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Abstract 

 
In this paper we present a new architecture of Level 

2 (L2) cache – the Dynamic Block Remapping Cache 
(DBRC). DBRC mimics important characteristics of 
virtual memory systems to reduce the impact of L2 in 
system performance.  

Similar to virtual memory systems, the DBRC uses a 
hierarchy of tables to map blocks of L2 cache into 
blocks of physical memory. It also uses a Block-TLB to 
speedup accesses to previously performed block 
translations. We verified that the benefits of fully 
associativity and the consequent possibility of 
employment of global block replacement algorithms 
allow hit rates higher than those of equivalent 
standard caches. 

We compare DBRC with standard caches in terms 
of miss rate, energy consumption and impact on the 
instruction-level parallelism (ILP) of a simulated 
superscalar processor. Our results show that DBRC 
outperforms standard caches in terms of miss rate, 
energy consumption and impact on ILP.   

1. Introduction 

Currently, in standard desktop and laptop 
computers, the time it takes to bring data from memory 
into the processor registers – the main memory latency 
– approaches 500 processor cycles and several levels of 
cache memory are used to diminish the impact of that 
latency on system performance. Cache memory is 
growing in size, particularly the level directly 
connected to the main memory (typically, the level two 
cache, or L2 for short). These, the size and the latency, 
are making the L2 cache-main memory interface, as 
seem by the L2 controller, more and more similar to the 
main memory-hard disk interface, as seem by virtual 
memory systems. In this paper, we present the dynamic 
block remapping cache (DBRC), which borrows some 
ideas from virtual memory systems to reduce the 

impact of the main memory high latency while 
reducing L2 energy consumption.  

In virtual memory systems, any virtual page can be 
allocated into any physical page, which makes the main 
memory a fully associative cache of the disk. A fully 
associative organization allows sophisticate global 
page substitution algorithms, which contributes to 
higher hit rates; this is important because the cost of 
page faults (in terms of time) is large. Address 
translations, once performed, are typically saved in a 
small cache called Translation Look-aside Buffer 
(TLB, [9]). Later accesses are first directed to the TLB 
to check for translations, which allows avoiding the 
cost of examining the hierarchy of tables.  

Similar to virtual memory systems, which use a 
hierarchy of tables to map pages of virtual memory into 
pages of physical memory, the DBRC uses a hierarchy 
of tables to map blocks of L2 cache into blocks of 
physical memory. Most of this hierarchy of tables is 
stored in L2 itself and, as in virtual memory systems, a 
Block-TLB, or B-TLB, is used to speedup accesses to 
previously performed block translations. Thanks to its 
hierarchy of tables, the DBRC is fully associative and, 
although fresh translations may take more processor 
cycles, they are infrequent. Our results show that the 
benefits of fully associativity and the consequent 
possibility of employment of global block replacement 
algorithms allow hit rates significantly higher than 
those of equivalent standard caches.   

We have performed experiments with many 
configurations of DBRC acting as L2 cache of a 
Simplescalar based simulated system 
(www.simplescalar.com), and compared its 
performance with that of standard L2 caches. Our 
results show that the DBRC achieves an average miss 
rate reduction of 27.71% on the SPEC CPU2000 
benchmark suite [14] when compared with an 
equivalent (in size) 8-way set associative L2 cache. 
This translates into an IPC improvement of 20.34%. In 



addition, the DBRC has an energy consumption 
80.94% inferior than the standard L2 cache. 

This paper is organized as follows. After this 
introduction, Section 2 presents the DBRC 
architecture. Section 3 describes our experimental 
methodology and Section 4 analyzes our experimental 
results. Section 5 presents related work. Finally, our 
conclusions follow in Section 6.   

2. The Dynamic Block Remapping Cache 

Figure 1 presents the Dynamic Block Remapping 
Cache (DBRC) architecture. It is composed of five 
parts: (i) data block array (DBA), (ii) block table 
hierarchy (BTH), (iii) data utilization table (DUT), (iv) 
tag table (TT), and (v) block translation lookaside 
buffer (B-TLB).  
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Figure 1. DBRC architecture 

2.1. Data Block Array - DBA 

Data or instructions (from now on we will refer to 
data or instructions stored in a DBRC simply as data) 
stored in a DBRC are organized into blocks of fixed 
size (in our experiments, 64 bytes), which correspond 
to the pages of a virtual memory system. These blocks 
form the data block array (DBA) of the DBRC (see 
Figure 1), which is basically static RAM memory. 

To check whether a data block is present in the 
DBA of a DBRC, its block table, equivalent to the page 
table of a virtual memory system, is examined. In fact, 
as in current virtual memory systems, this block table is 
built as a hierarchy of tables (the block table hierarchy 
– BTH – see Figure 1) and can, depending on the 
configuration, have three, four or even five levels, as 
described below.  

 

2.2. Block Table Hierarchy – BTH 

Figure 2 presents a diagram of a five level BTH. As 
the figure shows, in order to check if a datum mapped 
to a given physical address is present in the DBRC, the 
physical address is divided in several parts, and each 
part addresses one level of BTH. The number of parts, 
or levels of BTH, and their sizes in bits depends on 
physical address size (in bits) and DBRC configuration. 
We evaluated experimentally DBRCs with BTHs with 
three, four and five levels.  
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Figure 2. Five Level Block Table Hierarchy (BTH) 

In the DBRC we modeled, the level 0 of BTH (L0T) 
is physical, i.e., it is implemented in hardware to allow 
low DBRC latency. The other levels (L1T, L2T, L3T 
and L4T of Figure 2) are logical and stored in DBA. 
The L0T is the first table accessed when BTH is 
examined in order to find a data block in DBRC. Each 
entry of L0T has a valid bit (V) and an index field (I) to 
child tables that may point to any block of DBA. This 
block hopefully will contain a L1T table (we describe 



DBRC misses further on). The entries of a L1T or any 
other level of BTH have the same format as the entries 
of L0T. So, to find a data block in DBA, each level of 
BTH is examined in sequence until the data block is 
reached in DBA.  

2.3. Data Utilization Table – DUT 

The DUT stores information related to the type and 
frequency of reutilization of each DBA block.  

For each DBA block there is a DUT entry and each 
of those has: a valid (V), dirty (D), and lock (L) bits; a 
field that indicates the level of the BTH table 
eventually residing in the block (LF); a parent BTH 
table valid bit (PV); and a saturated counter that 
registers the frequency of reutilization of the block (R). 
This information is required by the block replacement 
algorithm, which also requires a pointer, stored into the 
victim block index register (VBIR – see Figure 1), 
which points to the DUT entry (and associated DBA 
block) that is the current candidate for replacement. We 
describe the global block replacement algorithm further 
below. 

2.4. Tag Table – TT 

The TT holds the main memory physical address tag 
of each DBA block and information required by the 
global block replacement algorithm. Therefore, as in 
the case of DUT, there is a TT entry for each DBA 
block. Each TT entry has two fields: TAG field and 
parent table field (PT). The TAG field stores the high 
order bits of the physical address of the main memory 
block stored into the DBA block, and the PT field 
stores an index to the block in DBA that holds the BTH 
parent table that has the pointer to the DBA block.  

The importance of the TT PT field and DUT will 
became apparent with the description DBRC accesses. 
But, before going into that, let’s briefly present the B-
TLB. 

2.5. Block Translation Lookaside Buffer –  
B-TLB 

Similar to the TLB of virtual memory systems, 
which stores translations from virtual page numbers to 
physical page numbers, the B-TLB stores translations 
from main memory physical addresses to DBA block 
indexes. It is a small fully associative cache (128 
entries in our experiments) and each one of its entries 
has: a TAG field that stores the high order bits of the 
main memory physical address, an index (I) to a DBA 
block, and a valid bit (V).  

B-TLB I fields point to DBA blocks holding data or 
BTH tables. As we will see in Section 4, it is more 
advantageous to make B-TLB I fields point to tables of 
a specific level of BTH instead of data blocks. The best 

performing DBRC we have simulated has a five level 
BTH and its B-TLB points to BTH level 4 (L3T). 

2.6. DBRC Accesses 

An access to a DBRC starts with a check if B-TLB 
already has a translation from the main memory 
physical address to a DBA block index. If it has, the 
DBA block indexed by B-TLB is retrieved and, 
depending on the level it points to: (i) an entry of a 
BTH table is retrieved; or (ii) a data block is delivered 
to the requester (typically the L1 cache controller) in 
case of a DBRC read, or it is modified in case of a 
write. Case (ii) is a DBRC hit, and case (i) may be a hit 
or a miss, depending on BTH, which has to be partially 
examined in this case. 

If a translation is not available in B-TLB (a B-TLB 
miss), the level 0 of BTH (L0T) is examined; note that 
an access to L0T typically occurs in one processor 
cycle and can be done in parallel with the B-TLB 
access, which also take one cycle. If the addressed L0T 
entry is valid (if its valid bit, V, is set), its index I is 
used to access a block of DBA in search for the 
corresponding L1T. The L0T index, I, and 
corresponding main memory physical address L1T 
displacement (see Figure 2) point to a possible L1T 
entry in DBA, which is retrieved for examination – this 
takes several processor cycles.  

The L0T index I is also used to retrieve an entry of 
DUT. The R field of this DUT entry is incremented and 
the L1T entry is used to access DBA in search for the 
next level of BTH; otherwise, it is a DBRC miss. The 
accesses to the other levels of BTH follow the same 
principles. If there is no miss, this also constitutes a 
DBRC hit, although a more expensive one. The 
information gathered in the process is used to update 
B-TLB, so that it may allow a B-TLB hit next time. 

2.7. DBRC Misses 

There is a miss in DBRC when it is accessed using a 
physical memory address for which there is no 
translation to a DBA block index in BTH. In a five-
level BTH, a miss in the first level (L0T) requires 
allocation of five blocks of DBA: one for each 
remaining levels of BTH and one for the data block. 
Misses in lower levels of BTH requires allocation of a 
proportionally smaller number of blocks of DBA. 

Misses in DBRC caused by misses in a given level 
N of BTH are served according to the hierarchical 
block replacement algorithm (HBRA), shown in Figure 
3 and detailed below. 

 
Select a DBA victim block. To select a DBA block to 
serve a miss (a victim block), the DBRC controller uses 
DUT’s victim block index register (VBIR). This 
register is initialized with zero at system reset, is 



incremented during the process of selecting DBA 
victim blocks, and points to the current victim block 
candidate.  
 
1 b = Select a DBA victim block; 
2 Make the BTH entry in level N  point to b; 
3 if (b’s DUT entry bits V == true and PV == true) 
3.1 Invalidate the entry of the BTH table that points to b; 
3.2 Invalidate an eventual entry in B-TLB that points to b; 
3.3 if (b’s DUT entry LF field indicates that b holds a BTH 

table) 
3.3.1 Invalidate DUT entries associated with b’s children; 
3.4 else if (b’s DUT entry dirty bit D == true) 
3.4.1 Save b contents into physical memory; 
4 Install block level N+1;  
5 N = N + 1; if (N < data block level) goto 1;  

Figure 3. Hierarchical block replacement algorithm 

 
So, DBA blocks are victim candidates in a round 

robin fashion. However, a victim block may be spared 
depending on its DUT R counter (see Section 2.3).  

A victim block is selected if it is not locked (DUT L 
!= 1) and: (i) its DUT valid bit (V) is equal to zero, in 
which case the block does not contain valid data or 
BTH table; or (ii) its DUT parent BTH table valid bit 
(PV) is equal zero, in which case the block is orphan 
because its parent BTH table was removed from DBA; 
or (iii) its DUT R counter is equal zero, which indicates 
that this block was not reused since the last time it was 
a victim candidate (VBIR pointed to it). 

If none of these three conditions is true, the R 
counter of the DUT entry associated with the victim 
block is zeroed and VBIR incremented to point to the 
next DBA block. The whole process is repeated until 
one of the three conditions occurs or a Maximum 
Number of Attempts (MNA) is made, in which case the 
block examined with the smaller R counter value is 
selected.  

 
Make the BTH entry in level N point to b. A block 
needs to be selected because an entry in a table of BTH 
was found invalid during a DBRC access (a BTH 
miss). Once a block b is selected, the I field of the 
invalid BTH table entry is made to point to the selected 
block b and its valid bit, V, is set (see Section 2.2).  

 
Invalidate DUT entries associated with b and its 
children. If the V and PV bits of the DUT entry of the 
victim block b are both set, there is a valid entry of a 
BTH table that points to it. The DBRC controller 
invalidates it using the parent table field (PT) of TT. In 
addition, it invalidates an eventual entry in B-TLB that 
points to b using the TAG field of TT.  

If b’s DUT entry LF field indicates that it holds a 
BTH table, all DUT entries associated with b’s 
children have to be invalidated. For that, the DBRC 
controller reads b from DBA and uses the I fields of 

each one of its valid entries to invalidate the PV bits of 
the corresponding DUT entries. This may take several 
processor cycles. Note that this does not invalidate b’s 
children, which still may be reached via B-TLB; but it 
makes then strong victim candidates.  

 
Install block level N+1. If b was selected to receive a 
data block from physical memory (a read miss), the 
lock bit (L) of the DUT entry associated with it is set. 
To set the lock bit is necessary because it takes many 
cycles (100s) to bring data from main memory into b. 
To allow serving other DBRC misses in the mean time, 
a MSHR (Miss Status Holding Register [8, 5]) of the 
DBRC controller is filled with the information required 
to write the data coming from memory into b when it 
(the data) arrives.  

If b was selected to receive a data block from L1 (a 
L1 writeback), the data is immediately written into b 
and the dirty bit (L) of the DUT entry associated with it 
is set. If b was selected to hold a new BTH table, the 
valid bit (V) of the DUT entry associated with it is 
zeroed; in the next loop of HBRA, an entry of the BTH 
table it now holds will be properly filled (step 2 of 
HBRA – see Figure 3).  

This completes the description of DBRC. In the next 
sections we describe how we tuned its parameters and 
compared it against a standard set associative L2 cache. 

3. Methods 

To evaluate DBRC, we employed execution driven 
simulation based on the CACTI (“An Enhanced Cache 
Access and Cycle Time Model” – CACTI [15]) and 
Simplescalar (www.simplescalar.com) tools, both 
widely used by the research community.  

We used CACTI to configure different DBRC and 
equivalent standard L2 caches, and to estimate their 
access time, and energy consumption. We used 
Simplescalar to configure single core systems running 
SPEC2000 benchmark programs [14] while employing 
DBRC and standard L2 caches, and to estimate the 
average number of instructions executed per cycle 
(IPC). 

3.1. Experimental Setup 

In our experiments we have used a version of the 
Simplescalar that emulates the Alpha21264 superscalar 
processor [4]. We have used this version because it has 
been validated against a real Alpha21264 
experimentally [3], and because there are precompiled 
SPEC2000 benchmark programs and properly set 
SPEC2000 workload (the MinneSPEC workload [7]) 
for it which are widely used by the research 
community. With the MinneSPEC workload, each 
SPEC2000 benchmark program executes about 2 



billion instructions in total (about 1 second in current 
machines). 

The Alpha21264 processors were set up as shown in 
Table 1, and their memory hierarchy for both DBRC 
and standard L2 was set up as shown in Table 2 (Table 
2 also presents the standard L2 configuration). 

 
Table 1. Alpha21264 setup 

Pipeline 
7 stages –  4-wide Fetch, Slot, and Map; 
6 wide Issue, RegRead, Execute, and 
Write-back; and 11-wide Retire. 

Functional Units 4 integer and 2 floating-point. 

Issue Queues size 20-instrution integer and 15-instruction 
floating point. 

Number of 
Renaming Registers 

41 integer, 41 floating-point and 32 
memory (load-store queues). 

Branch Predictor 

Tournament branch predictor with a three 
predictors combination: two level local 
predictor (1024 10-bit local history), 
path-based global predictor (12-bit 
history register which points to a table of 
4K 2-bit saturating counters) and a 
choice predictor with a table of 4K 2-bit 
saturating counters. 

Processor Clock 3GHz 
Technolofy 65ηm 

 
Table 2. Memory hierarchy and standard L2 setup 

L1 Instruction 
Cache 

64KB 2-way set associative (LRU), with 
64B blocks and 1-cycle latency. 

L1 Data Cache 64KB 2-way set associative (LRU), with 
64B blocks and 3-cycle latency. 

Standard L2 
Cache 

1MB 16-way set associative (LRU), with 
64B blocks, 9-cycle latency and 32 MSHRs. 

Memory Bus 16B-wide, 750MHz. 

Main Memory Unlimited, 225-cycle latency, 120-cycle 
precharge and 120-cycle pipeline access. 

3.2. DBRC Configuration 

The DBRC main parameters are: DBA size, DBA 
block size, B-TLB size, number of BTH levels, B-TLB 
target BTH level, DUT R field size, and the maximum 
number of attempts (MNA) to select a victim block.  

In our experiments, we used DBRC and standard L2 
caches with 1MB for data storage and blocks of 64B 
because these sizes are currently used in many Intel and 
AMD systems. So, we used DBA size equal to 1MB 
and DBA block size equal to 64B. Following the same 
reasoning, we used 128-entry fully associative B-TLB 
(this is the current TLB configuration on most current 
processors).  

The number of levels of BTH affects several aspects 
of DBRC. Perhaps, the most important one is the size 
of BTH’s level 0, L0T, since it is implemented in 
hardware instead of residing in DBA, as the other 
levels of BTH do. As L0T entries point to DBA blocks 
(see Figure 1), to calculate the size of L0T we start 
calculating the DBA number of blocks. For a 1MB 
DBA with 64B blocks, we have 16K blocks (1M/64). 
So, each entry of L0T must have an I field of 14 bits 

plus one valid (V) bit (15 bits total), and the same 
happens with the other levels of BTH, which, with 64B 
blocks, can accommodate only 32 entries each (by 
rounding 15 bits to the next power of 2, i.e., 16 bits, 
which gives us 2B per entry, or 32 entries for 64B). 
Assuming a 32 bits physical address (1GB main 
memory), the Table 3 shows how it (the physical 
address) can be divided to address each BTH level for 
BTHs with hierarchies of 3 (H3L), 4 (H4L) and 5 
(H5L) levels (Figure 3 depicts the last line of Table 3), 
while Table 4 shows the number of entries of the tables 
of each level of these BTHs. 

As Table 4 shows, a BTH with a hierarchy of 3 
levels (H3L) would require a 64K-entry L0T, which 
would require approximately 128KB of storage space. 
On the other hand, a H5L BTH would require only a 
64-entry L0T (approximately 128 bytes); accesses to a 
L0T of this size would be very fast, and larger physical 
addresses (i.e., larger main memories) could be easily 
accommodated (in the foreseeable future) by increasing 
it accordingly without a strong effect on L0T access 
time or chip area.  

 
Table 3. Physical address fields 

Address Field 
BTH 

f e d c b a 
H3L - - 16 5 5 6 
H4L - 11 5 5 5 6 
H5L 6 5 5 5 5 6 

 
Table 4. Number of entries on each BTH level 

BTH Table BTH 
L0T L1T L2T L3T L4T 

H3L 64K 32 32 - - 
H4L 2K 32 32 32 - 
H5L 64 32 32 32 32 

 
But BTHs with deep hierarchies may occupy too 

many DBA blocks, hurting DBRC hit rates. To 
examine this and to find appropriate values for the 
other DBRC parameters (B-TLB target BTH level, 
DUT R counter size, and maximum number of attempts 
(MNA) to select a victim block) we had to run 
experiments. 

4. Experiments 

To examine the impact of the BTH hierarchy depth 
on BTRC miss rate, we run the SPEC2000 benchmarks 
in the described experimental framework (Section 3.1). 
Figure 4 shows the results (the twof and vpr 
benchmarks were omitted because they have very small 
miss rates). 

In Figure 4, the y-axis is the DBRC miss rate, while 
x-axis lists the SPEC2000 benchmarks and the 
arithmetic mean (A.M.) of their miss rates for 3 BTH 



depths: 3 (H3L), 4 (H4L) and 5 (H5L). As Figure 4 
shows, the number of levels of BTH does not affect the 
DBRC miss rate significantly; so, for now on, we 
consider DBRCs with BTHs of 5 levels only. 

Ideally, B-TLB entries would point directly to the 
block addressed by the processor; however, a 1MB 
DBA of 64B blocks has 16K blocks. So, as the number 
of entries of B-TLB is small, hit rates may be low if it 
targets DBA blocks. Figure 5 shows B-TLB hit rates 
for different B-TLB targets. 

In Figure 5, the y-axis is the B-TLB hit rate, while 
x-axis lists the SPEC2000 benchmarks and the 
arithmetic mean of their hit rates for the following B-
TLB targets: L1T, L2T, L3T, L4T and data blocks in 
DBA. As Figure 5 shows, the performance of a 128-
entry B-TLB targeting data blocks is to low. This is to 
be expected, since a data block is small and can be 
mapped anywhere in the physical memory address 
space (remember that, in virtual memory systems, 
TLBs target pages of typically 4KB or higher).  
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Figure 4. Impact of BTH depth on DBRC miss rates 
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Figure 5. B-TLB hit rates for different B-TLB 

targets 

From the results of Figure 5, we decided to use B-
TLBs that target L3T. This means that, for each DBRC 
access, even with a hit in B-TLB, DBA must be 
accessed 3 times: one for accessing a L3T entry, one 
for accessing a L4T entry and one for accessing the 
data block. This increase DBRC hit time and energy 
consumption. We will address these concerns later on. 

Let’s first examine the other DBRC parameters, DUT 
R counter size, and MNA. 

The DUT entries R field holds a saturated counter 
that registers the frequency of reutilization of the 
associated block of DBA. Figure 6 shows the impact of 
DUT R counters size on DBRC miss rate, for 1, 5 and 
10 bit sizes. As Figure 6  shows, on average, the larger 
the R field the better (lower) the average miss rate.  So, 
we used R counters 10-bit sized. 
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Figure 6. Impact of DUT R field size on DBRC 

Ideally, the maximum number of attempts (MNA) to 
find a victim block in case of a DBRC miss would be 1 
because it would be the fastest option. However, in this 
case, in case of a DBRC miss, we would remove 
valuable DBA blocks, such as high level tables of BTH 
or frequently used data blocks. To find a proper value 
of MNA, we run the experiments shown in Figure 7. 

As Figure 7 shows, a MNA equal 5 or 10 already 
provide the protection that valuable blocks need; so, we 
used MNA equal 5. 
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Figure 7. Impact of MNA on DBRC miss rate 

After selecting the parameters of DBRC, we 
compared its performance with that of the standard L2 
cache of Table 2 in terms of miss rate, impact on ILP 
and energy consumption. Figure 8 presents the 
comparison in terms of miss rate. 

As shown in Figure 8, DBRC outperforms a 
standard 8-way set associative L2 of equivalent size in 
terms of miss rate for a large margin – an average miss 
rate reduction of 27.71%. This occurs thanks to DBRC 



fully associativity and global block replacement 
algorithm.   
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Figure 8. DBRC versus Standard L2: miss rate 

Figure 9 presents the comparison DBRC versus 
standard L2 in terms of ILP, measured as instructions 
per cycle (IPC). In order to make this comparison, the 
hit and miss access times of DBRC had to be properly 
modeled.  
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Figure 9. DBRC versus Standard L2: ILP 

The hit and miss access times of DBRC are 
influenced by the access times of B-TLB, DBA, L0T, 
DUT and TT, and, depending on the type of hit (hits 
with hit in B-TLB, hits with miss in B-TLB) and miss 
(misses in different levels of BTH, which may require a 
single or several attempts to get DBA blocks) require 
different numbers of cycles (see algorithm of Figure 3). 
We have made a careful modeling of all aspects that 
contributes to DBRC hit and miss times. Unfortunately, 
due to space restrictions, we could not present it here; 
nevertheless, it is available in [10]. But an important 
aspect of this modeling have to be mentioned: we have 
partitioned DBA into 32 banks so that an access to a 
BTH table entry does not involve moving an entire 64B 
block of DBA to DBRC control. This saves power and 
reduces DBA access times, which is very important for 
the DBRC impact on ILP and energy consumption. 

As Figure 9 shows, DBRC outperforms the standard 
L2 cache in terms of impact on ILP – an average 

(harmonic mean) IPC increase of 20.34%. This gain 
comes from the reduction of miss rates provided by the 
fully associativity and global block replacement 
algorithm of DBRC, and DBRC’s DBA banking.  

Finally, Figure 10 presents the comparison of 
DBRC with the standard L2 cache in terms of dynamic 
energy consumption. Again, in order to make this 
comparison, the energy consumption of DBRC and 
standard L2 had to be properly modeled. They depend 
on the many details of implementation of each, which 
we carefully modeled. Unfortunately, due to space 
restrictions, we could not present this modeling here; 
nevertheless, it is available in [10]. 
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Figure 10. DBRC versus Standard L2: Energy 

To obtain the results shown in Figure 10, we 
measured the total amount of Joules consumed by each 
cache architecture. For that, we added all tiny ηJ 
amounts of energy dynamically consumed by each 
peace of each cache architecture in accordance with the 
CACTI model. As Figure 10 shows, DBRC consumes 
much less energy dynamically than an equivalent L2 
cache – 80.94% less. This, yes, is due in part to the 
DBRC lower miss rate and DBA banking organization, 
but also and mostly due to the energy cost of tag 
comparison in the large tag array of standard L2 
caches, which DBRC does not have (TT is only 
accessed for  block invalidation during DBRC misses).  

5. Related Work 

Puzak [11] proposed the inclusion of extra tags in a 
shadow directory to provide feedback to a local 
replacement engine in a set-associative cache. Batson 
and Vijaykumar [1] proposed the reactive-associative 
cache (r-a cache), which provides flexible associativity 
by placing most blocks in direct-mapped positions and 
reactively displacing only conflicting blocks to set-
associative positions. Prime modulo hashing [6] and 
skewed associativity [13], on the other hand, attempt to 
distribute memory accesses uniformly across cache sets 
by targeting the indexing function. The “Non-uniform 
access with Replacement And Placement usIng 



Distance associativity” cache, or NuRAPID [2], 
leverages sequential tag-data access to decouple data 
placement from tag placement. Qureshi et al. [12] 
proposed a technique to vary the associativity of a 
cache on a per-set basis in response to the demands of 
the program, while Zhang [16] proposed a cache design 
that allows the accesses to cache sets to be balanced by 
using a special block address decoder. All these 
approaches are variations of the standard cache design. 
DBRC departs from the standard design and tries to 
obtain performance mimicking the architecture of 
virtual memory systems. 

6. Conclusions 

In this paper, we proposed and evaluated a new 
architecture of Level 2 (L2) cache – the Dynamic 
Block Remapping Cache (DBRC). DBRC borrows 
some ideas from virtual memory systems to reduce the 
impact of L2 on system performance. 

Analogous to virtual memory systems, which use a 
hierarchy of tables to map pages of virtual memory into 
pages of physical memory, the DBRC uses a hierarchy 
of tables to map blocks of L2 cache into blocks of 
physical memory. Also, as in virtual memory systems, a 
B-TLB is used to hold translations from main memory 
physical addresses to cache block indexes. 

We compared the performance of DBRC with that 
of standard L2 caches using Simplescalar to model 
single core systems running SPEC2000 benchmarks. 
Our results showed that the DBRC achieves 27.71% 
reduction on average miss rate, 20.34% improvement 
in IPC, and 80.94% reduction on energy consumption 
when compared with an equivalent (in size) 8-way set 
associative L2 cache. 

A direction for future work is to measure the static 
energy dissipation instead of using approximations 
based on the occupied area. Other direction for further 
research is to take into account the energy consumption 
and the B-TLB area. 

As future work, we will examine the performance of 
DBRC in multi-core systems. 
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