
Architectural Requirements for Building Context-Aware Services Platforms1

Patrícia Dockhorn Costa, José Gonçalves Pereira Filho2, Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

{dockhorn, filho, sinderen }@cs.utwente.nl

Abstract
Context-aware platforms aim at providing support to

application designers to conceive their context-aware
applications using services, mechanisms and interfaces that
shield them from the complexity introduced by handling
contextual information. This paper explores the essential
requirements to be satisfied by context-aware service
platforms and proposes a definition of a generic architecture
supporting the execution of adaptive context-aware mobile
applications. The WASP platform, a web services based
context-aware service platform on top of 3G networks, is
taken as a reference.

1. Introduction
Computing is moving from the traditional

desktop paradigm to a mobile computing
paradigm, in which new types of computing
devices augment the users’ workspace and the
user environment changes dynamically as a
consequence of the user’s mobility.

This new paradigm has brought the possibility
of exploring the dynamic context of the user.
However, most computer systems are still
designed to ignore (or assume fixed) contextual
information and process their work based only on
explicit input. Therefore, these systems do not
take advantage of implicit input offered by the
dynamic environment in order to provide added-
value services or to execute more and complex
tasks [3].

Context-aware computing deals with the ability
of computer systems to obtain contextual
knowledge in order to perform relevant tasks.
Rather than treating mobility as a problem to be
solved, context-aware computing seeks to exploit
the nature of it. As a consequence, it creates a new
generation of applications in which the user-
application interaction is enhanced by
perceiving/sensing the surrounding environment.
It is expected that the dynamic adaptation of
devices and applications in a changing physical
and social environment leads to an enhancement
of the user experience.

Dealing with context implies a radical design
shift to cope with highly dynamic environments
and changing user requirements. Because of that,
in the past few years we have seen research efforts
towards service platforms that provide
architectural and programming support for
building context-aware applications [5,6,10].
These platforms aim at providing support to
application designers to conceive their context-
aware applications using transparent services,
mechanisms and interfaces that shield them from
the complexity introduced by handling context.

In this paper we concentrate on the essential
requirements to be satisfied by context-aware
services platforms. The goal is to define a generic
architecture for supporting the execution of
adaptive context-aware mobile applications,
taking as reference the WASP project [17], which
aims at the development of a context-aware
service platform on top of 3G networks, using
Web Services technology.

The remainder of this paper is structured as
follows. Section 2 briefly describes the concept of
context in connection to context-aware computing
and introduces the WASP project. Section 3
elaborates on the requirements. Section 4 presents
the proposed architecture, Section 5 refers to
related work and Section 6 concludes the paper,
presenting the current project status and some
final remarks.

2. Context and the WASP Project
The use of contextual information is essential to

explore the possibilities of context-aware
computing. Nevertheless, while it is simple to
form an intuitive notion of context, elucidating a
precise definition of it is challenging [4].
Although context has already been subject of
investigation in different fields, particularly in
artificial intelligence [13], only recently this
notion has been explored for context-aware

1 The work described in this paper has been sponsored by Freeband Knowledge Impulse, a joint initiative of Dutch Government, knowledge
institutes and industry.
2On leave from Departamento de Informática, Universidade Federal do Espírito Santo, Brazil. E-mail: zegonc@inf.ufes.br

computing.
Most of the initial efforts for defining context in

ubiquitous computing were specific for certain
kinds of context - location and time being the
more obvious examples. Schilit [15] claimed that
the important aspects of context are where you
are, who you are with, and what resources are
nearby. More recently, Dey and Abowd [4] came
up with a generic definition of context, which is
“Context is any information that can be used to
characterize the situation of an entity. An entity is
a person, place, or object that is considered
relevant to the interaction between a user and an
application, including the user and applications
themselves”. This definition is used as reference
in the literature of context-aware computing
domain nowadays.

Handling context raises a number of
challenging issues specially when applied to
distributed systems (e.g., distributed context
management, storage, and communication).
Therefore, the enabling infrastructure plays an
essential role in the accomplishment of distributed
context-aware systems (e.g., CORBA, Web
Services, etc.). Web Services [1] particularly, form
a new set of technologies built upon widely
supported Internet standards and it is claimed to
be the dominant technology for distributed
applications on the next generation Internet.
However, only a few of the current proposals
explore the use of Web Services as infrastructure
for building distributed context-aware systems.

The WASP project [17] is concerned with the
definition and validation of a service platform to
facilitate the development and deployment of
context-aware applications on top of 3G networks,
using Web Services infrastructures. Moreover, it
offers business opportunities to service providers
that want to expose their services to the users of
the platform. Examples of services providers are
hospitals, restaurants, museums, etc.

The first target application is a tourist guide
service, which will help users in typical tourist
scenarios, such as visiting museums and finding a
suitable restaurant based on users’ profile and
location. Initially, location awareness services are
the research focus in the project, to test the
suitability of 3G Networks as a context provider.

3. Challenges for the WASP platform
The WASP platform should provide generic

functionality to address the basic challenges of
context-aware computing concerning a service
platform. Such functionality includes
manipulation of contextual information, support
for different kinds of sensing mechanisms,
reactive behavior, coordination between different
applications, discovery and publishing of services,
support for security and privacy issues and
charging. We will elaborate on these in the
following sections.

3.1. Contextual Information
The platform should be capable of gathering

contextual information from different sources and
adapt to them according to the user needs and
system capabilities. For that, common
understanding of contextual information is
required. Context representation and context
storage are the main challenges related to
contextual information.

Context representation/modeling: Not
surprisingly, contextual information modeling has
been subject of study in different areas, such as
databases and artificial intelligence, for many
years. In the area of artificial intelligence, there
have been important findings in formalizing
contextual knowledge. For instance, McCarthy’s
group [13] introduced logical properties of context
and extended the classical logical proposition
language creating the general propositional
language of context by introducing context logical
concepts. More recently, researchers in ubiquitous
computing looked into formality and
expressiveness to support the design of context-
aware systems using conceptual modeling
approaches [9].

Lately, much effort has been spent on the
definition of a standardized way of representing
context. For example, the W3C community
developed a standard, called Composite
Capabilities/ Preference Profiles (CC/PP), for
describing device capabilities and preferences
with a focus on wireless devices, such as PDAs
and mobile phones [10]. It is based upon the
Resource Description Framework (RDF), which is
a technique for representing knowledge. CC/PP
uses the XML serialization of RDF, one of the

many ways supported by RDF. Although CC/PP
is designed to describe information about device
hardware and software capabilities, it can describe
a wider variety of context information, as long as
that context information can be described in terms
of CC/PP components and attributes (or subtypes
of them).

There are, however, limitations in CC/PP which
make this model not very suitable as a context
model for future pervasive systems. According to
[7], it becomes difficult and unintuitive to use
CC/PP when the relationships and constraints in
the context model are complex. A novel
representation format called Comprehensive
Structured Context Profiles (CSCP) has been
developed by [7] and it is claimed to overcome the
shortcomings of the CC/PP specification language
regarding structuring.

Context storage and retrieval: Contextual
information will be made available through the
service platform. In order to keep track of the
information in a common way, the platform will
be responsible for gathering context from different
sensors, processing it, and storing the results in
the context storage. The storage is also important
to hold contextual information over time.
Therefore, information like the location of a
person, at a given date in the past, can be
retrieved.

In fact, different representations can be used for
communication, processing and storage, each
optimized for its own purpose taking into account
the software and hardware that are used for this. It
is important that the interpretation of these
representations is unique, and that appropriate
transformations are supported, i.e., the parties
involved in the communication must agree upon
the semantics of the information.

WASP
Platform

WASP
Applications

Context
Providers

Service
Providers

Figure 1 - Platform interactions

3.2. Platform Interactions
The platform interacts with three systems:

WASP Applications, Services Providers and
Context Providers, as depicted in Figure 1.

The next paragraphs discuss those interactions
and the challenges related to them.
a) Support for different kinds of context
providers (platform-context provider): The
platform should be open to new kinds of third
party context providers and to new kinds of
sensing mechanisms, not only 3G Networks.
Context providers supply information using
different communication protocols and in
semantically different formats. Therefore,
components that hide the process of acquiring
context from sensors and providers are necessary.
For this reason, the platform should have an
adaptation layer that makes contextual
information from different providers uniformly
presented (well understood) to the rest of the
platform.

An example that gives an idea of solution for
this challenge can be found in the Context Toolkit
conceptual framework [3], which introduces
modeling abstraction elements such as Widgets.
Widgets encapsulate sensors providing
semantically uniform operations to access context.
For instance, a Widget could be responsible for
translating latitude and longitude to a street name
and a house number.
b) Reactive behavior (platform-application):
Applications should be able to respond to their
dynamic environment. Therefore, the platform has
to support the applications in this process since
the platform is the one aware of the changes in the
user environment. But how to support a large and
growing number of different context-aware
applications without having to upgrade the
platform each time a new application is deployed?
One possible solution is to give some intelligence
to the platform by exposing reaction mechanisms,
i.e., applications have to “teach” the platform how
to react to certain correlations of events [8].
Suppose E1, E2, ..., En are known events to the
platform. A possible correlation of these events is
((E1 OR E2) AND E5) OR NOT E6. On one hand,
if the result of the formula turns to be true, it
enables some kind of action to be triggered. On

the other hand, if the result turns to be false, it
disables the action to be triggered.

Figure 2 depicts the desired architectural
models of interaction to be supported by the
system, abstracting from the 3G networks. The
upper layer represents the application layer and
the lower, the supporting platform. The
request/response model (passive platform) is the
one where the reactive behavior of the platform is
just to respond to the application requests. In the
event-driven model (event-driven platform),
applications expose to the platform the desired
reactive behavior by means of a subscription. The
subscription is based on correlation of events and
programming of actions. In this paper we consider
the event-driven model, i.e., the platform is
programmed to react to a certain correlation of
events.

 A p p lic a tio n

R e q u e s t/re s p o n s e
m o d e l

E v e n t d rive n
m o d e l

P la tfo rm

A p p lic a tio n A p p lic a t io n

P a s s iv e
P la tfo rm

E v e n t-d riv e n
P la tfo rm

Figure 2 - Different models of interaction between

application and platform

For instance, consider the simple application
“Send me a reminder of buying bread when
passing close by a bakery”. The platform
understands user and bakery as entities. Close by
can be understood as less than 200 meters of
distance, depending on what the application
defines. Finally, Send a reminder is an application
action, i.e., how the application has to react on
behalf of its users.

Something different is how the platform has to
react to the application. This reaction from the
platform is programmed by the application. In the
bakery scenario, possible reactions are send a
message or send a list of closest bakeries or
others.

The platform has to keep track of all possible
entities (user, bakery, museum, restaurant, etc.)
involved in some event correlation as well as their
context. In the aforementioned case, based on the

user location, the platform knows how to find the
bakeries in its environment.

The platform supports many applications and
each of them has several subscriptions. Each
subscription contains at least one trigger and when
the conditional expression is satisfied, the action
is triggered. Description languages such as XML
are shown to be suitable to represent this kind of
event correlation. The Rule Markup Language
(RuleML) [2], for instance, tries to represent
logical expressions, more specifically Prolog
expressions, in the form of XML data and XML
Schemas. Investigations are being carried out in
order to test the suitability of this language for
representing event-condition-action rules in the
WASP project.

c) Coordination among different applications
(platform-application): Different reaction
mechanisms programmed by different
applications can give rise to conflicting problems
when providing a service for the same user. For
instance, consider a device which has two
different applications, a reminder and a sleep
mode application. The sleep mode application
turns the device to a sleep mode under certain
condition, for example when the user (and the
device) is inside the movies, in a meeting or when
he/she is driving. The reminder sends reminder
messages when a correlation of events,
determined by the user, happens. The sequence
diagram in Figure 3 illustrates this situation.

A component with cross-knowledge
capabilities, i.e., a component with knowledge of
different sources in the architecture, for example a
monitoring component, can be responsible for
managing the coordination of events by checking
the user context and preferences. This way, side
effects generated by conflicting reaction
mechanisms can be avoided.

d) Discovery and publishing of services
(platform-services provider): Service provision
by third party service providers is the essence of
the service platform. Discovery and publishing of
services can be done by internal elements or/and
by external elements, being opened and shared
with others application environments/platforms.

 User

[1]

[3]

[4]

[2]

[1] “Remind me of buying bread
when passing by the bakery”.
[2]

����� �������
	����� ���
������������������	����

��������� ������ � � !"���#� � $ %&� ' ����	��� �#�

� ' ������(
�

���)�� � � *�	,+���� � � 	�' ' � ' ����	��� ���)-

[3] “Sleep mode when I’m
driving”.
[4]

�&� � �������.	
���� ���
� � ' ���,/����
���

021.3&453&476�8 6 9�: ;.<�3�=�: > ?@: A�=�8 B�8 4.C

[Monitoring] The scenario “the
user is driving and passing by
the bakery” is a conflicting
situation. The platform could
monitor this situation by
checking the user preferences.
By doing that, the monitoring
component would realize that
the user priority is to not be
disturbed when driving (he/she
has concentration problems)
even when passing by the
bakery.

M
O
N
I
T
O
R
I
N
G

App1

App2

Platfor
m

Figure 3 - Bakery scenario

Entities like museums, restaurants,
supermarkets, bakeries, schools and hospitals
want to expose their services to the platform, so
that, depending on the user needs and preferences,
and taking into account his/her context, those
services can be used. In the aforementioned
example “remind me of buying bread”, the
platform uses information about bakeries, in this
case, their location. There are cases in which the
platform is programmed to directly use the
services of service providers. For example, the
platform could be programmed to immediately
order the bread when the user is approaching the
bakery. Therefore, the user does not need to be
bothered with selecting and paying activities; this
could be automatically done by the platform.

A centralized service discovery approach,
which has been largely explored in recent works,
is Universal Discovery, Description and
Integration (UDDI) [16]. It provides a directory
service where service providers and service
requestors come together to satisfy their needs.
Related works inside the WASP project intend to
add functionality to the UDDI in order to improve
its capabilities [14]. They claim that UDDI,
among other things, lacks semantic description,
process specification and ontology support. Their
aim is to implement an enhanced UDDI server,
capable of storing, matching and retrieving
semantically rich service profiles that contain
contextual information.

3.3. Privacy concerns
The platform should be able to gather important

and perhaps private information from different
parties. Therefore, security and privacy services
are clearly a necessity in a context-aware
environment. Although privacy is a very
important issue, it has not been properly enforced
in available context-aware platforms [5,6,10].
Examples of recent work on this topic can be
found in [12].

There are efforts in the WASP project to define
a privacy architecture based on an extension of the
Privacy Preferences Project protocol (P3P). This
architecture is part of a compulsory security
framework that allows the use of appropriate
security policies and authorization services.

3.4. Other Challenges
There are other important architectural

challenges related to charging, scalability and use
of standards.

For instance, the platform will potentially
manage a large volume of context information,
user profiles and preferences, and it also has to
keep track of a large number of event-correlated
rules, which means intelligent manipulation of
data from different sources in the platform.
Charging is a critical service and should be based
on a general business model that defines
assignment of business responsibilities between
the different parties involved in the platform.

A further discussion of these challenges is
beyond the scope of this paper.
4. The WASP Platform Architecture

This section presents an architecture for the
WASP platform based on the main issues
discussed so far. Figure 4 depicts the high level
view of the proposed architecture, which is
composed of three main modules: Monitor,
Repositories and Context Interpreter. We will
elaborate on them in the next subsections.
Security & Privacy and Charging modules are not
shown in the figure.

4.1. Context Interpreter
The Context Interpreter gathers contextual

information from different context providers
(sensors or third parties context providers), which
may use different communication protocols and

different contextual representations, making
contextual information uniformly available to the
platform. The context interpreter gathers and
provides contextual information at different
semantic levels, and it may infer new contexts
from aggregating or interpreting lower level
contexts. For example, the interpreter is able to
assess the speed of a user from the latitude and
longitude changes over time. Moreover, the
context interpreter may be able to infer from this
that the user is driving a car.

 W A S P P L AT F O R M

M o n ito r

P a rse r

S u bscrip tio n

M an a g e r

C o ord ina to r

E n tity
T yp e

R e g is try

S e rv ice
T yp e

R e g is try

U D D I +

U s e r
P ro file

C o n te x t
D B

C o n te x t In te rp re te r

A c tio n
T yp e

R e g is try

W
A
S
P

A
P
P
L
I
C
A
T
I

O
N
S

S
E
R
V
I

C
E

P
R
O
V
I

D
E
R
S

C O N TE X T P R O V ID E R S

Figure 4 - WASP Platform architecture

Figure 5 depicts the internal model of the
context interpreter, in which several levels for
gathering and providing context are shown. Any
piece of contextual information provided by the
interpreter is called primitive context.

Layers of contextual
information

Figure 5 - Internal view of the interpreter component

In this model, the upper layers can access all
the layers below it, not just the one immediately
below. In fact, the context interpreter takes raw
context from the context provider, semantically
interprets it and then, based on this interpretation,
infers new contexts. This process can be
performed as many times as necessary.

The context interpreter uses three different
models of information provisioning: request-

response, time-driven and event-driven model. In
the first model, the interpreter provides context
only on explicitly request. In the second, the
interpreter is programmed to provide the context
at specific time intervals. Finally, in the last one,
the interpreter is programmed to provide the
context only when the context is changed.

4.2. Repositories
These architectural components support the

Monitor in the management of subscriptions.
Entity Type Registry: Repository of entity types
(and their attributes) registered in the platform.
Examples of entity types are user, bakery,
hospital, restaurant, etc. Examples of attributes are
MobileNature (mobile or fixed) and Context
(location, velocity etc.). It is possible to apply
different kinds of context for different entity
types. Velocity, for instance, is a context applied
to users but not to hospitals or bakeries. The entity
type registry needs to keep track of all possible
combinations of context and entity types.
Service Type Registry: Repository for storing
information about the types of services supported
by the platform. A service is applicable for certain
number and types of parameters. The service
CloseBy (proximity of two or more entities)
makes only sense when two or more entities are
involved. It also only makes sense if the
contextual information location is applicable for
those entities.
Action Type Registry: Repository for storing
information about types of actions. Actions are
tasks performed in response to an enabling
application’s subscription. Like services, actions
differentiate in number and types of parameters.
An example is the action SendMessage mentioned
in the bakery example. This action should have as
parameters the recipients of the message and the
contents of the message, which could be the
location of the closest bakeries. There are
situations in which actions are mutually exclusive,
i.e., they cannot be performed at the same time.
For instance, the actions SendMessage and
MessageOFF applied to the same user can
generate a conflicting situation. For this reason,
the platform needs to know which actions are
conflicting and this information is made available
in the action type registry.

UDDI +: Component that deals with the discovery
and publishing of services requirement. It is
responsible for storing, matching and retrieving
semantically rich service profiles. In the bakery
example, the UDDI+ stores the location of the
bakeries, their specialty and their service time
(opening and closing times). Moreover, given the
location of the user, the UDDI+ is capable of
returning all the bakeries that are close by and it is
also capable of performing intelligent matching
using the user preferences profile (e.g., selecting
the bakery whose specialty best suits the user’s
taste or diet).
User Profile: Component responsible for storing
and managing user profiles. Therefore, it is
consulted by the UDDI+ when matching user
preferences with respect to services. It is also used
to make decisions when a conflicting situation
occurs between different applications.
ContextDB: Component that handles the context
storage/retrieval requirement. It is responsible for
keeping track of contextual information of the
entities. It gathers contextual information from the
context interpreter.

4.3. Monitor
The core of the platform architecture is the

Monitor module, which tackles the requirements
reactive behavior and coordination among
different applications. This module is responsible
for interpreting and managing the applications’
subscriptions. In order to perform its operations,
the monitor makes use of the data available in the
repositories and the contextual information
provided by the interpreter.

A subscription provides the means to
dynamically configure interactions between
applications and platform. An application’s
subscription is an enabling expression, i.e., the
result of the expression must be true or false. The
possible elements in a subscription are primitive
contexts, logical operators, services and primitive
values. Primitive contexts are any known piece of
contextual information, logical operators are
AND, OR and NOT, services are special tasks
performed by the platform and primitive values
can be numbers, letters, constants, current time
etc. We will elaborate on this when explaining the
internal components of the monitor. The

subcomponents of the monitor are Parser,
Subscription Manager and Coordinator:
Parser: This component is responsible for
verifying if the subscription is syntactically and
semantically correct. To perform this task, it
makes use of the repositories Entity Type, Service
Type and Action Type. The result of the parsing is
a tree of primitive contexts, services and logical
operators. The example tree depicted in Figure 6
is the parsing result of the following subscription:

context service

AND

context context context

Figure 6 - Example of a parsed subscription
Trigger action:sendMessage (user:1,
 user:2, user:3)
When (entity:user:1:driving AND
 closeBy
 (entity:user:1:location,
 entity:user:2:location,
 entity:user:3:location)

Subscription Manager: Once the subscription is
parsed and the tree is built, the subscription
manager keeps track of the enabling and disabling
conditions in order to trigger (or not) the action.
This means constant check of the involved
contexts and performing of the services. In order
to perform its operations, the subscription
manager gathers contextual information from the
context interpreter and from the contextDB. When
service providers are involved in the subscription
by means of their context or services, the UDDI+
component is also called by the subscription
manager. The registries ActionType and
ServiceType are also checked to correctly perform
the services and to trigger the actions.
Coordinator: This component is responsible for
handling conflicting subscriptions. A subscription
is conflicting when the involved actions are
mutually exclusive. The coordinator consults the
action type registry to verify which subscriptions
are conflicting. By doing this and also by
checking the user priorities, the coordinator is able
to choose one of the actions.

5. Related Work
There have been several efforts aiming at the

development of context-aware platforms. Indulska
et al. [11] present an architecture that focuses on
the handling of different types of adaptation
mechanisms for device-oriented services and
resource availability/adaptability such as
bandwidth and power energy. Efstratiou et al. [6]
developed a specific language for coordination of
events intended for enterprise domain. DeVaul et
al. [5] describe an infrastructure based on a
distributed database and a dynamic decentralized
resource discovery service in the area of wearable
computing.

Differently from the aforementioned research
efforts, the WASP project focuses on facilitating
the development/deployment of context-aware
applications using a subscription language which
allows dynamically configuration of interactions
between applications and platform, on top of 3G
networks. Moreover, it explores the web services’
service discovery approach (UDDI+) [14].

6. Conclusions
This paper outlines some of the technical

challenges related to the design of context-aware
services platforms, and proposes a generic
platform architecture for supporting the
development of context-aware applications.

Some components of the WASP platform have
been prototyped (UDDI+, Location Interpreter),
initially focusing on the development of location-
aware applications. The subscription language,
which enables application-platform interactions
dynamically configurable during the platform run-
time, is currently being defined. The further
development of the platform will allow generic
deployment of a larger range of context-aware
applications addressing different types of
contextual information and providing support for
both application-platform and platform-context
provider interactions using the event-driven
interaction model.

Bibliography
[1] Almeida et al., Web Services Technologies. WASP
Deliverable: D3.1, January 2003.
[2] Boley, H., The Rule Markup Language: RDF-XML
Data Model, XML Schema Hierarchy, and XSL

Transformations. 14th Intl. Conf. of Applications of
Prolog (INAP2001), Univ. of Tokyo, October 2001.
[3] Dey, K., Abowd, D., A Conceptual Framework and
a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications. Human-Computer
Interaction Journal 16, 24 (2001), pp. 97-166.
[4] Dey, A. et al., Towards a Better Understanding of
Context and Context-Awareness. Technical Report 99-
22, Georgia Institute of Technology, 1999.
[5] DeVaul, R. et al., The Ektara Architecture. MIT
Technical Report, 2000.
[6] Efstratiou, C. et al., An Architecture for the
Effective Support of Adaptive Context-Aware
Applications. Mobile Data Management, 2001.
[7] Held, A. et al., Modeling of context information for
pervasive computing applications. Proc. of the 6th
World Multiconf. on Systemics, Cybernetics and
Informatics (SCI2002), Orlando, FL, July 2002.
[8] Henderson, M., A Framework for Event
Correlation. Master Thesis, Department of Computer
Science and Electrical Engineering, University of
Queensland, October 1999.
[9] Henricksen K., et al., Generating Context
Management Infrastructure from High-Level Context
Models. Proc. of the 4th Intl. Conf. on Mobile Data
Management, Industrial Track Proceedings. January
2003, Melbourne, Australia, pp. 1-6.
[10] Indulska J. et. al., Experiences in Using CC/PP in
Context-Aware Systems. Proc. of the 4th Intl. Conf. on
Mobile Data Management, January, 2003, Melbourne,
Australia, pp. 247-261.
[11] Indulska, J. et al., An Open Architecture for
Pervasive System. Proc. of the 3rd Int. Working Conf.
on Distributed Applications and Interoperable Systems
(DAIS 2001), Kraków, Poland, pp. 175-188.
[12] Langheinrich, M., A privacy Awareness System
for Ubiquitous Computing Environment. UbiComp
2002, Springer LNCS 2498, pp. 237-245.
[13] McCarthy, J., Notes on formalizing context. Proc.
of the 13th Intl. Joint Conf. on Artificial Intelligence
(IJCAI 1993), Mountain View, CA, USA, 1993.
[14] Pokraev, S. et al., Extending UDDI with context-
aware features based on semantic service description.
To appear in 1st Intl. Conf. on Web Services (ICWS
2003), Las Vegas, USA, June 2003.
[15]Schilit, B., et al., Disseminating Active Map
Information to Mobile Hosts. IEEE Networks, 8(5)
(1994), pp. 22-32.
[16] UDDI project. UDDI: Specifications.
[http://www. uddi.org/specification.html].
[17]WASP project [http://www.freeband.nl/projecten
/wasp/ENindex.html].

