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The quality of today’s main-stream operating systems
is not sufficient for safety-critical and security-critical
applications. In this paper we discuss several possible
approaches to build an operating system that is safer
and more secure. We especially focus on the approach
taken in the VFiasco project on the verification of the
Fiasco microkernel operating system. In this project,
we use the general-purpose theorem prover PVS to me-
chanically verify the C++ sources of Fiasco.

1 Introduction

The VFiasco project [8, 14] aims at the formal verifi-
cation of a small operating-system (OS) kernel, the L4-
compatible Fiasco microkernel [6]. In this paper, we
explain the reasons that have led us to tackle verifying
Fiasco’s original C++ source code instead of reimple-
menting Fiasco in a “safe” programming language such
as Haskell or OCaml.

Typical desktop and hand-held computers are used
for many functions, often in parallel. These applica-
tions frequently include security-sensitive ones, such
as online banking, virtual private networks, or digital
rights management. This type of computer use im-
poses two, often conflicting requirements: On the one
hand, the mixed-use scenario usually necessitates the
use of a full-featured, standard, general-purpose OS.
On the other hand, security-sensitive applications must
rely on, ortrust, their operating environment to protect
the application’s security guarantees.

Standard OSes have become so large that a com-
plete security audit or the formal verification of security
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properties is absolutely illusory. This fact is illustrated
by a steady stream of security-leak disclosures for all
major operating systems. It seems that, for the time
being, we just have to live with the bugs of standard
OSes.

In response, many researchers have tried to reduce
the size of a system’s trusted computing base by run-
ning kernels in untrusted mode in a secure compart-
ment on top of a small security kernel, such as a mi-
crokernel or a hypervisor; security-sensitive services
run alongside the OS in isolated compartments of their
own. This architecture is widely referred to askernel-
ized standard OSor kernelized system. In this archi-
tecture, the standard OS and applications have been re-
moved from the secure applications’ trusted computing
base. The root of trust is placed into the small secu-
rity kernel, which confines unsafe system components
in hardware-protected compartments—usually address
spaces.

Several recent research projects have shown that
contemporary security kernels impose low perfor-
mance overhead, making them practical. Their source
code is several orders of magnitude smaller than that of
typical standard-OS kernels, which puts them into the
realm of today’s formal-verification technology. For
example, the Fiasco microkernel has less than 15,000
lines of source code.

The goal of formally verifying a small OS kernel
raises the question of how the choice of the kernel’s
implementation language can facilitate the verification.
In discussing this question we focus on a kernel that
runs on standard hardware and supports untrusted bi-
nary user programs running in separate confined ad-
dress spaces (i.e., we consider mainstream PCs and
hand-helds but exclude, for instance, smart cards).
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Modern programming languages with strong type-
safety properties can potentially reduce the burden of
manually proving a program’s safety. However, in this
paper we argue that using a “safe” programming lan-
guage may have quantitative but no qualitative advan-
tages for kernel verification. In other words, with a
strong type system one might have fewer proof obli-
gations, but one still has proof obligations of all kinds.
In particular, even with the strongest type system there
remain type-correctness proof goals that one naively
would assume to be subsumed by the type system.
Moreover, the proof goals that are indeed subsumed by
the type system are simple and can be discharged auto-
matically (when using the right technology).

In the next section we start with the discussion of
semi-formal methods to improve the code quality. We
then discuss how three different kinds of formal meth-
ods can contribute to a secure operating system. Sec-
tion 3 discusses the approach that we take in the VFi-
asco project.

2 The need for formal methods

Recently several groups worked on methods to improve
the quality of the kernel source code or to counterbal-
ance known weaknesses of the programming language
C, which is used for most kernels. We mention only
two examples here: With lint-like static checks one can
find violations of programming patterns like “validate
pointers from user land before dereferencing them” in
the source code [4]. To complicate attacks, one can
encrypt every pointer in memory such that an attacker
cannot walk through and modify kernel data structures
in memory [2].

We refer to these and similar methods assemi-
formal. Although such methods make attacks signif-
icantly harder, they cannot be used to guarantee that
successful attacks are impossible. Semi-formal meth-
ods are a relatively inexpensive means to improve the
average level of security. However, they are not suffi-
cient to avert a professional attack.

In contrast,formalmethods are based on some math-
ematical theory that can be used to prove certain prop-
erties. With a strong type system one can, for in-
stance, use a different type for user-land pointers and
thus guarantee that they are never dereferenced with-
out the necessary checks.

In the following we elaborate on different formal
methods and their strengths and weaknesses when ap-
plied to operating systems. We distinguish three differ-
ent kinds of formal methods:

• Use a strongly-typed programming language for
kernel programming.

• Run the kernel in an environment that enforces se-
curity, such as a virtual machine.

• Apply verification and model-checking tech-
niques to the kernel code.

We discuss each of these points in the following sub-
sections.

2.1 “Modern languages” with strong
type systems

Several projects develop operating systems in strongly
typed functional languages like Haskell or BitC, see for
instance [5, 11]. The strong type system makes many
typical C-programming errors impossible. Moreover, if
the language features abstract types, it can enforce the
use of certain interfaces and thereby provide guarantees
that certain tests and actions are always applied.

However, there are two problems: First, often some
parts of the system are implemented in C or assembly.
In House [5], for instance, low-level primitives for al-
location and system calls are not written in Haskell.
It is clear that in such a case the foreign code might
break the type system. Shapiro and colleagues [11] use
the specifically designed language BitC to avoid this
problem. In BitC one can manipulate address spaces
(by writing to the corresponding hardware data struc-
tures). However, and this is the second problem, writ-
ing a wrong value into a page directory might distort
the kernel memory and make all guarantees of the type
system meaningless.

On a closer lock it appears that operations like
address-space manipulation have a dependent type.1

Type checking dependent types is undecidable in gen-
eral. The validity of an address-space manipulation de-
pends on the history of the system, so it is clearly unde-
cidable. We conclude that, even in case the whole sys-
tem is written in a strongly-typed language, the guar-
antees of the type system might not be valid because of
a wrong address-space manipulation.

In this light, the use of a strong type system appears
to be a quantitative rather than a qualitative measure. A
strong type system can probably reduce the number of
programming errors significantly, however in the pres-
ence of address-space manipulations itcannotguaran-
tee the type correctness of the program. Thus, even
with a strong type system, proof obligations about cor-
rect typing remain.

1The typeof some argument depends on thevalueof some other
argument. For operating systems the range of valid values some-
times depends on the state of the whole memory.
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2.2 Safe environments

One can think of an operating system written in Java
and executed by a virtual machine such that important
security properties are expressed with Java’s type sys-
tem. This way the virtual machine will detect secu-
rity violations with its byte-code type checking. How-
ever, the security of the whole system depends on the
correctness of the virtual machine. Further, to host an
operating system one needs operating system function-
ality itself in the virtual machine. Therefore, virtual
machines do not solve the original problem.

With proof-carrying code [10] one can download
user-level code into the kernel in a secure way. How-
ever, to employ proof-carrying code one has to have a
correctly-working minimal kernel with a proof checker
in the first place.

2.3 Verification

Software verification establishes properties of a math-
ematical theory that has been extracted from the soft-
ware. One can distinguish model checking from veri-
fication with denotational, operational or axiomatic se-
mantics. With model checking one explores the finite
state space of an abstract model. Subtle errors in parts
of the system that have been abstracted away can po-
tentially invalidate the model-checking results.

In an experiment we applied the model checker
Spin to Fiasco’s code for inter-process communication
(IPC) [3]. Although the model contained only a very
rudimentary version of Fiasco’s IPC (only two threads,
no timeouts, no message buffer), the model checker
used almost 2 GB main memory and more than 15 GB
on the hard disk. We doubt that one can model check
the full IPC path, let alone a realistic number of threads
with today’s hardware.

Up to this point we saw that all discussed techniques
can only reduce the number of programming errors
and the remaining security risk. None of these tech-
niques can provide guarantees. It remains to look at
one approach we have omitted so far: Software verifi-
cation on the basis of a semantics of the full program.
Traditionally, software verification was only applied to
theoretically clean, artificial programming languages.
Only recently formalisms, logics and tools have been
developed to deal, for example, with Java [9, 1]. It
has been general belief that it is impossible to verify
programs written in C or C++ that exploit features like
goto jumps, type casts andsetjmp /longjmp . In the
following section we show that a denotational seman-
tics for a subset of C++ that includes these features is
surprisingly simple.

3 The VFiasco approach:
Verification of unmodified
C++ source code

In the preceding section we argued that in order to give
guarantees about the functionality of an operating sys-
tem one finally has to use verification. In the VFiasco
project we decided to attempt the verification of the
C++ source code of the Fiasco microkernel. The verifi-
cation of C++ certainly incurs higher verification costs,
but has the advantage that we can obtain results for a
system that can be used in practice.

Here we sketch how we model two major features
of C++: the various jump statements likebreak ,
longjmp , goto ; and the type cast that can especially
be used to turn integers into pointers. From a theo-
retical point of view one might ask why one should
treat these features at all. The point is that in the kernel
oneneedsto cast integers into pointers (for the mem-
ory management), oneneedsto longjmp (to abort an
infinite loop of page faults), and oneneedsgoto (for
efficiency and a clearer program structure).

To model the various jumping statements we follow
Jacobs’ approach in the semantics of Java [9]: We use
a complex state that is a disjoint union likeok(mem)]
break(mem)]goto(mem×label)]fail . . ., whereok ,
break , goto and fail are all injections. This way the
complex state captures some kind of execution mode.
Apart from the valuefail , which models the crash of
the program, a complex state contains always the cur-
rent memorymem. In the following we let the term
state transformerdenote a function that maps a com-
plex state to a complex state. The state transformers
form our semantic domain: The semantics of every
C++ statement is captured in a state transformer.

State transformers pay attention to the execution
mode of their starting state. If the execution mode is
ok the next statement is executed as expected and the
memory might change. For the other modes the follow-
ing statements are skipped, except for the case that the
current complex state is of the formgoto(m, l) and the
next statement is labelled withl. In this case the label
transforms the complex state intook(m) and normal
execution continues. Similarly to labels, the semantics
of loops transforms an end statebreak(m) into ok(m).

The approach outlined in the preceding paragraph is
remarkably simple. It requires neither complete par-
tial orderings nor continuous functions nor continua-
tions. Nevertheless it can handle while loops and all
kinds of jump statements, even jumps into and out
of nested blocks, such as loops orthen and else
clauses. Recently we used this approach to verify
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Duff’s device, a particularly strange piece of code that
uses aswitch statement to branch into the middle of
a while loop [13]. This case study showed that, af-
ter setting up the right theorem-proving technology (in
this case a set of rewrite-lemmas), all those goals that
would be subsumed by a stronger type system, were
proved automatically. This shows that with the right
technology, using a strong type system bears no signif-
icant advantage.

As a last point we outline how we model type casts,
especially those that cast integers into pointers. There
are a few points to note: First, type casts can hap-
pen implicitly, for instance, if one writes integers to
the memory and reads floats back from the same ad-
dress. In this case the read operation can cause an er-
ror because the bit pattern might not represent a valid
floating point number. Second, the cast alone can never
cause any errors. An error can only occur if the result-
ing pointer is used to read data from memory. Third, in
general almost all write operations are harmless.2 One
can (possibly partially) overwrite data in the memory
but an error can only occur if one attempts to read the
original data later.

We exploit the great level of under-specification that
is present in the C++ standard to model explicit and
implicit type casts [7]. The semantic functions that
read from and write to memory are axiomatically spec-
ified in a way that leaves many aspects of their behavior
open. For instance, we don’t specify that integers are
stored as two’s complement. This way one can derive
that reading an integer after writing one on the same
address yields the original integer. However, for the
case of reading a float on a location where integers have
been written, one can derive nothing, not even that the
system does not crash. Valid type casts can easily be
introduced via additional axioms.

Within our approach, to prove that a program is type
correct it is sufficient to prove that it does not crash.
Note that our approach does correctly handle the over-
stressed example of erroneous address-space manipu-
lations. Our approach can handle all data types, as well
as compilation environments that guarantee more prop-
erties than the C++ standard.

3.1 Dealing with proof obligations for
type safety

In this section we shed some more light on how we for-
malize type correctness and how we deal with it during
the verification. For the purpose of this discussion it is

2The exception are writes that change the address space such that
the object code is moved around in virtual memory.

enough to consider a memory model likeN→ Values,
which is used in the context of one of our lectures [12].
To work with this memory model each variable gets a
unique index fromN that determines its slot. The type
Values is a disjoint union of all things a variable can
hold (i.e., booleans, integers, pointers, . . . ). This mem-
ory model is considerably simpler than what we need
for the verification of Fiasco.3 Note however, that it
is dynamically typed, that is, the contents of a variable
can change from a boolean to an integer during run-
time.

The semantics of variables is captured by functions
that read from and write to the memory model. These
functions are typed, for instance for integer variables
there are two functionswrite int and read int . The
functionwrite int writes an integer to a given memory
slot, overwriting (and possibly changing the type) of
whatever was there before. The functionread int tests
if a given memory slot contains an integer and returns
it. If the slot contains no integerread int returns the
distinguished valuefail, which signals a program crash.

The approach we just described has the following ef-
fect: For every point where a variable is read, we get
a proof obligation that requires to show that the ac-
cessed slot contains a value of the right type. If one
manages to proof that the program does not crash (i.e.,
that it terminates with something different fromfail ),
then one has established that the program is type cor-
rect. It is clear that even small programs generate so
many type-correctness proof obligations that one must
handle them automatically, otherwise even the verifica-
tion of toy programs would be infeasible.

We use the following approach to handle type-
correctness proof obligations.

• Define a type-correctness invariant property that
describes the expected type of every relevant
memory slot

• Establish simplification rules (called rewrite lem-
mas in PVS) that automatically discharge the
type-correctness proof obligations ofread int
and friends, provided the current memory state
fulfils the invariant property

• Establish another set of simplification rules that
facilitate the automatic proof that the property
from the first point is indeed an invariant for the
program under consideration

Our solution is clearly PVS centric, because it is built
on sets of rewrite lemmas, which provide automatic

3For the verification of C or C++ programs one needs an untyped,
byte-wise organized memory [7].
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simplification in PVS. However, we believe that our
solution can be adopted without problems to other in-
teractive theorem provers that provide automation (for
instance to Isabelle and its simplifier). Let us discuss
our solution in a bit more detail in the following.

Type correctness invariant. The invariant itself
is very simple: It is a predicate on the memory that as-
serts that certain slots contain values of certain types.
Our memory model permits arrays that overlap (with
other arrays or with other variables). Therefore the in-
variant additionally asserts that relevant arrays do not
overlap with other arrays or other variables.4

To facilitate code reuse and to enable automatic in-
variant proofs, the invariant predicate is generated in-
side PVS from an association list that describes the
memory slots (i.e., inside the higher-order logic of PVS
we have defined a function that maps an association
lists to an invariant predicate). Our current code base
can handle plain variables and arrays. We are currently
working on extensions for records and dynamic struc-
tures like linked lists.

Simplification rules for memory accesses. In
principle one can directly use the definition of the type-
correctness invariant to discharge the type-correctness
proof obligations of functions likeread int . However,
this does not work automatically in PVS because the
invariant is defined with the help of universal quan-
tification and PVS notoriously picks the wrong values
during automatic instantiation. Therefore we designed
a set of rewrite lemmas that follow trivially from the
invariant.

Described in English, the rewrite lemmas look either
like “The invariant implies that the slot of variablev
has typet” or “ The invariant implies that the slot for
the i-th element of arraya is different from the slot of
the j-th element of arrayb.” The latter form contains
a negated equation. Because of a technical limitation
of the rewrite engine of PVS one also needs the form
“The invariant implies . . . thej-th element of arrayb is
different . . . thei-th element of arraya,” in which the
orientation of the equation is changed.

The number of rewrite lemmas needed grows
quadratically with the number of variables. We do not
consider this a serious problem because the lemmas and
their proofs are highly regular. They can be generated
together with the semantics of the program.

4The invariant also states something about the size of arrays in order
to treat index-out-of-bounds errors. However, this is not relevant
here.

With the help of these rewrite lemmas, PVS dis-
charges type-correctness proof obligations automati-
cally. For sequential programs the absence of type er-
rors can be proved automatically: One only has to is-
sue the proof commands to load the rewrite lemmas
and to start the simplification process. Type correct-
ness for unbounded while loops requires an invariant
for the while loop.

Automatic invariant proofs. The preceding two
points about the automation of type-correctness proofs
are absolutely essential. We did not tackle any proof
without a suitable invariant or suitable rewrite lem-
mas. To complete the type-correctness proof, one has
to show that the predicate from step one is indeed an
invariant for the program at consideration. That is,
the predicate must be maintained by every state trans-
former in the semantics of the program. Note that for
such an invariant proof the important points are the
write operations: Only a write operation can change
the type of a slot in the memory and thereby break the
invariant.

For our first example verification, a bubble sort algo-
rithm, a direct interactive proof of the invariant prop-
erty was relatively simple. However, during the verifi-
cation of Duff’s device, it became clear, that for larger
sample programs, the invariant proof would became in-
creasingly costly. We therefore decided to set up an-
other set of rewrite lemmas. For for every possible state
transformer we designed one lemma that describes how
this state transformer maintains a type-correctness in-
variant. With these rewrite lemmas PVS was able to
automatically proof the invariance property.

Our rewrite system for type-correctness invariants
works on functions of the semantic domain.5 Naturally
the rewrite system can only handle a small subset of all
those functions in the semantic domain that describe
type correct programs. However, the computation of
the semantics is a highly regular process. Therefore,
it is no problem to make the rewrite system general
enough such that it can handle all program (fragments)
that could also be statically type-checked.

4 Conclusion

In this note we show that to guarantee properties of
an operating-system kernel one has to use verification
technology. Programming the kernel in a language with
a strong type system (in contrast to C or C++) has no

5During the computation of the semantics a program is mapped to
a certain function (more precisely a state transformer in our ap-
proach). The semantic domain is the set of all such functions.
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significant advantage because of two reasons. First,
the kernelmustexploit operations that can distort the
type safety provided by the language. Therefore even
with a strong type system one has to prove type cor-
rectness. Second, although the type system subsumes
many proof obligations that show up in a verification in
a type-unsafe environment, these proof obligation are
usually simple and can be solved automatically with
the right theorem-proving technology.

Our results apply to all operating systems that pro-
vide address-space manipulation. Other OSes, such as
library OSes used for embedded microcontrollers, in
which all OS and application components are linked
together in one address space, can benefit to a larger
degree from safe languages because the first reason out-
lined in the previous paragraph does not apply.
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