
Architectural Patterns for Context-Aware Services 
Platforms 

P. Dockhorn Costa, L. Ferreira Pires and M. van Sinderen 

Centre for Telematics and Information Technology, University of Twente,  
PO Box 217, 7500 AE Enschede, the Netherlands 

{dockhorn, pires, sinderen}@cs.utwente.nl 

Abstract. Architectural patterns have been proposed in many domains as 
means of capturing recurring design problems that arise in specific design 
situations. In this paper, we present three architectural patterns that can be 
applied beneficially in the development of context-aware services platforms. 
These patterns present solutions for recurring problems associated with 
managing context information and proactively reacting upon context changes. 
We demonstrate the benefits of applying these patterns by discussing the 
AWARENESS architecture.  

1   Introduction 

Architectural patterns have been proposed in many domains as means of capturing 
recurring design problems that arise in specific design situations. They document 
existing, well-proven design experience, allowing reuse of knowledge gained by 
experienced practitioners [1]. For example, a software architecture pattern describes a 
particular recurring design problem and presents a generic scheme for its solutions. 
The solution scheme contains components, their responsibilities and relationships.  

Patterns for software architectures also exhibit other desirable properties [1]: (i) 
patterns provide a common vocabulary and understanding for design principles; (ii) 
they are a means for documenting software architectures; (iii) they support the 
construction of software with defined properties; (iv) they support building complex 
and heterogeneous software architectures; and (v) they help managing software 
complexity.  

In this paper, we present three architectural patterns that can be applied beneficially 
in the development of context-aware services platforms, namely the Event-Control-
Action pattern, the Context Sources and Managers Hierarchy pattern and the Actions 
pattern. These patterns present solutions for recurring problems associated with 
managing context information and proactively reacting upon context changes. 

A context-aware services platform [5] contains generic components to support 
development, deployment and execution of context-aware applications. Examples of 
functionality provided by such components include context management (gathering 
and processing context information), reactivity upon context changes, and 3rd party 
service usage. The reuse of services is the most emphasized benefit of using services 
platforms support. Embedding common complex tasks into the platform and making 



them uniformly available for reuse can greatly enhance the efficiency of application 
development.  

The approach chosen to present these patterns has been inspired by the book [8], 
which describes a pattern as a three-part scheme: (i) a situation giving rise to a 
problem; (ii) the recurring problem arising in that situation and (iii) a proven solution 
to the problem. Therefore, for every pattern presented in this paper, we discuss (i) an 
example situation where the problem occurs; (ii) the recurring problem being 
considered; (iii) the solution scheme for this problem containing structural aspects 
with components and relationships and dynamic (behavioral) aspects and (iv) the 
general benefits of applying this pattern. 

The remainder of this paper is structured as follows: Section 2 presents the Event-
Control-Action Pattern, Section 3 discusses the Context Sources and Managers 
Hierarchy pattern and Section 4 describes the Actions pattern. Section 5 discusses the 
applications of these patterns in a (partially) prototyped services architecture, Section 
6 presents related work and Section 7 gives final remarks and identifies topics for 
further study. 

2   Event-Control-Action Pattern 

The Event-Control-Action architectural pattern provides a high level structure for 
systems that proactively react upon context changes. It has been devised in order to 
decouple context concerns from reaction (communication and service usage) 
concerns, under control of an application model. An application model defines the 
behavior of the application, which may be described by means of, for example, 
condition rules. In this pattern, context management issues, such as sensing and 
processing context, are independent from issues regarding reacting upon context 
changes.  

2.1 Example 

Suppose our services platform needs to provide support for applications in the 
medical domain. An example of such an application would be a tele-monitoring 
application [3], which monitors epileptic patients and provides medical assistance 
moments before and during an epileptic seizure. Measuring heart rate variability and 
physical activity, this application can predict future seizures and contact relatives or 
healthcare professionals automatically. In addition, the patient can be informed 
moments in advance about the seizure, being able to stop ongoing activities, such as 
driving a car or holding a knife. The aim of using this system is to provide the patient 
with both higher levels of safety and independence allowing him to function more 
normally in society despite his disorder. 

In this system scenario, the patient wears a heart monitoring system that collects 
heart signals along the day. These signals are processed by smart algorithms which 
are able to detect abnormalities, such as the possibility of having an epileptic seizure, 
within seconds. 



Several actions may be taken upon an epileptic seizure: (i) a volunteer, normally an 
intimate of the patient capable of providing first aid, receives an alarm of a possible 
seizure, (ii) in case no volunteer is available, healthcare professionals are sent to his 
location, (iii) patient’s bio-signals derived from the monitoring system are streamed to 
doctors at real time, and (iv) based on the real time information, doctors decide 
whether the patient needs to be taken to the nearest hospital.  

2.2 Problem 

The example presented in section 2.1 imposes challenging requirements to the 
support platform: 

• The platform should offer support for gathering context information, such as 
the patient’s heart rate and blood pressure in order to predict possible epileptic 
seizures; 

• The patient’s and volunteers’ locations need to be known, and proximity 
information needs to be derived; 

• Full time connectivity with the patient needs to be provided; 
• Devices (e.g., mobile phones) of volunteers and doctors need to pass an alarm 

in case of seizure; 
• Real time streaming connections need to be established with the doctor; 
• In case of a critical situation, an ambulance needs to take the patient to the 

nearest hospital. 
Implementing such an application within a single business party is not feasible. In 

fact, this application is realized with the cooperation of several business parties: the 
location providers, the providers of algorithms to analyze heart rates, the doctors 
clinic, the hospital, the connectivity providers, and the manufacturers of monitoring 
devices, among others. The aim of the platform is to guarantee the execution of the 
application by configuring and coordinating the cooperation of functions distributed 
among business parties. The distribution of responsibilities among these parties and 
the coordination of distributed functions require agreements on certain architectural 
patterns. 

2.3 Solution 

The Event-Control-Action architectural pattern aims at providing a structural 
scheme to enable the coordination, configuration and cooperation of distributed 
functionality within services platforms. It divides the tasks of gathering and 
processing context information from tasks of triggering action in response to context 
changes, under the control of an application behavior description. We assume context-
aware application behaviors are described in terms of condition rules, such as if 
<condition> then <actions>. The condition part specifies the situation under 
which the actions are enabled. Conditions are represented by logical combinations of 
events. An event models some happening of interest in our application or its 
environment. The observation of events is followed by the triggering of actions, under 



control of condition rules. Events are modeled and observed by one or more Context 
Processor components.  

A Controller component, empowered with condition rules describing application 
behaviors, observes the events. In case the condition turns true, an Action Performer 
component triggers the actions specified in the condition rules. Actions are operations 
that affect the application behavior in response to the situation defined in the 
condition part of the rule. An action can be a simple web services call or a SMS 
delivery, or it can be a complex composition of services.  

2.4 Structure 

Figure 1 shows a class diagram of the Event-Control-Action pattern as it is 
supposed to be applied in a context-aware services platform.  

 

 
Figure 1- Event-Control-Action pattern. 

Context concerns are placed on the left side of the figure, which depicts the 
Context Processor component. This component depends on the definition and 
modeling of context information. The Controller component, positioned in the central 
part of the figure, is provided with application behavior descriptions, represented by 
the Behavior Description class. On the right side of the figure, the action concerns are 
addressed. The Action Performer component triggers actions, which can be a service 
invocation on (external or internal) service providers or a network.   

2.5 Dynamics 

Consider the example presented in Section 2.2 in which a possible epileptic seizure 
is detected and volunteers close to the patient are contacted via SMS. We assume in 
this scenario that the services platform has been correctly configured (condition rules 
are defined, devices are switched on and users are subscribed to required services). 

Figure 2 depicts the flow of information between components applying the Event-
Control-Action pattern.  



The condition rule (here applied to a patient called John) defined within the 
Controller is: 

 if <event:EpilepticAlarm>  
 then  
      <SendSMS(closeby(Volunteers, 100))>  

 

Figure 2- Dynamics of the event-control-action pattern. 

The Controller observes the occurrence of event EpilepticAlarm. This event is 
captured by the component Epileptic Controller, which is an instance of Context 
Processor. Blood pressure and heart rate measures are gathered from other dedicated 
instances of Context Processor. Based on these measures and a complex algorithm, 
the Epileptic Controller component is able to predict within seconds that an epileptic 
seizure is about to happen, and an EpilepticAlarm event is, therefore, generated. 

Upon the occurrence of event EpilepticAlarm, the Controller triggers the action 
specified in the condition rule. The action SendSMS(closeby(volunteers, 
100)) is a composed action that can be partially resolved and executed by the 
platform. The inner action closeby (volunteers, 100) may be completely 
executed within the platform. However, it is the responsibility of the services platform 
designers to decide whether this is meaningful and worthwhile. The execution of this 
action requires another cycle of context information gathering on Context Processors 
(to provide the current location of John and his volunteers and to calculate proximity 
of these persons). By invoking the operation getCloseVolunt(John, 100) with 
assistance of an internal Action Performer, the Controller is able to obtain the 
volunteers that are within a radius of 100 meters from patient John. Finally, the 
Controller remotely invokes an action provided by a third party business provider 
(e.g., a Parlay X [9] provider) to send volunteers SMS alarm messages. 

2.6 Benefits 

By applying the classic design principle of separation of concerns, the Event-
Control-Action pattern has effectively enabled the distribution of responsibilities in 
context-aware services platforms. Context Processor components encapsulate context 
related concerns, allowing them to be implemented and maintained by different 



business parties. Actions are decoupled from control and context concerns, permitting 
them to be developed and operated either within or outside the services platform.  

Applying such design principles greatly improves the extensibility and flexibility 
of the platform, since context processors and action components can be developed and 
deployed on demand. In addition, the definition of application behavior by means of 
condition rules allows the dynamic deployment of context-aware applications and 
permits the configuration of the platform at run-time. 

3   Context Sources and Managers Hierarchy Pattern 

The Context Sources and Managers Hierarchy architectural pattern provides a 
hierarchical structure for Context Processor components. It has been devised in order 
to recursively apply context information processing operations in a hierarchy of 
Context Processors. In this chain of context information processing, the outcome of a 
context processing unit becomes input for a higher level unit in the hierarchy until a 
top-level unit is reached. 

3.1 Example 

Suppose we are developing the same system scenario presented in Section 2.2, in 
which a possible epileptic seizure is predicted. In addition to contacting nearby 
volunteers, we would like to know whether the patient is driving in order to send him 
a personalized alarm, such as “please, stop the car as soon as possible, your may have 
an epileptic seizure”. 

3.2 Problem 

Processing context information is challenging. Deducing rich information (e.g., an 
epileptic alarm) from basic sensor samples (e.g., heart rate and blood pressure 
measures) may require complex computation. There may be several information 
processing phases needed before yielding (syntactically and semantically) meaningful 
context information.  

Context information processing activities include [4]: 
• Sensing: gathering context information from sensor devices. For example, 

gathering location information (latitude and longitude) from a GPS device; 
• Aggregating (or fusion): Observing, collecting and composing context 

information from various context information processing units. For example, 
collecting location information from various GPS devices;  

• Inferring: interpretation of context information in order to derive another type 
of context information. Interpretation may be performed based on, for example, 
logic rules, knowledge bases, and model-based techniques. Inference occurs, 
for instance, when deriving proximity information from information on 
multiple locations; 



• Predicting: the projection of probable context information of given situations, 
hence yielding contextual information with a certain degree of uncertainty. We 
may be able to predict in time the user’s location by observing previous 
movements, trajectory, current location, speed and direction of next 
movements. 

 
The services platform should provide mechanisms to distribute context processing 

activities among multiple components. In addition, it should be able to create 
compound context information based on various context information sources. 
Distribution and composition of context information components in a flexible and 
decoupled fashion require agreements on architectural decisions. 

3.3 Solution 

The Context Sources and Managers Hierarchy architectural pattern aims at 
providing a structural schema to enable the distribution and composition of context 
information processing components. We define two types of Context Processor 
components, namely Context Sources and Context Managers. Context Sources 
components encapsulate single domain sensors, such as a blood pressure measuring 
device or a GPS. Context Manager components cover multiple domain context 
sources, such as the integration of a blood pressure and heart rate measures. Both 
perform context information processing activities as mentioned in Section 3.2. 

The structural schema proposed by this pattern consists of hierarchical chains of 
Context sources and Managers, in which the outcome of a context information 
processing unit may become input for the higher level unit in the hierarchy. The result 
structure is a directed acyclic graph, in which the initial vertexes (nodes) of the graph 
are always Context Sources components and end vertexes may be either Context 
Sources or Context Managers. The directed edges of the graph represent the (context) 
information flow between the components. We assume that cooperating Context 
Source and Manager developers have agreed upon the semantics of information. 

3.4 Structure 

Figure 3 (left side) zooms in the Event part of Figure 1. It shows a class diagram of 
the Context Source and Manager Hierarchy pattern as it is supposed to be applied for 
context-aware services platforms. 

Context Managers inherit the features of Context Sources, and implement 
additional functions to handle gathering context information from various Context 
Sources and Managers. A Context Managers observes context from one or more 
Context Sources and possibly other Context Managers. The association between the 
Context Manager class and itself is irreflexive. Figure 3 (right side) depicts a directed 
acyclic graph structure, which is an instantiation of this pattern. CS boxes represent 
instances of Context Sources and CM boxes represent instances of Context Managers. 

 



CS CS CS CS 

CM CM CM 

CM 

CM 

 

 
Figure 3 - Context Sources and Managers Hierarchy pattern on the left and an instantiation of 
this pattern on the right. 

Within a single context information processing unit (Context Source or Manager), 
we verify recursive applications of the Event-Control-Action pattern (Section 2). 
Consider the following application condition rule manipulated by Controller C1 in 
Figure 4: 

if <event:(EpilepticAlarm ^ driving)>  
then  
   <SendSMS(“please, stop the car as soon as possible, your 
may have an epileptic seizure”)> 

The event (EpilepticAlarm ^ driving) is a compound event observed on the 
following components: (i) a Context Manager component that detects an epileptic 
alarm (E1 in Figure 4) and (ii) a Context Source component that detects the patient is 
driving1 (E2 in Figure 4). Within the epileptic detector Context Manager (E1), the 
following condition rule2 is described in Controller C2, characterizing the recursive 
nature of the Event-Control-Action pattern: 

if <event:(HeartRate > threshold)>  
then  
   <generate(EpilepticAlarm)> 

Controller C2 observes heart rate measures on a Context Source component. The 
action of this rule is the generation of the epileptic alarm signal. Within the driving 
detector Context Source (E2), the following condition rule is described in Controller 
C3: 

                                                           
1 We assume there is a sensor in the patient’s car to detect whether he is driving. 
2 For the sake of the example, we simplify the algorithm to detect epileptic seizures by 

specifying it as the verification of heart rate measures against a threshold value. This 
algorithm in reality is surely more complex than the simple value comparison given in this 
condition rule.  



if <event:(userSignalOn)>  
then  
   <generate(driving)> 

The event userSignalOn may be directly set by the patient or automatically sensed 
by a device embedded in the car that is able to detect his presence. 

 
Event Control Action 

C1 
E1 

E2 
 

Event Control Action 

C2 
Event Control Action 

C3 

 
Figure 4 - Recursive application of the Event-Control-Pattern. 

3.5 Dynamics 

Consider the example discussed in the previous sections. We assume the services 
platform has been correctly configured (condition rules are defined, devices are 
switched on, users are subscribed to required services and Context Sources and 
Managers structures have been configured). 

Figure 5 (left side) depicts the flow of information between components in the 
Context Sources and Managers structure at the top most application of the Event-
Control-Action pattern. At this level, ControllerC1 observes the occurrence of event 
(EpilepticAlarm ^ driving), which is generated from CM: 
EpilepticDetector and CS: DrivingDetector, respectively. When the 
condition turns true (the alarm has been launched and the patient is driving), the 
personalized SMS message is sent to the patient.  

In the second recursion level of the event-control-action pattern (Figure 5, right 
side), the ControllerC2 observes heart rate measures from a heart device Context 
Source. Empowered with algorithms able to detect heart rate abnormality, the 
controller generates the EpilepticAlarm when it detects the possibility of an 
epileptic seizure. 

3.6 Benefits 

The Context Sources and Managers architectural pattern defines a hierarchical 
structure reference for Context Source and Manager components. This approach has 
enabled encapsulation and a more effective, flexible and decoupled distribution of 
context processing activities (sensing, aggregating, inferring and predicting). This 
attempt improves collaboration among context information owners and it is an 



appealing invitation for new parties to join this collaborative network, since 
collaboration among more partners enables availability of potentially richer context 
information. 

Another important benefit of applying this pattern is that it enables filtering of 
unnecessary information across the hierarchy of context information processing units. 
At the lowest level of context information gathering, a great overhead of information 
flow can be detected but only the relevant information is kept and forward to the next 
level of the hierarchy. 

 

 

Figure 5 - Dynamics of the Context Sources and Managers pattern on the highest level of the 
event-control-action pattern recursion (on the left), and on the second level of recursion (on the 
right). 

4   Actions Pattern 

The Actions architectural pattern provides a structure of components to support 
designing and implementing action concerns within context-aware services platforms. 
It has been devised in order to decouple action purposes from action implementations 
and to coordinate composition of actions. An action purpose defines an abstract action 
intention, while its implementation represents the realization of this intention utilizing 
specific implementation technologies.   

4.1 Example 

Consider the scenario presented in Section 2.2 in which the actions taken upon an 
epileptic seizure alarm are (i) a warning message is sent to the patient; (ii) his close 
relatives are called, (iii) volunteers close to the patient are notified of a possible 
seizure, and (iv) in case no volunteer is available, healthcare professionals are sent to 
the patient’s current location. 



4.2 Problem 

Some of the actions presented in the example may be performed independently in 
parallel, such as (i) sending a warning message to the patient, (ii) calling the relatives 
and (iii) notifying nearby volunteers. However, the action to call healthcare 
professionals is only enabled in case notifying nearby volunteers (action (iii)) has not 
succeeded (for example, no volunteers are momentarily available). This situation 
characterizes a dependency between actions. In addition, some actions may trigger a 
sequence of other actions. For instance, to send help from healthcare professionals, it 
may be necessary to request the patient’s medical dossier, to select relevant 
medication, to check availability of transportation, and so forth.  

The services platform should provide mechanisms to manage coordination of 
actions, especially when dependencies exist. In addition, the platform should support 
decoupling of an action purpose from its implementations. Although the action “send 
healthcare professionals” presents a common purpose, the implementations of it may 
vary, since the logistics may differ from hospital to hospital. Distribution and 
coordination of actions in a flexible and decoupled fashion require agreements on 
architectural decisions 

4.3 Solution 

The Actions architectural pattern aims at providing a structural scheme to enable 
coordination of actions and decoupling of action implementations from action 
purposes. It involves (i) an Action Resolver component that performs coordination of 
dependent actions, (ii) an Action Provider component that defines action purposes and 
(iii) an Action Implementor component that defines action implementations.  

An action purpose describes an intention to perform a computation with no 
indications on how and by whom these computations are implemented. Examples of 
action purposes are “call relatives” or “send a message”. The Action Implementor 
component defines various ways of implementing a given action purpose. For 
example, the action “call relatives” may have various implementations, each defined 
by a telecom provider. And finally, the Action Resolver component applies 
techniques to resolve compound actions, which are decomposed into indivisible units 
of action purposes (indivisible from the platform standpoint). 

4.4 Structure 

Figure 6 zooms in on the Action part of Figure 1. It shows a class diagram of the 
Actions pattern as it is supposed to be applied for context-aware services platforms.  

Both the Action Resolver and Action Provider components inherit the 
characteristics of the Action Performer component, and therefore are both enabled to 
perform actions. The Action Resolver component performs compound actions, 
decomposing them into indivisible action purposes, which are further performed 
separately by the Action Provider component. Action Providers may be 



communication service providers or (application) service providers. Communication 
service providers perform communication services, such as a network request, while 
service providers perform general application-oriented services, implemented either 
internal or external to the platform, such as an epileptic alarm generation or an SMS 
delivery, respectively. 

An action provider may aggregate various Action Implementor components, which 
provide concrete implementations for a given action purpose (represented by 
implementors A and B in Figure 6). 

 

 
Figure 6 - Actions pattern structure 

4.5 Dynamics 

Figure 7 depicts the flow of information between components of the Actions 
pattern for the scenario presented in Section 4.1.  

The Action resolver gets a compound action to decompose. Empowered with 
techniques to solve composition of services, the Action Resolver breaks the 
compound action into indivisible service units, which are then forwarded to the 
Action Provider. The Action Provider delegates them to the proper concrete action 
implementations. In our example, send SMS and calling actions are delegated to the 
ParlayX implementor and the action to send healthcare is delegated to the hospital 
implementor. 

4.6 Benefits 

By defining a structure of Action Resolvers, Providers and Implementors, the 
Actions pattern has enabled the coordination of compound actions and the separation 
of abstract action purpose from its implementations. This attempt avoids permanent 
binding between an action purpose and its implementations, allowing the selection of 



different implementations at platform run-time. In addition, abstract action purposes 
and concrete action implementations may be changed and extended independently, 
improving dynamic configuration and extensibility of the services platform. 

 

 
Figure 7 - Dynamics of Actions Pattern 

5   The AWARENESS Architecture 

The AWARENESS project [7] aims at researching and designing a services and 
network infrastructure for context-aware applications. The general architecture 
consists of three layers: the application layer, the services infrastructure layer and the 
network infrastructure layer. 

The application layer defines applications to be developed, deployed and executed 
using the support from the services and network infrastructure. In AWARENESS, the 
application scenario chosen to validate the infrastructures is the mobile health 
application that supports monitoring of epileptic seizures and uncontrolled 
movements in spasticity [3]. 

The network infrastructure provides context-aware mobility support in dynamic 
network environments. Context information, such as presence and available 
bandwidth, is used to provide dynamic network routing and network selection. The 
services infrastructure provides generic support easy and rapid development, 
deployment and execution of context-aware applications. The functionality provided 
by the service infrastructure include context management (gathering, processing and 
reacting upon context changes) federated identity management, 3rd party service 
usage, service discovery, privacy enforcement and security mechanisms.  

Although the network layer also benefits from the patterns presented in this paper, 
we have focused on their applicability in the services infrastructure layer. Figure 8 
presents the AWARENESS services infrastructure architecture. 

The Context Sources and Managers components address context specific concerns 
such as gathering, processing, and delivering context information. The Control 
module contains the application-specific functionality that is executed within the 
service infrastructure. The Actions module concentrates the functionality to trigger 
actions in response to context changes. The commands to trigger action are activated 
by the Controller component. 



 
Figure 8 - The AWARENESS services infrastructure architecture 

The Registries & Repositories module contains information on context types, event 
types, services and other (meta) information on types and services within the service 
infrastructure. It interacts with most of the components within the infrastructure since 
it defines the data types manipulated by them. The User Management module 
contains functionality related to access control, privacy and group management. User 
profiling and preferences functions are managed by this component. 

The AAA & Security module includes the functions associated with security, 
privacy, authentication, authorization (including 3rd party access control), accounting 
and federation issues. Although this module is depicted in a single block, AAA & 
Security are cross-cutting issues, meaning that these concerns influence the 
development of other components of the infrastructure. 

The application of the Event-Control-Model architectural pattern is depicted in the 
figure. Context concerns (Event module) are decoupled from communication and 
service usage concerns (Action module), under control of an application model 
(Control module). Applications describe applications logic to the Controller (Control 
module). Applications logic descriptions specify conditions under which actions 
(services) are to be triggered. The conditions are specified in terms of (correlation of) 
events. Events are modeled and observed by Context source and Manager 
components. When the conditions hold (events have been observed), the controller 
triggers the specified actions. 

Context Source and Manager components are hierarchically organized, 
characterizing the application of the Context Sources and Managers Hierarchy 
pattern. Context Source components encapsulate single domain sensors, while a 
Context Manager component covers multiple domain context sources. Context Source 
and Manager components may be implemented as part of the infrastructure or 
externally provided by third party context providers. Both types of components may 
implement aggregation, prediction and inferring functionality. Aggregation, 
prediction and Inferring rules can be described in terms of ontology languages [6].  



We are currently applying, implementing and validating the three presented 
patterns in the tele-monitoring scenario [3].  

6   Related Work 

The Event-Control-Action pattern inherits properties of design patterns presented 
in the literature, such as Observer and Mediator [2]. The Observer design pattern 
defines “dependencies between objects so that when one object changes state, all its 
dependents are notified and updated automatically”.  In the event-control-action 
pattern, the control concerns can be seen as an observer and the event concerns, the 
subject of observation. The publish-subscribe mechanism can be used to implement 
observation: the subject is the publisher of notifications and the observers are the 
subscribers to receive notifications. Any number of observers can subscribe to receive 
notifications and the subject does not need to know its observers.  

The Mediator design pattern allows loose coupling interactions by keeping objects 
from referring to each other explicitly. It can be used in combination with the 
Observer pattern to decouple subject from observers: rather than subscribing and 
notifying directly to objects, subscriptions and notifications are submitted to an 
intermediate object (e.g., an event channel). Finally, the Actions pattern extends the 
Bridge design pattern [1], which “decouples an abstraction from its implementations 
so that the two can vary independently”. 

In [5] we report the design of a configurable context-aware services platform and 
in [6] we discuss the utilization of ontology techniques in context-aware systems. 

7   Conclusions 

We have presented in this paper three architectural patterns that can be beneficially 
applied in the development of context-aware services platform, namely the Event-
Control-Action pattern, the Context Sources and Managers Hierarchy pattern and the 
Actions pattern. By decoupling context concerns from action concerns, the Event-
Control-Action pattern has effectively enabled the distribution of responsibilities 
among various business parties within a context-aware services platform. This 
approach has greatly improved extensibility and flexibility of the platform’s generic 
functionality. The Context Sources and Managers Hierarchy pattern enables a flexible 
and dynamic distribution of context information processing activities within a 
collaborative network of context sources and managers. Finally, the Actions pattern 
defines a structure of action performer components that enables the coordination of 
compound actions and the separation of abstract action purposes from their 
implementations. This attempt allows the dynamic selection of action 
implementations at run-time, improving extensibility and flexibility of the platform 
(3rd party services can be developed and deployed on demand at platform run-time).  

Additionally to the benefits just mentioned, the application of these patterns in the 
AWARENESS project has improved the collaboration among project members. By 
defining and applying patterns we have provided a common vocabulary and 



understanding of concerns within the project. Therefore, project documents produced 
by different partners have become more consistent. In general, the application of 
patterns has helped us managing the heterogeneity and complexity of the 
AWARENESS services infrastructure, since we were able to compose an architecture 
of distributed collaborative components, which can be developed and maintained by 
various business parties.  

Further study topics should include (i) the definition of an expressive language to 
define condition rules; (ii) the specification of a mechanism to allow automatic 
configuration of condition rules into the context sources and managers hierarchy; and 
the (iii) definition of concrete techniques to resolve composition of actions 

Acknowledgements  

This work is part of the Freeband AWARENESS project [7]. Freeband is 
sponsored by the Dutch government under contract BSIK 03025. 

References 

[1] Buschmann, F., et al.: Pattern-Oriented software architecture: A System of Patterns. John 
Wiley and Sons, New York, U.S.A. (2001). 

[2] Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software. 
Addison Wesley, Massachusetts, U.S.A. (1996). 

[3] Batteram, H., et al.: AWARENESS Scope and Scenarios. AWARENESS Deliverable D1.1 
(2004). Available at http://awareness.freeband.nl. 

[4] Dockhorn Costa, P., et al.: AWARENESS Services Infrastructure. AWARENESS 
Deliverable D2.1 (2004). Available at http://awareness.freeband.nl. 

[5] Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M., Pereira Filho, J.: Towards a 
Service Platform for Mobile Context-Aware Applications. In: Mostefaoui, S., K., et al. 
(eds.): Proc. 1st Intl. Workshop on Ubiquitous Computing (IWUC 2004). Portugal (2004) 
48-61. 

[6] Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M., Rios, D.: Services Platforms for 
Context-Aware Applications. In: Markopoulos, P., et al. (eds.): Proc. 2nd European Symp. 
on Ambient Intelligence (EUSAI 2004). The Netherlands (2004) 363-366. 

[7] Freeband Kennisimpuls, “AWARENESS project”. The Netherlands (2004).  Available at 
http://awareness.freeband.nl 

[8] Alexander, C.: The Timeless Way of Building. Oxford University Press (1979). 
[9] Parlay Group. Parlay X Web Services White Paper (2002). Available at 

http://www.parlay.org/ about/parlay_x/ParlayX-WhitePaper-1.0.pdf. 
 


