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Abstract—Virtual Generalizing Random Access Memory 
Weightless Neural Networks (VG-RAM WNN) is an effective 
machine learning technique that offers simple implementation 
and fast training and test. We examined the performance of 
VG-RAM WNN on binocular dense stereo matching using the 
Middlebury Stereo Datasets. Our experimental results showed 
that, even without tackling occlusions and discontinuities in the 
stereo image pairs examined, our VG-RAM WNN architecture 
for stereo matching was able to rank at 114th position in the 
Middlebury Stereo Evaluation system. This result is promising, 
because the difference in performance among approaches 
ranked in distinct positions is very small. 
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I. INTRODUCTION 

The images projected inside our eyes are constantly 
changing due to the movement of the eyes or the body as a 
whole. However, in an apparent paradox, we perceive the 
world, depicted in the images captured by the eyes, as stable. 
Moreover, the images projected on human retinas are two-
dimensional; however, the brain is able to synthesize a stable 
three-dimensional representation from them (what we see, 
Figure 1), with color, shape and depth information about the 
objects in the surrounding environment, eliminating the 
effects of the eyes and body movements. 

The biological visual system enables our movement 
through the three-dimensional environment accurately.So, 
the understanding and modeling of relevant capabilities of 
the biological visual system, such as those that allow us to 
see in three dimensions, may contribute to the development 
of Simultaneous Localization And Mapping (SLAM) [1]and 
navigation systems for autonomous vehicles. 

SLAM is perhaps the most fundamental problem of 
autonomous robotics. Autonomous vehicles need to know 
where they are in their area of operation and how this (area 
of operation) is configured so that they can navigate and 
perform their activities of interest. For this, autonomous 
vehicles must use sensors for acquiring sufficient 
information for mapping the environment and localizing 
themselves in the generated map. Currently, one of the most 

widely used sensors areLaser Range Scan, or Light Detection 
And Ranging (LIDAR). 

LIDAR sensors employ an opto-mechanical scanning 
that makes use of laser beams to measure the distance along 
straight lines to obstacle points ahead of the vehicle. Such a 
mechanism is not biologically plausible. Also, LIDAR 
sensors are strongly affected by rain, among other weather 
conditions, which limits their applicability in scenarios that 
require outdoor operation. Moreover, they are easily 
detectable from a distance (because of the laser), which 
limits their military applicability. 

 

 
Figure 1: Generation, by the brain, of a three-dimensional representation 

from two-dimensional images. 

 
Digital cameras, on the other hand, are now able to 

capture images with millions of pixels and have a 
substantially lower cost than LIDAR sensors. However, in 
order to employ digital cameras for solving the SLAM 
problem in real time, it is necessary to process the huge 
amount of data captured by the cameras in a manner 
equivalent to that in our brain, i.e., it is necessary to 
synthesize stable three-dimensional representations from 
two-dimensional images. 

To generate a three-dimensional representation from two-
dimensional images, it is necessary to localize corresponding 
pixels in images captured by two or more cameras positioned 
in distinct spatial locations. This problem is known as the 



stereo matching problem. Using the information about the 
location of corresponding pixels in the several images, and 
the knowledge of the geometry and positioning of each 
camera, it is possible to solve the problem of perceiving the 
world in 3D based on images captured by two or more 
cameras. 

The state-of-the-art stereo matching algorithm is the AD-
Census [3]. It calculates the dense disparity map in two main 
steps. In the first step, it initializes the disparities using the 
AD-Census metric. In the second step, it uses a cross based 
cost aggregation algorithm [2] to reduce ambiguities in 
textureless areas. Other approaches have been proposed to 
tackle the problem of stereo matching, such as those based 
on belief propagation [4, 5], self organizing neural networks 
[6] and disparity energy models [7].  

In our search to understand the brain, we developed 
successful biologically inspired applications, for example, 
face recognition [8], text categorization [9] and depth 
estimation using monocular cues [10].Another important 
aspect of the human perception of the world is the depth 
perception via stereopsis [11]. To emulate this capacity in an 
artificial system, we use a stereo camera and a biologically 
inspired stereo matching algorithm. In fact, in all of these 
applications, we use Virtual Generalizing Random Access 
Memory Weightless Neural Networks (VG-RAM WNN) 
[12]. The VG-RAM WNN is an effective machine learning 
technique that offers simple implementation and fast training 
and test. 

In this paper, we evaluate the performance of VG-RAM 
WNN on stereo matching. Our approach addresses the 
problem of binocular stereo dense matching, i.e., it operates 
on two images under known camera geometry and computes 
a dense disparity map that contains a disparity estimate for 
each pair of corresponding pixels in the two images. 

To evaluate the performance of VG-RAM WNN on 
stereo matching, we used the Middlebury Stereo Datasets 
(http://vision.middlebury.edu/stereo/data/) [13, 14]. We 
chose these datasets because we were interested in 
comparing our experimental resultswith those submitted to 
the Middlebury Stereo Evaluation system 
(http://vision.middlebury.edu/stereo/eval/). Our experimental 
results showed that, even without tackling occlusions and 
discontinuities in the stereo image pairs examined, our VG-
RAM WNN architecture for stereo matching was able to 
rank at 114th position in the Middlebury Stereo Evaluation 
system. 

This paper is organized as follows. After this 
introduction, in Section II, we introduce VG-RAM WNN 
and, in Section III, we describe how we have used them for 
stereo matching. In Section IV, we describe our experimental 
methodology and, in Section V, we analyze our experimental 
results. Our conclusions and directions for future work 
follow in Section VI. 

II. VG-RAM  WNN 

RAM-based neural networks, also known as n-tuple 
classifiers or weightless neural networks, do not store 
knowledge in their connections but in Random Access 
Memories (RAM) inside the network’s nodes, or neurons. 

These neurons operate with binary input values and use 
RAM as lookup tables: the synapses of each neuron collect a 
vector of bits from the network’s inputs that is used as the 
RAM address, and the value stored at this address is the 
neuron’s output. Training can be made in one shot and 
basically consists of storing the desired output in the address 
associated with the input vector of the neuron [15]. 

In spite of their remarkable simplicity, RAM-based 
neural networks are very effective as pattern recognition 
tools, offering fast training and test, in addition to easy 
implementation [12]. However, if the network input is too 
large, the memory size becomes prohibitive, since it must be 
equal to 2n, where n is the input size. Virtual Generalizing 
RAM (VG-RAM) Weightless Neural Networks (WNN) are 
RAM-based neural networks that only require memory 
capacity to store the data related to the training set [16]. In 
the neurons of these networks, the memory stores the input-
output pairs shown during training, instead of the output. In 
the test phase, the memory of VG-RAM WNN neurons is 
searched associatively by comparing the input presented to 
the network with all inputs in the input-output pairs learned. 
The output of each VG-RAM WNN neuron is taken from the 
pair whose input is nearest to the input presented—the 
distance function employed by VG-RAM WNN neurons is 
the Hamming distance. If there is more than one pair at the 
same minimum distance from the input presented, the 
neuron’s output is chosen randomly among these pairs. 

Table 1 shows the lookup table of a VG-RAM WNN 
neuron with three synapses (X1, X2 and X3). This lookup table 
contains three entries (input-output pairs), which were stored 
during the training phase (entry #1, entry #2 and entry #3). 
During the test phase, when an input vector (input) is 
presented to the network, the VG-RAM WNN test algorithm 
calculates the distance between this input vector and each 
input of the input-output pairs stored in the lookup table. In 
the example of Table 1, the Hamming distance from the 
input to entry #1 is two, because both X2 and X3 bits do not 
match the input vector. The distance to entry #2 is one, 
becauseX1 is the only non-matching bit. The distance to entry 
#3 is three, as the reader may easily verify. Hence, for this 
input vector, the algorithm evaluates the neuron’s output, Y, 
as output 2, since it is the output value stored in entry #2. 

 

Table 1: VG-RAM WNN neuron lookup table. 

Lookup table X1 X2 X3 Y 
entry #1 1 1 0 output 1 

entry #2 0 0 1 output 2 

entry #3 0 1 0 output 3 

 ↑ ↑ ↑ ↓ 

input 1 0 1 output 2 
 

III.  STEREO MATCHING WITH VG-RAM  WNN 

Stereo matching is the problem of localizing 
corresponding pixels in multiple images of the same 3D view 
captured by cameras in distinct spatial locations. In most 



camera configurations, finding correspondences requires a 
search in multiple dimensions.However, if the cameras are 
aligned to be epipolar using an image rectification algorithm 
[17], the search for corresponding pixels is simplified to one 
dimension (a straight line parallel to the baseline between the 
cameras), i.e., stereo matching can be made in a single scan 
line. In this paper, we assume that the epipolarity constraint 
is guaranteed. 

Our VG-RAM WNN architecture for stereo matching has 
a single two-dimensional array of m×n neurons,N, where 
each neuron,ni,j, has a set of synapses,W = (w1,w2,...w|w|), 
which are connected to the network’s two-dimensional input, 
Φ, of m × n inputs, φi,j (Figure 2). (Note that the network 
input, Φ, has the same size of the neurons array, N.) The 
synaptic interconnection pattern of each neuron ni,j, Ωi,j,σ(W), 
follows a two-dimensional Normal distribution with variance 
σ

2centered atφi,j; i.e., the coordinates k and l of the elements 
of Φ to which ni,j connects via W follow the probability 
density functions: 
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whereσis a parameter of the architecture. This synaptic 
interconnection pattern mimics what is observed in many 
classes of biological neurons [18], and is created when the 
network is built and does not change afterwards. 
 

 
Figure 2: Schematic diagram of our VG-RAM WNN architecture for stereo 

matching. 

 

VG-RAM WNN synapses can only get a single bit from 
the input. Thus, in order to allow our VG-RAM WNN to 
deal with images, in which a pixel may assume a range of 
different values, we use minchinton cells[19]. In the 
proposed VG-RAM WNN architecture, each neuron's 
synapse, wt, forms a minchinton cell with the next, wt+1 (w|W| 
forms a minchinton cell with w1). The type of the minchinton 
cell we have used returns 1 if the synapse wt of the cell is 
connected to an input element, φk,l, whose value is larger 
than the value of the element φr,sto which the synapse wt+1 is 
connected, i.e., φk,l>φr,s; otherwise, it returns zero (see the 
synapses w1 and w2 of the neuron nm,nof  Figure 2). 

To compute the disparity map between two stereo 
images, the left image, IL, is used to generate the training set 
and the right image, IR, is used to generate the test set.(A 
disparity map is an image where each pixel corresponds to 
the distance in pixels between corresponding pixels in the 
left and right images of a stereo image pair [17].). 

During the training phase, the pixels of IL are copied to 
the VG-RAM WNN’s input Φ. In the first iteration, the 
disparity value, d, is set to zero and all ni,j neurons’ outputs 
are also set to d=0. All neurons are then trained to output 
d=0. Remember that the synaptic interconnection of each 
neuron ni,j is centered at ��,�). In the second iteration, d is 
incremented by one (d=1) and the array of neurons is shifted 
of one column to the right, such that the synaptic 
interconnection of each neuron ni,j is now centered at 
��,��� = ��,���). All neurons are then trained to output d=1 
(except those in column 1). This process iterates until d 
reaches a maximum pre-defined disparity value, dmax 
(d=dmax). In this last iteration, the array of neurons is shifted 
of dmax columns to the right, such that the synaptic 
interconnection of each neuron ni,j is centered at ��,��� =
��,���	
� ), and all neurons are trained to output d=dmax 
(except those in columns 1 to dmax). 

During testing, the pixels of IR are copied to Φ. Then, 
each ni,j neuron output is computed, which is a disparity 
estimate for the ��,�   pixel of IR. The disparity map is 
straightly given by the network output. 

IV.  EXPERIMENTAL METHODOLOGY 

A. Datasets 

To evaluate the performance of VG-RAM WNN on 
stereo matching, we used the Middlebury Stereo Datasets 
(http://vision.middlebury.edu/stereo/data/) [13, 14]. These 
datasets are composed of synthetic stereo image pairs with 
hand-labelled ground-truth disparities. In order of comparing 
our resultswith those submitted to the Middlebury Stereo 
Evaluation system 
(http://vision.middlebury.edu/stereo/eval/), we used the 
following four stereo image pairs of the Middlebury Stereo 
Datasets: “Tsukuba” and “Venus”, from the 2001 datasets, 
and “Teddy” and “Cones”, from the 2003 datasets.  

B. Metric 

To examine the performance of VG-RAMWNN on 
stereo matching, we used the percentage of bad matching 
pixels[20], because it is the metric adopted by the 
Middlebury Stereo Evaluation system. The percentage of bad 
matching pixels is given by: 
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whereδd is a disparity error tolerance, dC is the computed 
disparity map, dT is the ground truth disparity map and N is 
the number of pixels. In our experiments, we used δd= 1, 
since this concides with the Middlebury Stereo Evaluation 
system. 
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We evaluated theaverage percentage of bad pixels, that is 
given by the average of the percentage of bad matching 
pixels for the whole disparity map (all), non-occlusion 
(nonocc) regions and discontinuity regions (disc), i.e., the 
object boundaries. 

V. EXPERIMENTAL RESULTS 

In this section, we present the experiments employed to 
evaluate experimentally the performance of VG-RAM WNN 
on stereo matching.  

The VG-RAM WNN architecture for stereo matching has 
two parameters: the number of synapses per neuron, |W|, and 
σ (see Section III). (Note that the number of neurons and the 
size of the network input must be equal to the size of the 
input image.) To tune the parameters of the VG-RAM WNN 
architecture, we trained it with the right images of the stereo 
image pairs and tested it with the left images, while varying 
the number of synapses per neuron and the σ value.We tested 
networks with number of synapses per neuron equal to 16, 
32, 64, 128, 256, 512 and 1024, and σ equal to 1, 2, 4, 6, 8 
and 10. 

Figure 3 to Figure 6  present the results of the 
experiments we carried out to tune the parameters of the VG-
RAM WNN architecture for stereo matching using the 
“Tsukuba”, "Venus", "Teddy" and "Cones" stereo image 
pairs, respectively. As Figure 3 to Figure 6 show, the 
performance (in terms of the average percentage of bad 
matching pixels) of the VG-RAM WNN architecture 
improves with σ; however, as σ increases, the performance 
stabilizes (for “Tsukuba” and "Venus") or even deteriorates 
(for "Teddy" and "Cones)". In the one hand, for smaller σ 
values, the synaptic interconnection distribution of neurons is 
concentrated on a smaller region of the network input, which 
limits the amount of available information for neurons. In the 
other hand, for larger σ values, the synaptic distribution is 
dispersed across a larger region of the network input and 
neurons may lose discriminative regions. The best and 
simplest (smallest σ) configuration is reached around σ=4, 
for all stereo image pairs examined. 

 
 

 
Figure 3: Performance tuning for the “Tsukuba” stereo image pair. 

 

 
Figure 4: Performance tuning for the “Venus” stereo image pair. 

 

 
Figure 5: Performance tuning for the “Teddy” stereo image pair. 

 

 
Figure 6: Performance tuning for the “Cones” stereo image pair. 

 
As Figure 3 to Figure 6 also show, for σ=4, the 

performance of the VG-RAM WNN architecture improves 
with the number of synapses per neuron; however, as the 
number of synapses increases, the gains in performance 
decrease towards the maximum performance. For a small 
number of synapses, the number of elements of the network 
input monitored by neurons is small, which limits the 
amount of available information for neurons. The best and 
simplest (smallest number of synapses) configuration has 
around 256 synapses, for σ=4 and for all stereo image pairs 
examined.  

The best and simplest VG-RAM WNN architecture 
configuration (σ=4 and 256 synapses) presented a 
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performance  (in terms of the average 
matching pixels) of approximately 12%, 13%, 21% and 
14.5% for the “Tsukuba”, "Venus", "Teddy" and "Cones" 
stereo image pairs, respectively. 

Figure 7 to Figure 10 show the right image an
disparity map generated by the best VG
architecture configuration for the “Tsukuba”, 
"Teddy" and "Cones" stereo image pairs, respectively
disparity maps were submitted to the 
Evaluation system on April 12th 2012, being ranked at the 
114th position. Figure 11 shows the result of this submission, 
that was partitioned into Figure 11(a) and 
better readability. In Figure 11, column 1 presents the stereo 
matching algorithm submitted to the Middlebury Stereo 
Evaluation system (our system was listed at t
column 2 presents the average rank over the twelve 
succeeding columns, by which the table is sorted; columns 3
5 present the percentage of bad matching pixels
the rank positionfor the nonocc, all and disc regions, 
respectively, for the “Tsukuba” image; columns 6
12-14 present analogous information for the "Venus", 
"Teddy" and "Cones" images, respectively; finally, the 
column 15 presents the average over all the twelve preceding 
columns.  
 

 

Figure 7: Right image of the stereo pair and the disparity map
the best VG-RAM WNN architecture configuration using the 

stereo image pair. 

 

Figure 8: Right image of the stereo pair and the disparity map 
the best VG-RAM WNN architecture configuration using the “Venus” 

stereo image pair. 

 

Figure 9: Right image of the stereo pair and the disparity map generated by 
the best VG-RAM WNN architecture configuration using 

stereo image pair. 

performance  (in terms of the average percentage of bad 
) of approximately 12%, 13%, 21% and 

"Venus", "Teddy" and "Cones" 

show the right image and the 
disparity map generated by the best VG-RAM WNN 

the “Tsukuba”, "Venus", 
"Teddy" and "Cones" stereo image pairs, respectively. These 
disparity maps were submitted to the Middlebury Stereo 

012, being ranked at the 
shows the result of this submission, 

(a) and Figure 11(b) for 
, column 1 presents the stereo 

matching algorithm submitted to the Middlebury Stereo 
system (our system was listed at the third line); 

column 2 presents the average rank over the twelve 
succeeding columns, by which the table is sorted; columns 3-

percentage of bad matching pixels along with 
the rank positionfor the nonocc, all and disc regions, 

” image; columns 6-8, 9-11, 
14 present analogous information for the "Venus", 

"Teddy" and "Cones" images, respectively; finally, the 
column 15 presents the average over all the twelve preceding 

 

ereo pair and the disparity map generated by 
onfiguration using the “Tsukuba” 

 

ight image of the stereo pair and the disparity map generated by 
RAM WNN architecture configuration using the “Venus” 

 

: Right image of the stereo pair and the disparity map generated by 
RAM WNN architecture configuration using the “Teddy” 

 

Figure 10: Right image of the stereo pair and the disparity map generated 
by the best VG-RAM WNN architecture configuration using the “Cones” 

stereo image pair.

 

Figure 11: Result of the submission to the Middlebury Stereo Evaluation
system of the disparity maps generated by our VG

for stereo matching

 

: Right image of the stereo pair and the disparity map generated 
RAM WNN architecture configuration using the “Cones” 

stereo image pair. 

 
(a) 

 
(b) 

submission to the Middlebury Stereo Evaluation 
of the disparity maps generated by our VG-RAM WNN architecture 

for stereo matching.  



VI.  CONCLUSIONS AND FUTURE WORK 

In this paper, we presented an experimental evaluation of 
the performance of Virtual Generalizing Random Access 
Memory Weightless Neural Networks (VG-RAM WNN) on 
binocular dense stereo matching. We examined its 
performance with the Middlebury Stereo Datasets. Our 
experimental results showed that our VG-RAM WNN 
architecture for stereo matching was able to rank at the 114th 
position in the Middlebury Stereo Evaluation system. This 
result is promising, because our approach has not tackled 
occlusions and discontinuities in the stereo image pairs 
examined. Also, the difference in performance among 
approaches ranked in distinct positions is very small. 

A direction for future work is to perform experiments 
with the KITTI Vision Benchmark Suite [21], which is 
suitable for analysis of disparity maps from real world 
scenes. Other direction for future research is to examine 
mechanisms for dealing with occlusions and discontinuities 
in stereo image pairs. 
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