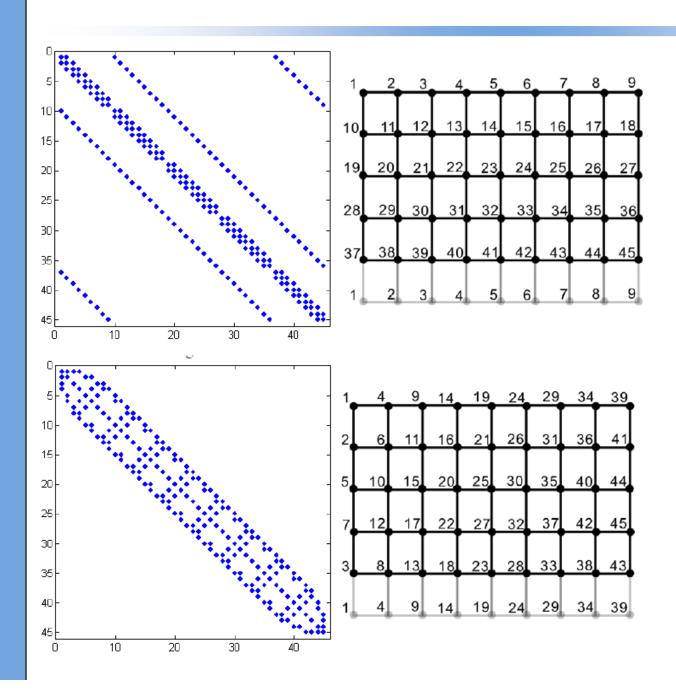
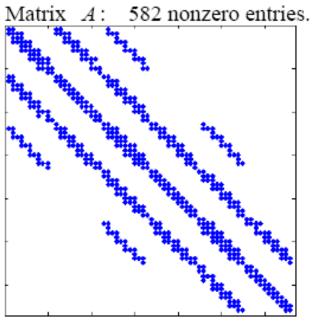
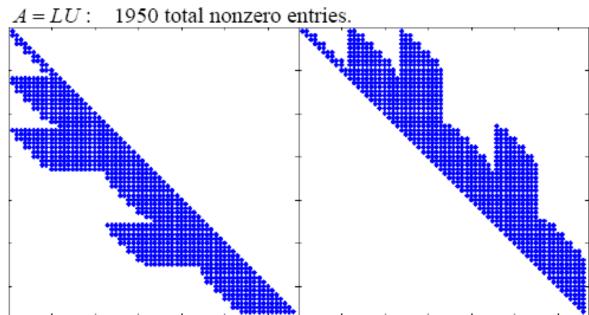


UniversidadeFederal do Espírito Santo Departamento de Informática

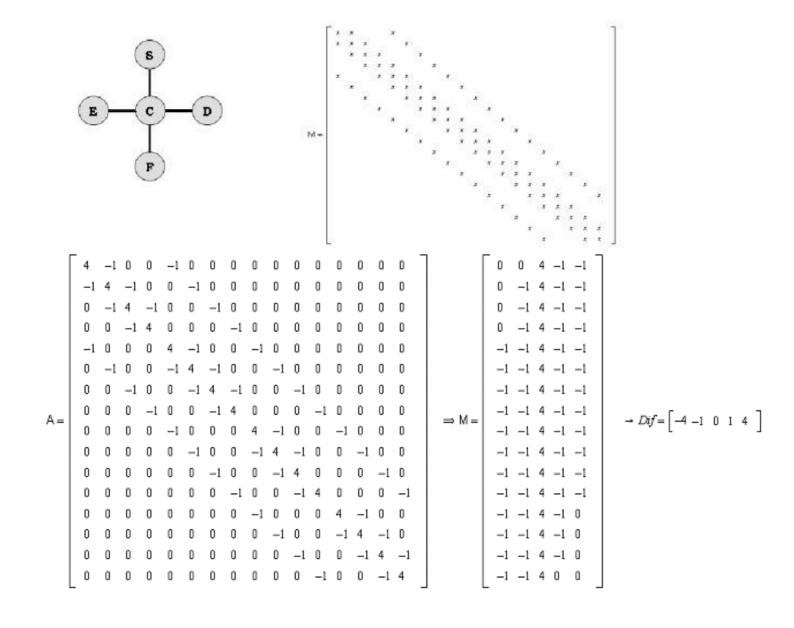

Armazenamento de Matrizes Esparsas

Lucia Catabriga

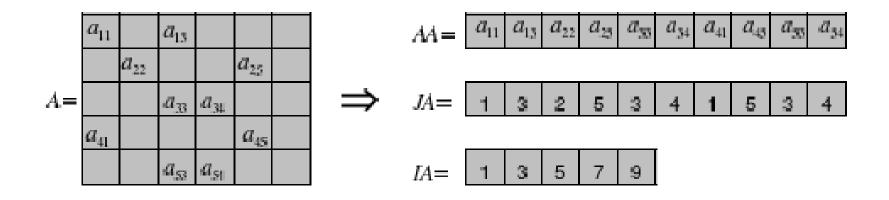

Matrizes Esparsas



Matrizes Esparsas



Matrizes Esparsas



Formato Diagonal para Matrizes pentadiagonais

Formato CSR para Matrizes Esparsas (Compress Sparse Row)

Nnz = número de coeficientes não nulos

Formato CSR (Compress Sparse Row)

$$A = \left(\begin{array}{ccccc} 10 & 0 & 0 & 0 & -2 & 0 \\ 3 & 9 & 0 & 0 & 0 & 3 \\ 0 & 7 & 8 & 7 & 0 & 0 \\ 3 & 0 & 8 & 7 & 5 & 0 \\ 0 & 8 & 0 & 9 & 9 & 13 \\ 0 & 4 & 0 & 0 & 2 & -1 \end{array}\right)$$

va1	10	-2	3	8	3	-	8	-	$3 \cdots 8$	13	4	2	-1
col_ind	1	5	1	2	6	2	3	4	$1 \cdots 5$	6	2	5	6

- · n ordem de A
- · nnz número de coeficientes não nulos
- ·2nnz + n+1 número de alocações para armazenar A
- val(k) = a(i,j), $col_ind(k) = j$, $row_ptr(i) <= k < row_ptr(i+1)$

Formato CDS (Armazena matriz Banda) (Compressed Diagonal Storage)

$$A = \begin{pmatrix} 10 & -3 & 0 & 0 & 0 & 0 \\ 3 & 9 & 6 & 0 & 0 & 0 \\ 0 & 7 & 8 & 7 & 0 & 0 \\ 0 & 0 & 8 & 7 & 5 & 0 \\ 0 & 0 & 0 & 9 & 9 & 13 \\ 0 & 0 & 0 & 0 & 2 & -1 \end{pmatrix}$$

val(:,-1)	0	3	7	8	9	2
val(:, 0)	10	9	8	7	9	-1
val(:,+1)	-3	6	7	5	13	0

$$A = \begin{pmatrix} 10 & -3 & 0 & 1 & 0 & 0 \\ 0 & 9 & 6 & 0 & -2 & 0 \\ 3 & 0 & 8 & 7 & 0 & 0 \\ 0 & 6 & 0 & 7 & 5 & 4 \\ 0 & 0 & 0 & 0 & 9 & 13 \\ 0 & 0 & 0 & 0 & 5 & -1 \end{pmatrix}$$

val(:,-1)	0	0	3	6	0	5
val(:, 0)	10	9	8	7	9	-1
val(:,+1)	0	-3	6	7	5	13
val(:,+2)	0	1	-2	0	4	0

- · n ordem de A
- · p número de diagonais não-nulas abaixo da diagonal
- · q número de diagonais não-nulas acima da diagonal

Formato JDS (Armazena matriz Banda) (Jagged Diagonal Storage)

$$\begin{pmatrix}
10 & -3 & 0 & 1 & 0 & 0 \\
0 & 9 & 6 & 0 & -2 & 0 \\
3 & 0 & 8 & 7 & 0 & 0 \\
0 & 6 & 0 & 7 & 5 & 4 \\
0 & 0 & 0 & 0 & 9 & 13 \\
0 & 0 & 0 & 0 & 5 & -1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
10 & -3 & 1 \\
9 & 6 & -2 \\
3 & 8 & 7 \\
6 & 7 & 5 & 4 \\
9 & 13 \\
5 & -1
\end{pmatrix}$$

val(:,1)	10	8	3	6	9	5
val(:, 2)	-3	6	8	7	13	-1
val (:, 3)	1	-2	7	5	0	0
val(:,4)	0	0	0	4	0	0

col_ind(:,1)	1	2	1	2	5	5
col_ind(:,2)	2	3	3	4	6	6
col_ind(:,3)	4	5	4	5	0	0
col_ind(:,4)	0	0	0	6	0	0

- · n ordem de A
- · p número de diagonais não-nulas abaixo da diagonal
- · q número de diagonais não-nulas acima da diagonal

Formato SKL (Armazena Matriz Skyline) (Armazenamento Skyline)

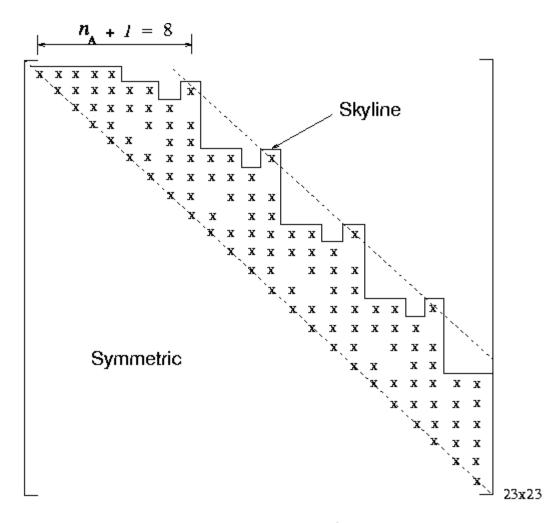
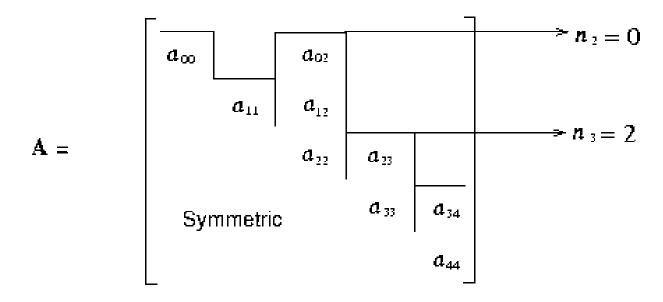



Figure 4.4: The structure of the system matrix \mathbf{A}^t of our physics-based fish model, the skyline of \mathbf{A}^t and its half-bandwidth $n_{\mathbf{A}}$. Each "x" represents a non-zero entries.

Formato SKL (Armazena Matriz Skyline) (Armazenamento Skyline)

$$\overline{\mathbf{a}}_{0} \quad \overline{\mathbf{a}}_{1} \quad \overline{\mathbf{a}}_{2} \quad \overline{\mathbf{a}}_{3} \quad \overline{\mathbf{a}}_{4} \quad \overline{\mathbf{a}}_{5} \quad \overline{\mathbf{a}}_{6} \quad \overline{\mathbf{a}}_{7} \quad \overline{\mathbf{a}}_{8}$$

$$\overline{\mathbf{A}} = \begin{bmatrix} a_{\infty} & a_{11} & a_{22} & a_{12} & a_{02} & a_{33} & a_{23} & a_{44} & a_{34} \end{bmatrix}$$

$$MAX\overline{A} = \begin{bmatrix} 0 & 1 & 2 & 5 & 7 \end{bmatrix}$$

Figure 4.5: An example of the skyline storage scheme. A is the example system matrix; \bar{A} is the storage array and $MAX\bar{A}$ is the index array.