
Evaluation of Two Parallel Finite Element
Implementations of the Time-Dependent Advection

Diffusion Problem: GPU versus Cluster Considering
Time and Energy Consumption

Alberto F. De Souza1, Lucas Veronese1, Leonardo M. Lima2, Claudine Badue1 and
Lucia Catabriga1

1 Departamento de Inforḿatica, Universidade Federal do Espı́rito Santo, Vit́oria, Brazil
2 Instituto Federal de Educação, Cîencia e Tecnologia do Espı́rito Santo, Vit́oria, Brazil

Abstract. We analyze two parallel finite element implementations of the 2D
time-dependent advection diffusion problem, one for multi-core clusters and one
for CUDA-enabled GPUs, and compare their performances in terms oftime and
energy consumption. The parallel CUDA-enabled GPU implementation wasde-
rived from the multi-core cluster version. Our experimental results show that a
desktop machine with a single CUDA-enabled GPU can achieve performance
higher than a 24-machine (96 cores) cluster in this class of finite element prob-
lems. Also, the CUDA-enabled GPU implementation consumes less than one
twentieth of the energy (Joules) consumed by the multi-core cluster implementa-
tion while solving a whole instance of the finite element problem.

1 Introduction

The advances of numerical modeling in the past decades have allowed scientists to solve
problems of increasing complexity. Frequently, these problems require the solution of
very large systems of equations at each time step and/or iteration. Because of that, a
great effort has been made on the development of more efficient and optimized solution
algorithms. But, along the past few decades, the underlyinghardware for running these
algorithms has changed significantly. A recent important development was the advent
of the Compute Unified Device Architecture (CUDA) [12].

CUDA is a new Graphics Processing Unit (GPU) architecture that allows general
purpose parallel programming through a small extension of the C programming lan-
guage. The Single Instruction Multiple Thread (SIMT [12]—itis similar to SIMD, but
more flexible on the use of resources) architecture of CUDA-enabled GPUs allows the
implementation of scalable massively multithreaded general purpose C+CUDA code.
Currently, CUDA-enabled GPUs possess arrays of hundreds ofcores (called stream
processors) and peak performance surpassing 1 Tflop/s. Morethan 200 million CUDA-
enabled GPUs have been sold [10], which makes it the most successful high perfor-
mance parallel computing platform in computing history and, perhaps, up to this point
in time, one of the most disruptive computing technologies of this century—many rel-
evant programs have been ported to C+CUDA and run orders of magnitude faster in
CUDA-enabled GPUs than in multi-core CPUs.



In this paper, we analyze two parallel finite element implementations of the 2D
time-dependent advection diffusion problem: one for multi-core clusters and one for
CUDA-enabled GPUs [12]. We also compare their performancesin terms of time and
energy consumption.

The finite element method is one of the most used numerical techniques for find-
ing approximated solutions of partial differential equations (PDE). In this method, the
solution approach is based either on rendering the PDE into an approximating system
of ordinary differential equations, which are then numerically integrated using standard
techniques, such as the Euler’s method [6].

The finite element formulation requires the solution of linear systems of equations
involving millions of unknowns that are usually solved by Krylov space iterative up-
date techniques [13], from which the most used is the Generalized Minimum Resid-
ual method (GMRES). One of the most time consuming operations of this solution
strategy is the matrix-vector product, which can be computed on data stored according
to global and local schemes. The most well known global scheme is the compressed
storage row (CSR) [13], while the most well known local schemes are the element-
by-element (EBE) and edge-based data structure (EDS) [2, 4]. The code for CSR is
easily parallelized in different computer architectures.This type of implementation is
often preferred to local schemes—matrix-vector products computed on EBE or EDS
can be memory intensive, needing more operations than on CSR. However, particularly
for large-scale nonlinear problems, EBE and EDS schemes have been very successful
because they handle large sparse matrices in a simple and straightforward manner.

In this work, we consider the parallel finite element formulation of the 2D time-
dependent advection diffusion equation. To solve the system of ordinary differential
equations that results from the finite element formulation,we employ the well known
implicit predictor/multicorrector scheme [15]. The sparse linear system of each time-
step (stored in a Compressed Storage Row (CSR) scheme in bothimplementations) is
solved by the GMRES method.

We implemented one code for multi-core clusters and, from that, one code for
CUDA-enabled GPUs, and run them in a 24-machine (96 cores) cluster and in a 4-GPU
desktop machine. Both implementations were written in C anduse the MPI library for
inter-core communication. Our simulations show that a desktop computer with a sin-
gle GPU can outperform a 24-machine (96 cores) cluster of thesame generation and
that a 4-GPU desktop can offer more than twice the cluster performance. Also, with
four GPUs, the CUDA-enabled implementation consumes less than one twentieth of
the energy (Joules) consumed by the multi-core cluster implementation while solving
a whole instance of the finite element problem. These resultsshow that, currently, con-
sidering the benefits of shorter executing times, smaller energy consumption, smaller
dimensions and maintenance costs, Multi-GPU desktop machines are better high per-
formance computing platforms than small clusters without GPUs, even though they are
somewhat harder to program.



2 Governing Equations and Finite Element Formulation

Let us consider the following time-dependent boundary-value problem defined in a do-
mainΩ ∈ ℜ2 with boundaryΓ :

∂u

∂t
+ β.∇u−∇.(κ∇u) = f (time-dependent advection-diffusion equation) (1)

u = g on Γg (essential boundary condition) (2)

n.κ∇u = h on Γh (natural boundary condition) (3)

u(x, 0) = uo(x) on Ω (initial condition) (4)

whereu represents the quantity being transported (e.g. concentration),β is the velocity
field, andκ is the volumetric diffusivity.g andh are known functions ofx = (x, y)
and t, n is the unit outward normal vector at the boundary, andΓg andΓh are the
complementary subsets ofΓ where boundary conditions are prescribed.

Consider a finite element discretization ofΩ into elementsΩe, e = 1, . . . , nel,
wherenel is the number of elements. Let the standard finite element approximation be
given as

uh(x) ∼=

nnodes
∑

i=1

Ni(x)ui, (5)

wherennodes is the number of nodes,Ni is a shape function corresponding to nodei,
andui are the nodal values ofu. Then, applying this approximation on the variational
form of Equation (1), we arrive at a system of ordinary differential equations:

Ma+Kv = F , (6)

wherev = {u1, u2, . . . , unnodes}
t is the vector of nodal values ofu, a is its time

derivative,M is the “mass” matrix,K is the “stiffness” matrix, andF is the “load”
vector [6]. In this work, we approximate the domainΩ using linear triangular elements.
Thus, the global interpolation of Equation (5) is restricted to an element by

ue(x) ∼=

3
∑

i=1

Ni(x)ui, (7)

where the superscripte means thatu is restricted to an element, andN1, N2 andN3

are the conventional shape functions [6]. Proceeding in thestandard manner, matrices
M andK and vectorF are built from element contributions and it is convenient to
identify their terms as:

M =
nel

A
e=1

(me), K =
nel

A
e=1

(ke) and F =
nel

A
e=1

(fe) (8)

whereA is the assembling operator andme, ke andfe are the local contributions.



3 Solution Algorithm

To solve the time-dependent advection diffusion problem numerically employing the
approach described in the previous section, we just have to solve the system of ordinary
differential equations stated in Equation (6) towards a final time tfinal. To do that, we
use the Algorithm 1, which implements the well known implicit predictor/multicorrec-
tor solution scheme [15]. The algorithm: receives as input the initial values ofv anda
(see Equation (6)),tfinal,∆t, the maximum number of multicorrection attempts,nmax,
and the tolerance of the multicorrection phase,ǫ; and returns the values ofv anda at
tfinal.

Algorithm 1 Predictor/multicorrector
1: Data:v0 anda0, tfinal, ∆t, nmax, ǫ
2: t = 0, n = 0
3: M

∗ = M + α∆tK

4: while t ≤ tfinal do
5: i = 0
6: v

(i)
n+1 = vn + (1− α)∆tan

7: a
(i)
n+1 = 0

8: normd = 0
9: while i ≤ nmax and‖a(i)

n+1‖ ≥ ǫ× normd do

10: b = F −Ma
(i)
n+1 −Kv

(i)
n+1

11: SolveM∗

d = b

12: a
(i+1)
n+1 = a

(i)
n+1 + d

13: v
(i+1)
n+1 = v

(i)
n+1 + α∆td

14: i = i+ 1, normd = ‖d‖
15: end while
16: an+1 = a

(i)
n+1

17: vn+1 = v
(i)
n+1

18: t = t+∆t, n = n+ 1
19: end while

In Algorithm 1, the prediction phase (lines 5 to 8) calculates an initial guess of
the nodal valuesv anda at iterationn + 1, wheren denotes a time step, and the
multicorrection phase (lines 9 to 15) iteratively calculates new nodal approximations
until a convergence criteria (line 9) is reached. The most time consuming step of the
algorithm is solving the linear system derived from Equation (6), lines 10 and 11. In
this linear system,M∗ is denoted the effective matrix,b is the residual vector, and
d is the correction of the nodal values ofa from one multicorrection iteration to the
next. MatrixM∗ is constant in time and is computed in line 3. The residual vector b,
however, must be computed in every multicorrection step (line 10).

Apart from the solution of the linear system in line 11, the other time consuming
operations of the algorithm are the matrix vector product inline 10, and the saxpy
vector update operations of lines 6 (the number of multicorrection iterations is small,
but one always have to remember the Amdhal’s Law), 12 and 13. We solve the linear



system of line 11 using GMRES [13]. The most time consuming operations of GMRES
are a matrix vector product per iteration, and several saxpyand vector inner products.
Therefore, the most time consuming operations of the whole predictor/multicorrector
algorithm are matrix vector products, saxpy and vector inner products. For more on the
predictor/multicorrector algorithm see [15].

4 Parallel Implementations

To solve our problem in parallel, it is necessary to code all matrices and vectors in Algo-
rithm 1 in a way that allows parallel access, and to calculatetheir most time consuming
operations in parallel. In order to achieved this, we createa partition of non-overlapping
sets of elements,Ωe. For that, we discretized the domain into a mesh composed of lin-
ear triangular elements,⊤ = Ωe, where{⊤1,⊤2, · · · ,⊤p} represents a partition of the
triangulation in subdomains,p is the number of subdomains, and

⋃p

i=1 ⊤i = ⊤ and
⊤i ∩ ⊤j = ∅ when i 6= j. By dividing the computation domain intop subdomains,
it is possible to spread the workload betweenp different cores. That is, by partitioning
the matricesM , K andM∗, and the vectorsv, a andd (see Equation (6) and Algo-
rithm 1) independently overp cores (with corei working only on subdomain⊤i), one
can spread the workload among thep different cores.

We rewrite all matrices and vectors presented in Algorithm 1into block matrix and
block vector forms employing the well known Schur complement decomposition [13],
as suggested by Jimack and Touheed [8]. By doing that, a generic vectoru (representing
v, a or d) can be ordered in the following way:

u = (u1, u2, · · · , ui, · · · , up, uS)
T . (9)

The nodes of the linear triangular elements of the mesh⊤ can be classified into interior
nodes, interface nodes and boundary nodes of the domain.

Figure 1 illustrates a mesh with 50 nodes and 74 triangular elements, where the
domain was partitioned into 4 subdomains to be assigned to four cores. In this mesh,
nodes I and J are interior nodes of cores 3 and 4, respectively, while node K is an
interface node of cores 1, 3 and 4.

In Equation (9), the sub-vectorui is associated with the interior nodes in⊤i, i =
1, 2, · · · , p; while uS , in turn, is defined asuS =

⋃p

i=1 us(i), an assembly of others
sub-vectors that are associated with the interface nodes ofeach subdomain⊤i, i =
1, 2, · · · , p. That is, each sub-vectorus(i) holds the interface nodes of⊤i. Boundary
nodes are not unknowns and need not be represented inu. Also following the approach
suggested by Jimack and Touheed [8], a generic matrixA (M , K andM∗) can be
written in a block matrix form as:

A =















A1 B1

A2 B2

. . .
...

Ap Bp

C1 C2 · · · Cp AS















(10)



Fig. 1. Example of the partitioned mesh with 4 subdomains.

where the block-arrowhead structure of the new matrix comesfrom the local support
of the finite element basis functions. In Equation (10), the sub-matricesAi, Bi, Ci and
AS are sparse matrices that are stored using a CSR data structure.

The sub-matrixAi stores the contribution of the interior nodes of corei on the
interior nodes of corei. The matrixBi stores the contribution of the interior nodes of
corei on the interface nodes of corei. The sub-matrixCi stores the contribution of the
interface nodes of corei on the interior nodes of corei. Finally, the sub-matrixAS , an
assembly of a set of blocks distributed over thep cores, is defined asAS =

⋃p

i=1 As(i),

where the sub-matrixAs(i) stores the contribution of the interface nodes of corei on
the interface nodes of corei.

With this approach, each of the sub-vectorsui andus(i), and each of the sub-matrix
Ai, Bi, Ci, As(i) may be computed entirely by corei, for i = 1, 2, · · · , p. One can also
observe that corei will work only on the elements of its own subdomain⊤i. Assuming
that the partition⊤ is built in such way that each core deals with approximately the
same number of elements and the number of vertices lying on the partition boundary
is as small as possible, the amount of calculations performed by each corei will be
balanced and the amount of communication will be minimized.

Following the same procedure explained above for a generic vectoru and a generic
matrix A, we rewrite all the matrices (M , K andM∗) and vectors (v, a or d) of
Algorithm 1 in a block matrix form and execute the most time consuming operations
of the whole predictor/multicorrector algorithm—matrix vector product, saxpy vector
update and vector inner product—in parallel.

Using the domain partitioning presented above, a matrix-vector product,v = Au,
can be computed in parallel by computing both expressions onEquation (11) below
(see also Equations (9) and (10))

vi = Aiui +Bius(i) and vs(i) = As(i)us(i) + Ciui (11)



on each corei = 1, 2, · · · , p. Also, using the domain partitioning presented, a saxpy
vector update,v = v + λu, can be formulated as

vi = vi + λui and vs(i) = vs(i) + λus(i) (12)

for i = 1, 2, · · · , p, whereλ is a real number. Finally, using the domain partitioning
presented, a vector inner product,scalar = u · v, can be computed on each core as

scalar =

p
∑

i=1

(ui · vi + us(i) · vs(i)) (13)

for i = 1, 2, · · · , p. It is important to note that this last operation requires a global
communication because its result is a scalar that always must be known by all cores.
This communication is a global reduction, which computes the sum of the contributions
to the inner product coming from each core, and then provideseach core with a copy of
this sum.

In addition to global reductions required by inner products, our Multi-Core Clus-
ter implementation performs core-to-core communication before every matrix vector
product (lines 10 and 11 of Algorithm 1) in order to communicate the value of the
interface nodes—we useMPI send and MPI Recv for that. Thanks to the assembly
presented in Equation 4, the data that needs to be communicated is clearly specified (in-
terface nodes). The partitioning of the work between the cores is made before the whole
computation using METIS [9]. Please refer to our internal technical report for more de-
tails about our multi-core cluster implementation (http://www.lcad.inf.ufes.br/∼alberto
/techrep01-11.pdf).

The CUDA-enabled GPU parallel version was derived from the Multi-Core Clus-
ter parallel version and, therefore, follows the same principles described above. It was
implemented in C+CUDA and, as we wanted to run it in multi-core desktop computers
with multiple GPUs (or clusters of multi-core machines eachof which with one or more
GPUs), it takes advantage of the multiple cores for distributing the domain (or subdo-
mains in the case of a cluster) between multiple GPUs (one subdomain per GPU) and
employs MPI for inter-core communication. We choose to do this way (i) to avoid large
modifications in the Multi-Core Cluster version in the process of morphing it into the
C+CUDA version, and (ii) to transform our multi-core cluster code into a code that runs
in clusters of multi-core machines each of which with multiple GPUs. For this process,
we basically moved the main functions of the Multi-Core Cluster version into CUDA
kernels and optimized the use of the GPU memory hierarchy.

The main strategy adopted in the design of the C+CUDA versionwas (i) to iden-
tify the most time consuming operations of the predictor/multicorrector (Figure 1) and
GMRES algorithms, (ii) to parallelize and optimize these operations, and (iii) to try and
avoid data transfer between the CPU and GPU memories as much as possible.

We identified the most time consuming operations of the predictor/multicorrector
and GMRES algorithms—the matrix-vector product,v = Au, and the vector inner
product,scalar = u · v—usinggprof. Please refer to our internal technical report
for details about the C+CUDA implementation (http://www.lcad.inf.ufes.br/∼alberto
/techrep01-11.pdf).



5 Experimental Evaluation

The Multi-Core Cluster implementation was run on the Enterprise 3 cluster of theLab-
oratório de Computaç̃ao de Alto Desempenho(LCAD) at UFES. Enterprise 3 is a 24-
node cluster of 24 quad-core Intel 2 Q6600 machines (96 cores), with 2.4GHz clock
frequency, 4MB L2 and 4GB of DRAM, interconnected with a 48-Port 4200G 3COM
Gigabit Ethernet switch. The C+CUDA implementation was runon LCAD’s BOXX
Personal Supercomputer, which is a quad-core AMD Phenon X4 9950 of 2.6GHz, with
2MB L2, 8GB of DRAM, and four GPU NVIDIA Tesla C1060 PCIE boards, with 240
1.3GHz CUDA cores and 4GB DRAM each.

In our experimental evaluation we solved a standard test problem for transient dom-
inated advection flow, named rotating cone problem. The problem is described in Fig-
ure 2(a) (see [1] for details). In our experiments, the velocity field is β = (−y, x)T

and the diffusivity isκ = kI, wherek = 10−6. The exact solution consists of a rigid
rotation of a cone about the center of the square domain[−5, 5] × [−5, 5]. Figure 2(b)
shows the solution obtained after 7 seconds of simulation.

(a) Description

-6
-4

-2
 0

 2
 4

 6-6
-4

-2
 0

 2
 4

 6

-2
 0
 2
 4
 6
 8

 10
 12
 14

x

y

(b) Solution

Fig. 2. Description and solution of the rotating cone problem

To evaluate the performances in terms of time of the machinesexamined on the so-
lution of a large size problem, we consider the rotating coneproblem in a regular mesh
of 1024× 1024 cells, totalizing2, 097, 152 elements,1, 050, 625 nodes and1, 046, 529
unknowns with∆t = 10−2, thetfinal = 7, GMRES and predictor-multicorrector tol-
erances equal to10−3; and number of restart vectors for GMRES equal to 10. The
observed number of GMRES iterations for each correction wasaround 15.

Figure 3(a) shows the time it takes to solve this problem withthe Multi-Core Cluster
implementation running on the Enterprise 3 configured with 1, 4, 8, 12, 16, 24, 32, 48,
64 and 96 cores, while Figure 3(b) shows the speedups obtained with 4, 8, 16, 32, 64
and 96 cores. In the graph of Figure 3(a), thex-axis is the number of cores, while the
y-axis is the time it takes to solve the problem in seconds. As the graph shows, there
is an almost linear reduction of the time it takes to solve theproblem as the number of



(a) Times (b) Speedups

Fig. 3. Enterprise 3 times and Speedups

processors increases from 1 to 8. However, the performance gains obtained increasing
the number of cores from 8 onwards decreases as the number of cores increases. This
can be more easily appreciated by examining the graph of Figure 3(b). In this graph,
thex-axis is the number of cores, while they-axis is the speedup. As the graph of Fig-
ure 3(b) shows, although the speedup starts augmenting linearly, as the number of cores
increases, the speedup levels of—there is no gain as one goes from 64 to 96 cores. This
is to be expected because, as the number of cores increases, the amount of inter-machine
communication increases, while the amount of compute work per core decreases. So,
the time spend waiting for data transfer (communication) ends up surpassing the time
doing computation.

Figure 4(a) shows the time it takes to solve this problem withthe C+CUDA imple-
mentation running on the BOXX Personal Supercomputer configured with 1, 2 and 4
GPUs, while Figure 4(b) shows the speedups obtained with 1, 2and 4 GPUs—these
speedups were computed against a single Enterprise 3 core.

In the graph of Figure 4(a), thex-axis is the number of GPUs, while they-axis is
the time it takes to solve the problem in seconds. As the graphshows, the time it takes
to solve the problem decreases as the number of GPUs increases, but not linearly. This
is to be expected since the multi GPU C+CUDA implementation uses the PCI Express
bus to transfer interface nodes data between the multi-coreCPU and the GPUs and, as
the number of GPUs increases, this bus becomes a bottleneck.Figure 4(b) presents the
speedups obtained with the BOXX Personal Supercomputer configured with different
numbers of GPUs (the reference time is that of a Enterprise 3 single core). In this graph,
thex-axis is the number of GPUs, while they-axis is the speedup. As the graph shows,
speedups close to 60 were obtained with C+CUDA.

To better appreciate the benefits of CUDA-enabled GPUs and C+CUDA, we plot on
the graph of Figure 5 the speedups obtained with the BOXX Personal Supercomputer
against the best performing Enterprise 3 cluster. In the graph of Figure 5, thex-axis
is the number of GPUs, while they-axis is the time it takes to solve the problem with



(a) Times (b) Speedups

Fig. 4. BOXX Personal Supercomputer times and Speedups.

Enterprise 3 divided by the time it takes to solve the problemwith the BOXX Personal
Supercomputer configured with different numbers of GPUs. Asthe graph of Figure 5
shows, a desktop machine with a single GPU can outperform a 24-machine cluster
(96 cores). Also, a desktop machine with four GPUs can deliver more the twice the
performance of a 24-machine cluster (96 cores).

Fig. 5. BOXX Personal Supercomputer speedups: C+CUDA x Multi-Core Cluster.

To compare the performance of our Multi-Core Cluster implementation with that
of our C+CUDA implementation in terms of energy consumption, we run the rotating
cone problem in a regular mesh of2048 × 2048 cells in both machines and measured
the total current drained by each at 10-second intervals using a Digital Clamp Meter
Minipa, Model ET-3880, while measuring the voltage. Figure6 shows the measurement
setup employed with each machine (voltage measurement not shown).



By numerically integrating the current× voltage (power in Watts) required by the
machines in the period of time they took to solve the rotatingcone problem, we were
able to estimate the total energy (in Joules) consumed by each machine. The amount of
Joules consumed by Enterprise 3 (all 96 cores) was equal to approximately 5,545,530
Joules (45 Amperes× 114 Volts× 1,081 Seconds). The amount of Joules consumed
by the BOXX Personal Supercomputer on equivalent circumstances (127 Volts, but
different currents and times for each number of GPUs) was measured for 1, 2 and 4
GPUs. Figure 7 shows the energy consumed by each machine configuration.

As Figure 7 shows, the amount of Joules decreases as the number of GPUs in-
creases. This is to be expected, since the time to solve the problem diminishes. Note
that we did not remove the unused GPU boards during these experiments and, even
when not doing useful computation, the GPUs consume a significant amount of energy.
Note also that the energy consumed for the whole machine was measured in all cases,
and the ratio computation/energy consumption becomes worth with fewer GPUs doing
useful work.

Finally, Figure 8 presents a comparison between the amount of energy consumed
by Enterprise 3 versus (divided by) the amount of energy consumed by the BOXX Per-
sonal Supercomputer while solving the rotating cone problem with 1, 2 and 4 GPUs. As
the graph of Figure 8 shows, the BOXX Personal Supercomputerconsumes more than
20 times less energy than the Enterprise 3 cluster while solving the same problem. This
result shows that, currently, considering the benefits of shorter executing times, smaller
energy consumption, and smaller size and maintenance costs, Multi-GPU desktop ma-
chines are better high performance computing platforms than small clusters without
GPUs such as Enterprise 3, even though they are somewhat harder to program. It is
important to note that our C+CUDA code runs unmodified in clusters of multi-core
machines each of which with multiple GPUs (it is, in fact, a C+CUDA+MPI code).

(a) (b)

Fig. 6. Power (current) measurement setup. (6(a)) Cluster setup: the total current consumed by
Enterprise 3 was measured on the neutral wire of its power distribution panel. (6(b)) BOXX
Personal Supercomputer setup: the total current consumed by it wasmeasured on the neutral
wire of its power cord.



Fig. 7. Joules consumed while running the rotating cone problem with the BOXX Personal Su-
percomputer with 1, 2 and 4 GPUs. The unused GPU boards were not removed during the exper-
iments.

Fig. 8. Energy reduction observed while solving the rotating cone problem in the BOXX Personal
Supercomputer for 1, 2 and 4 GPUs when compared with the 96-core Enterprise 3 Cluster.

6 Related Work

Since the introduction of CUDA, a number of works have demonstrated that the use
of GPUs can accelerate computational fluid dynamics (CFD) simulations ([3, 11, 14,
16]). Recently, Jacobsen et al. [7] have exploited some of the advanced features of MPI
and CUDA programming to overlap both GPU data transfer and MPI communications
with computations on the GPU. Their results demonstrated that multi-GPU clusters
can substantially accelerate CFD simulations. In this work, we compared a Multi-Core
Cluster without CUDA-enabled GPUs with a desktop machine with CUDA-enabled
GPUs and showed that the way pointed by the work of Jacobsen etal. and others [7] is
perhaps the current only way forward in the high performanceCFD simulation field.

Little research has been conducted on the evaluation of energy consumption of
GPUs against that of clusters. Huang et al. [5] analyzed two parallel implementations



of a biological code that calculates the electrostatic properties of molecules—a mul-
tithreaded CPU version (for a single multi-core machine) and a GPU version—and
compared their performance in terms of execution time, energy consumption, and en-
ergy efficiency. Their results showed that the GPU version performs the best in all three
aspects. In this work, we showed that a parallel CUDA-enabled GPU implementation
consumes considerably less energy (Joules) than a parallelmulti-core cluster imple-
mentation while solving a whole instance of the finite element problem.

7 Conclusions

We used a finite element formulation to solve the 2D time-dependent advection dif-
fusion equation in Multi-Core Clusters and CUDA-enabled GPUs. Our experimental
results have shown that a desktop computer with a single GPU can outperform a 24-
machine cluster of the same generation and that a 4-GPU desktop can offer more than
twice the cluster performance (performance in terms of timeto compute a solution).
Our experimental results have also shown that a 4-GPU desktop can consume less than
one twentieth of the energy (Joules) consumed by a 24-machine cluster while solving
a whole instance of this relevant finite element problem. Thetechniques we employed
for the problem tackled in this paper can be employed in much harder problems. In fu-
ture works, we will examine multidimensional compressibleproblems governed by the
Navier-Stokes equations.

8 Acknowledgments

We thank CNPq-Brazil (grants 552630/2011-0, 309831/2007-5, 314485/2009-0, 309172/
2009-8) and FAPES-Brazil (grant 48511579/2009) for their support to this work.

References

1. A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible Navier-Stokes equa-
tions. Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.

2. L. Catabriga and A.L.G.A. Coutinho. Implicit SUPG solution of Euler equations using edge-
based data structures.Computer Methods in Applied Mechanics and Engineering, 191:3477–
3490, 2002.

3. Jonathan M. Cohen and M. Jeroen Molemaker. A fast double precision CFD code using
CUDA. In Proceedings of the 21st Parallel Computational Fluid Dynamics, Monffett Fiel,
California, 2010.

4. A.L.G.A. Coutinho, M.A.D. Martins, J. L. D. Alves, L. Landau, and A. Moraes. Edge-based
finite element techniques for nonlinear solid mechanics problems.International Journal for
Numerical Methods in Engineering, 50:2053–2068, 2001.

5. S. Huang, S. Xiao, and W. Feng. On the energy efficiency of graphics processing units for
scientific computing. InProceedings of the IEEE International Symposium on Parallel &
Distributed Processing, pages 1–8, 2009.

6. T.J.R Hughes.The Finite Element Method. Linear Static and Dynamic Finite Element Anal-
ysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.



7. Dana A. Jacobsen, Julien C. Thibault, and Inanc Senocak. An MPI-CUDA implementation
for massively parallel incompressible flow computations on multi-GPU clusters. InProceed-
ings of the 48th AIAA Aerospace Sciences Meeting, Orlando, Florida, 2010.

8. P. K. Jimack and N. Touheed. Developing parallel finite element software using mpi. In
B.H.V. Topping and L. Lammer, editors,High Performance Computing for Computational
Mechanics, pages 15–38. Saxe-Coburg Publications, 2000.

9. G. Karypis and V. Kumar. Multilevel k-way partioning scheme for irregular graphs. Techni-
cal Report 95-064, Department of Computer Science, University ofMinnesota, 1995.

10. D. B. Kirk and W. W. Hwu. Programming massively parallel processors: a hands-on ap-
proach. Elsevier, 2010.

11. A. Klockner, T. Warburton, J. Bridge, and J.S. Hesthaven. Nodal discontinuous Galerkin
methods on graphics processors.J. Comput. Phys., 228:7863–7882, 2009.

12. NVIDIA. NVIDIA CUDA 3.0 - Programming Guide. NVIDIA Corporation, 2010.
13. Y. Saad.Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.
14. Inanc Senocak, Julien Thibault, and Matthew Caylor. Rapid-response urban CFD simula-

tions using a GPU computing paradigm on desktop supercomputer. InProceedings of the
Eighth Symposium on the Urban Environment, Phoenix, Arizona, 2009.

15. T.E. Tezduyar and T.J.R. Hughes. Finite element formulations for convection dominated
flows with particular emphasis on the compressible Euler equations. InProceedings of AIAA
21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada, 1983.

16. Julien C. Thibault1 and Inanc Senocak. CUDA implementation of a Navier-Stokes solver
on multi-GPU desktop platforms for incompressible flows. InProceedings of the 7th AIAA
Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition,
Orlando, Florida, 2009.


