
Towards a Service Platform for Mobile Context-Aware
Applications

Abstract. Context-aware service platforms aim at supporting handling of
contextual information in order to provide better user-tailored services. In this
paper we propose a novel service platform architecture to support mobile
context-aware applications, giving emphasis to the configurability of the
platform’s generic functionality. We introduce concepts and a language to cope
with configurability aspects. We have implemented this architecture in the
WASP1 platform, a web services based context-aware service platform on top
of 3G networks.

1 Introduction

Context-awareness has emerged as an important and desirable feature in distributed
mobile applications. This feature deals with the ability of applications to utilize
information about the user’s environment (context) in order to dynamically select and
execute relevant services [1] that better match the user needs. In a ubiquitous
environment, with many services available at any time, the use of context is especially
important to help determining which services are relevant for the user [7].

Building context-aware systems involves the consideration of several new
challenges. Such challenges are mainly related to gathering/sensing, modeling,
storing, distributing and monitoring contextual information. These challenges
motivate the need for proper architectural support.

There have been many initiatives towards defining architectural support for
context-aware applications. In particular, considerable effort has been spent on the
development of infrastructure software to support the development and/or operation
of context-aware applications. Infrastructure software comprises code libraries or
runtime environments that provide higher-level abstractions that shield application
developers from the demands of interacting with lower-level data, hardware devices
and software concepts [7]. Among these infrastructures, we have seen the emergence
of context-aware service platforms, which aim at providing support to application
designers to conceive their applications using services, mechanisms and interfaces
that shield them from the complexity of handling contextual information [2].

The current platforms, however, offer a limited level of configurability. Ideally, a
platform for context-aware applications should facilitate the creation and the dynamic
deployment of a large range of context-aware applications that are unanticipated
during the design of the platform. In this paper, we define a service platform
architecture for context-aware applications, giving emphasis to the configurability and

1 WASP (Web Architectures for Service Platforms) is a Dutch national project.

extensibility of the platform’s generic functionality. We present a descriptive
language, coined WSL (WASP Subscription Language), which provides means to
applications to dynamically configure the platform. This paper is an extension of [2],
in which we identify the essential requirements to be satisfied by a configurable
context-aware service platform.

Within the WASP (Web Architectures for Service Platforms) project, we have
implemented the proposed service platform architecture. The prototype
implementation is referred to as the WASP Platform. The WASP project is concerned
with the definition and validation of a service platform to facilitate the development
and deployment of mobile context-aware applications, called WASP applications, on
top of 3G networks [3], using Web Services [9] technologies. Fig.1 depicts the
environment of the WASP platform [11].

WASP
Platform

3G Mobile
Network

3G Network
Services

Web Services

Parlay X

WASP
Applications

WASP
Platform

3G Mobile
Network

3G Network
Services

Web Services

Parlay X

Third-party
services

Web Services

Fig. 1. Overview of the WASP Platform

The 3G networks provide the telecommunication infrastructure for mobile
terminals. In addition, a 3G network can play the role of a Context Provider, being
able to provide the current location of its users. 3G network functions are accessed
using the Parlay X [4], a web services interface. Web Services technologies are used
to allow application�platform and platform�service provider interactions.

The remainder of this paper is structured as follows. Section 2 gives an overview
of the service platform. Section 3 defines the concepts within the platform, and
Section 4 describes the WSL. Section 5 introduces the platform components. Section
6 presents the prototype and an example of platform usage, and finally Section 7
concludes the paper, presenting the current project status and some final remarks.

2 Overview of the Service Platform

The service platform forms the system environment for context-aware mobile
applications. It supports the system scenario in which context is gathered from
Context Providers (sensors or third party information providers) and services are
implemented by third-party service providers.

The platform aims at delivering the most adequate services based on both
application requirements and contextual facts (see Fig. 2).

Applications describe their requirements by defining the desired services and the
contextual conditions in which the services should be executed. The platform should
autonomously react to reaction rules, in which the contextual conditions are checked
against contextual facts.

Service
Platform

Third Party
Services

Mobile CA
Applications

Context
Providers

application
requirements
(user needs)

service capabilities
(service description)

contextual facts
(context information)

Fig. 2. Overview of the Service Platform

We have identified the essential requirements to be satisfied by the service platform
[2]. These requirements include:
• Context Handling: the platform should provide efficient mechanisms to gather,

store, distribute and monitor contextual information;
• Reactive Behavior: the platform should allow the specification of reaction rules.

Moreover, it should be able to react according to the specified rules;
• Configurability: the platform should be able to support context-aware applications

that are unanticipated during platform design. For that, mechanisms of
configurability and the use of generic components need to be considered.

The abovementioned requirements are our major concerns in the definition of the
platform. We have spent much of our efforts on developing a platform architecture
with a high level of configurability. The proposed solution includes the definition of a
subscription language, which allows applications to dynamically expose their needs to
the platform.

Fig. 3 depicts the proposed service platform architecture, which contains three
main modules: Monitor, Registry and Context Interpreter. The Context Interpreter
gathers contextual information from Context Providers (sensors or third-party
providers), manipulates contextual information and makes it uniformly available to
the rest of the platform. The Registry maintains information necessary to support the
interpretation of application requirements and the execution of services. The Monitor
is the core of the platform, since it is responsible for receiving and interpreting
application requests making them active within the platform. The subcomponents of
the architecture are discussed later in this paper.

 SERVICES PLATFORM

Registry Monitor

Parser

Subscription
Manager

EntityType
Registry

FunctionType
Registry

ContextDB
Registry

Context Interpreter

ActionType
Registry

Entity
Registry

User Profile
Registry

C
A

A
P
P
L
I
C
A
T
I
O
N
S

S
E
R
V
I
C
E

P
R
O
V
I
D
E
R
S

CONTEXT PROVIDERS
Fig. 3. The Service Platform Architecture

In our approach, application�platform interactions are dynamically configured
through the addition of application subscriptions. By means of subscriptions,
applications are capable of dynamically exposing their requirements to the platform,
which composes at runtime new services from the set of available services.
Application subscriptions are written in WSL, a descriptive language we have
developed for this purpose.

We have defined a simple extensible context model to explore the contextual
knowledge of the service platform.

3 Concepts

In order to effectively and consistently manipulate the contextual knowledge of the
platform, we need to organize, represent, and describe it in a model. For this purpose
we have introduced the concept of a context model. Once this model is defined, it is
used as basis for common understanding between platform, applications and service
providers.

In addition, we have defined the types of services that are supported within the
platform. The defined service units constitute the building blocks to perform dynamic
service composition.

3.1 The Platform Context Model

The service platform manipulates data entities, which represent objects of the real
world (users, restaurants, museums, roads, vehicles, etc.). Attributes (age, area,

address, etc.) and Context (time, location, activity, etc.) are associated with data
entities.

The UML diagram depicted in Fig. 4 describes a possible configuration of the
context model proposed for the platform. This diagram shows only an example
configuration, with entities restaurant and user and their relationship with context
location. Along the platform usage, the model may be extended by dynamically
adding new entities types (e.g., museum and supermarket) and context types (e.g.,
time and activity).

The model presents three instantiation levels, namely a metamodel, a model and an
object level. The metamodel level is embedded in the platform and it is defined during
the platform design-time, being unchangeable during runtime. The model and the
object levels are dynamically changeable during platform runtime. They represent
instances of the metamodel and the model levels, respectively. Details about the
context model can be found in [1].

Entity Type Context Type

UserLocation

«instance»

«instance»

Restaurant

Model

Restaurant:Location

* *

Model

User:Location

* *

«instance»

AccessModelType

* *

«instance»

«instance»

Metamodel

Model

LosPonchos 123, 3425 John

«instance»

«instance» «instance»

Pinochio

«instance»

Alice

«instance»

Objects

Fig. 4. The platform context model

Fig. 4 presents a model configuration in which entities types Restaurant and User
(model) are instances of Entity Type (metamodel). Moreover, the context Location
(model) is instance of Context Type (metamodel). Similarly, Pinochio and
LosPonchos (object) are instances of entity Restaurant (model) and Alice and John
(object) are instances of entity User (model).

It would be possible to define (hierarchical) relations between entity types. This
could vary from simple categorizations of entity types to complex ontologies [5]. A
common representation of this knowledge is essential for the interoperability of the
platform and its environment.

3.2 Services

We have defined two types of service units within the platform: (i) services used to
reason about contextual circumstances, which we call functions and (ii) services that
correspond to response triggers to determined contextual occurrence, which we call
actions.

Functions are service units that perform a computation with no side-effects, i.e., it
does not change the current status of the platform. An example of function is the
isInside operation, which may have two parameters, a container and a person. It
returns true if one entity type person is inside an entity type container, and false
otherwise.

Actions are service units that perform a computation with side-effects for one or
more parties involved in the system. An example of action is the sendAmbulance
operation, which sends an ambulance to a physical place. The invocation of functions
and actions follows the request-response pattern.

Functions and actions constitute the set of service units that might be composed to
form a new service. The service composition is described by applications by means of
applications subscriptions written in WSL and performed by the platform.

4 The WASP Subscription Language (WSL)

We have developed a descriptive language to specify subscriptions. Initially, we
identified two essential requirements with respect to the elements of this language: (i)
a way to specify the reactions of the platform to stimuli from the environment and (ii)
a way to correlate events that eventually trigger the specified reactions. In order to
fulfill these requirements we have defined the clauses ACTION and GUARD,
respectively.

Subscriptions can be either parameterized or not. Parameterization is necessary
when the rule (subscription) applies to a collection of entities, since it would be
cumbersome to write a subscription for each target entity. To allow parameterization,
the clause SCOPE was defined.

Without subscription parameterization, the application would be forced to review
all subscriptions that involve the kinds of entities for which the subscription applies.
For example, the application would have to add a subscription for each newly
introduced entity.

Non-parameterized subscriptions are defined in the form <ACTION actions
GUARD expr>, where actions represent the reaction of the platform according to
stimuli defined in the GUARD logical expression.

Sometimes it is necessary to select entities of a collection for which a certain
condition holds. For this purpose we have defined the SELECT clause. It allows the
selection of a subset of a collection respecting the logical combination of entities’
contexts and attributes as a condition. The EBNF syntax and the UML class diagram
defining the syntax of WSL can be found in [1].

Each clause defined in WSL is discussed in more detail bellow. We discuss the
clauses by means of examples that use the functions count and IsInside, and

the action sendSms. Count returns the number of elements in a collection;
IsInside returns true if an entity is inside a given container, and false otherwise;
sendSms sends a message to one or a set of users.

The SELECT clause

The SELECT clause returns a collection of entities for which a given filtering
expression holds true. Its abstract syntax is as follows:

SELECT (<collection-of-entities>; <var>; <filtering-
expression-involving-var>)

A concrete example of the select clause which returns a collection of users currently
located in Enschede would be:

SELECT (entity.user.*; u; u.location.city ==
"Enschede")

entity.user.* represents the collection of all users in the system. u is the
variable to designate the elements of the collection and u.location.city ==
"Enschede" is the logical expression that filters the given collection of users by
selecting the ones that are in Enschede.

The ACTION-GUARD clause

The ACTION-GUARD clause defines an action (or actions) that should be triggered
in consequence of a correlation of events. Its abstract syntax is as follows:

ACTION <action> [GUARD <correlation-of-events>]

A concrete example is:

ACTION SendSms (entity.user.John, "Hey John, coca-
cola and film, a perfect combination!");

GUARD
 (count (SELECT (entity.cinema.*; c;
 (isInside (entity.user.John, c) AND
 (c.location.city == "Enschede"))
 //list of cinemas, where John is located, inv: 0 or 1
)>0)

This application subscription defines that a message should be sent to John if John is
inside a movie theater and this movie theater is located in Enschede. The SELECT
clause is used to select a collection of movie theaters in Enschede where user John

currently is. The selected collection has 0 or 1 element (either the user is in one or in
zero movie theaters). If the user is in one, an advertisement is sent to him, otherwise
the action is not triggered.

The SCOPE clause

The SCOPE clause defines a collection of target entities for which the subscription
should be applied. An ACTION-GUARD clause is always nested in the SCOPE clause.

The SCOPE clause has the following abstract syntax:

SCOPE (<collection-of-entities>; var){
ACTION <action-involving-var> [GUARD <correlation-of-
events>]}

An example of usage of the scope clause is the scenario "Send an advertisement to
every user inside the movies in Enschede":

SCOPE ((SELECT (entity.user.*; u2; u2.location.city ==
"Enschede")); u)
{
 ACTION
 SendSms (u, "Coca-cola and film, a perfect
 combination!");
 GUARD
 (count (SELECT (entity.cinema.*; c;
 (isInside(u,c) AND
 (c.location.city == "Enschede"))
)>0)
}

As already mentioned, the SELECT clause returns a collection of users located in
Enschede in that given moment. The ACTION-GUARD clause is applied for each of
the selected users, which are named “u” by the scope clause.

5 Platform Components

The three main components of the platform are the Context Interpreter, the Registry
and the Monitor.

5.1 Context Interpreter

The Context Interpreter gathers contextual information from Context Providers
(sensors or third parties providers) and makes it uniformly available to the rest of the
platform. The interpreter might also perform:
• Context aggregation: the context interpreter provides contextual information about

a certain entity by gathering and aggregating context from a set of context
providers, if necessary;

• Context inference: the context interpreter infers context from other contexts.
Inference rules may be used to perform this activity.

5.2 Registry

The Registry component is a collection of registries that contain and maintain the
information represented in the data entity model (Fig. 4). Therefore, they provide
essential information to support the deployment of applications in the platform. We
have defined six registries:
• Entity Type Registry: stores entity types, and their correspondent attributes and

context types. Examples of entity types are person, cinema, restaurant and museum;
examples of attributes are age and address; examples of context types are location,
velocity and activity. Some types of contexts apply only to specific entity types.
For example, velocity may be applied to a person but not to a cinema. The Entity
Type registry manages all possible combinations of context types and entity types,
being the actual representation of level Model of the context model;

• Entity Registry: stores instances of entity types. For example, it might store the
instances Alice and John of the entity type person, and Pizza Hut of entity type
restaurant;

• Function and Action Type Registries: store, match and retrieve functions and
actions profiles, respectively. Actions and functions are published and
implemented by third-parties service providers;

• User Profile Registry: manages user profiles. Significant facts can be collected
directly from the user profiles, like, e.g., as gender, date of birth, name,
preferences, etc. This can be considered contextual information in the sense that it
describes the environment in which the users operate.

• ContextDB Registry: preserves contextual information over time (history).
Keeping context history is essential to allow context inference based on past
occurrences.

5.3 Monitor

The core of the platform architecture is the Monitor module, which is responsible for
interpreting and managing the application subscriptions. In order to perform its
operations, the Monitor makes use of the data available in the Registry and the
contextual information provided by the Context Interpreter.

Application�platform interactions are dynamically configured through definition
of application subscriptions. These subscriptions are expressed in WSL, which
provides means for applications to dynamically expose their requirements to the
platform, allowing the platform to perform a dynamic service composition.

Using WSL one can refer to entities (their context and attributes) and the
combination of actions and functions in order to express the desired service. Since
these elements are used through subscriptions and entities, context, attributes, actions
and functions can be added to the platform on demand (during runtime), relatively
complex services can be composed and deployed at platform runtime.

The Monitor contains a Parser and a Subscription Manager component.

5.3.1 Parser

The Parser component is responsible for verifying whether the subscriptions are
syntactically and semantically correct, having as reference the syntax of WSL [1].
The result of the parsing is a tree containing WSL primitive elements.

There are two levels of semantic checking:
• A model checking level using the platform entity metamodel (Fig. 4). At this level,

the Parser verifies the existence of the entity types and the combination and context
type and entity type. Furthermore, the Parser needs to verify the semantics of
functions and actions;

• An instance checking level using the instance repositories to check the existence of
the entities (final instances).

5.3.2 Subscription Manager (SM)

The SM provides an interface to allow applications to add, remove or update
subscriptions. Furthermore, applications should provide a notification interface for
possible callbacks from the platform. Fig. 5 depicts the internal configuration of the
Subscription Manager.

Applications subscribe to the platform by dynamically adding application
subscriptions. Moreover, existing applications subscriptions can be updated or
removed.

Added or updated subscriptions are parsed to be verified for syntax and semantic
integrity. If no errors are found, they are forwarded to the event handler, which
constantly checks whether the conditions in the GUARD clause has become true or not.
The frequency in which verifications are performed depends on how often contextual
information is provided by the Context Interpreter. In general, the GUARD clause is
rechecked when notifications of context changes are received from the Context
Interpreter.

Subcription Manager (SM)

P
R
O
X
Y

Action
Executor

Event
Handler

a

b

c

e

NotifyApp

Event-driven
subscription

Non-parsed
subscription

OK/
Error

Action (user)

GUARD
clause is true

Add,
Remove,
Update

subscription

NotifyApp

a

d

Metamodel and
model

information

Context

Context

a) Applications interface
b) Parser interface
c) Context Interpreter interface
d) Repositories interfaces
e) Parlay Web Services Interface

Fig. 5. Subscription Manager

When the GUARD condition becomes true, an action is triggered, which could be a
simple callback to the application or a more complex task on the users’ device.

The message sequence diagram depicted in Fig. 6 represents the execution flow of
a subscription in the Subscription Manager.

Application Proxy Parser Events Verifier Action ExecutorUser

req(service:Service)

add(subs:Subscription)

send(event_subs:Subscription)

send(subs:Subscription)

send(ok:bool)

send(ok:bool)

send(event_subs:Subscription)

sendSMS(msg:String)

Fig. 6. Flow of a subscription in a sequence diagram

In Fig. 6 the user requests a service to the application, which consists of sending
him a message in case one of his colleagues is close to him. The application describes
the service composition by means of a subscription and adds it to the platform. The
Proxy gets the subscription and asks the Parser to check it. Once the subscription is
checked, it is forwarded to the EventVerifier. The EventVerifier checks whether there
is a colleague close by. In case this condition becomes true, the ActionExecutor
triggers the sendSMS action.

6 Validation Scenario

We have implemented the proposed service platform architecture within the WASP
project. The main goal of the prototype has been to demonstrate and validate the
concepts and the main proposed architectural elements, giving emphasis to the
interactions between the application and the platform.

6.1 Prototype

We have prototyped the Monitor (Subscription Manager and the Parser), some of the
Registries and a simplified Context Interpreter. The application�platform and
platform�context provider interactions were implemented. The scope of the
prototype does not include the implementation of the platform�service providers
interaction. Essential actions and functions are hard-coded in the platform with which
our scenarios could be performed (mainly location-aware scenarios). Future
implementations of the prototype will consider the implementation of this interaction
by implementing the action type registry and function type registry using, e.g., the
UDDI [10] approach, which allows service discovery.

With respect to the WASP Subscription Language, we have defined an XML
Schema that represents the WSL Syntax [1]. Application subscriptions are written by
applications in XML structures and validated using the Schema Syntax. The WSL
parser is able to read the application subscriptions in XML format and map them into
Java classes, which are automatically compiled and executed during runtime.

We have used Web Services technologies and Java language for implementing the
prototype. The WASP platform interface is offered as a web service end-point, which
allows the operations to be remotely called by the platform applications. Furthermore,
we also have implemented the users’ terminals as a web service end-point to allow
callbacks from the platform. We have used JAX-RPC [6] to automatically generate
the WSDL file from Java interfaces. We have used the W3C’s Document Object
Model (DOM) [8] to parser application subscriptions written in XML format.

6.2 Example of Platform Usage

In this example, a context-aware taxicab application is deployed on top of the
platform. Users make requests for a taxicab in the company’s web site with no need to
inform their current location. Furthermore, users get a message when the taxicab
approaches their location. Fig. 7 depicts the sequence diagram of this scenario and
Table 1 presents the respective interaction messages.

(1)

(2) (3)
(3)

(3) (3)
(4)

(5)
(6)

User:
John

Appl:
TaxiCab

Platform Context
Provider

 .
 .
 .

(7)

Fig. 7. Sequence diagram for the taxicab scenario

Table 1. Exchanged messages in the taxicab scenario

Message
Number

Message Contents

(1) “I need a cab”
(2) ACTION

 NotifyApp(bookTaxicab
 (SELECT (entity.taxicab.*; tc;
 (CloseBy (tc, entity.user.John,
 3000)) AND
 (tc.company = "ABC"))));

(3) John’s location and taxicabs’ locations
(4) The booked taxicab identification and the approximate taxicab

arrival time
(5) “The taxicab will approximately arrive 5 minutes”
(6) ACTION

 SendSMS(entity.user.John, "Your
taxicab has arrived.");

GUARD
 CloseBy(entity.user.John,
 entity.taxicab.cab1234, 50)

(7) SMS with the text “your taxi has arrived”

In Table 1, message (1) represents the user request for a taxicab. Message (2) is the

application subscription in WSL for a composed service whose service units are
actions NotifyApp and bookTaxicab, and function closeby. The action
NotifyApp performs a callback from the platform to the application, to inform the
results of action bookTaxicab. These results are the identification of the taxicab

and an approximate arrival time. Besides returning this information, bookTaxicab
is a third-party service that books a taxicab from a given collection. We assume for
this scenario that the context provider is able of providing the current taxicabs
locations and the users locations (message (3)).

An extra service offered by this context-aware taxicab application is that the user
gets a message when the taxicab approaches his current location. Message (6)
represents the application subscription in WSL used to perform this operation. The
ACTION-GUARD clause defines that a message should be sent to the user when the
specific taxicab is close to him.

Other example scenarios of platform usage, including a policemen application and
a follow me application, have been reported [1].

7 Final Remarks

This paper investigates some of the technical challenges related to the design of
context-aware service platforms, and proposes a generic platform architecture for
supporting the development of context-aware applications to tackle the identified
issues.

Most of the current approaches for building context-aware service platforms do not
consider the dynamic deployment of mobile context-aware applications on top of a
service platform. For this reason, we have explored this aspect of the proposed
architecture in more detail. Our approach provides means to configure interactions
between applications and platform at runtime. Furthermore, the platform may be
extended through the addition of functions, actions and data entities. Embedding this
level of flexibility in the platform makes it appropriate for a large range of
(unanticipated) context-aware applications.

In order to allow dynamic configuration of applications�platform interactions, the
proposed approach makes use of a descriptive language. This language, called WSL,
is used to specify how the platform must react to a given correlation of events,
potentially involving contextual information.

We have used Web Services as the technology to enable the interactions of the
platform with its environment. As a consequence, third-party applications can access
the services offered by the platform through widely-used Internet protocols. In
addition, Web Services facilitate the extension of the platform by third-parties, which
may provide additional functions and actions as Web Services.

Defining a complete architecture for a context-aware service platform is a non-
trivial task. It involves several issues related to different domains, such as ubiquitous
computing, artificial intelligence, human-computer interaction, and other crosscutting
issues such as security and privacy, scalability and performance.

Within the WASP project, there has also been an effort to investigate the
applicability and usefulness of Semantic Web technologies for the representation of
contextual information, leading to the development of context ontologies and the use
of reasoners to detect context conditions [5]. This work advocates that the use of
ontologies, in combination with the presented architecture, enhancing the flexibility,
reusability and reasoning capabilities of the platform.

An additional effort within the WASP project [11] aims at designing a privacy
architecture for the WASP platform, providing users of the platform with control over
their privacy while being unobtrusive. This effort proposes an approach for privacy
control based on P3P (Platform for Privacy Preferences Project) policy language.

Further developments of the platform will consider the integration of the efforts
within the WASP project, giving special attention to the use of Semantic Web
technologies. We believe that the use of ontologies and reasoners are promising
techniques to allow reusability, flexibility and more intelligent behavior of context-
aware systems.

Acknowledgements

The work described in this paper has been sponsored by Freeband Knowledge
Impulse, a joint initiative of Dutch Government, knowledge institutes and industry.

References

[1] Dockhorn Costa, P., Towards a Services Platform for Context-Aware Applications. Master
Thesis, University of Twente, The Netherlands, August 2003.

[2] Dockhorn Costa, P., et al., Architectural Requirements for Building Context-Aware
Services Platforms. Proc. of 9th Open European Summer School and IFIP Workshop on
Next Generation Networks (EUNICE 2003), Hungary, September 2003.

[3] Laar, V., Requirements for the 3G Platform. WASP Deliverable: D1.1, January 2003.
[4] Parlay X Web Services White Paper. The Parlay Group white paper, December 2002.

[http://www.parlay.org/ about/parlay_x/ParlayX-WhitePaper-1.0.pdf].
[5] Rios, D., et al., Using Ontologies for Modeling Context-Aware Services Platforms.

Workshop on Ontologies to Complement Software Architectures (OOPSLA 2003), Anaheim,
CA, October 26-30, 2003.

[6] Sun Microsystems, Java API for XML-Based RPC (JAX-RPC) Specification 1.0, JSR-101.
[http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec1].

[7] W. Keith Edwards, et al., Stuck in the Middle: The Challenges of User-Centered Design and
Evaluation for Infrastructure. Proc. of the Conference on Human Factors in Computing
Systems (CHI 2003), Fort Lauderdale, FL, April 5-10, 2003.

[8] World Wide Web Consortium. Document Object Model (DOM) Level 1 Specification.
October, 1998. [http://www.w3.org/TR/REC-DOM-Level-1/].

[9] World Wide Web Consortium. Web Services Architecture. August, 2003.
[http://www.w3.org/TR/ws-arch/]

[10] Universal Description, Discovery and Integration (UDDI) project. UDDI: Specifications.
[http://www.uddi.org/specification.html].

[11] Zuidweg, M., Using P3P in a Web Services-Based Context-Aware Application Platform.
Proc. of 9th Open European Summer School and IFIP Workshop on Next Generation
Networks (EUNICE 2003), Hungary, September 2003.

