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The quality of today’s main-stream operating systemsoperties is absolutely illusory. This fact is illustrated

is not sufficient for safety-critical and security-criticaby a steady stream of security-leak disclosures for all
applications. In this paper we discuss several possibigajor operating systems. It seems that, for the time
approaches to build an operating system that is safleeing, we just have to live with the bugs of standard
and more secure. We especially focus on the approddBes.

taken in the VFiasco prOject on the verification of the In response, many researchers have tried to reduce
Fiasco microkernel operating system. In this projecihe size of a system’s trusted computing base by run-
we use the general-purpose theorem prover PVS to M@rg kernels in untrusted mode in a secure compart-
chanically verify the C++ sources of Fiasco. ment on top of a small security kernel, such as a mi-

crokernel or a hypervisor; security-sensitive services

. run alongside the OS in isolated compartments of their

1 Introduction own. This architecture is widely referred to lkernel-

ized standard O®r kernelized systemin this archi-
The VFiasco project [8, 14] aims at the formal verifitecture, the standard OS and applications have been re-
cation of a small operating-system (OS) kernel, the L#oved from the secure applications’ trusted computing
compatible Fiasco microkernel [6]. In this paper, wikase. The root of trust is placed into the small secu-
explain the reasons that have led us to tackle verifyinigy kernel, which confines unsafe system components
Fiasco’s original C++ source code instead of reimplé hardware-protected compartments—usually address
menting Fiasco in a “safe” programming language suspaces.

as Haskell or OCaml. Several recent research projects have shown that
Typical desktop and hand-held computers are usgshtemporary security kernels impose low perfor-
for many functions, often in parallel. These applicanance overhead, making them practical. Their source
tions frequently include security-sensitive ones, suglde is several orders of magnitude smaller than that of
as online banking, virtual private networks, or digitalpical standard-OS kernels, which puts them into the
rights management. This type of computer use imealm of today’s formal-verification technology. For
poses two, often conflicting requirements: On the oe&ample, the Fiasco microkernel has less than 15,000
hand, the mixed-use scenario usually necessitates |{hes of source code.
use of a full-featured, standard, general-purpose OStp o goal of formally verifying a small OS kernel
On the other hand, security-sensitive applications Mygfses the question of how the choice of the kernel’s
rely on, ortrust, their operating environment to protecfy siementation language can facilitate the verification.
the application’s security guarantees. In discussing this question we focus on a kernel that
Standard OSes have become so large that a cQ{}hs on standard hardware and supports untrusted bi-
plete security audit or the formal verification of securitMary user programs running in separate confined ad-

, _ drf?ss spaces (i.e., we consider mainstream PCs and
This work was supported by the Deutsche Forschungsgememsc%a d-helds but lude. for inst ¢ d
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Modern programming languages with strong type- ¢ Use a strongly-typed programming language for
safety properties can potentially reduce the burden of kernel programming.

manually proving a program’s safety. However, in this o Ryn the kernel in an environment that enforces se-
paper we argue that using a “safe” programming lan- curity, such as a virtual machine.
guage may have quantitative but no qualitative advan-
tages for kernel verification. In other words, with a
strong type system one might have fewer proof obli-
gations, but one still has proof obligations of all kindd/Me discuss each of these points in the following sub-
In particular, even with the strongest type system thesections.
remain type-correctness proof goals that one naively
would assume to be subsumed by the type systepl] “Modern languages” with strong
Moreover, the proof goals that are indeed subsumed by type systems
the type system are simple and can be discharged auto-
matically (when using the right technology). Several projects develop operating systems in strongly
In the next section we start with the discussion #@§ped functional languages like Haskell or BitC, see for
semi-formal methods to improve the code quality. Westance [5, 11]. The strong type system makes many
then discuss how three different kinds of formal mettypical C-programming errors impossible. Moreover, if
ods can contribute to a secure operating system. Séas language features abstract types, it can enforce the
tion 3 discusses the approach that we take in the VBBe of certain interfaces and thereby provide guarantees
asco project. that certain tests and actions are always applied.
However, there are two problems: First, often some
parts of the system are implemented in C or assembly.
In House [5], for instance, low-level primitives for al-
location and system calls are not written in Haskell.

It is clear that in such a case the foreign code might

F:]ecentlly severr?l ?(rOUPT worked on dmethods to impLOHPeak the type system. Shapiro and colleagues [11] use
the quality of the kernel source code or to counterbgi, ¢hacifically designed language BitC to avoid this
ance known weaknesses of the programming languaggiem. In BitC one can manipulate address spaces

C, which is used fgr most kernels. We mention only,\riting to the corresponding hardware data struc-
two e?‘amP'es here: With I|nt_-I|ke static ch_ecks ON€ Cqflres). However, and this is the second problem, writ-
find violations of programming patterns like “valldatefng a wrong value into a page directory might distort

pointers from user land before dereferencing them” {fs  ornel memory and make all guarantees of the type
the source code [4]. To complicate attacks, one C@{/"stem meaningless

encrypt every pointer in memory such that an attackerOn a closer lock it appears that operations like

_cannot walk through and modify kernel data Str“Ct“rﬁﬁdress-space manipulation have a dependentltype.
in memory [2]. o ~ Type checking dependent types is undecidable in gen-
We refer to these and similar methods &mi- era|. The validity of an address-space manipulation de-
formal. Although such methods make attacks signifends on the history of the system, so it is clearly unde-
icantly harder, they cannot be used to guarantee t@gfaple. We conclude that, even in case the whole sys-
successful atta_cks are |mp05_5|ble. Seml-f(_)rmal metBm is written in a strongly-typed language, the guar-
ods are a relatively inexpensive means to improve thgtees of the type system might not be valid because of
average level of security. However, they are not SUfQ‘wrong address-space manipulation.
cient to avert a professional attack. In this light, the use of a strong type system appears
In contrastformalmethods are based on some matko be a quantitative rather than a qualitative measure. A
ematical theory that can be used to prove certain prafrong type system can probably reduce the number of
erties. With a strong type system one can, for ifsrogramming errors significantly, however in the pres-
stance, use a different type for user-land pointers agfice of address-space manipulatiorsaitnotguaran-
thus guarantee that they are never dereferenced wie the type correctness of the program. Thus, even
out the necessary checks. with a strong type system, proof obligations about cor-
In the following we elaborate on different formalect typing remain.
methods and their strengths and weaknesses when Whe type of some argument depends on Wue of some other

plied.to operating systems. We distinguish three differ- argument. For operating systems the range of valid values some-
ent kinds of formal methods: times depends on the state of the whole memory.

e Apply verification and model-checking tech-
nigues to the kernel code.

2 The need for formal methods




2.2 Safe environments 3 The VFiasco approach:

One can think of an operating system written in Java Verification of unmodified

and executed by a virtual machine such that important C++ source code
security properties are expressed with Java’s type sys-

tem. This way the virtual machine will detect secyp, the preceding section we argued that in order to give
rity violations with its byte-code type checking. Howyyarantees about the functionality of an operating sys-
ever, the security of the whole system depends on %‘?n one finally has to use verification. In the VFiasco
correctness of the virtual machine. Further, to host Bfoject we decided to attempt the verification of the
operating system one needs operating system functiefl-y source code of the Fiasco microkernel. The verifi-
ality itself in the virtual machine. Therefore, virtuaation of C++ certainly incurs higher verification costs,
machines do not solve the original problem. but has the advantage that we can obtain results for a
With proof-carrying code [10] one can downloagystem that can be used in practice.

user-level code into the kernel in a secure way. HOW- Here we sketch how we model two major features
ever, to employ proof-carrying code one has to havg)f c++: the various jump statements likeak ,
correctly-working minimal kernel with a proof checke[ongjmp , goto ; and the type cast that can especially

in the first place. be used to turn integers into pointers. From a theo-
retical point of view one might ask why one should
2.3 Verification treat these features at all. The point is that in the kernel

oneneedsto cast integers into pointers (for the mem-

Software verification establishes properties of a matbry management), oneeeddso longjmp (to abort an
ematical theory that has been extracted from the sdfifinite loop of page faults), and omeedsgoto (for
ware. One can distinguish model checking from vergfficiency and a clearer program structure).
fication with denotational, operational or axiomatic se- To model the various jumping statements we follow
mantics. With model checking one explores the finittacobs’ approach in the semantics of Java [9]: We use
state space of an abstract model. Subtle errors in partomplex state that is a disjoint union liké(mem)
of the system that have been abstracted away can p@uk(mem)W goto(mem X label) W fail . .., whereok,
tentially invalidate the model-checking results. break, goto and fail are all injections. This way the

In an experiment we applied the model checkeomplex state captures some kind of execution mode.
Spin to Fiasco’s code for inter-process communicatiédwpart from the valuefail, which models the crash of
(IPC) [3]. Although the model contained only a veryhe program, a complex state contains always the cur-
rudimentary version of Fiasco’s IPC (only two threadsent memorymem. In the following we let the term
no timeouts, no message buffer), the model checletate transformedenote a function that maps a com-
used almost 2 GB main memory and more than 15 Gilex state to a complex state. The state transformers
on the hard disk. We doubt that one can model cheftkm our semantic domain: The semantics of every
the full IPC path, let alone a realistic number of thread3++ statement is captured in a state transformer.
with today’s hardware. State transformers pay attention to the execution

Up to this point we saw that all discussed techniquesode of their starting state. If the execution mode is
can only reduce the number of programming errorg the next statement is executed as expected and the
and the remaining security risk. None of these teclremory might change. For the other modes the follow-
nigues can provide guarantees. It remains to lookiag statements are skipped, except for the case that the
one approach we have omitted so far: Software verifiurrent complex state is of the forgato(m, [) and the
cation on the basis of a semantics of the full programext statement is labelled with In this case the label
Traditionally, software verification was only applied taransforms the complex state intd;(m) and normal
theoretically clean, artificial programming languagesxecution continues. Similarly to labels, the semantics
Only recently formalisms, logics and tools have beedi loops transforms an end stdtecak(m) into ok(m).
developed to deal, for example, with Java [9, 1]. It The approach outlined in the preceding paragraph is
has been general belief that it is impossible to verifgmarkably simple. It requires neither complete par-
programs written in C or C++ that exploit features likéal orderings nor continuous functions nor continua-
goto jumps, type casts asetjimp /longjmp . Inthe tions. Nevertheless it can handle while loops and all
following section we show that a denotational semakinds of jump statements, even jumps into and out
tics for a subset of C++ that includes these featuresosnested blocks, such as loops then and else
surprisingly simple. clauses. Recently we used this approach to verify



Duff’s device, a particularly strange piece of code thahough to consider a memory model liKe— Values,
uses aswitch statement to branch into the middle ofvhich is used in the context of one of our lectures [12].
awhile loop [13]. This case study showed that, affo work with this memory model each variable gets a
ter setting up the right theorem-proving technology (imnique index fronN that determines its slot. The type
this case a set of rewrite-lemmas), all those goals thatlues is a disjoint union of all things a variable can
would be subsumed by a stronger type system, wérad (i.e., booleans, integers, pointers, ...). This mem-
proved automatically. This shows that with the righdary model is considerably simpler than what we need
technology, using a strong type system bears no sigride the verification of Fiasc®. Note however, that it
icant advantage. is dynamically typed, that is, the contents of a variable
As a last point we outline how we model type castsan change from a boolean to an integer during run-
especially those that cast integers into pointers. Théirae.
are a few points to note: First, type casts can hap-The semantics of variables is captured by functions
pen implicitly, for instance, if one writes integers tdhat read from and write to the memory model. These
the memory and reads floats back from the same ddActions are typed, for instance for integer variables
dress. In this case the read operation can cause arttere are two functionsrite_int and read_int. The
ror because the bit pattern might not represent a valithction write_int writes an integer to a given memory
floating point number. Second, the cast alone can nestt, overwriting (and possibly changing the type) of
cause any errors. An error can only occur if the resulthatever was there before. The functiend_int tests
ing pointer is used to read data from memory. Third, iha given memory slot contains an integer and returns
general almost all write operations are harmfe€@ne it. If the slot contains no integetead _int returns the
can (possibly partially) overwrite data in the memorglistinguished valuéil, which signals a program crash.
but an error can only occur if one attempts to read theThe approach we just described has the following ef-
original data later. fect: For every point where a variable is read, we get
We exploit the great level of under-specification tha proof obligation that requires to show that the ac-
is present in the C++ standard to model explicit aregssed slot contains a value of the right type. If one
implicit type casts [7]. The semantic functions thananages to proof that the program does not crash (i.e.,
read from and write to memory are axiomatically spethat it terminates with something different froful),
ified in a way that leaves many aspects of their behaviben one has established that the program is type cor-
open. For instance, we don’t specify that integers aiect. It is clear that even small programs generate so
stored as two’s complement. This way one can deritgany type-correctness proof obligations that one must
that reading an integer after writing one on the sarhandle them automatically, otherwise even the verifica-
address yields the original integer. However, for tHion of toy programs would be infeasible.
case of reading a float on a location where integers havéVe use the following approach to handle type-
been written, one can derive nothing, not even that therrectness proof obligations.
system does not crash. Valid type casts can easily be ) . .
introduced via additional axioms. . Defmg a type-correctness invariant property that
Within our approach, to prove that a program is type describes the expected type of every relevant
correct it is sufficient to prove that it does not crash. memory slot
Note that our approach does correctly handle the over, Estaplish simplification rules (called rewrite lem-
stressed example of erroneous address-space manipu-mas in PVS) that automatically discharge the
lations. Our approach can handle all data types, as well type-correctness proof obligations ofad_int
as compilation environments that guarantee more prop- gnd friends, provided the current memory state

erties than the C++ standard. fulfils the invariant property
. . L e Establish another set of simplification rules that
3.1 Dealing with proof obligations for facilitate the automatic proof that the property
type safety from the first point is indeed an invariant for the

. . . rogram under consideration
In this section we shed some more light on how we for- prog

malize type correctness and how we deal with it durir@ur solution is clearly PVS centric, because it is built
the verification. For the purpose of this discussion it ih sets of rewrite lemmaswhich provide automatic

2The exception are writes that change the address space such thor the verification of C or C++ programs one needs an untyped,
the object code is moved around in virtual memory. byte-wise organized memory [7].



simplification in PVS. However, we believe that our With the help of these rewrite lemmas, PVS dis-
solution can be adopted without problems to other ioharges type-correctness proof obligations automati-
teractive theorem provers that provide automation (foally. For sequential programs the absence of type er-
instance to Isabelle and its simplifier). Let us discussrs can be proved automatically: One only has to is-
our solution in a bit more detail in the following. sue the proof commands to load the rewrite lemmas
and to start the simplification process. Type correct-

) ) ) ) ) ness for unbounded while loops requires an invariant
Type correctness invariant. The invariant itself ¢4 the while loop.

is very simple: It is a predicate on the memory that as-
serts that certain slots contain values of certain types.

Our memory model permits arrays that overlap (wi u'tomatlc nvariant proofs. The preceding two
other arrays or with other variables). Therefore the joints about the automation of type-correctness proofs

variant additionally asserts that relevant arrays do Mot absolutely essential. We did not tackle any proof

overlap with other arrays or other variabfes. without a suitable invariant or suitable rewrite lem-
. . .mas. To complete the type-correctness proof, one has
To facilitate code reuse and to enable automatic i

. o . : 10 show that the predi from ne is in n
variant proofs, the invariant predicate is generated L{rE\)-S ow that the predicate from step one is indeed a

side PVS from an association list that describes t@vanant for the program at consideration. That is,

e . L
Lo . ; e predicate must be maintained by every state trans-
memory SIOtS. (.., inside .the higher-order logic of PV ormer in the semantics of the program. Note that for
we have defined a function that maps an association

. . . . such an invariant proof the important points are the
lists to an invariant predicate). Our current code base. C . .
fite operations: Only a write operation can change

can handle plain vgnables and arrays. We are _currerﬁfpé type of a slot in the memory and thereby break the
working on extensions for records and dynamic struc-

tures like linked lists invariant.
. For our first example verification, a bubble sort algo-

rithm, a direct interactive proof of the invariant prop-
S|mp||f|cat|on rules for memory accesses. In erty was relatiVEly Simple. However, during the verifi-
principle one can directly use the definition of the typ&ation of Duff's device, it became clear, that for larger
correctness invariant to discharge the type-correctn&8&nple programs, the invariant proof would became in-
proof obligations of functions likeead_int. However, creasingly costly. We therefore decided to set up an-
this does not work automatically in PVS because tiggher set of rewrite lemmas. For for every possible state
invariant is defined with the help of universal quarfransformerwe designed one lemma that describes how
tification and PVS notoriously picks the wrong valueilis state transformer maintains a type-correctness in-
during automatic instantiation. Therefore we design&@riant. With these rewrite lemmas PVS was able to
a set of rewrite lemmas that follow trivially from theautomatically proof the invariance property.
invariant. Our rewrite system for type-correctness invariants

Described in English, the rewrite lemmas look eithd¥orks on functions of the semantic domdiNaturally

like “The invariant implies that the slot of variable the rewrite system can only handle a small subset of all
has typet” or “The invariant implies that the slot forthose functions in the semantic domain that describe

the i-th element of array: is different from the slot of IYP& correct programs. However, the computation of
the j-th element of arrayp.” The latter form contains the semantics is a highly regular process. Therefore,
a negated equation. Because of a technical limitatir{S N0 problem to make the rewrite system general
of the rewrite engine of PVS one also needs the for@ough such thatit can handle all program (fragments)
“The invariant implies . . . thg-th element of array is that could also be statically type-checked.
different . ..thei-th element of array:,” in which the
orientation of the equation is changed. ;

entat quation ! 9 4 Conclusion

The number of rewrite lemmas needed grows

quad.ratical_ly with .the number of variables. We do N9k this note we show that to guarantee properties of
consider this a serious problem because the lemmas gndhperating-system kernel one has to use verification
their proofs are highly regular. They can be generatgebynology. Programming the kernel in a language with
together with the semantics of the program. a strong type system (in contrast to C or C++) has no

4The invariant also states something about the size of arrays in ord&During the computation of the semantics a program is mapped to
to treat index-out-of-bounds errors. However, this is not relevant a certain function (more precisely a state transformer in our ap-
here. proach). The semantic domain is the set of all such functions.



significant advantage because of two reasons.

the kernelmustexploit operations that can distort the

type safety provided by the language. Therefore even
with a strong type system one has to prove type cor-

Fird%Z] M. Hohmuth and H. Tews. The semantics of

C++ data types: Towards verifying low-level sys-
tem components. In D. Basin and B. Wolff, ed-
itors, TPHOLs 2003, Emerging Trends Proceed-

rectness. Second, although the type system subsumes ings pages 127-144. 2003. TR No. 187 Inst. f
many proof obligations that show up in a verification in

a type-unsafe environment, these proof obligation are

usually simple and can be solved automatically wit
the right theorem-proving technology.
Our results apply to all operating systems that pro-

vide address-space manipulation. Other OSes, such as

library OSes used for embedded microcontrollers, in

which all OS and application components are linkedg
together in one address space, can benefit to a larger
degree from safe languages because the first reason out-

lined in the previous paragraph does not apply.
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