axiomatic Type Classes

The programming language Haskell has popularized the notion of type
classes. In its simplest form, a type class is a set of types with a common
interface: all types in that class must provide the functions in the interface.
Isabelle offers the related concept of an axiomatic type class. Roughly
speaking, an axiomatic type class is a type class with axioms, i.e. an ax-
iomatic specification of a class of types. Thus we can talk about a type τ
being in a class C , which is written τ :: C . This is the case if τ satisfies the
axioms of C . Furthermore, type classes can be organized in a hierarchy. Thus
there is the notion of a class D being a subclass of a class C , written D < C .
This is the case if all axioms of C are also provable in D . We introduce these
concepts by means of a running example, ordering relations.
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8.4.1 Overloading

We start with a concept that is required for type classes but already useful
on its own: overloading. Isabelle allows overloading: a constant may have
multiple definitions at non-overlapping types.

An Initial Example. If we want to introduce the notion of an inverse for
arbitrary types we give it a polymorphic type

consts inverse :: "’a ⇒ ’a"

and provide different definitions at different instances:

defs (overloaded)

inverse_bool: "inverse(b::bool) ≡ ¬ b"

inverse_set: "inverse(A::’a set) ≡ -A"

inverse_pair: "inverse(p) ≡ (inverse(fst p), inverse(snd p))"

Isabelle will not complain because the three definitions do not overlap: no
two of the three types bool, ’a set and ’a × ’b have a common instance.
What is more, the recursion in inverse_pair is benign because the type of
inverse becomes smaller: on the left it is ’a × ’b ⇒ ’a × ’b but on the
right ’a ⇒ ’a and ’b ⇒ ’b. The annotation (overloaded) tells Isabelle
that the definitions do intentionally define inverse only at instances of its
declared type ’a ⇒ ’a — this merely suppresses warnings to that effect.

However, there is nothing to prevent the user from forming terms such
as inverse [] and proving theorems such as inverse [] = inverse [] when
inverse is not defined on lists. Proving theorems about unspecified constants
does not endanger soundness, but it is pointless. To prevent such terms from
even being formed requires the use of type classes.

Controlled Overloading with Type Classes. We now start with the
theory of ordering relations, which we shall phrase in terms of the two binary
symbols << and <<= to avoid clashes with < and <= in theory Main. To restrict
the application of << and <<= we introduce the class ordrel :

axclass ordrel < type

This introduces a new class ordrel and makes it a subclass of the predefined
class type, which is the class of all HOL types. This is a degenerate form of
axiomatic type class without any axioms. Its sole purpose is to restrict the
use of overloaded constants to meaningful instances:

consts less :: "(’a::ordrel) ⇒ ’a ⇒ bool" ( infixl "<<" 50)

le :: "(’a::ordrel) ⇒ ’a ⇒ bool" ( infixl "<<=" 50)

Note that only one occurrence of a type variable in a type needs to be con-
strained with a class; the constraint is propagated to the other occurrences
automatically.
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So far there are no types of class ordrel. To breathe life into ordrel we
need to declare a type to be an instance of ordrel :

instance bool :: ordrel

Command instance actually starts a proof, namely that bool satisfies all
axioms of ordrel. There are none, but we still need to finish that proof,
which we do by invoking the intro_classes method:

by intro_classes

More interesting instance proofs will arise below in the context of proper
axiomatic type classes.

Although terms like False <<= P are now legal, we still need to say what
the relation symbols actually mean at type bool :

defs (overloaded)

le_bool_def: "P <<= Q ≡ P −→ Q"

less_bool_def: "P << Q ≡ ¬P ∧ Q"

Now False <<= P is provable:

lemma "False <<= P"

by(simp add: le_bool_def)

At this point, [] <<= [] is not even well-typed. To make it well-typed, we
need to make lists a type of class ordrel :

instance list :: (type)ordrel

by intro_classes

This instance declaration can be read like the declaration of a function on
types. The constructor list maps types of class type (all HOL types), to
types of class ordrel ; in other words, if ty :: type then ty list :: ordrel.
Of course we should also define the meaning of <<= and << on lists:

defs (overloaded)
prefix_def:

"xs <<= (ys::’a::ordrel list) ≡ ∃ zs. ys = xs@zs"
strict_prefix_def:

"xs << (ys::’a::ordrel list) ≡ xs <<= ys ∧ xs 6= ys"

Of course this is not the only possible definition of the two relations.
Componentwise comparison of lists of equal length also makes sense. This
time the elements of the list must also be of class ordrel to permit their
comparison:

instance list :: (ordrel)ordrel

by intro_classes

defs (overloaded)

le_list_def: "xs <<= (ys::’a::ordrel list) ≡
size xs = size ys ∧ (∀ i<size xs. xs!i <<= ys!i)"
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The infix function ! yields the nth element of a list.

! A type constructor can be instantiated in only one way to a given type class.
For example, our two instantiations of list must reside in separate theories

with disjoint scopes.

Predefined Overloading. HOL comes with a number of overloaded con-
stants and corresponding classes. The most important ones are listed in Ta-
ble A.2 in the appendix. They are defined on all numeric types and sometimes
on other types as well, for example − and ≤ on sets.

In addition there is a special input syntax for bounded quantifiers:

∀ x ≤ y. P x ⇀ ∀ x. x ≤ y −→ P x

∃ x ≤ y. P x ⇀ ∃ x. x ≤ y ∧ P x

And analogously for < instead of ≤. The form on the left is translated into
the one on the right upon input. For technical reasons, it is not translated
back upon output.

8.4.2 Axioms

Attaching axioms to our classes lets us reason on the level of classes. The
results will be applicable to all types in a class, just as in axiomatic mathe-
matics. These ideas are demonstrated by means of our ordering relations.

Partial Orders. A partial order is a subclass of ordrel where certain axioms
need to hold:

axclass parord < ordrel

refl: "x <<= x"

trans: " [[ x <<= y; y <<= z ]] =⇒ x <<= z"

antisym: " [[ x <<= y; y <<= x ]] =⇒ x = y"

less_le: "x << y = (x <<= y ∧ x 6= y)"

The first three axioms are the familiar ones, and the final one requires that
<< and <<= are related as expected. Note that behind the scenes, Isabelle has
restricted the axioms to class parord. For example, the axiom refl really is
(?x ::?’a ::parord) <<= ?x.

We have not made less_le a global definition because it would fix once
and for all that << is defined in terms of <<= and never the other way around.
Below you will see why we want to avoid this asymmetry. The drawback of
our choice is that we need to define both <<= and << for each instance.

We can now prove simple theorems in this abstract setting, for example
that << is not symmetric:

lemma [simp]: "(x::’a::parord) << y =⇒ (¬ y << x) = True"
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The conclusion is not just ¬ y << x because the simplifier’s preprocessor (see
Sect. 9.1.2) would turn it into (y << x) = False, yielding a nonterminating
rewrite rule. (It would be used to try to prove its own precondition ad infini-
tum.) In the form above, the rule is useful. The type constraint is necessary
because otherwise Isabelle would only assume ’a::ordrel (as required in the
type of <<), when the proposition is not a theorem. The proof is easy:

by(simp add: less_le antisym)

We could now continue in this vein and develop a whole theory of results
about partial orders. Eventually we will want to apply these results to con-
crete types, namely the instances of the class. Thus we first need to prove
that the types in question, for example bool, are indeed instances of parord :

instance bool :: parord

apply intro_classes

This time intro_classes leaves us with the four axioms, specialized to type
bool, as subgoals:

1.
∧
x ::bool. x <<= x

2.
∧
(x ::bool) (y ::bool) z ::bool. [[x <<= y; y <<= z ]] =⇒ x <<= z

3.
∧
(x ::bool) y ::bool. [[x <<= y; y <<= x ]] =⇒ x = y

4.
∧
(x ::bool) y ::bool. (x << y) = (x <<= y ∧ x 6= y)

Fortunately, the proof is easy for blast once we have unfolded the definitions
of << and <<= at type bool :

apply(simp_all (no_asm_use) only: le_bool_def less_bool_def)

by(blast, blast, blast, blast)

Can you figure out why we have to include (no_asm_use)?
We can now apply our single lemma above in the context of booleans:

lemma "(P::bool) << Q =⇒ ¬(Q << P)"

by simp

The effect is not stunning, but it demonstrates the principle. It also shows
that tools like the simplifier can deal with generic rules. The main advantage
of the axiomatic method is that theorems can be proved in the abstract and
freely reused for each instance.

Linear Orders. If any two elements of a partial order are comparable it is
a linear or total order:

axclass linord < parord

linear: "x <<= y ∨ y <<= x"

By construction, linord inherits all axioms from parord. Therefore we can
show that linearity can be expressed in terms of << as follows:

lemma "
∧
x::’a::linord. x << y ∨ x = y ∨ y << x"

apply(simp add: less_le)
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apply(insert linear)

apply blast

done

Linear orders are an example of subclassing by construction, which is the
most common case. Subclass relationships can also be proved. This is the
topic of the following paragraph.

Strict Orders. An alternative axiomatization of partial orders takes <<

rather than <<= as the primary concept. The result is a strict order:

axclass strord < ordrel

irrefl: "¬ x << x"

less_trans: " [[ x << y; y << z ]] =⇒ x << z"

le_less: "x <<= y = (x << y ∨ x = y)"

It is well known that partial orders are the same as strict orders. Let us prove
one direction, namely that partial orders are a subclass of strict orders.

instance parord < strord

apply intro_classes

1.
∧
x ::’a. ¬ x << x

2.
∧
(x ::’a) (y ::’a) z ::’a. [[x << y; y << z ]] =⇒ x << z

3.
∧
(x ::’a) y ::’a. (x <<= y) = (x << y ∨ x = y)

type variables:
’a :: parord

Assuming ’a :: parord, the three axioms of class strord are easily proved:

apply(simp_all (no_asm_use) add: less_le)

apply(blast intro: trans antisym)

apply(blast intro: refl)

done

The subclass relation must always be acyclic. Therefore Isabelle will com-
plain if you also prove the relationship strord < parord.

Multiple Inheritance and Sorts. A class may inherit from more than
one direct superclass. This is called multiple inheritance. For example, we
could define the classes of well-founded orderings and well-orderings:

axclass wford < parord

wford: "wf {(y,x). y << x}"

axclass wellord < linord, wford

The last line expresses the usual definition: a well-ordering is a linear well-
founded ordering. The result is the subclass diagram in Figure 8.1.
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type
|

ordrel
|

strord
|

parord
/ \

linord wford
\ /
wellord

Fig. 8.1. Subclass Diagram

Since class wellord does not introduce any new axioms, it can simply be
viewed as the intersection of the two classes linord and wford. Such inter-
sections need not be given a new name but can be created on the fly: the
expression {C1, . . . ,Cn}, where the Ci are classes, represents the intersec-
tion of the Ci . Such an expression is called a sort, and sorts can appear in
most places where we have only shown classes so far, for example in type
constraints: ’a::{linord,wford}. In fact, ’a::C is short for ’a::{C}. However,
we do not pursue this rarefied concept further.

This concludes our demonstration of type classes based on orderings. We
remind our readers that Main contains a theory of orderings phrased in terms
of the usual ≤ and <. If possible, base your own ordering relations on this
theory.

Inconsistencies. The reader may be wondering what happens if we attach
an inconsistent set of axioms to a class. So far we have always avoided to add
new axioms to HOL for fear of inconsistencies and suddenly it seems that we
are throwing all caution to the wind. So why is there no problem?

The point is that by construction, all type variables in the axioms of
an axclass are automatically constrained with the class being defined (as
shown for axiom refl above). These constraints are always carried around
and Isabelle takes care that they are never lost, unless the type variable is
instantiated with a type that has been shown to belong to that class. Thus
you may be able to prove False from your axioms, but Isabelle will remind
you that this theorem has the hidden hypothesis that the class is non-empty.

Even if each individual class is consistent, intersections of (unrelated)
classes readily become inconsistent in practice. Now we know this need not
worry us.
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8.5 Introducing New Types

For most applications, a combination of predefined types like bool and ⇒
with recursive datatypes and records is quite sufficient. Very occasionally
you may feel the need for a more advanced type. If you are certain that your
type is not definable by any of the standard means, then read on.

! Types in HOL must be non-empty; otherwise the quantifier rules would be
unsound, because ∃x . x = x is a theorem.

8.5.1 Declaring New Types

The most trivial way of introducing a new type is by a type declaration:

typedecl my_new_type

This does not define my_new_type at all but merely introduces its name. Thus
we know nothing about this type, except that it is non-empty. Such declara-
tions without definitions are useful if that type can be viewed as a parameter
of the theory. A typical example is given in Sect. 6.6, where we define a tran-
sition relation over an arbitrary type of states.

In principle we can always get rid of such type declarations by making
those types parameters of every other type, thus keeping the theory generic.
In practice, however, the resulting clutter can make types hard to read.

If you are looking for a quick and dirty way of introducing a new type to-
gether with its properties: declare the type and state its properties as axioms.
Example:

axioms

just_one: "∃ x::my_new_type. ∀ y. x = y"

However, we strongly discourage this approach, except at explorative stages
of your development. It is extremely easy to write down contradictory sets
of axioms, in which case you will be able to prove everything but it will
mean nothing. In the example above, the axiomatic approach is unnecessary:
a one-element type called unit is already defined in HOL.

8.5.2 Defining New Types

Now we come to the most general means of safely introducing a new type,
the type definition. All other means, for example datatype, are based on
it. The principle is extremely simple: any non-empty subset of an existing
type can be turned into a new type. More precisely, the new type is specified
to be isomorphic to some non-empty subset of an existing type.

Let us work a simple example, the definition of a three-element type. It
is easily represented by the first three natural numbers:
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typedef three = "{0::nat, 1, 2}"

In order to enforce that the representing set on the right-hand side is non-
empty, this definition actually starts a proof to that effect:

1. ∃ x. x ∈ {0, 1, 2}

Fortunately, this is easy enough to show, even auto could do it. In general,
one has to provide a witness, in our case 0:

apply(rule_tac x = 0 in exI)

by simp

This type definition introduces the new type three and asserts that it is a
copy of the set {0, 1, 2}. This assertion is expressed via a bijection between
the type three and the set {0, 1, 2}. To this end, the command declares the
following constants behind the scenes:

three :: nat set

Rep_three :: three ⇒ nat

Abs_three :: nat ⇒ three

where constant three is explicitly defined as the representing set:

three ≡ {0, 1, 2} (three_def)

The situation is best summarized with the help of the following diagram,
where squares denote types and the irregular region denotes a set:

three

nat

{0,1,2}

Finally, typedef asserts that Rep_three is surjective on the subset three and
Abs_three and Rep_three are inverses of each other:

Rep_three x ∈ three (Rep_three)
Abs_three (Rep_three x) = x (Rep_three_inverse)

y ∈ three =⇒ Rep_three (Abs_three y) = y (Abs_three_inverse)

From this example it should be clear what typedef does in general given a
name (here three) and a set (here {0, 1, 2}).

Our next step is to define the basic functions expected on the new type.
Although this depends on the type at hand, the following strategy works well:

– define a small kernel of basic functions that can express all other functions
you anticipate.
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– define the kernel in terms of corresponding functions on the representing
type using Abs and Rep to convert between the two levels.

In our example it suffices to give the three elements of type three names:

constdefs

A:: three

"A ≡ Abs_three 0"

B:: three

"B ≡ Abs_three 1"

C :: three

"C ≡ Abs_three 2"

So far, everything was easy. But it is clear that reasoning about three

will be hell if we have to go back to nat every time. Thus our aim must be to
raise our level of abstraction by deriving enough theorems about type three

to characterize it completely. And those theorems should be phrased in terms
of A, B and C, not Abs_three and Rep_three. Because of the simplicity of the
example, we merely need to prove that A, B and C are distinct and that they
exhaust the type.

In processing our typedef declaration, Isabelle proves several helpful lem-
mas. The first two express injectivity of Rep_three and Abs_three :

(Rep_three x = Rep_three y) = (x = y) (Rep_three_inject)
[[x ∈ three; y ∈ three ]]

=⇒ (Abs_three x = Abs_three y) = (x = y)
(Abs_three_inject)

The following ones allow to replace some x::three by Abs_three(y::nat), and
conversely y by Rep_three x :

[[y ∈ three;
∧
x. y = Rep_three x =⇒ P ]] =⇒ P (Rep_three_cases)

(
∧
y. [[x = Abs_three y; y ∈ three ]] =⇒ P) =⇒ P (Abs_three_cases)

[[y ∈ three;
∧
x. P (Rep_three x) ]] =⇒ P y (Rep_three_induct)

(
∧
y. y ∈ three =⇒ P (Abs_three y)) =⇒ P x (Abs_three_induct)

These theorems are proved for any type definition, with three replaced by
the name of the type in question.

Distinctness of A, B and C follows immediately if we expand their defini-
tions and rewrite with the injectivity of Abs_three :

lemma "A 6= B ∧ B 6= A ∧ A 6= C ∧ C 6= A ∧ B 6= C ∧ C 6= B"

by(simp add: Abs_three_inject A_def B_def C_def three_def)

Of course we rely on the simplifier to solve goals like 0 6= 1.
The fact that A, B and C exhaust type three is best phrased as a case

distinction theorem: if you want to prove P x (where x is of type three) it
suffices to prove P A, P B and P C :

lemma three_cases: " [[ P A; P B; P C ]] =⇒ P x"

Again this follows easily from a pre-proved general theorem:
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apply(induct_tac x rule: Abs_three_induct)

1.
∧
y. [[P A; P B; P C; y ∈ three ]] =⇒ P (Abs_three y)

Simplification with three_def leads to the disjunction y = 0 ∨ y = 1 ∨ y =

2 which auto separates into three subgoals, each of which is easily solved by
simplification:

apply(auto simp add: three_def A_def B_def C_def)

done

This concludes the derivation of the characteristic theorems for type three.
The attentive reader has realized long ago that the above lengthy defini-

tion can be collapsed into one line:

datatype better_three = A | B | C

In fact, the datatype command performs internally more or less the same
derivations as we did, which gives you some idea what life would be like
without datatype.

Although three could be defined in one line, we have chosen this exam-
ple to demonstrate typedef because its simplicity makes the key concepts
particularly easy to grasp. If you would like to see a non-trivial example
that cannot be defined more directly, we recommend the definition of finite
multisets in the Library [4].

Let us conclude by summarizing the above procedure for defining a new
type. Given some abstract axiomatic description P of a type ty in terms of
a set of functions F , this involves three steps:

1. Find an appropriate type τ and subset A which has the desired properties
P , and make a type definition based on this representation.

2. Define the required functions F on ty by lifting analogous functions on
the representation via Abs ty and Rep ty .

3. Prove that P holds for ty by lifting P from the representation.

You can now forget about the representation and work solely in terms of the
abstract functions F and properties P .



9. Advanced Simplification, Recursion and
Induction

Although we have already learned a lot about simplification, recursion and
induction, there are some advanced proof techniques that we have not covered
yet and which are worth learning. The three sections of this chapter are almost
independent of each other and can be read in any order. Only the notion of
congruence rules, introduced in the section on simplification, is required for
parts of the section on recursion.

9.1 Simplification

This section describes features not covered until now. It also outlines the
simplification process itself, which can be helpful when the simplifier does
not do what you expect of it.

9.1.1 Advanced Features

Congruence Rules. While simplifying the conclusion Q of P =⇒ Q , it is
legal use the assumption P . For =⇒ this policy is hardwired, but contextual
information can also be made available for other operators. For example, xs
= [] −→ xs @ xs = xs simplifies to True because we may use xs = [] when
simplifying xs @ xs = xs. The generation of contextual information during
simplification is controlled by so-called congruence rules. This is the one
for −→:

[[P = P’; P’ =⇒ Q = Q’ ]] =⇒ (P −→ Q) = (P’ −→ Q’)

It should be read as follows: In order to simplify P −→ Q to P’ −→ Q’,
simplify P to P’ and assume P’ when simplifying Q to Q’.

Here are some more examples. The congruence rules for bounded quanti-
fiers supply contextual information about the bound variable:

[[A = B;
∧
x. x ∈ B =⇒ P x = Q x ]]

=⇒ (∀ x∈A. P x) = (∀ x∈B. Q x)

One congruence rule for conditional expressions supplies contextual informa-
tion for simplifying the then and else cases:
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[[b = c; c =⇒ x = u; ¬ c =⇒ y = v ]]
=⇒ (if b then x else y) = (if c then u else v)

An alternative congruence rule for conditional expressions actually prevents
simplification of some arguments:

b = c =⇒ (if b then x else y) = (if c then x else y)

Only the first argument is simplified; the others remain unchanged. This
makes simplification much faster and is faithful to the evaluation strategy in
programming languages, which is why this is the default congruence rule for
if. Analogous rules control the evaluation of case expressions.

You can declare your own congruence rules with the attribute cong , either
globally, in the usual manner,

declare theorem-name [cong]

or locally in a simp call by adding the modifier

cong: list of theorem names

The effect is reversed by cong del instead of cong.

! The congruence rule conj_cong

[[P = P’; P’ =⇒ Q = Q’ ]] =⇒ (P ∧ Q) = (P’ ∧ Q’)

is occasionally useful but is not a default rule; you have to declare it explicitly.

Permutative Rewrite Rules. An equation is a permutative rewrite
rule if the left-hand side and right-hand side are the same up to renaming of
variables. The most common permutative rule is commutativity: x + y = y +

x. Other examples include x - y - z = x - z - y in arithmetic and insert x

(insert y A) = insert y (insert x A) for sets. Such rules are problematic
because once they apply, they can be used forever. The simplifier is aware of
this danger and treats permutative rules by means of a special strategy, called
ordered rewriting: a permutative rewrite rule is only applied if the term
becomes smaller with respect to a fixed lexicographic ordering on terms. For
example, commutativity rewrites b + a to a + b, but then stops because a +

b is strictly smaller than b + a. Permutative rewrite rules can be turned into
simplification rules in the usual manner via the simp attribute; the simplifier
recognizes their special status automatically.

Permutative rewrite rules are most effective in the case of associative-
commutative functions. (Associativity by itself is not permutative.) When
dealing with an AC-function f , keep the following points in mind:

– The associative law must always be oriented from left to right, namely
f (f (x , y), z ) = f (x , f (y , z )). The opposite orientation, if used with commu-
tativity, can lead to nontermination.
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– To complete your set of rewrite rules, you must add not just associativ-
ity (A) and commutativity (C) but also a derived rule, left-commutativ-
ity (LC): f (x , f (y , z )) = f (y , f (x , z )).

Ordered rewriting with the combination of A, C, and LC sorts a term lexi-
cographically:

f (f (b, c), a) A; f (b, f (c, a)) C; f (b, f (a, c)) LC; f (a, f (b, c))

Note that ordered rewriting for + and * on numbers is rarely necessary
because the built-in arithmetic prover often succeeds without such tricks.

9.1.2 How the Simplifier Works

Roughly speaking, the simplifier proceeds bottom-up: subterms are simplified
first. A conditional equation is only applied if its condition can be proved,
again by simplification. Below we explain some special features of the rewrit-
ing process.

Higher-Order Patterns. So far we have pretended the simplifier can deal
with arbitrary rewrite rules. This is not quite true. For reasons of feasibility,
the simplifier expects the left-hand side of each rule to be a so-called higher-
order pattern [21]. This restricts where unknowns may occur. Higher-order
patterns are terms in β-normal form. (This means there are no subterms
of the form (λx .M )(N ).) Each occurrence of an unknown is of the form
?f x1 . . . xn , where the xi are distinct bound variables. Thus all ordinary
rewrite rules, where all unknowns are of base type, for example ?m + ?n + ?k

= ?m + (?n + ?k), are acceptable: if an unknown is of base type, it cannot
have any arguments. Additionally, the rule (∀ x. ?P x ∧ ?Q x) = ((∀ x. ?P

x) ∧ (∀ x. ?Q x)) is also acceptable, in both directions: all arguments of the
unknowns ?P and ?Q are distinct bound variables.

If the left-hand side is not a higher-order pattern, all is not lost. The
simplifier will still try to apply the rule provided it matches directly: with-
out much λ-calculus hocus pocus. For example, (?f ?x ∈ range ?f) = True

rewrites g a ∈ range g to True, but will fail to match g(h b) ∈ range(λx.

g(h x)). However, you can eliminate the offending subterms — those that are
not patterns — by adding new variables and conditions. In our example, we
eliminate ?f ?x and obtain ?y = ?f ?x =⇒ (?y ∈ range ?f) = True, which
is fine as a conditional rewrite rule since conditions can be arbitrary terms.
However, this trick is not a panacea because the newly introduced conditions
may be hard to solve.

There is no restriction on the form of the right-hand sides. They may not
contain extraneous term or type variables, though.
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The Preprocessor. When a theorem is declared a simplification rule, it
need not be a conditional equation already. The simplifier will turn it into a
set of conditional equations automatically. For example, f x = g x ∧ h x =

k x becomes the two separate simplification rules f x = g x and h x = k x.
In general, the input theorem is converted as follows:

¬P 7→ P = False

P −→ Q 7→ P =⇒ Q
P ∧Q 7→ P , Q
∀x . P x 7→ P ?x

∀x ∈ A. P x 7→ ?x ∈ A =⇒ P ?x
if P then Q else R 7→ P =⇒ Q , ¬P =⇒ R

Once this conversion process is finished, all remaining non-equations P are
turned into trivial equations P = True. For example, the formula

(p −→ t = u ∧ ¬ r) ∧ s

is converted into the three rules

p =⇒ t = u, p =⇒ r = False, s = True.

9.2 Advanced Forms of Recursion

This section introduces advanced forms of recdef : how to establish termina-
tion by means other than measure functions, how to define recursive functions
over nested recursive datatypes and how to deal with partial functions.

If, after reading this section, you feel that the definition of recursive func-
tions is overly complicated by the requirement of totality, you should ponder
the alternatives. In a logic of partial functions, recursive definitions are always
accepted. But there are many such logics, and no clear winner has emerged.
And in all of these logics you are (more or less frequently) required to reason
about the definedness of terms explicitly. Thus one shifts definedness argu-
ments from definition time to proof time. In HOL you may have to work hard
to define a function, but proofs can then proceed unencumbered by worries
about undefinedness.

9.2.1 Beyond Measure

So far, all recursive definitions were shown to terminate via measure func-
tions. Sometimes this can be inconvenient or impossible. Fortunately, recdef
supports much more general definitions. For example, termination of Acker-
mann’s function can be shown by means of the lexicographic product <*lex*> :
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consts ack :: "nat×nat ⇒ nat"

recdef ack "measure(λm. m) <*lex*> measure(λn. n)"

"ack(0,n) = Suc n"

"ack(Suc m,0) = ack(m, 1)"

"ack(Suc m,Suc n) = ack(m,ack(Suc m,n))"

The lexicographic product decreases if either its first component decreases
(as in the second equation and in the outer call in the third equation) or its
first component stays the same and the second component decreases (as in
the inner call in the third equation).

In general, recdef supports termination proofs based on arbitrary well-
founded relations as introduced in Sect. 6.4. This is called well-founded
recursion. A function definition is total if and only if the set of all pairs
(r , l), where l is the argument on the left-hand side of an equation and r the
argument of some recursive call on the corresponding right-hand side, induces
a well-founded relation. For a systematic account of termination proofs via
well-founded relations see, for example, Baader and Nipkow [3].

Each recdef definition should be accompanied (after the function’s name)
by a well-founded relation on the function’s argument type. Isabelle/HOL for-
malizes some of the most important constructions of well-founded relations
(see Sect. 6.4). For example, measure f is always well-founded. The lexico-
graphic product of two well-founded relations is again well-founded, which
we relied on when defining Ackermann’s function above. Of course the lexi-
cographic product can also be iterated:

consts contrived :: "nat × nat × nat ⇒ nat"

recdef contrived

"measure(λi. i) <*lex*> measure(λj. j) <*lex*> measure(λk. k)"

"contrived(i,j,Suc k) = contrived(i,j,k)"

"contrived(i,Suc j,0) = contrived(i,j,j)"

"contrived(Suc i,0,0) = contrived(i,i,i)"

"contrived(0,0,0) = 0"

Lexicographic products of measure functions already go a long way. Fur-
thermore, you may embed a type in an existing well-founded relation via the
inverse image construction inv_image. All these constructions are known to
recdef. Thus you will never have to prove well-foundedness of any relation
composed solely of these building blocks. But of course the proof of termi-
nation of your function definition — that the arguments decrease with every
recursive call — may still require you to provide additional lemmas.

It is also possible to use your own well-founded relations with recdef. For
example, the greater-than relation can be made well-founded by cutting it
off at a certain point. Here is an example of a recursive function that calls
itself with increasing values up to ten:
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consts f :: "nat ⇒ nat"

recdef f "{(i,j). j<i ∧ i ≤ (10::nat)}"

"f i = (if 10 ≤ i then 0 else i * f(Suc i))"

Since recdef is not prepared for the relation supplied above, Isabelle rejects
the definition. We should first have proved that our relation was well-founded:

lemma wf_greater: "wf {(i,j). j<i ∧ i ≤ (N::nat)}"

The proof is by showing that our relation is a subset of another well-founded
relation: one given by a measure function.

apply (rule wf_subset [of "measure (λk::nat. N-k)"], blast)

1. {(i, j). j < i ∧ i ≤ N} ⊆ measure (op - N)

The inclusion remains to be proved. After unfolding some definitions, we are
left with simple arithmetic:

apply (clarify, simp add: measure_def inv_image_def)

1.
∧
a b. [[b < a; a ≤ N ]] =⇒ N - a < N - b

And that is dispatched automatically:

by arith

Armed with this lemma, we use the recdef_wf attribute to attach a crucial
hint to our definition:

(hints recdef_wf: wf_greater)

Alternatively, we could have given measure (λk::nat. 10-k) for the well-
founded relation in our recdef. However, the arithmetic goal in the lemma
above would have arisen instead in the recdef termination proof, where we
have less control. A tailor-made termination relation makes even more sense
when it can be used in several function declarations.

9.2.2 Recursion Over Nested Datatypes

In Sect. 3.4.2 we defined the datatype of terms

datatype (’a,’b)"term" = Var ’a | App ’b "(’a,’b)term list"

and closed with the observation that the associated schema for the definition
of primitive recursive functions leads to overly verbose definitions. Moreover,
if you have worked exercise 3.4.3 you will have noticed that you needed to de-
clare essentially the same function as rev and prove many standard properties
of list reversal all over again. We will now show you how recdef can simplify
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definitions and proofs about nested recursive datatypes. As an example we
choose exercise 3.4.3:

consts trev :: "(’a,’b)term ⇒ (’a,’b)term"

Although the definition of trev below is quite natural, we will have to over-
come a minor difficulty in convincing Isabelle of its termination. It is precisely
this difficulty that is the raison d’être of this subsection.

Defining trev by recdef rather than primrec simplifies matters be-
cause we are now free to use the recursion equation suggested at the end
of Sect. 3.4.2:

recdef trev "measure size"

"trev (Var x) = Var x"

"trev (App f ts) = App f (rev(map trev ts))"

Remember that function size is defined for each datatype. However, the
definition does not succeed. Isabelle complains about an unproved termina-
tion condition

t ∈ set ts −→ size t < Suc (term_list_size ts)

where set returns the set of elements of a list and term_list_size :: term

list ⇒ nat is an auxiliary function automatically defined by Isabelle (while
processing the declaration of term). Why does the recursive call of trev lead
to this condition? Because recdef knows that map will apply trev only to
elements of ts. Thus the condition expresses that the size of the argument t

∈ set ts of any recursive call of trev is strictly less than size (App f ts),
which equals Suc (term_list_size ts). We will now prove the termination
condition and continue with our definition. Below we return to the question
of how recdef knows about map.

The termination condition is easily proved by induction:

lemma [simp]: "t ∈ set ts −→ size t < Suc(term_list_size ts)"

by(induct_tac ts, auto)

By making this theorem a simplification rule, recdef applies it automatically
and the definition of trev succeeds now. As a reward for our effort, we can now
prove the desired lemma directly. We no longer need the verbose induction
schema for type term and can use the simpler one arising from trev :

lemma "trev(trev t) = t"

apply(induct_tac t rule: trev.induct)

1.
∧
x. trev (trev (Var x)) = Var x

2.
∧
f ts.
∀ x. x ∈ set ts −→ trev (trev x) = x =⇒
trev (trev (App f ts)) = App f ts
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Both the base case and the induction step fall to simplification:

by(simp_all add: rev_map sym[OF map_compose] cong: map_cong)

If the proof of the induction step mystifies you, we recommend that you go
through the chain of simplification steps in detail; you will probably need the
help of trace_simp. Theorem map_cong is discussed below.

The definition of trev above is superior to the one in Sect. 3.4.2 because
it uses rev and lets us use existing facts such as rev (rev xs) = xs . Thus
this proof is a good example of an important principle:

Chose your definitions carefully
because they determine the complexity of your proofs.

Let us now return to the question of how recdef can come up with sensible
termination conditions in the presence of higher-order functions like map. For
a start, if nothing were known about map, then map trev ts might apply trev

to arbitrary terms, and thus recdef would try to prove the unprovable size

t < Suc (term_list_size ts), without any assumption about t. Therefore
recdef has been supplied with the congruence theorem map_cong :

[[xs = ys;
∧
x. x ∈ set ys =⇒ f x = g x ]]

=⇒ map f xs = map g ys

Its second premise expresses that in map f xs, function f is only applied to
elements of list xs. Congruence rules for other higher-order functions on lists
are similar. If you get into a situation where you need to supply recdef with
new congruence rules, you can append a hint after the end of the recursion
equations:

(hints recdef_cong: map_cong)

Or you can declare them globally by giving them the recdef_cong attribute:

declare map_cong[recdef_cong]

The cong and recdef_cong attributes are intentionally kept apart because
they control different activities, namely simplification and making recursive
definitions.

9.2.3 Partial Functions

Throughout this tutorial, we have emphasized that all functions in HOL are
total. We cannot hope to define truly partial functions, but must make them
total. A straightforward method is to lift the result type of the function from
τ to τ option (see 2.5.3), where None is returned if the function is applied
to an argument not in its domain. Function assoc in Sect. 3.4.4 is a simple
example. We do not pursue this schema further because it should be clear
how it works. Its main drawback is that the result of such a lifted function
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has to be unpacked first before it can be processed further. Its main advan-
tage is that you can distinguish if the function was applied to an argument
in its domain or not. If you do not need to make this distinction, for exam-
ple because the function is never used outside its domain, it is easier to work
with underdefined functions: for certain arguments we only know that a result
exists, but we do not know what it is. When defining functions that are nor-
mally considered partial, underdefinedness turns out to be a very reasonable
alternative.

We have already seen an instance of underdefinedness by means of non-
exhaustive pattern matching: the definition of last in Sect. 3.5.1. The same
is allowed for primrec

consts hd :: "’a list ⇒ ’a"

primrec "hd (x#xs) = x"

although it generates a warning. Even ordinary definitions allow underde-
finedness, this time by means of preconditions:

constdefs minus :: "nat ⇒ nat ⇒ nat"

"n ≤ m =⇒ minus m n ≡ m - n"

The rest of this section is devoted to the question of how to define partial
recursive functions by other means than non-exhaustive pattern matching.

Guarded Recursion. Neither primrec nor recdef allow to prefix an equa-
tion with a condition in the way ordinary definitions do (see minus above).
Instead we have to move the condition over to the right-hand side of the
equation. Given a partial function f that should satisfy the recursion equa-
tion f (x ) = t over its domain dom(f ), we turn this into the recdef

f x = (if x ∈ dom f then t else arbitrary)

where arbitrary is a predeclared constant of type ’a which has no defini-
tion. Thus we know nothing about its value, which is ideal for specifying
underdefined functions on top of it.

As a simple example we define division on nat :

consts divi :: "nat × nat ⇒ nat"

recdef divi "measure(λ(m,n). m)"

"divi(m,0) = arbitrary"

"divi(m,n) = (if m < n then 0 else divi(m-n,n)+1)"

Of course we could also have defined divi (m, 0) to be some specific number,
for example 0. The latter option is chosen for the predefined div function,
which simplifies proofs at the expense of deviating from the standard math-
ematical division function.

As a more substantial example we consider the problem of searching a
graph. For simplicity our graph is given by a function f of type ’a ⇒ ’a

which maps each node to its successor; the graph has out-degree 1. The task
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is to find the end of a chain, modelled by a node pointing to itself. Here is a
first attempt:

find (f, x) = (if f x = x then x else find (f, f x))

This may be viewed as a fixed point finder or as the second half of the well
known Union-Find algorithm. The snag is that it may not terminate if f has
non-trivial cycles. Phrased differently, the relation

constdefs step1 :: "(’a ⇒ ’a) ⇒ (’a × ’a)set"

"step1 f ≡ {(y,x). y = f x ∧ y 6= x}"

must be well-founded. Thus we make the following definition:

consts find :: "(’a ⇒ ’a) × ’a ⇒ ’a"

recdef find "same_fst (λf. wf(step1 f)) step1"

"find(f,x) = (if wf(step1 f)

then if f x = x then x else find(f, f x)

else arbitrary)"

(hints recdef_simp: step1_def)

The recursion equation itself should be clear enough: it is our aborted first
attempt augmented with a check that there are no non-trivial loops. To ex-
press the required well-founded relation we employ the predefined combinator
same_fst of type

(’a ⇒ bool) ⇒ (’a ⇒ (’b×’b)set) ⇒ ((’a×’b) × (’a×’b))set

defined as

same_fst P R ≡ {((x’, y’), x, y). x’ = x ∧ P x ∧ (y’, y) ∈ R x}

This combinator is designed for recursive functions on pairs where the first
component of the argument is passed unchanged to all recursive calls. Given
a constraint on the first component and a relation on the second component,
same_fst builds the required relation on pairs. The theorem

(
∧
x. P x =⇒ wf (R x)) =⇒ wf (same_fst P R)

is known to the well-foundedness prover of recdef. Thus well-foundedness
of the relation given to recdef is immediate. Furthermore, each recursive
call descends along that relation: the first argument stays unchanged and
the second one descends along step1 f. The proof requires unfolding the
definition of step1, as specified in the hints above.

Normally you will then derive the following conditional variant from the
recursion equation:

lemma [simp]:

"wf(step1 f) =⇒ find(f,x) = (if f x = x then x else find(f, f x))"

by simp

Then you should disable the original recursion equation:



9.2 Advanced Forms of Recursion 185

declare find.simps[simp del]

Reasoning about such underdefined functions is like that for other recur-
sive functions. Here is a simple example of recursion induction:

lemma "wf(step1 f) −→ f(find(f,x)) = find(f,x)"
apply(induct_tac f x rule: find.induct)
apply simp
done

The while Combinator. If the recursive function happens to be tail re-
cursive, its definition becomes a triviality if based on the predefined while

combinator. The latter lives in the Library theory While_Combinator .
Constant while is of type (’a ⇒ bool) ⇒ (’a ⇒ ’a) ⇒ ’a and satis-

fies the recursion equation

while b c s = (if b s then while b c (c s) else s)

That is, while b c s is equivalent to the imperative program

x := s; while b(x) do x := c(x); return x

In general, s will be a tuple or record. As an example consider the following
definition of function find :

constdefs find2 :: "(’a ⇒ ’a) ⇒ ’a ⇒ ’a"

"find2 f x ≡
fst(while (λ(x,x’). x’ 6= x) (λ(x,x’). (x’,f x’)) (x,f x))"

The loop operates on two “local variables” x and x’ containing the “current”
and the “next” value of function f. They are initialized with the global x and
f x. At the end fst selects the local x.

Although the definition of tail recursive functions via while avoids termi-
nation proofs, there is no free lunch. When proving properties of functions
defined by while, termination rears its ugly head again. Here is while_rule ,
the well known proof rule for total correctness of loops expressed with while :

[[P s;
∧
s. [[P s; b s ]] =⇒ P (c s);∧

s. [[P s; ¬ b s ]] =⇒ Q s; wf r;∧
s. [[P s; b s ]] =⇒ (c s, s) ∈ r ]]

=⇒ Q (while b c s)

P needs to be true of the initial state s and invariant under c (premises
1 and 2). The post-condition Q must become true when leaving the loop
(premise 3). And each loop iteration must descend along a well-founded re-
lation r (premises 4 and 5).

Let us now prove that find2 does indeed find a fixed point. Instead of
induction we apply the above while rule, suitably instantiated. Only the final
premise of while_rule is left unproved by auto but falls to simp :

lemma lem: "wf(step1 f) =⇒
∃ y. while (λ(x,x’). x’ 6= x) (λ(x,x’). (x’,f x’)) (x,f x) = (y,y) ∧

f y = y"
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apply(rule_tac P = "λ(x,x’). x’ = f x" and

r = "inv_image (step1 f) fst" in while_rule)

apply auto

apply(simp add: inv_image_def step1_def)

done

The theorem itself is a simple consequence of this lemma:

theorem "wf(step1 f) =⇒ f(find2 f x) = find2 f x"

apply(drule_tac x = x in lem)

apply(auto simp add: find2_def)

done

Let us conclude this section on partial functions by a discussion of the
merits of the while combinator. We have already seen that the advantage of
not having to provide a termination argument when defining a function via
while merely puts off the evil hour. On top of that, tail recursive functions
tend to be more complicated to reason about. So why use while at all? The
only reason is executability: the recursion equation for while is a directly
executable functional program. This is in stark contrast to guarded recursion
as introduced above which requires an explicit test x ∈ dom f in the func-
tion body. Unless dom is trivial, this leads to a definition that is impossible
to execute or prohibitively slow. Thus, if you are aiming for an efficiently
executable definition of a partial function, you are likely to need while.

9.3 Advanced Induction Techniques

Now that we have learned about rules and logic, we take another look at
the finer points of induction. We consider two questions: what to do if the
proposition to be proved is not directly amenable to induction (Sect. 9.3.1),
and how to utilize (Sect. 9.3.2) and even derive (Sect. 9.3.3) new induction
schemas. We conclude with an extended example of induction (Sect. 9.3.4).

9.3.1 Massaging the Proposition

Often we have assumed that the theorem to be proved is already in a form
that is amenable to induction, but sometimes it isn’t. Here is an example.
Since hd and last return the first and last element of a non-empty list, this
lemma looks easy to prove:

lemma "xs 6= [] =⇒ hd(rev xs) = last xs"

apply(induct_tac xs)

But induction produces the warning



9.3 Advanced Induction Techniques 187

Induction variable occurs also among premises!

and leads to the base case

1. xs 6= [] =⇒ hd (rev []) = last []

Simplification reduces the base case to this:

1. xs 6= [] =⇒ hd [] = last []

We cannot prove this equality because we do not know what hd and last

return when applied to [].
We should not have ignored the warning. Because the induction formula

is only the conclusion, induction does not affect the occurrence of xs in the
premises. Thus the case that should have been trivial becomes unprovable.
Fortunately, the solution is easy:1

Pull all occurrences of the induction variable into the conclusion us-
ing −→.

Thus we should state the lemma as an ordinary implication (−→), letting
rule_format (Sect. 5.14) convert the result to the usual =⇒ form:

lemma hd_rev [rule_format]: "xs 6= [] −→ hd(rev xs) = last xs"

This time, induction leaves us with a trivial base case:

1. [] 6= [] −→ hd (rev []) = last []

And auto completes the proof.
If there are multiple premises A1, . . . , An containing the induction vari-

able, you should turn the conclusion C into

A1 −→ · · ·An −→ C .

Additionally, you may also have to universally quantify some other variables,
which can yield a fairly complex conclusion. However, rule_format can re-
move any number of occurrences of ∀ and −→.

A second reason why your proposition may not be amenable to induction
is that you want to induct on a complex term, rather than a variable. In
general, induction on a term t requires rephrasing the conclusion C as

∀y1 . . . yn . x = t −→ C . (9.1)

where y1 . . . yn are the free variables in t and x is a new variable. Now you
can perform induction on x . An example appears in Sect. 9.3.2 below.

The very same problem may occur in connection with rule induction.
Remember that it requires a premise of the form (x1, . . . , xk ) ∈ R, where R
is some inductively defined set and the xi are variables. If instead we have a
premise t ∈ R, where t is not just an n-tuple of variables, we replace it with
(x1, . . . , xk ) ∈ R, and rephrase the conclusion C as
1 A similar heuristic applies to rule inductions; see Sect. 7.2.
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∀y1 . . . yn . (x1, . . . , xk ) = t −→ C .

For an example see Sect. 9.3.4 below.
Of course, all premises that share free variables with t need to be pulled

into the conclusion as well, under the ∀ , again using −→ as shown above.
Readers who are puzzled by the form of statement (9.1) above should

remember that the transformation is only performed to permit induction.
Once induction has been applied, the statement can be transformed back
into something quite intuitive. For example, applying wellfounded induction
on x (w.r.t. ≺) to (9.1) and transforming the result a little leads to the goal∧

y . ∀z . t z ≺ t y −→ C z =⇒ C y

where y stands for y1 . . . yn and the dependence of t and C on the free
variables of t has been made explicit. Unfortunately, this induction schema
cannot be expressed as a single theorem because it depends on the number
of free variables in t — the notation y is merely an informal device.

9.3.2 Beyond Structural and Recursion Induction

So far, inductive proofs were by structural induction for primitive recursive
functions and recursion induction for total recursive functions. But some-
times structural induction is awkward and there is no recursive function that
could furnish a more appropriate induction schema. In such cases a general-
purpose induction schema can be helpful. We show how to apply such induc-
tion schemas by an example.

Structural induction on nat is usually known as mathematical induc-
tion. There is also complete induction, where you prove P(n) under the
assumption that P(m) holds for all m < n. In Isabelle, this is the theorem
nat_less_induct :

(
∧
n. ∀ m. m < n −→ P m =⇒ P n) =⇒ P n

As an application, we prove a property of the following function:

consts f :: "nat ⇒ nat"

axioms f_ax: "f(f(n)) < f(Suc(n))"

! We discourage the use of axioms because of the danger of inconsistencies. Ax-
iom f_ax does not introduce an inconsistency because, for example, the identity

function satisfies it. Axioms can be useful in exploratory developments, say when
you assume some well-known theorems so that you can quickly demonstrate some
point about methodology. If your example turns into a substantial proof develop-
ment, you should replace axioms by theorems.

The axiom for f implies n ≤ f n, which can be proved by induction on f n .
Following the recipe outlined above, we have to phrase the proposition as
follows to allow induction:
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lemma f_incr_lem: "∀ i. k = f i −→ i ≤ f i"

To perform induction on k using nat_less_induct, we use the same general
induction method as for recursion induction (see Sect. 3.5.4):

apply(induct_tac k rule: nat_less_induct)

We get the following proof state:

1.
∧
n. ∀ m. m < n −→ (∀ i. m = f i −→ i ≤ f i) =⇒
∀ i. n = f i −→ i ≤ f i

After stripping the ∀ i, the proof continues with a case distinction on i. The
case i = 0 is trivial and we focus on the other case:

apply(rule allI)

apply(case_tac i)

apply(simp)

1.
∧
n i nat.

[[∀ m. m < n −→ (∀ i. m = f i −→ i ≤ f i); i = Suc nat ]]
=⇒ n = f i −→ i ≤ f i

by(blast intro!: f_ax Suc_leI intro: le_less_trans)

If you find the last step puzzling, here are the two lemmas it employs:

m < n =⇒ Suc m ≤ n (Suc_leI)
[[i ≤ j; j < k ]] =⇒ i < k (le_less_trans)

The proof goes like this (writing j instead of nat). Since i = Suc j it suffices
to show j < f (Suc j) , by Suc_leI . This is proved as follows. From f_ax we
have f (f j) < f (Suc j) (1) which implies f j ≤ f (f j) by the induc-
tion hypothesis. Using (1) once more we obtain f j < f (Suc j) (2) by the
transitivity rule le_less_trans. Using the induction hypothesis once more
we obtain j ≤ f j which, together with (2) yields j < f (Suc j) (again by
le_less_trans).

This last step shows both the power and the danger of automatic proofs.
They will usually not tell you how the proof goes, because it can be hard to
translate the internal proof into a human-readable format. Automatic proofs
are easy to write but hard to read and understand.

The desired result, i ≤ f i, follows from f_incr_lem :

lemmas f_incr = f_incr_lem[rule_format, OF refl]

The final refl gets rid of the premise ?k = f ?i. We could have included this
derivation in the original statement of the lemma:

lemma f_incr[rule_format, OF refl]: "∀ i. k = f i −→ i ≤ f i"

Exercise 9.3.1 From the axiom and lemma for f, show that f is the identity
function.
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Method induct_tac can be applied with any rule r whose conclusion is of
the form ?P ?x1 . . .?xn , in which case the format is

apply(induct_tac y1 . . . yn rule: r)

where y1, . . . , yn are variables in the first subgoal. The conclusion of r can
even be an (iterated) conjunction of formulae of the above form in which case
the application is

apply(induct_tac y1 . . . yn and . . . and z1 . . . zm rule: r)

A further useful induction rule is length_induct, induction on the length
of a list

(
∧
xs. ∀ ys. length ys < length xs −→ P ys =⇒ P xs) =⇒ P xs

which is a special case of measure_induct

(
∧
x. ∀ y. f y < f x −→ P y =⇒ P x) =⇒ P a

where f may be any function into type nat.

9.3.3 Derivation of New Induction Schemas

Induction schemas are ordinary theorems and you can derive new ones
whenever you wish. This section shows you how, using the example of
nat_less_induct. Assume we only have structural induction available for nat

and want to derive complete induction. We must generalize the statement as
shown:

lemma induct_lem: "(
∧
n::nat. ∀ m<n. P m =⇒ P n) =⇒ ∀ m<n. P m"

apply(induct_tac n)

The base case is vacuously true. For the induction step (m < Suc n) we dis-
tinguish two cases: case m < n is true by induction hypothesis and case m =

n follows from the assumption, again using the induction hypothesis:

apply(blast)

by(blast elim: less_SucE)

The elimination rule less_SucE expresses the case distinction:

[[m < Suc n; m < n =⇒ P; m = n =⇒ P ]] =⇒ P

Now it is straightforward to derive the original version of nat_less_induct
by manipulating the conclusion of the above lemma: instantiate n by Suc n

and m by n and remove the trivial condition n < Suc n. Fortunately, this
happens automatically when we add the lemma as a new premise to the
desired goal:

theorem nat_less_induct: "(
∧
n::nat. ∀ m<n. P m =⇒ P n) =⇒ P n"

by(insert induct_lem, blast)
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HOL already provides the mother of all inductions, well-founded in-
duction (see Sect. 6.4). For example theorem nat_less_induct is a special
case of wf_induct where r is < on nat. The details can be found in theory
Wellfounded_Recursion.

9.3.4 CTL Revisited

The purpose of this section is twofold: to demonstrate some of the induction
principles and heuristics discussed above and to show how inductive defi-
nitions can simplify proofs. In Sect. 6.6.2 we gave a fairly involved proof of
the correctness of a model checker for CTL. In particular the proof of the
infinity_lemma on the way to AF_lemma2 is not as simple as one might expect,
due to the SOME operator involved. Below we give a simpler proof of AF_lemma2
based on an auxiliary inductive definition.

Let us call a (finite or infinite) path A-avoiding if it does not touch any
node in the set A. Then AF_lemma2 says that if no infinite path from some state
s is A -avoiding, then s ∈ lfp (af A). We prove this by inductively defining
the set Avoid s A of states reachable from s by a finite A -avoiding path:

consts Avoid :: "state ⇒ state set ⇒ state set"

inductive "Avoid s A"

intros "s ∈ Avoid s A"

" [[ t ∈ Avoid s A; t /∈ A; (t,u) ∈ M ]] =⇒ u ∈ Avoid s A"

It is easy to see that for any infinite A -avoiding path f with f 0 ∈ Avoid

s A there is an infinite A -avoiding path starting with s because (by definition
of Avoid) there is a finite A -avoiding path from s to f 0. The proof is by
induction on f 0 ∈ Avoid s A. However, this requires the following reformu-
lation, as explained in Sect. 9.3.1 above; the rule_format directive undoes the
reformulation after the proof.

lemma ex_infinite_path[rule_format]:

"t ∈ Avoid s A =⇒
∀ f∈Paths t. (∀ i. f i /∈ A) −→ (∃ p∈Paths s. ∀ i. p i /∈ A)"

apply(erule Avoid.induct)

apply(blast)

apply(clarify)

apply(drule_tac x = "λi. case i of 0 ⇒ t | Suc i ⇒ f i" in bspec)

apply(simp_all add: Paths_def split: nat.split)

done

The base case (t = s) is trivial and proved by blast. In the induction step,
we have an infinite A -avoiding path f starting from u, a successor of t. Now
we simply instantiate the ∀ f∈Paths t in the induction hypothesis by the
path starting with t and continuing with f. That is what the above λ-term
expresses. Simplification shows that this is a path starting with t and that
the instantiated induction hypothesis implies the conclusion.
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Now we come to the key lemma. Assuming that no infinite A -avoiding
path starts from s, we want to show s ∈ lfp (af A). For the inductive proof
this must be generalized to the statement that every point t “between” s

and A, in other words all of Avoid s A, is contained in lfp (af A) :

lemma Avoid_in_lfp[rule_format(no_asm)]:

"∀ p∈Paths s. ∃ i. p i ∈ A =⇒ t ∈ Avoid s A −→ t ∈ lfp(af A)"

The proof is by induction on the “distance” between t and A. Remember that
lfp (af A) = A ∪ M−1 ‘‘ lfp (af A). If t is already in A, then t ∈ lfp (af

A) is trivial. If t is not in A but all successors are in lfp (af A) (induction
hypothesis), then t ∈ lfp (af A) is again trivial.

The formal counterpart of this proof sketch is a well-founded induction
on M restricted to Avoid s A - A, roughly speaking:

{(y, x). (x, y) ∈ M ∧ x ∈ Avoid s A ∧ x /∈ A}

As we shall see presently, the absence of infinite A -avoiding paths starting
from s implies well-foundedness of this relation. For the moment we assume
this and proceed with the induction:

apply(subgoal_tac "wf{(y,x). (x,y) ∈ M ∧ x ∈ Avoid s A ∧ x /∈ A}")

apply(erule_tac a = t in wf_induct)

apply(clarsimp)

1.
∧
t. [[∀ p∈Paths s. ∃ i. p i ∈ A; t ∈ Avoid s A;

∀ y. (t, y) ∈ M ∧ t /∈ A −→
y ∈ Avoid s A −→ y ∈ lfp (af A) ]]

=⇒ t ∈ lfp (af A)
2. ∀ p∈Paths s. ∃ i. p i ∈ A =⇒

wf {(y, x). (x, y) ∈ M ∧ x ∈ Avoid s A ∧ x /∈ A}

Now the induction hypothesis states that if t /∈ A then all successors of t

that are in Avoid s A are in lfp (af A). Unfolding lfp in the conclusion of
the first subgoal once, we have to prove that t is in A or all successors of
t are in lfp (af A). But if t is not in A, the second Avoid -rule implies that
all successors of t are in Avoid s A, because we also assume t ∈ Avoid s A.
Hence, by the induction hypothesis, all successors of t are indeed in lfp (af

A). Mechanically:

apply(subst lfp_unfold[OF mono_af])

apply(simp (no_asm) add: af_def)

apply(blast intro: Avoid.intros)

Having proved the main goal, we return to the proof obligation that the
relation used above is indeed well-founded. This is proved by contradiction: if
the relation is not well-founded then there exists an infinite A -avoiding path
all in Avoid s A, by theorem wf_iff_no_infinite_down_chain :

wf r = (¬ (∃ f. ∀ i. (f (Suc i), f i) ∈ r))
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From lemma ex_infinite_path the existence of an infinite A -avoiding path
starting in s follows, contradiction.

apply(erule contrapos_pp)

apply(simp add: wf_iff_no_infinite_down_chain)

apply(erule exE)

apply(rule ex_infinite_path)

apply(auto simp add: Paths_def)

done

The (no_asm) modifier of the rule_format directive in the statement of
the lemma means that the assumption is left unchanged; otherwise the ∀ p
would be turned into a

∧
p, which would complicate matters below. As it is,

Avoid_in_lfp is now

[[∀ p∈Paths s. ∃ i. p i ∈ A; t ∈ Avoid s A ]] =⇒ t ∈ lfp (af A)

The main theorem is simply the corollary where t = s, when the assumption
t ∈ Avoid s A is trivially true by the first Avoid -rule. Isabelle confirms this:

theorem AF_lemma2: "{s. ∀ p ∈ Paths s. ∃ i. p i ∈ A} ⊆ lfp(af A)"
by(auto elim: Avoid_in_lfp intro: Avoid.intros)





10. Case Study: Verifying a Security Protocol

Communications security is an ancient art. Julius Caesar is said to have
encrypted his messages, shifting each letter three places along the alphabet.
Mary Queen of Scots was convicted of treason after a cipher used in her
letters was broken. Today’s postal system incorporates security features. The
envelope provides a degree of secrecy. The signature provides authenticity
(proof of origin), as do departmental stamps and letterheads.

Networks are vulnerable: messages pass through many computers, any of
which might be controlled by an adversary, who thus can capture or redirect
messages. People who wish to communicate securely over such a network can
use cryptography, but if they are to understand each other, they need to
follow a protocol : a pre-arranged sequence of message formats.

Protocols can be attacked in many ways, even if encryption is unbreak-
able. A splicing attack involves an adversary’s sending a message composed
of parts of several old messages. This fake message may have the correct for-
mat, fooling an honest party. The adversary might be able to masquerade as
somebody else, or he might obtain a secret key.

Nonces help prevent splicing attacks. A typical nonce is a 20-byte random
number. Each message that requires a reply incorporates a nonce. The reply
must include a copy of that nonce, to prove that it is not a replay of a past
message. The nonce in the reply must be cryptographically protected, since
otherwise an adversary could easily replace it by a different one. You should
be starting to see that protocol design is tricky!

Researchers are developing methods for proving the correctness of security
protocols. The Needham-Schroeder public-key protocol [20] has become a
standard test case. Proposed in 1978, it was found to be defective nearly two
decades later [16]. This toy protocol will be useful in demonstrating how to
verify protocols using Isabelle.

10.1 The Needham-Schroeder Public-Key Protocol

This protocol uses public-key cryptography. Each person has a private key,
known only to himself, and a public key, known to everybody. If Alice wants
to send Bob a secret message, she encrypts it using Bob’s public key (which
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everybody knows), and sends it to Bob. Only Bob has the matching private
key, which is needed in order to decrypt Alice’s message.

The core of the Needham-Schroeder protocol consists of three messages:

1. A→ B : {|Na,A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A→ B : {|Nb|}Kb

First, let’s understand the notation. In the first message, Alice sends Bob a
message consisting of a nonce generated by Alice (Na) paired with Alice’s
name (A) and encrypted using Bob’s public key (Kb). In the second message,
Bob sends Alice a message consisting of Na paired with a nonce generated
by Bob (Nb), encrypted using Alice’s public key (Ka). In the last message,
Alice returns Nb to Bob, encrypted using his public key.

When Alice receives Message 2, she knows that Bob has acted on her
message, since only he could have decrypted {|Na,A|}Kb and extracted Na.
That is precisely what nonces are for. Similarly, message 3 assures Bob that
Alice is active. But the protocol was widely believed [6] to satisfy a further
property: that Na and Nb were secrets shared by Alice and Bob. (Many
protocols generate such shared secrets, which can be used to lessen the re-
liance on slow public-key operations.) Lowe found this claim to be false: if
Alice runs the protocol with someone untrustworthy (Charlie say), then he
can start a new run with another agent (Bob say). Charlie uses Alice as an
oracle, masquerading as Alice to Bob [16].

1. A→ C : {|Na,A|}Kc 1′. C → B : {|Na,A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A→ C : {|Nb|}Kc 3′. C → B : {|Nb|}Kb

In messages 1 and 3, Charlie removes the encryption using his private key
and re-encrypts Alice’s messages using Bob’s public key. Bob is left thinking
he has run the protocol with Alice, which was not Alice’s intention, and Bob
is unaware that the “secret” nonces are known to Charlie. This is a typical
man-in-the-middle attack launched by an insider.

Whether this counts as an attack has been disputed. In protocols of
this type, we normally assume that the other party is honest. To be hon-
est means to obey the protocol rules, so Alice’s running the protocol with
Charlie does not make her dishonest, just careless. After Lowe’s attack, Alice
has no grounds for complaint: this protocol does not have to guarantee any-
thing if you run it with a bad person. Bob does have grounds for complaint,
however: the protocol tells him that he is communicating with Alice (who is
honest) but it does not guarantee secrecy of the nonces.

Lowe also suggested a correction, namely to include Bob’s name in mes-
sage 2:
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1. A→ B : {|Na,A|}Kb

2. B → A : {|Na,Nb,B |}Ka

3. A→ B : {|Nb|}Kb

If Charlie tries the same attack, Alice will receive the message {|Na,Nb,B |}Ka

when she was expecting to receive {|Na,Nb,C |}Ka . She will abandon the run,
and eventually so will Bob. Below, we shall look at parts of this protocol’s
correctness proof.

In ground-breaking work, Lowe [16] showed how such attacks could be
found automatically using a model checker. An alternative, which we shall
examine below, is to prove protocols correct. Proofs can be done under more
realistic assumptions because our model does not have to be finite. The strat-
egy is to formalize the operational semantics of the system and to prove
security properties using rule induction.

10.2 Agents and Messages

All protocol specifications refer to a syntactic theory of messages. Datatype
agent introduces the constant Server (a trusted central machine, needed for
some protocols), an infinite population of friendly agents, and the Spy :

datatype agent = Server | Friend nat | Spy

Keys are just natural numbers. Function invKey maps a public key to the
matching private key, and vice versa:

types key = nat
consts invKey :: "key=>key"

Datatype msg introduces the message forms, which include agent names,
nonces, keys, compound messages, and encryptions.

datatype
msg = Agent agent

| Nonce nat
| Key key
| MPair msg msg
| Crypt key msg

The notation {|X1, . . .Xn−1,Xn |} abbreviates MPairX1 . . . (MPairXn−1 Xn).
Since datatype constructors are injective, we have the theorem

Crypt K X = Crypt K’ X’ =⇒ K=K’ ∧ X=X’.

A ciphertext can be decrypted using only one key and can yield only one
plaintext. In the real world, decryption with the wrong key succeeds but
yields garbage. Our model of encryption is realistic if encryption adds some
redundancy to the plaintext, such as a checksum, so that garbage can be
detected.
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10.3 Modelling the Adversary

The spy is part of the system and must be built into the model. He is a mali-
cious user who does not have to follow the protocol. He watches the network
and uses any keys he knows to decrypt messages. Thus he accumulates ad-
ditional keys and nonces. These he can use to compose new messages, which
he may send to anybody.

Two functions enable us to formalize this behaviour: analz and synth.
Each function maps a sets of messages to another set of messages. The set
analz H formalizes what the adversary can learn from the set of messages H .
The closure properties of this set are defined inductively.

consts analz :: "msg set => msg set"
inductive "analz H"

intros
Inj [intro,simp] : "X ∈ H =⇒ X ∈ analz H"
Fst: "{|X,Y |} ∈ analz H =⇒ X ∈ analz H"
Snd: "{|X,Y |} ∈ analz H =⇒ Y ∈ analz H"
Decrypt [dest]:

" [[Crypt K X ∈ analz H; Key(invKey K): analz H ]]
=⇒ X ∈ analz H"

Note the Decrypt rule: the spy can decrypt a message encrypted with key K
if he has the matching key, K−1. Properties proved by rule induction include
the following:

G⊆H =⇒ analz(G) ⊆ analz(H) (analz_mono)
analz (analz H) = analz H (analz_idem)

The set of fake messages that an intruder could invent starting from H is
synth(analz H), where synth H formalizes what the adversary can build from
the set of messages H .

consts synth :: "msg set => msg set"
inductive "synth H"

intros
Inj [intro]: "X ∈ H =⇒ X ∈ synth H"
Agent [intro]: "Agent agt ∈ synth H"
MPair [intro]:

" [[X ∈ synth H; Y ∈ synth H ]] =⇒ {|X,Y |} ∈ synth H"
Crypt [intro]:

" [[X ∈ synth H; Key K ∈ H ]] =⇒ Crypt K X ∈ synth H"

The set includes all agent names. Nonces and keys are assumed to be unguess-
able, so none are included beyond those already in H . Two elements of synth
H can be combined, and an element can be encrypted using a key present
in H .

Like analz, this set operator is monotone and idempotent. It also satisfies
an interesting equation involving analz :

analz (synth H) = analz H ∪ synth H (analz_synth)
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Rule inversion plays a major role in reasoning about synth, through declara-
tions such as this one:

inductive cases Nonce_synth [elim!]: "Nonce n ∈ synth H"

The resulting elimination rule replaces every assumption of the form Nonce n

∈ synth H by Nonce n ∈ H, expressing that a nonce cannot be guessed.
A third operator, parts, is useful for stating correctness properties. The set

parts H consists of the components of elements of H . This set includes H and
is closed under the projections from a compound message to its immediate
parts. Its definition resembles that of analz except in the rule corresponding
to the constructor Crypt :

Crypt K X ∈ parts H =⇒ X ∈ parts H

The body of an encrypted message is always regarded as part of it. We can
use parts to express general well-formedness properties of a protocol, for
example, that an uncompromised agent’s private key will never be included
as a component of any message.

10.4 Event Traces

The system’s behaviour is formalized as a set of traces of events. The most
important event, Says A B X, expresses A → B : X , which is the attempt
by A to send B the message X . A trace is simply a list, constructed in
reverse using #. Other event types include reception of messages (when we
want to make it explicit) and an agent’s storing a fact.

Sometimes the protocol requires an agent to generate a new nonce. The
probability that a 20-byte random number has appeared before is effectively
zero. To formalize this important property, the set used evs denotes the set of
all items mentioned in the trace evs. The function used has a straightforward
recursive definition. Here is the case for Says event:

used ((Says A B X) # evs) = parts {X} ∪ (used evs)

The function knows formalizes an agent’s knowledge. Mostly we only care
about the spy’s knowledge, and knows Spy evs is the set of items available
to the spy in the trace evs. Already in the empty trace, the spy starts with
some secrets at his disposal, such as the private keys of compromised users.
After each Says event, the spy learns the message that was sent:

knows Spy ((Says A B X) # evs) = parts {X} ∪ (knows Spy evs)

Combinations of functions express other important sets of messages derived
from evs :

– analz (knows Spy evs) is everything that the spy could learn by decryption
– synth (analz (knows Spy evs)) is everything that the spy could generate
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The function pubK maps agents to their public keys. The function priK

maps agents to their private keys. It is defined in terms of invKey and pubK

by a translation; therefore priK is not a proper constant, so we declare it
using syntax (cf. Sect. 4.1.4).

consts pubK :: "agent => key"
syntax priK :: "agent => key"
translations "priK x" 
 "invKey(pubK x)"

The set bad consists of those agents whose private keys are known to the spy.
Two axioms are asserted about the public-key cryptosystem. No two

agents have the same public key, and no private key equals any public key.

axioms
inj_pubK: "inj pubK"
priK_neq_pubK: "priK A 6= pubK B"

10.5 Modelling the Protocol

Let us formalize the Needham-Schroeder public-key protocol, as corrected by
Lowe:

1. A→ B : {|Na,A|}Kb

2. B → A : {|Na,Nb,B |}Ka

3. A→ B : {|Nb|}Kb

Each protocol step is specified by a rule of an inductive definition. An
event trace has type event list, so we declare the constant ns_public to be
a set of such traces.

consts ns_public :: "event list set"

Figure 10.1 presents the inductive definition. The Nil rule introduces the
empty trace. The Fake rule models the adversary’s sending a message built
from components taken from past traffic, expressed using the functions synth

and analz. The next three rules model how honest agents would perform the
three protocol steps.

Here is a detailed explanation of rule NS2. A trace containing an event of
the form

Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A |})

may be extended by an event of the form

Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})

where NB is a fresh nonce: Nonce NB /∈ used evs2. Writing the sender as A’

indicates that B does not know who sent the message. Calling the trace vari-
able evs2 rather than simply evs helps us know where we are in a proof after
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inductive ns_public
intros

Nil: "[] ∈ ns_public"

Fake: " [[evsf ∈ ns_public; X ∈ synth (analz (knows Spy evsf)) ]]
=⇒ Says Spy B X # evsf ∈ ns_public"

NS1: " [[evs1 ∈ ns_public; Nonce NA /∈ used evs1 ]]
=⇒ Says A B (Crypt (pubK B) {|Nonce NA, Agent A |})

# evs1 ∈ ns_public"

NS2: " [[evs2 ∈ ns_public; Nonce NB /∈ used evs2;
Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A |}) ∈ set evs2 ]]

=⇒ Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})
# evs2 ∈ ns_public"

NS3: " [[evs3 ∈ ns_public;
Says A B (Crypt (pubK B) {|Nonce NA, Agent A |}) ∈ set evs3;
Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})
∈ set evs3 ]]

=⇒ Says A B (Crypt (pubK B) (Nonce NB)) # evs3 ∈ ns_public"

Fig. 10.1. An Inductive Protocol Definition
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many case-splits: every subgoal mentioning evs2 involves message 2 of the
protocol.

Benefits of this approach are simplicity and clarity. The semantic model
is set theory, proofs are by induction and the translation from the informal
notation to the inductive rules is straightforward.

10.6 Proving Elementary Properties

Secrecy properties can be hard to prove. The conclusion of a typical secrecy
theorem is X /∈ analz (knows Spy evs). The difficulty arises from having to
reason about analz, or less formally, showing that the spy can never learn X.
Much easier is to prove that X can never occur at all. Such regularity prop-
erties are typically expressed using parts rather than analz.

The following lemma states that A ’s private key is potentially known to the
spy if and only if A belongs to the set bad of compromised agents. The state-
ment uses parts : the very presence of A ’s private key in a message, whether
protected by encryption or not, is enough to confirm that A is compromised.
The proof, like nearly all protocol proofs, is by induction over traces.

lemma Spy_see_priK [simp]:
"evs ∈ ns_public
=⇒ (Key (priK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"

apply (erule ns_public.induct, simp_all)

The induction yields five subgoals, one for each rule in the definition of
ns_public. The idea is to prove that the protocol property holds initially
(rule Nil), is preserved by each of the legitimate protocol steps (rules NS1–
3), and even is preserved in the face of anything the spy can do (rule Fake).

The proof is trivial. No legitimate protocol rule sends any keys at all,
so only Fake is relevant. Indeed, simplification leaves only the Fake case, as
indicated by the variable name evsf :

1.
∧
X evsf.

[[evsf ∈ ns_public;
(Key (priK A) ∈ parts (knows Spy evsf)) = (A ∈ bad);
X ∈ synth (analz (knows Spy evsf)) ]]

=⇒ (Key (priK A) ∈ parts (insert X (knows Spy evsf))) =
(A ∈ bad)

by blast

The Fake case is proved automatically. If priK A is in the extended trace
then either (1) it was already in the original trace or (2) it was generated by
the spy, who must have known this key already. Either way, the induction
hypothesis applies.

Unicity lemmas are regularity lemmas stating that specified items can
occur only once in a trace. The following lemma states that a nonce cannot
be used both as Na and as Nb unless it is known to the spy. Intuitively,
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it holds because honest agents always choose fresh values as nonces; only
the spy might reuse a value, and he doesn’t know this particular value. The
proof script is short: induction, simplification, blast. The first line uses the
rule rev_mp to prepare the induction by moving two assumptions into the
induction formula.

lemma no_nonce_NS1_NS2:
" [[Crypt (pubK C) {|NA’, Nonce NA, Agent D |} ∈ parts (knows Spy evs);

Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (knows Spy evs);
evs ∈ ns_public ]]

=⇒ Nonce NA ∈ analz (knows Spy evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule ns_public.induct, simp_all)
apply (blast intro: analz_insertI)+
done

The following unicity lemma states that, if NA is secret, then its appear-
ance in any instance of message 1 determines the other components. The
proof is similar to the previous one.

lemma unique_NA:
" [[Crypt(pubK B) {|Nonce NA, Agent A |} ∈ parts(knows Spy evs);
Crypt(pubK B’) {|Nonce NA, Agent A’ |} ∈ parts(knows Spy evs);
Nonce NA /∈ analz (knows Spy evs); evs ∈ ns_public ]]

=⇒ A=A’ ∧ B=B’"

10.7 Proving Secrecy Theorems

The secrecy theorems for Bob (the second participant) are especially impor-
tant because they fail for the original protocol. The following theorem states
that if Bob sends message 2 to Alice, and both agents are uncompromised,
then Bob’s nonce will never reach the spy.

theorem Spy_not_see_NB [dest]:
" [[Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns_public ]]
=⇒ Nonce NB /∈ analz (knows Spy evs)"

To prove it, we must formulate the induction properly (one of the assumptions
mentions evs), apply induction, and simplify:

apply (erule rev_mp, erule ns_public.induct, simp_all)

The proof states are too complicated to present in full. Let’s examine the
simplest subgoal, that for message 1. The following event has just occurred:

1. A′ → B ′ : {|Na ′,A′|}Kb′

The variables above have been primed because this step belongs to a different
run from that referred to in the theorem statement — the theorem refers to a
past instance of message 2, while this subgoal concerns message 1 being sent
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just now. In the Isabelle subgoal, instead of primed variables like B ′ and Na ′

we have Ba and NAa :

1.
∧
Ba NAa evs1.

[[A /∈ bad; B /∈ bad; evs1 ∈ ns_public;
Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})
∈ set evs1 −→
Nonce NB /∈ analz (knows Spy evs1);
Nonce NAa /∈ used evs1 ]]

=⇒ Ba ∈ bad −→
Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})
∈ set evs1 −→
NB 6= NAa

The simplifier has used a default simplification rule that does a case analysis
for each encrypted message on whether or not the decryption key is compro-
mised.

analz (insert (Crypt K X) H) =
(if Key (invKey K) ∈ analz H
then insert (Crypt K X) (anal z (insert X H))
else insert (Crypt K X) (analz H)) (analz_Crypt_if)

The simplifier has also used Spy_see_priK, proved in Sect. 10.6) above, to
yield Ba ∈ bad.

Recall that this subgoal concerns the case where the last message to be
sent was

1. A′ → B ′ : {|Na ′,A′|}Kb′ .

This message can compromise Nb only if Nb = Na ′ and B ′ is compromised,
allowing the spy to decrypt the message. The Isabelle subgoal says precisely
this, if we allow for its choice of variable names. Proving NB 6= NAa is easy: NB
was sent earlier, while NAa is fresh; formally, we have the assumption Nonce

NAa /∈ used evs1.
Note that our reasoning concerned B ’s participation in another run.

Agents may engage in several runs concurrently, and some attacks work by
interleaving the messages of two runs. With model checking, this possibility
can cause a state-space explosion, and for us it certainly complicates proofs.
The biggest subgoal concerns message 2. It splits into several cases, such as
whether or not the message just sent is the very message mentioned in the
theorem statement. Some of the cases are proved by unicity, others by the
induction hypothesis. For all those complications, the proofs are automatic
by blast with the theorem no_nonce_NS1_NS2.

The remaining theorems about the protocol are not hard to prove. The
following one asserts a form of authenticity : if B has sent an instance of
message 2 to A and has received the expected reply, then that reply really
originated with A. The proof is a simple induction.

theorem B_trusts_NS3:
" [[Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs;
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Says A’ B (Crypt (pubK B) (Nonce NB)) ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_public ]]

=⇒ Says A B (Crypt (pubK B) (Nonce NB)) ∈ set evs"

From similar assumptions, we can prove that A started the protocol run
by sending an instance of message 1 involving the nonce NA . For this theorem,
the conclusion is

Says A B (Crypt (pubK B) {|Nonce NA, Agent A |}) ∈ set evs

Analogous theorems can be proved for A, stating that nonce NA remains se-
cret and that message 2 really originates with B. Even the flawed protocol
establishes these properties for A ; the flaw only harms the second participant.

Detailed information on this protocol verification technique can be found
elsewhere [28], including proofs of an Internet protocol [29]. We must stress
that the protocol discussed in this chapter is trivial. There are only three
messages; no keys are exchanged; we merely have to prove that encrypted
data remains secret. Real world protocols are much longer and distribute
many secrets to their participants. To be realistic, the model has to include
the possibility of keys being lost dynamically due to carelessness. If those
keys have been used to encrypt other sensitive information, there may be
cascading losses. We may still be able to establish a bound on the losses and
to prove that other protocol runs function correctly [24]. Proofs of real-world
protocols follow the strategy illustrated above, but the subgoals can be much
bigger and there are more of them.
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You know my methods. Apply them!

Sherlock Holmes





A. Appendix

[[ [| \<lbrakk>
]] |] \<rbrakk>
=⇒ ==> \<Longrightarrow>∧

!! \<And>
≡ == \<equiv>

 == \<rightleftharpoons>
⇀ => \<rightharpoonup>
↽ <= \<leftharpoondown>
λ % \<lambda>
⇒ => \<Rightarrow>
∧ & \<and>
∨ | \<or>
−→ --> \<longrightarrow>
¬ ~ \<not>
6= ~= \<noteq>
∀ ALL, ! \<forall>
∃ EX, ? \<exists>
∃! EX!, ?! \<exists>!
ε SOME, @ \<epsilon>
◦ o \<circ>
| | abs \<bar> \<bar>
≤ <= \<le>
× * \<times>
∈ : \<in>
/∈ ~: \<notin>
⊆ <= \<subseteq>
⊂ < \<subset>
∪ Un \<union>
∩ Int \<inter>⋃

UN, Union \<Union>⋂
INT, Inter \<Inter>

∗ ^* \<^sup>*
−1 ^-1 \<inverse>

Table A.1. Mathematical Symbols, Their ascii-Equivalents and Internal Names



210 A. Appendix

Constant Type Syntax
0 ’a::zero
1 ’a::one
+ (’a::plus) ⇒ ’a ⇒ ’a (infixl 65)
- (’a::minus) ⇒ ’a ⇒ ’a (infixl 65)
- (’a::minus) ⇒ ’a
* (’a::times) ⇒ ’a ⇒ ’a (infixl 70)
div (’a::div) ⇒ ’a ⇒ ’a (infixl 70)
mod (’a::div) ⇒ ’a ⇒ ’a (infixl 70)
dvd (’a::times) ⇒ ’a ⇒ bool (infixl 50)
/ (’a::inverse) ⇒ ’a ⇒ ’a (infixl 70)
^ (’a::power) ⇒ nat ⇒ ’a (infixr 80)
abs (’a::minus) ⇒ ’a |x |
≤ (’a::ord) ⇒ ’a ⇒ bool (infixl 50)
< (’a::ord) ⇒ ’a ⇒ bool (infixl 50)
min (’a::ord) ⇒ ’a ⇒ ’a
max (’a::ord) ⇒ ’a ⇒ ’a
Least (’a::ord ⇒ bool) ⇒ ’a LEAST x . P

Table A.2. Overloaded Constants in HOL

ALL BIT CHR EX GREATEST INT Int LEAST O
OFCLASS PI PROP SIGMA SOME THE TYPE UN Un
WRT case choose div dvd else funcset if in
let mem mod o of op then

Table A.3. Reserved Words in HOL Terms
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!, 209
?, 209
∃! , 209
?!, 209
&, 209
~, 209
~=, 209
|, 209
[], 9
#, 9
@, 10, 209
/∈, 209
~:, 209⋂

, 209⋃
, 209

−1, 209
^-1, 209
∗, 209
^*, 209∧

, 12, 209
!!, 209
⇒, 5
[|, 209
|], 209
%, 209
;, 7
() (constant), 24
+ (tactical), 99
<*lex*>, see lexicographic product
? (tactical), 99
| (tactical), 99

0 (constant), 22, 23, 150
1 (constant), 23, 150, 151

abandoning a proof, 13
abandoning a theory, 16
abs (constant), 153
abs, 209
absolute value, 153
add (modifier), 29

add_ac (theorems), 152
add_assoc (theorem), 152
add_commute (theorem), 152
add_mult_distrib (theorem), 151
ALL, 209
All (constant), 109
allE (theorem), 81
allI (theorem), 80
antiquotation, 61
append function, 10–14
apply (command), 15
arg_cong (theorem), 96
arith (method), 23, 149
arithmetic operations
– for nat, 23
ascii symbols, 209
Aspinall, David, viii
associative-commutative function, 176
assumption (method), 69
assumptions
– of subgoal, 12
– renaming, 82–83
– reusing, 83
auto (method), 38, 92
axclass, 164–170
axiom of choice, 86
axiomatic type classes, 164–170

back (command), 78
Ball (constant), 109
ballI (theorem), 108
best (method), 92
Bex (constant), 109
bexE (theorem), 108
bexI (theorem), 108
bij_def (theorem), 110
bijections, 110
binary trees, 18
binomial coefficients, 109
bisimulations, 116
blast (method), 89–90, 92
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bool (type), 4, 5
boolean expressions example, 20–22
bspec (theorem), 108
by (command), 73

card (constant), 109
card_Pow (theorem), 109
card_Un_Int (theorem), 109
cardinality, 109
case (symbol), 32, 33
case expressions, 5, 6, 18
case distinctions, 19
case splits, 31
case_tac (method), 19, 101, 157
cases (method), 162
chapter (command), 59
clarify (method), 91, 92
clarsimp (method), 91, 92
classical (theorem), 73
coinduction, 116
Collect (constant), 109
compiling expressions example, 36–38
Compl_iff (theorem), 106
complement
– of a set, 105
composition
– of functions, 110
– of relations, 112
conclusion
– of subgoal, 12
conditional expressions, see if

expressions
conditional simplification rules, 31
cong (attribute), 176
congruence rules, 175
conjE (theorem), 71
conjI (theorem), 68
Cons (constant), 9
constdefs (command), 25
consts (command), 10
contrapositives, 73
converse
– of a relation, 112
converse_iff (theorem), 112
CTL, 121–126, 191–193

datatype (command), 9, 38–43
datatypes, 17–22
– and nested recursion, 40, 44
– mutually recursive, 38
– nested, 180
defer (command), 16, 100
Definitional Approach, 26

definitions, 25
– unfolding, 30
defs (command), 25
del (modifier), 29
description operators, 85–87
descriptions
– definite, 85
– indefinite, 86
dest (attribute), 102
destruction rules, 71
diff_mult_distrib (theorem), 151
difference
– of sets, 106
disjCI (theorem), 74
disjE (theorem), 70
div (symbol), 23
divides relation, 84, 95, 101–104, 152
division
– by negative numbers, 153
– by zero, 152
– for type nat, 151
documents, 57
domain
– of a relation, 112
Domain_iff (theorem), 112
done (command), 13
drule_tac (method), 76, 96
dvd_add (theorem), 152
dvd_anti_sym (theorem), 152
dvd_def (theorem), 152

elim! (attribute), 131
elimination rules, 69–70
end (command), 14
Eps (constant), 109
equality, 5
– of functions, 109
– of records, 161
– of sets, 106
equalityE (theorem), 106
equalityI (theorem), 106
erule (method), 70
erule_tac (method), 76
Euclid’s algorithm, 101–104
even numbers
– defining inductively, 127–131
EX, 209
Ex (constant), 109
exE (theorem), 82
exI (theorem), 82
ext (theorem), 109
extend (constant), 163
extensionality
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– for functions, 109, 110
– for records, 162
– for sets, 106
EX!, 209

False (constant), 5
fast (method), 92, 124
Fibonacci function, 47
fields (constant), 163
finite (symbol), 109
Finites (constant), 109
fixed points, 116
flags, 5, 6, 33
– setting and resetting, 5
force (method), 91, 92
formal comments, 61
formal proof documents, 57
formulae, 5–6
forward proof, 92–98
frule (method), 83
frule_tac (method), 76
fst (constant), 24
function types, 5
functions, 109–111
– partial, 182
– total, 11, 47–52
– underdefined, 183

gcd (constant), 93–94, 101–104
generalizing for induction, 129
generalizing induction formulae, 35
Girard, Jean-Yves, 71n
Gordon, Mike, 3
grammars
– defining inductively, 140–145
ground terms example, 135–140

hd (constant), 17, 37
header (command), 59
Hilbert’s ε-operator, 86
HOLCF, 43
Hopcroft, J. E., 145
hypreal (type), 155

Id_def (theorem), 112
id_def (theorem), 110
identifiers, 6
– qualified, 4
identity function, 110
identity relation, 112
if expressions, 5, 6
– simplification of, 33
– splitting of, 31, 49
if-and-only-if, 6

iff (attribute), 90, 102, 130
iffD1 (theorem), 94
iffD2 (theorem), 94
ignored material, 64
image
– under a function, 111
– under a relation, 112
image_def (theorem), 111
Image_iff (theorem), 112
impI (theorem), 72
implication, 72–73
ind_cases (method), 131
induct_tac (method), 12, 19, 52, 190
induction, 186–193
– complete, 188
– deriving new schemas, 190
– on a term, 187
– recursion, 51–52
– structural, 19
– well-founded, 115
induction heuristics, 34–36
inductive (command), 127
inductive definition
– simultaneous, 141
inductive definitions, 127–145
inductive cases (command), 131, 139
infinitely branching trees, 43
infix annotations, 53
infixr (annotation), 10
inj_on_def (theorem), 110
injections, 110
insert (constant), 107
insert (method), 97, 97, 98
instance, 166
INT, 209
Int, 209
int (type), 153–154
INT_iff (theorem), 108
IntD1 (theorem), 105
IntD2 (theorem), 105
integers, 153–154
INTER (constant), 109
Inter, 209
Inter_iff (theorem), 108
intersection, 105
– indexed, 108
IntI (theorem), 105
intro (method), 74
intro! (attribute), 128
intro_classes (method), 166
introduction rules, 68–69
inv (constant), 86
inv_image_def (theorem), 115
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inverse
– of a function, 110
– of a relation, 112
inverse image
– of a function, 111
– of a relation, 114
itrev (constant), 34

kill (command), 16

λ expressions, 5
LCF, 43
LEAST (symbol), 23, 85
least number operator, see LEAST
Leibniz, Gottfried Wilhelm, 53
lemma (command), 13
lemmas (command), 93, 102
length (symbol), 18
length_induct, 190
less_than (constant), 114
less_than_iff (theorem), 114
let expressions, 5, 6, 31
Let_def (theorem), 31
lex_prod_def (theorem), 115
lexicographic product, 115, 178
lfp
– applications of, see CTL
Library, 4
linear arithmetic, 22–24, 149
List (theory), 17
list (type), 5, 9, 17
list.split (theorem), 32
lists_mono (theorem), 137
Lowe, Gavin, 196–197

Main (theory), 4
major premise, 75
make (constant), 163
marginal comments, 61
markup commands, 59
max (constant), 23, 24
measure functions, 47, 114
measure_def (theorem), 115
meta-logic, 80
methods, 16
min (constant), 23, 24
mixfix annotations, 53
mod (symbol), 23
mod_div_equality (theorem), 151
mod_mult_distrib (theorem), 151
model checking example, 116–126
modus ponens, 67, 72
mono_def (theorem), 116
monotone functions, 116, 139

– and inductive definitions, 137–138
more (constant), 158, 160
mp (theorem), 72
mult_ac (theorems), 152
multiple inheritance, 169
multiset ordering, 115

nat (type), 4, 22, 151–153
nat_less_induct (theorem), 188
natural deduction, 67–68
natural numbers, 22, 151–153
Needham-Schroeder protocol, 195–197
negation, 73–75
Nil (constant), 9
no_asm (modifier), 29
no_asm_simp (modifier), 30
no_asm_use (modifier), 30
no_vars (attribute), 62
non-standard reals, 155
None (constant), 24
notE (theorem), 73
notI (theorem), 73
numbers, 149–155
numeric literals, 150
– for type nat, 151
– for type real, 155

O (symbol), 112
o, 209
o_def (theorem), 110
OF (attribute), 95–96, 96
of (attribute), 93, 96
only (modifier), 29
oops (command), 13
option (type), 24
ordered rewriting, 176
overloading, 23, 165–167
– and arithmetic, 150

pairs and tuples, 24, 155–158
parent theories, 4
pattern matching
– and recdef, 47
patterns
– higher-order, 177
PDL, 118–120
pr (command), 16, 100
prefer (command), 16, 100
prefix annotation, 55
primitive recursion, see recursion,

primitive
primrec (command), 10, 18, 41, 38–43
print mode, 55
product type, see pairs and tuples
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Proof General, 7
proof state, 12
proofs
– abandoning, 13
– examples of failing, 87–89
protocols
– security, 195–205

quantifiers, 6
– and inductive definitions, 135–137
– existential, 82
– for sets, 108
– instantiating, 84
– universal, 79–82

r_into_rtrancl (theorem), 112
r_into_trancl (theorem), 113
range
– of a function, 111
– of a relation, 112
range (symbol), 111
Range_iff (theorem), 112
Real (theory), 155
real (type), 154–155
real numbers, 154–155
recdef (command), 47–52, 114,

178–186
– and numeric literals, 150
recdef_cong (attribute), 182
recdef_simp (attribute), 49
recdef_wf (attribute), 180
record (command), 159
records, 158–164
– extensible, 160–161
recursion
– guarded, 183
– primitive, 18
– well-founded, 179
recursion induction, 51–52
redo (command), 16
reflexive and transitive closure, 112–114
reflexive transitive closure
– defining inductively, 132–135
rel_comp_def (theorem), 112
relations, 111–114
– well-founded, 114–115
rename_tac (method), 82–83
rev (constant), 10, 10–14, 34
rewrite rules, 27
– permutative, 176
rewriting, 27
rotate_tac (method), 30
rtrancl_refl (theorem), 112

rtrancl_trans (theorem), 112
rule induction, 128–130
rule inversion, 130–131, 139–140
rule_format (attribute), 187
rule_tac (method), 76
– and renaming, 83

safe (method), 91, 92
safe rules, 90
sect (command), 59
section (command), 59
selector
– record, 159
session, 58
set (type), 5, 105
set comprehensions, 107–108
set_ext (theorem), 106
sets, 105–109
– finite, 109
– notation for finite, 107
settings, see flags
show_brackets (flag), 6
show_types (flag), 5, 16
simp (attribute), 11, 28
simp (method), 28
simp del (attribute), 28
simp_all (method), 29, 38
simplification, 27–33, 175–178
– of let -expressions, 31
– with definitions, 30
– with/of assumptions, 29
simplification rule, 177–178
simplification rules, 28
– adding and deleting, 29
simplified (attribute), 93, 96
size (constant), 17
snd (constant), 24
SOME (symbol), 86
SOME, 209
Some (constant), 24
some_equality (theorem), 86
someI (theorem), 86
someI2 (theorem), 86
someI_ex (theorem), 87
sorts, 170
source comments, 60
spec (theorem), 80
split (attribute), 32
split (constant), 156
split (method), 31, 156
split (modifier), 32
split rule, 32
split_if (theorem), 32
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split_if_asm (theorem), 32
ssubst (theorem), 77
structural induction, see induction,

structural
subclasses, 164, 169
subgoal numbering, 46
subgoal_tac (method), 98
subgoals, 12
subsect (command), 59
subsection (command), 59
subset relation, 106
subsetD (theorem), 106
subsetI (theorem), 106
subst (method), 77
substitution, 77–79
subsubsect (command), 59
subsubsection (command), 59
Suc (constant), 22
surj_def (theorem), 110
surjections, 110
sym (theorem), 94
symbols, 54
syntax, 6, 11
syntax (command), 55
syntax (command), 56
syntax translations, 56

tacticals, 99
tactics, 12
term (command), 16
term rewriting, 27
termination, see functions, total
terms, 5
text, 61
text blocks, 61
THE (symbol), 85
the_equality (theorem), 85
THEN (attribute), 94, 96, 102
theorem (command), 11, 13
theories, 4
– abandoning, 16
theory (command), 16
theory files, 4
thm (command), 16
tl (constant), 17
ToyList example, 9–14
trace_simp (flag), 33
tracing the simplifier, 33
trancl_trans (theorem), 113
transition systems, 117
translations (command), 56
tries, 44–46
True (constant), 5

truncate (constant), 163
tuples, see pairs and tuples
txt, 61
typ (command), 16
type constraints, 6
type constructors, 5
type inference, 5
type synonyms, 25
type variables, 5
typedecl (command), 117, 171
typedef (command), 171–174
types, 4–5
– declaring, 171
– defining, 171–174
types (command), 25

Ullman, J. D., 145
UN, 209
Un, 209
UN_E (theorem), 108
UN_I (theorem), 108
UN_iff (theorem), 108
Un_subset_iff (theorem), 106
undo (command), 16
unfold (method), 31
unification, 76–79
UNION (constant), 109
Union, 209
union
– indexed, 108
Union_iff (theorem), 108
unit (type), 24
unknowns, 7, 68
unsafe rules, 90
update
– record, 159
updating a function, 109

variables, 7
– schematic, 7
– type, 5
vimage_def (theorem), 111

wf_induct (theorem), 115
wf_inv_image (theorem), 115
wf_less_than (theorem), 114
wf_lex_prod (theorem), 115
wf_measure (theorem), 115
wf_subset (theorem), 180
while (constant), 185
While_Combinator (theory), 185
while_rule (theorem), 185

zadd_ac (theorems), 153
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zmult_ac (theorems), 153
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