
Analyzing Imbalance among Homogeneous

Index Servers in a Web Search System

C.S. Badue a,∗, R. Baeza-Yates b, B. Ribeiro-Neto a,c,

A. Ziviani d, N. Ziviani a

aDepartment of Computer Science, Federal University of Minas Gerais,
Belo Horizonte, Brazil

bYahoo! Research
Barcelona, Spain & Santiago, Chile
cGoogle Engineering Belo Horizonte

Belo Horizonte, Brazil
dNational Laboratory for Scientific Computing (LNCC),

Petrópolis, Brazil

Abstract

The performance of parallel query processing in a cluster of index servers is cru-
cial for modern web search systems. In such a scenario, the response time basically
depends on the execution time of the slowest server to generate a partial ranked
answer. Previous approaches investigate performance issues in this context using
simulation, analytical modeling, experimentation, or a combination of them. Never-
theless, these approaches simply assume balanced execution times among homoge-
neous servers (by uniformly distributing the document collection among them, for
instance)—a scenario that we did not observe in our experimentation. On the con-
trary, we found that even with a balanced distribution of the document collection
among index servers, correlations between the frequency of a term in the query log
and the size of its corresponding inverted list lead to imbalances in query execution
times at these same servers, because these correlations affect disk caching behavior.
Further, the relative sizes of the main memory at each server (with regard to disk
space usage) and the number of servers participating in the parallel query process-
ing also affect imbalance of local query execution times. These are relevant findings
that have not been reported before and that, we understand, are of interest to the
research community.

Key words: parallel query processing, imbalance, search engines, performance
analysis

Preprint submitted to Elsevier Science 28 April 2006

1 Introduction

The tremendous success of keyword targeted advertising has fuelled Web econ-
omy to new heights. In fact, in 2004 American companies spent between 9
and 10 billion dollars in online advertising to promote their products and ser-
vices (Jupiter Media, 2005). Around 40-50% of this amount is estimated to
have been spent on online advertising associated with answers to user queries.
As a consequence, search engines are currently a critical component of Web
economy.

Additionally, fairly recent announcements of new products by major players
such as Google and Yahoo indicate a rising interest in corporate search, i.e.,
installing search engines in the Intranets of large companies to sift through
the vast amounts of data produced internally. In this case, the interest of
the corporation is on compiling and organizing the information it generates
regarding its own business, using information on the business as a de facto
asset. Again, search engines are expected to play a major role in this context.

When a user query reaches a search engine, the query processing is split into
two consecutive major phases (Barroso et al., 2003). The first phase consists of
retrieving from the storage devices documents that contain each query term,
executing a conjunction of the sets of these documents, and finally ranking
the selected documents using some relevance metric. Search engines that deal
with huge document collections perform a partial evaluation in this first phase
instead of a full one. The second phase consists of taking the top ranked an-
swers of the first phase, typically 10, and generating snippets, title, and URL
information for each of them. For this, the search engine needs to examine
the full texts of the top ranked documents. Both phases play important roles
in the performance of modern search engines. Nevertheless, as the size of a
search engine increases, the processing cost of the second phase remains basi-
cally constant, whereas the processing cost of the first phase increases—larger
lists of documents have to be read from the disks and processed. Therefore,
the performance of the first phase is crucial for maintaining the scalability
of modern search engines that deal with an ever-increasing amount of Web
documents.

In this work, we analyze the performance of the first phase of the query pro-

∗ Corresponding author address: Department of Computer Science, Federal Univer-
sity of Minas Gerais, Av. Antônio Carlos 6627, 31.270-010, Belo Horizonte, Brazil;
Phone: +55 31 3499 5860; Fax: +55 31 3499 5858.

Email addresses: claudine@dcc.ufmg.br (C.S. Badue),
ricardo.baeza@upf.edu,rbaeza@dcc.uchile.cl (R. Baeza-Yates),
berthier@dcc.ufmg.br,berthier@google.com (B. Ribeiro-Neto),
ziviani@lncc.br (A. Ziviani), nivio@dcc.ufmg.br (N. Ziviani).

2

cessing task, i.e., the retrieval of the most relevant documents for a given user
query. In our architecture, the whole collection of documents is partitioned
among a set of index servers organized in a computational cluster, such that
each server stores its own local subcollection. Upon the arrival of a given user
query, the task of retrieving the most relevant documents for this query is
then shared among the index servers so that each index server performs the
retrieving task for the query only on its partition of the document collection.
A broker is responsible for merging the partial ranked answers from the servers
to produce the final ranked answer.

In this architecture for parallel query processing, characterized by a local parti-
tioning of the document collection, the response time of a query is determined
by the execution time of the slowest index server. As a consequence, imbalance
in execution times among index servers increases the response time of a query
executed by the cluster of servers. Therefore, it is critically important to avoid
imbalance among index servers if higher performance is to be achieved.

A common counter-measure against imbalance is to distribute the whole col-
lection of documents among homogeneous index servers in a balanced way,
such that each server handles a similar amount of data for processing any
given query. At a first glance, as a consequence of having similar data volumes
handled at each server for a given query, one would expect that execution
times at the homogeneous index servers would also be approximately bal-
anced. Indeed, this idealized scenario of balanced execution times is a usual
assumption taken by theoretical models for web search systems (Tomasic and
Garcia-Molina, 1993; Ribeiro-Neto and Barbosa, 1998; Cacheda et al., 2004;
Chowdhury and Pass, 2003). However, in a real case scenario, correlations
between term frequencies in the query log and the sizes of the corresponding
inverted lists lead to imbalances in query execution times.

In this paper, we carefully investigate and analyze the imbalance issue in a
computational cluster composed of homogeneous index servers. As a major
contribution, we verify that the idealized scenario of balanced execution times
at homogeneous index servers with similar data volumes is unlikely to be
found in practice. Our results are derived from experiments in an information
retrieval testbed fed with real data obtained from a real-world search engine.
This is an important experimental result because our findings shed light on
a usual assumption that is obliviously taken as valid by previous theoretical
models, whereas imbalance masks possibilities for performance improvements.
Moreover, we identify and fully analyze the main sources of imbalance: the use
of disk caching, the size of main memory in the homogeneous index servers,
and the number of servers in the cluster.

This paper is organized as follows. Section 2 discusses research related to ours.
Section 3 presents the architecture of our system, the cluster of index servers,

3

the index organization, and the parallel query processing technique. Section 4
characterizes imbalance in the execution times of homogeneous index servers,
describing the workload used in the experimental analysis, our experimental
setup, the sources for the verified imbalance, and finally the execution times
of queries in our query collection for our cluster of homogeneous index servers.
Our conclusions follow in Section 5.

2 Related Work

Tomasic and Garcia-Molina (1993) compare the performance impact on query
processing of various physical organizations for inverted lists. Based on results
derived from simulation, they show that the index organization depends heav-
ily on the access time of the storage device and the communication bandwidth.
Ribeiro-Neto and Barbosa (1998) study how query performance is affected by
the index organization, the network capacity, and the disk transfer rates, us-
ing a simple analytical model coupled with a small simulator. Cacheda et al.
(2004) present a case study of different architectures for a distributed infor-
mation retrieval (IR) system, in order to provide a guide to approximate the
optimal architecture with a specific set of resources. Using a simulator based
on an analytical model for query processing similar to the one described in
(Ribeiro-Neto and Barbosa, 1998), they identify two main bottlenecks in a
distributed and replicated IR system: the brokers and the network. These
simulation-oriented performance studies relate to ours in identifying the disk
access times as a key factor for query performance. Nevertheless, the analytical
models presented therein assume that execution times are balanced if index
servers manage a similar amount of data when processing a query.

Chowdhury and Pass (2003) introduce an approach based on queueing the-
ory for modeling and analyzing architectures for search systems in terms of
their operational requirements: throughput, response time, and utilization. To
model the service time of an index server, they compute the mean service time
as a function of the number of documents in the index, using a set of queries
against their search index. If the search index has n documents, then the mean
service time of a single index server is equal to f(n); if the collection is par-
titioned into 2 pieces, each one with n/2 documents, then the mean service
time for the 2 index servers is equal to f(n/2). Thus, their queueing model
also assumes a perfect balance among the execution times of index servers
that process an equal number of documents per query.

MacFarlane et al. (2000) and Badue et al. (2001) investigate the performance
impact on parallel query processing of two distinct types of index organiza-
tions (term or document partitioning) using a real case implementation. They
conclude that performance of parallel query processing in a cluster of index

4

servers is impacted by disk access time, network communication time, and
query concurrency level. Orlando et al. (2001) present the architecture of a
parallel and distributed search engine on which they explore two main par-
allelization strategies: a task parallel strategy, by which queries are executed
independently by a set of homogeneous index servers, and a data parallel strat-
egy, that we refer to as a document partitioning strategy, by which each query
is processed in parallel by index servers accessing distinct partitions of the
database. They have conducted real experiments that highlighted the better
performance of a hybrid task plus data parallelization due to a good exploita-
tion of memory hierarchies, in particular of the buffer cache which virtualizes
the access to the disk-resident posting lists. This analytical work presents a
similar analysis to ours in terms of identifying the disk caching operations as
a factor for accelerating disk access times. In fact, these approaches inher-
ently consider any imbalance on execution times among index servers in their
results because these results are derived from real experimentation. Neverthe-
less, these experimentation-based approaches fail to be aware of the imbalance
and to characterize its impact on the performance of a web search system, as
we do in this paper.

Based on these considerations, we observe that no matter the previous ap-
proach—be it based on simulation, modeling, or experimentation—, they all
fail in being aware of any imbalance in execution times. This happens because
either they simply assume balanced execution times among the homogeneous
servers if the data collection is distributed in a balanced way or they obliv-
iously take the imbalance into account from real experiments, failing then
to characterize such an imbalance. In contrast, we verify in this paper that
this idealized scenario of balanced execution times among homogeneous index
servers with similar data volumes is unlikely to be found in practice.

3 Architecture

In this section, we present the architecture of our system, the cluster of index
servers, the index organization, and the parallel query processing technique.

3.1 Cluster of Index Servers

Modern search engines typically rely on computational clusters for query pro-
cessing (Barroso et al., 2003; Risvik et al., 2003). Such clusters are composed
of a single broker and p index servers. The broker receives user queries from
client nodes and forwards them to the index servers, triggering the parallel
query processing. The whole collection of documents is partitioned among the

5

index servers, such that each server stores its own local subcollection, i.e., p
subcollections compose the document collection C. Figure 1 illustrates this
architecture for a typical search engine.

Index
server 1

Index
server 2

Index
server 3

Index
server p

Broker

Client

. . .

Fig. 1. Architecture of a typical search engine.

Let n be the size of the whole collection C. Assuming that the documents are
evenly distributed among the p servers, the size b of any local subcollection is
given by b = n/p.

3.2 Index Organization

An inverted index is adopted as the indexing structure for each subcollection.
Inverted files are useful because they can be searched based mostly on the
set of distinct words in all documents of the collection. They are simple data
structures that perform well when the pattern to be searched for is formed by
conjunctions and disjunctions of words (Baeza-Yates and Ribeiro-Neto, 1999;
Witten et al., 1999).

The structure of our inverted indexes is as follows. It is composed of a vo-

cabulary and a set of inverted lists. The vocabulary is the set of all unique
terms (words) in the document collection. Each term in the vocabulary is as-
sociated with an inverted list that contains an entry for each document in
which the term occurs. Each entry is composed of a document identifier and
the within-document frequency ft,d representing the number of occurrences of
term t within the document d. Furthermore, the inverted lists are sorted by
decreasing within-document frequencies.

The size of each local inverted index is O(b). This type of index organization,
hereafter referred to as a local index organization (Ribeiro-Neto and Barbosa,
1998; Badue et al., 2001), is currently the de facto standard in all major search
engines.

6

To avoid imbalance among index servers, we opt for balancing the distributions
of the sizes of the inverted lists that compose the local inverted indexes. To
achieve this we simply assign each document to an index server randomly. A
random distribution of documents among index servers works well because it
naturally spreads documents of various sizes across the cluster. As a result,
the distributions of document sizes in the index servers become similar in
shape, thus leading to inverted lists whose size distributions are also similar.
Our motivation is to balance the storage space utilization at the different index
servers and, as a consequence, reduce imbalance in execution time at the index
servers (Badue et al., 2005), thus minimizing the effects of this possible source
of imbalance.

Figure 2 illustrates the probability mass function (PMF) 1 of the size of the
inverted lists that compose the 7 local inverted indexes in our cluster with 7
index servers. We observe that the distribution of storage use is very similar
in shape throughout the different servers—actually, they overlap each other
in Figure 2—, indicating that the random assignment of documents to servers
works fine to balance storage use among servers.

10-6

10-5

10-4

10-3

10-2

10-1

100

103 104 105 106 107

PM
F

Size of inverted list (bytes)

server 1
server 2
server 3
server 4
server 5
server 6
server 7

Fig. 2. PMF of the sizes of inverted lists.

1 For discrete random variables, such as the size of inverted lists, we use a proba-
bility mass function (PMF). For continuous random variables described later, such
as the execution time of queries, we use a probability density function (PDF).

7

3.3 Parallel Query Processing

In this paper, we use the standard vector space model (Salton and McGill,
1983) to rank the selected documents. In this model, queries and documents
are represented as weighted vectors in a t-dimensional space, where t is the
number of terms in the vocabulary of the collection. Each pair term-document
is weighted by the frequency ft,d of term t in document d (the term frequency
tf) and the inverse document frequency (idf) of the term t among the docu-
ments in the whole collection. The rank of a document with regard to a user
query is computed as the cosine of the angle between the query and docu-
ment vectors. Using the idf weight implies global knowledge about the whole
collection to be available at the index servers. This could be accomplished if
servers exchange their local idf factors after the local index generation phase.
Each index server may then derive the global idf factor from the set of local
idf factors (Ribeiro-Neto and Barbosa, 1998).

In our experiments, a client machine submits queries to the broker. This broker
then broadcasts each query to all index servers. Once each index server receives
a query, it retrieves the full inverted lists relative to the query terms, intersects
these lists to produce the set of documents that contains all query terms
(i.e., the conjunction of the query terms), computes a relevance score for each
document, and sorts them by decreasing score—this results in a partial ranked
answer to be sent by each index server to the broker. Query terms are processed
by decreasing idf, i.e., by increasing order of the number nt of documents in
the whole collection containing the term t, thus leading to a significantly more
efficient conjunction of their inverted lists. As soon as the ranking is computed,
the top ranked documents selected at each index server are transferred to
the broker machine. The broker is then responsible for combining the partial
ranked answers received from the index servers through an in-memory merging
operation. The final list of top ranked documents is then sent back to the client
machine.

In our tests, we evaluate the full inverted lists. If partial evaluation of inverted
lists is adopted—meaning shorter inverted lists—imbalance would be expected
to be smaller. Nevertheless, partial evaluation of a huge document collection
may cause a similar load as the one in our full evaluation case. Alternatively
to the adopted standard ranking method, link information might be used to
improve the relevance evaluation of retrieved documents, i.e., the documents
resulting from the intersection of inverted lists related to the query terms.
Traditional algorithms to compute link information are PageRank (Brin and
Page, 1998) and HITS (Kleinberg, 1998). The computation of link information
for each document in the collection is typically performed offline, during the
index generation phase. Afterwards, the computed link information for each
document remains available in main memory for the query processing phase.

8

Note that document ranking occurs after the intersection of inverted lists
related to the query terms, the main focus of this paper, and deals only with
straightforward computation of document scores based on information already
available in main memory. Therefore, this document ranking—be it content-
based, link-based, or a combination of both—can be fully carried out using
main memory, thus not generating imbalance because the main sources of
imbalance are related to disk operations, as further detailed in Section 4.

The broker is not a bottleneck in this architecture of local document parti-
tioning. Our experimental results show that the average execution time per
query at the broker is quite small (0.03 milliseconds in our cluster with 7 index
servers). There are two fundamental reasons for this. First, broker’s operation
is fully carried out using main memory. Second, all the tasks the broker exe-
cutes are simple tasks that do not take much CPU time. It should be noted
that the broker does not have to make ranking computations and does not have
to execute algebraic operations, other than comparing document identifiers.
Preliminary results on this issue are presented in (Badue et al., 2005).

Notice that in this architecture, characterized by a strategy of local docu-
ment partitioning, the response time of a particular query basically depends
on the execution time of the slowest index server to produce the corresponding
partial answer set. Therefore, the higher the imbalance in execution times of
index servers, the larger tends to be the response time of a query processed
by the cluster of servers. Thus, it is critically important to avoid imbalance.
If the document collection is partitioned among a certain number of homoge-
neous index servers in a balanced way, such that all of them manage a similar
amount of data when processing a query, it would be expected that execu-
tion times were also balanced. This idealized scenario of supposing balanced
execution times as a direct consequence of a uniform collection distribution
among servers is indeed a usual assumption taken by theoretical models in the
literature to simplify the modeling task. Nevertheless, such an idealized bal-
ance is unlikely to be found in practice as we point out in this paper. Such an
observation is based on the experimental analysis described in the following.

4 Characterizing Imbalance

We define the imbalance of a given query as the ratio between the maximum
execution time and average execution time of index servers participating in the
parallel processing for this particular query. This imbalance metric equals 1 in
a perfectly balanced scenario that yields the maximum execution time exactly
matching the average execution time. As the imbalance metric progressively
gets higher than 1, there is a stronger indication that the query response time
is dominated by a much larger execution time of a single server.

9

In Section 4.1, we characterize the workload used in our experiments. In Sec-
tion 4.2, we describe our experimental setup, including the homogeneous clus-
ter of index servers and the uniform distributions of sizes of inverted lists
across index servers. Based on this experimental study, we verify the presence
of a significant level of imbalance in execution time among the servers in de-
spite of the collection being uniformly distributed among these same servers.
Moreover, we identify and analyze the main sources for this imbalance: the use
of disk caching in Section 4.3, and the size of main memory and the number
of index servers in the cluster in Section 4.4. Finally, in Section 4.5 we char-
acterize the execution times of queries in our query collection for our cluster
of homogeneous index servers.

4.1 Workload Characterization

The test collection, referred to as WBR03, is composed of 10 million Web
pages collected by the TodoBR 2 (TodoBR, 2003) search engine from the
Brazilian Web in 2003. The inverted index for the whole collection occupies
roughly 12 GB. The query set used in our tests is composed of 100 thou-
sand queries, extracted from a partial log of queries submitted to the TodoBR
search engine in September 2003.

The distribution of text terms in both queries and documents follows a Zipf
distribution, as shown in Figure 3. The plots show the normalized frequency
of text terms in documents and the normalized frequency of text terms in
queries. The x-axis shows the resulting rank of each text term when these are
sorted in decreasing order of occurrence in documents or in queries. Therefore,
the frequency in documents (or in queries) that are expected for the x most
frequent term is given by

f(x) = O(x−b), b > 0. (1)

Fitting a straight line to the log-plot of the data presented in Figure 3, we can
estimate the value of the parameter b. We identify two different regions in the
distribution of text terms in queries and three different regions in the distri-
bution of text terms in documents. For the distribution of terms in queries,
the values for parameter b are 0.617531 and 1.9918 for the first and second
regions, respectively. For the distribution of terms in documents, the values
for parameter b are 0.301089, 0.773434 and 1.58112 for the first, second, and
third regions, respectively.

2 TodoBR is a trademark of Akwan Information Technologies, which was acquired
by Google in July 2005.

10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106 107

N
or

m
al

iz
ed

 f
re

qu
en

cy

Text term

in documents
in queries

Fig. 3. Frequency of text terms in documents and in queries.

The query vocabulary has 21 552 terms and the text vocabulary has 3 541 678
terms. Common terms between both collections are 17 468. Figure 4 shows the
normalized frequency of text terms in the document collection as a function of
the normalized frequency of text terms in the query collection, thus considering
only the 17 468 common terms between both distributions. Comparing the
normalized frequency of text terms in documents and in queries, we observe
that—even if dealing with rare query terms—it is likely that query terms
are mentioned in a large number of documents. This is important because
this indicates that such a query set consistently generates a significant query
processing load in our system.

In fact, there are some very rare terms in our collection, thus leading to small
inverted lists. As a consequence, when we partition the collection among the
index servers, some of them may not store any portion of the inverted lists
related to rare terms. In the case of queries concerning such rare terms, the
imbalance is calculated as the ratio between the maximum execution time and
average execution time of index servers that have inverted lists for the query
terms and effectively participate in the parallel query processing. The number
of unparticipating servers tends to increase with the total number of servers.
In our test collection, this case occurs in only 2% of our queries and does not
significantly impact the overall performance.

It is important to investigate if there is a uniform distribution of document
partitions among index servers because otherwise this would be an expected
source of imbalance. Consider our cluster with 7 index servers (detailed in
Section 4.2), such that documents are randomly distributed in 7 subcollections.

11

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

10-5 10-4 10-3 10-2N
or

m
al

iz
ed

 f
re

qu
en

cy
 o

f
te

rm
s

in
 d

oc
um

en
ts

Normalized frequency of terms in queries

Fig. 4. Relationship between the frequency of terms in queries and in documents.

Table 1 shows the coefficient of correlation between the normalized frequency
of text terms in the query collection and the normalized frequency of text terms
in the subcollections of documents. We observe that the correlation pattern
between the query and document collection remains virtually unchanged after
the partition of the whole collection among the servers. This indicates that
data distribution in our experiments seems unlikely to be a significant source
of imbalance in the execution time of parallel query processing.

Table 1
Correlation between the frequency of text terms in queries and subcollections.

Subcollection Coefficient of correlation

1 0.309722

2 0.309536

3 0.309643

4 0.309901

5 0.309465

6 0.309528

7 0.309692

Whole collection 0.309645

Figure 5 shows the PMF of the sizes of queries in our query log. The size of a

12

query is given by the sum of the sizes of the inverted lists related to its terms.
The PMF of the sizes of queries follows a Zipf distribution, where we iden-
tify three distinct regions. The values for parameter b are equal to 0.981686,
0.816511, and 1.89127 for the first, second, and third regions, respectively.
It is interesting to point out that the distribution of execution times of our
query log follows the same kind of distribution of sizes of queries (shown in
Section 4.5).

10-5

10-4

10-3

10-2

10-1

100

104 105 106 107 108

PM
F

Query size (bytes)

Fig. 5. PMF of the sizes of queries.

4.2 Experimental Setup

For the experiments reported in this paper, we use a cluster of 7 identical
index servers. In our setup, each index server is a Pentium IV with a 2.4
gigahertz processor, 1 gigabytes of main memory and a ATA IDE disk of 120
gigabytes. The broker is an ATHLON XP with a 2.2 gigahertz processor and
1 gigabytes of main memory. The client machine, responsible for managing the
stream of user queries, is an AMD-K6-2 with a 500 megahertz processor and
256 megabytes of main memory. All of them run the Debian Linux operating
system version 2.6.

Our document collection is relatively small compared to the enormous collec-
tions handled by modern search engines. In order to overcome this limitation
and establish a scenario to conduct our experiments where the absence of
enough capacity for disk caching may happen, we maintain a bounded ratio
between the size of the subcollections and the size of the main memory at each

13

server by limiting the latter to 200 megabytes, unless otherwise stated.

Although the utilization of disk space at index servers is balanced, as shown in
Figure 2, we investigate if this balanced storage use among the subcollections
reflects on balanced local execution times among index servers, or not. Fig-
ure 6 illustrates the distributions of average, maximum, and minimum local
execution times per query. These statistics on execution time for a query are
computed from local execution times of index servers that effectively partic-
ipate in the parallel query processing in our cluster. Interval bars represent
the minimum and maximum execution times for each query. To allow visual
inspection, we display results for selected queries at intervals of 2 000 queries.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 20000 40000 60000 80000 100000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

Fig. 6. Distribution of local processing times per query.

As an outcome of these experimental results, we verify in practice a consis-
tent imbalance per query in the execution time at servers, even though the
distribution of sizes of inverted lists at the various index servers are quite
balanced. Motivated by this unexpected result, which contradicts the usual
assumption of balanced execution times adopted by theoretical models found
in the literature, we conduct a comprehensive experimental analysis to investi-
gate the sources for the observed imbalance. As a consequence, we identify the
main sources for imbalance: the use of disk caching, the size of main memory
in the homogeneous index servers, and the number of servers in the cluster.
We analyze the first source of imbalance in Section 4.3 and the other ones
in Section 4.4.

14

4.3 Influence of Disk Caching

We identify disk caching at the different servers as the major source of imbal-
ance. To illustrate the consequences of this effect on query performance, we
refer to a sample query processing observed in our real experiments described
in Section 3.3, where we consider our cluster with 7 index servers and a user
query q with the following execution times (in milliseconds) at servers: 31.83,
26.41, 30.12, 24.43, 5.27, 35.09, 28.18. For the same sample, the disk access
times (in milliseconds) at servers is: 27.62, 22.18, 25.67, 20.25, 1.01, 30.87,
23.94, and the number of bytes retrieved from disk by the index servers is:
374 128, 375 920, 378 328, 375 712, 374 376, 373 864, 373 352. Even though
index servers read from the disk a similar amount of data, the execution time
of index server 5 is much smaller than the others (1.01 milliseconds). A possi-
ble explanation for this relatively small disk access time is that inverted lists
were found in the disk cache of the operating system, thus accelerating disk
I/O at this particular server in comparison with the disk access time observed
at the other servers.

Figure 7 shows the PDF of local disk access times in our cluster. Note that
the distributions of disk access time in the distinct index servers overlap each
other, indicating that the behavior of disk access throughout the servers is
very similar. We observe that the disk access times at all servers are basically
grouped in two main regions: the first region is related to disk access times less
than 4.5 milliseconds and the second region to disk access times greater than
4.5 milliseconds. We attribute the first region of smaller local disk access times
to queries whose inverted lists are found in disk cache (referred to as cache

region), and the second region of larger disk access times to queries whose
lists had to be actually retrieved from disk (referred to as disk region). It is
interesting to observe that the two vertical lines depicted in Figure 7 actually
correspond to two technical characteristics of the adopted storage devices: the
average rotational latency (4.5 milliseconds) and the later plus the average
seek latency (13.5 milliseconds). Seek latency is the time taken to move disk
heads to the right track and rotational latency refers to the waiting time until
the right sector is under the read/write head.

We further analyze the relationship between the size of queries and the fre-
quency of queries in the collection, investigating if there are any links from
them to the use of disk caching. As previously explained, the size of a query is
given by the sum of the sizes of the inverted lists related to its terms. There-
fore, we consider separately the queries that find a certain level of correlation
between the size of the inverted lists they demand and their frequency in the
collection, and those that do not. To achieve this, we calculate the correlation
as the ratio between the query size and the query frequency. If this ratio is
greater than or equal to 0.25 and less than or equal to 4, then the size and the

15

10-5

10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1 100

PD
F

Disk time (seconds)

server 1
server 2
server 3
server 4
server 5
server 6
server 7

Fig. 7. PDF of local disk access times.

frequency of the query are related by a factor of 4, which we consider as repre-
senting a reasonable level of correlation between them. Therefore, queries that
fall into this criterion are considered correlated, otherwise they are considered
uncorrelated.

In Figure 8, we plot the normalized size of queries as a function of the normal-
ized frequency of queries in the collection, but we make a distinction between
the correlated and the uncorrelated queries. When we make this distinction, it
is interesting to analyze separately three different representative regions that
show up in Figure 8: (i) Region 1 is characterized by uncorrelated data where
the size of queries is prevailing over the frequency of queries; (ii) Region 2
contains the correlated queries; and (iii) Region 3 is characterized by an un-
correlated region where the frequency of queries is prevailing over the size of
queries.

Figure 9 compares the execution time for correlated and uncorrelated queries
with respect to their size and their frequency in the collection. This compar-
ison clearly shows that the well correlated queries (Region 2) have taken a
better benefit of disk caching. This happens because they have the best trade-
off between the size of their inverted lists and their frequency in the collection.
On the one hand, the largest inverted lists are demanded by the most frequent
queries, favoring disk caching of these large inverted lists. On the other hand,
rare queries, unlikely to find the inverted lists they need in cache, require
the smallest inverted lists that do not demand large activate caching transfer
times from the disk. For the uncorrelated data from Region 1, the frequency
of queries is proportionally smaller than the size of queries. This implies that

16

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

10-5 10-4 10-3 10-2 10-1

N
or

m
al

iz
ed

 q
ue

ry
 s

iz
e

Normalized query frequency

Region 3

Region 2

Region 1

correlated
uncorrelated

Fig. 8. Comparing query frequency and query size.

rare queries demand for large inverted lists, thus resulting in no cache use and
large transfer delays. The uncorrelated data from Region 3 face the opposite:
query terms impose relatively small data volumes to be retrieved in the sys-
tem, thus getting small execution times either through small transfer delay or
through the use of disk caching. Although these queries have small execution
times they are not as numerous as the correlated ones or the uncorrelated
ones in Region 1. Therefore, correlated queries prevail as a group in getting
the smallest execution time. Furthermore, to corroborate this analysis it is
important to notice that in Figure 9 the uncorrelated distribution mimics the
size distribution (Figure 5) while the correlated one mimics the effect of disk
caching (Figure 7).

Note that the disk access can be some orders of magnitude faster if the server
finds the needed data in the cache region, thus avoiding the much slower actual
access to the disk. For a given query q, if the local disk access time at a single
index server is in the disk region and the local disk access times at the other
servers are in the cache region, then the imbalance of query q might be severe.

Indeed, we verify that imbalance in execution times among index servers in-
creases with the number of servers operating in the cache region, as shown in
Figure 10. The points in Figure 10 show the imbalance for each query and the
line shows the average imbalance over queries as a function of the number of
servers operating in the cache region. This value is of course complementary
to the number of servers operating in the disk region. For example, for a par-
ticular query being processed in our cluster of 7 servers, if Figure 10 shows
that 2 of them operate in the cache region, then necessarily the other 5 are in

17

10−5

10−4

10−3

10−2

10−1

10−4 10−3 10−2 10−1 100 101

P
D

F

Execution time (seconds)

correlated
uncorrelated

Fig. 9. PDF of execution times for correlated and uncorrelated queries.

disk region, directly influencing the imbalance magnitude.

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

Im
ba

la
nc

e

Number of servers operating in the cache region

Fig. 10. Imbalance caused by the number of servers operating in the cache region.

To better understand how disk caching directly impacts imbalance, it is im-
portant to take a careful look at the average imbalance in Figure 10 for some
representative scenarios: no caching, the worst case, and the best case. In the
no caching scenario (i.e., 0 in the x-axis of Figure 10), all servers actually
access the disk to retrieve the needed data, obtaining the lowest imbalance

18

(1.38) among the cases where there is at least one server operating in the disk
region. The worst case for imbalance (i.e., 6 in the x-axis of Figure 10) presents
a much higher imbalance (3.45) because a single server has a much larger ex-
ecution time than the corresponding execution times at all remaining servers,
thus leading to a high imbalance value. This happens because there is one
single server that has a large execution time and a set of other index servers
that have much smaller execution times because they retrieve the needed in-
formation from the disk cache. In contrast, the best case to avoid imbalance
(i.e., 7 in the x-axis of Figure 10) results in an average imbalance of 1.08 and
is achieved when all servers operate in the cache region, thus resulting in a
small imbalance value due to the relatively small and similar disk access times
throughout the cluster of servers.

The best case and the no caching scenarios present the two smallest imbal-
anced results, a consequence of having all servers operating in the same (cache
or disk) region, thus providing no abrupt difference among the execution time
of the participating servers. Nevertheless, the no caching scenario still yields
a significantly higher imbalance with respect to the best case, which can be
explained by the higher variance found in direct disk access when compared
with memory access. Besides having the lowest imbalance, the best case also
provides the fastest response time since all needed data to process a query is
found in the disk caches at the servers. These results on the influence of disk
caching on imbalance also suggest that the more memory available for disk
caching at the servers, the lower the imbalance, and the larger the number
of servers in the cluster the higher the imbalance, as we will discuss in the
following.

4.4 Influence of Main Memory Size and Number of Servers

The results from Section 4.3 indicate that other source of imbalance is the
size of the main memory of index servers because this affects the availability
of data in the cache region at servers and, as a consequence, the imbalance.
Therefore, we investigate in this section how the main memory size at the
servers actually influences on the imbalance in parallel query processing.

Figure 11 shows the average imbalance as a function of the number of index
servers in our cluster, while varying the size of the main memory at each server.
We observe that the average imbalance in execution time of index servers in-
creases as the size of main memory decreases, as would be expected. For the av-
erage imbalance shown in Figure 11, the best fitting we found was a logarithm
growth of the number of servers given by O(log1.23783(x)), O(log1.03861(x)),
O(log1.07531(x)), O(log1.20753(x)), O(log1.26731(x)), for 200, 300, 400, 500, and
600 megabytes of main memory, respectively.

19

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

 1 2 3 4 5 6 7

A
ve

ra
ge

 im
ba

la
nc

e

Number of index servers

200 MB
300 MB
400 MB
500 MB
600 MB

Fig. 11. Average imbalance as a function of the main memory size at servers.

On the one hand, when the main memory size is relatively large as compared to
the size of the local index stored at the servers, there is more memory capacity
available for the operating system to perform disk caching operations. This
implies that local disk access times at all servers fall into the cache region for
a high percentage of queries in our collection and this is exactly the best case
scenario that produces the smallest imbalance (see Section 4.3). On the other
hand, considering a relatively small main memory available for disk caching,
index servers need to actually retrieve the inverted lists from the disk. In this
scenario, the queries are more susceptible to imbalance as some disk blocks
might be found in the cache of a few servers and not be found in the cache of
the remaining servers. We also point out that there is a diminishing return in
terms of imbalance while the RAM memory capacity increases.

The results presented in Section 4.3 also indicates that another source of
imbalance is the number of index servers in the cluster, because the probability
to occur variance among local execution times increases with the number of
servers participating in the parallel query processing. We observe in Figure 11
that, for a fixed size of main memory, the average imbalance in execution
times of index servers increases with the number of servers participating in
the parallel query processing. We have already discussed in Section 4.3 that
the average imbalance increases with the number of servers operating in the
cache region, as shown in Figure 10. Therefore, this indicates that the larger
the number of index servers participating in the parallel query processing, the
higher the probability of increasing the ratio between the number of servers
operating in the cache region and those in the disk region. As a consequence,
this leads to larger imbalance in execution times per query in the cluster.

20

4.5 Characterizing Query Execution Time

We now characterize the execution times of queries in our query log for our
cluster of index servers. Figure 12 shows the PDF of execution times of queries
in our cluster with a single index server. We observe that this PDF follows
a Zipf distribution, where we identify three regions. The values for the pa-
rameter b are 0.754743, 0.369147 and 1.75183 for the first, second and third
regions, respectively. It is interesting to note that the PDF of execution times
of queries in Figure 12 resembles the PDF of sizes of queries shown in Figure 5.
As expected, the larger the inverted lists related to the terms of a query, the
larger the execution time to answer that query.

10-5

10-4

10-3

10-2

10-1

10-4 10-3 10-2 10-1 100

PD
F

Execution time (seconds)

Fig. 12. PDF of the execution times of queries using a single index server.

Figure 13 shows the PDF of the maximum execution times to process queries
in our query log in our cluster with 2 and 7 index servers. Similar results have
been observed for scenarios with 3, 4, 5, and 6 index servers. We recall that
the response time of a particular query depends on the maximum execution
time related to the slowest index server to produce the corresponding partial
answer set. We observe that each PDF of the maximum execution times of
queries follows a Zipf distribution in all considered cases. Moreover, the shape
of the distributions of the maximum execution times across the sets with a
different number of participating servers in our cluster are very similar.

In the distributions shown in Figure 13, we identify three distinct regions.
Figure 14 (a), Figure 14 (b), and Figure 14 (c) show the values for parameter b
as a function of the number of index servers in our cluster, for the first, second,

21

10-5

10-4

10-3

10-2

10-1

10-4 10-3 10-2 10-1 100

PD
F

Maximum execution time (seconds)

2 index servers

10-5

10-4

10-3

10-2

10-1

10-4 10-3 10-2 10-1 100

PD
F

Maximum execution time (seconds)

7 index servers

Fig. 13. PDF of maximum execution times for a varied number of servers.

and third distinct regions of the distributions of maximum execution times,
respectively. For the parameter of the first region shown in Figure 14 (a),
the best fitting we found was a logarithmic growth of the number of servers
given by O(log0.040011(x)). For the parameter of the second region shown in
Figure 14 (b), we fit a power law given by O(x0.47). Finally, for the parameter
of the third region shown in Figure 14 (c), for 1 ≤ x ≤ 3, we fit a straight line
given by O(1.34x) and, for x ≥ 4, the parameter b becomes a constant equal to
2.59. A possible reason for this is that the maximum execution times decrease
with the number of index servers until a lower limit. In our cluster with 3 or
more index servers, execution times located in third region approximates the
lower limit, which implies in time distributions very similar in shape.

Finally, we evaluate if the per-query load imbalance observed in the previous
experiments actually produces a reduction in the average throughput when
multiple queries are concurrently served by the cluster of index servers. Fig-
ure 15(a) shows the average throughput as a function of the number of index
servers in the cluster. The ideal scenario represents the average throughput
of the cluster if the execution time in all index servers is perfectly balanced.
In contrast, the real scenario expresses the average throughput of the cluster
subject to the per-query imbalance in execution times of index servers partic-
ipating in the parallel query processing, as verified in practice in our previous
experiments. Comparing both scenarios, we note that the per-query imbal-
ance actually reduces the average throughput of the cluster of index servers.
Moreover, we point out that there is a trend towards a stronger reduction in
the average throughput in the real scenario as compared to the ideal scenario.
This is because the per-query imbalance increases with the number of index
servers, as already shown in Figure 11, thus directly influencing on the re-
duction of the average throughput. A similar reasoning about the influence of
the per-query imbalance applies to the increase of average maximum execu-
tion times of queries in the real scenario as compared to the ideal scenario, as
shown in Figure 15(b).

22

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

 1 2 3 4 5 6 7

Pa
ra

m
et

er
 b

 o
f

th
e

fi
rs

t r
eg

io
n

Number of index servers

experiment

f(x) = O(log0.040(x))
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

 1 2 3 4 5 6 7Pa
ra

m
et

er
 b

 o
f

th
e

se
co

nd
 r

eg
io

n

Number of index servers

experiment

f(x) = O(x0.47)

(a) Parameter b of the first region (b) Parameter b of the second region

1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70

 1 2 3 4 5 6 7

Pa
ra

m
et

er
 b

 o
f

th
e

th
ir

d
re

gi
on

Number of index servers

experiment
f(x) = O(1.34 x)

f(x)= 2.59

(c) Parameter b of the third region

Fig. 14. Parameter b as a function of the number of servers.

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7T
hr

ou
gh

pu
t (

qu
er

ie
s

pe
r

se
co

nd
s)

Number of index servers

real scenario
ideal scenario

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 2 3 4 5 6 7M
ax

im
um

 e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of index servers

real scenario
ideal scenario

(a) (b)

Fig. 15. Throughput and average maximum execution time.

5 Conclusions

In this paper, we investigated and analyzed the (im)balance among homoge-
neous index servers in a cluster for parallel query processing. As an outcome
of our analysis, we verified that the idealized scenario, that supposes balanced
execution times as a consequence of an uniform data distribution among homo-

23

geneous index servers, is unlikely to be found in practice. This is an important
contribution because it sheds light on the usual assumption of balanced execu-
tion times taken by many theoretical models in the literature to simplify their
modeling task (Tomasic and Garcia-Molina, 1993; Ribeiro-Neto and Barbosa,
1998; Cacheda et al., 2004; Chowdhury and Pass, 2003). Our findings derive
from a comprehensive experimental analysis using an information retrieval
testbed and real data obtained from a real-world search engine. Besides veri-
fying the presence of a certain level of imbalance among homogeneous servers,
we have also identified and characterized the main sources for this unexpected
imbalance.

The key factor for imbalance is the use of disk caching at the different servers.
We verified that imbalance for each query increases with the number of servers
that retrieve the needed documents from the cache. On the one hand, the worst
case for imbalance is achieved when a single index server must actually access
the disk for documents while all remaining servers are using the cache for
the same query. The worst case presents a much higher average imbalance of
3.45—computed as a ratio between the maximum and the average execution
time among servers—because in this case a single server has an execution
time much larger than the corresponding execution times at all the remaining
servers, thus resulting in a high imbalance. On the other hand, the best case
to avoid imbalance results in an average imbalance of 1.08. It is achieved when
all servers operate in the cache region, thus leading to a relatively small and
similar disk access times throughout the cluster of servers.

Other identified source of imbalance is the size of the main memory of the
homogeneous index servers, which affects the availability of resources for disk
caching at servers. We verified that the average imbalance decreases as the
size of main memory increases, but this happens with a diminishing return
with an increase in memory capacity. When the main memory size is relatively
large as compared to the size of the local index stored at the index servers,
all servers retrieve data from their caches for a high percentage of queries,
which is the best case scenario that produces the lowest imbalance. In contrast,
considering a relatively small main memory capacity available for disk caching,
for a given query some servers might access their caches while the others might
need to actually access the disk, thus leading to a higher imbalance. In our
cluster with 7 index servers, the average imbalance is 1.32 and 1.18 for 200
and 400 megabytes of main memory at each server, respectively.

Another identified source of imbalance is the number of index servers in the
cluster. We verified that, for a fixed size of main memory, the average imbal-
ance in execution times of index servers increases with the number of servers
in the cluster. The reason is that the larger the number of index servers par-
ticipating in the parallel query processing, the higher the probability of some
servers to operate in the cache region and, as a consequence, the higher the

24

imbalance in execution times of those servers. For 200 megabytes of main
memory, the average imbalance is 1.08994 and 1.31512 in our cluster with 2
and 7 index servers, respectively.

Overall, the primary source of imbalance per query is the heterogeneous use
of disk caching among the homogeneous index servers. Main memory size
at servers and the number of index servers are actually indirect sources of
imbalance because they cause heterogeneous use of disk caching. A direction
for future work is to develop and validate an analytical model to evaluate the
performance of parallel query processing in a cluster of homogeneous index
servers, while taking into account the imbalance in execution times among
the index servers. We intend to use such an analytical model to evaluate and
compare search architectures under different operational constraints, such as
a maximum response time and a minimum throughput to be achieved when
processing user queries.

6 Acknowlegments

This work was supported by the GERINDO project–grant MCT/CNPq/CT-
INFO 552.087/02-5, by CNPq scholarship 140262/2001-6 (Claudine Santos
Badue), by Millenium Nucleus Grant P04-067-F of the Chilean Planning Min-
istry (Ricardo Baeza-Yates), by CNPq grant 30.0188/95-1 (Berthier Ribeiro-
Neto), and by CNPq grant 520.916/94-8 (Nivio Ziviani). We thank the anony-
mous referees for the valuable comments and suggestions that helped us im-
prove the paper.

References

Badue, C. S., Baeza-Yates, R., Ribeiro-Neto, B., Ziviani, N., 2001. Dis-
tributed query processing using partitioned inverted files. In: Proceedings
of the Eighth String Processing and Information Retrieval Symposium
(SPIRE’01). IEEE Computer Society, Laguna de San Rafael, Chile, pp.
10–20.

Badue, C. S., Barbosa, R., Golgher, P., Ribeiro-Neto, B., , Ziviani, N., 2005.
Basic issues on the processing of web queries. In: Proceedings of the 28th
Annual International ACM SIGIR Conference on Reseach and Development
in Information Retrieval (SIGIR’05). Salvador, Bahia, Brazil, pp. 577–578.

Baeza-Yates, R., Ribeiro-Neto, B. (Eds.), 1999. Modern Information Retrieval.
ACM Press New York, Addison Wesley.

Barroso, L. A., Dean, J., Holzle, U., 2003. Web search for a planet: The google
cluster architecture. IEEE Micro 23 (2), 22–28.

25

Brin, S., Page, L., 1998. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems 30 (1-7), 107–117.

Cacheda, F., Plachouras, V., Ounis, I., 2004. A case study of distributed in-
formation retrieval architectures to index one terabyte of text. Information
Processing and Management 41 (5), 1141–1161.

Chowdhury, A., Pass, G., 2003. Operational requirements for scalable search
systems. In: Proceedings of the Twelfth International Conference on Infor-
mation and Knowledge Management (CIKM’03). New Orleans, LA, USA,
pp. 435–442.

Jupiter Media, 2005. JupiterResearch forecasts online advertising market to
reach 18.9 billion by 2010; search advertising revenue to surpass display.
www.jupitermedia.com/corporate/releases/05.08.15-newjupresearch2.html,
Press Release.

Kleinberg, J., 1998. Authoritative sources in a hyperlinked environment. In:
In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Al-
gorithms. San Francisco, California, USA, pp. 668–677.

MacFarlane, A., McCann, J. A., Robertson, S. E., 2000. Parallel search using
partitioned inverted files. In: Proceedings of the Seventh International Sym-
posium on String Processing and Information Retrieval (SPIRE’00). IEEE
Computer Society, La Coruña, Spain, pp. 209–220.

Orlando, S., Perego, R., Silvestri, F., 2001. Design of a parallel and distributed
web search engine. In: Proceedings of the 2001 Parallel Computing Confer-
ence (ParCo’01). Imperial College Press, Naples, Italy, pp. 197–204.

Ribeiro-Neto, B. A., Barbosa, R. A., 1998. Query performance for tightly cou-
pled distributed digital libraries. In: Proceedings of the Third ACM Con-
ference on Digital Libraries (JCDL’98). pp. 182–190.

Risvik, K. M., Aasheim, Y., Lidal, M., 2003. Multi-tier architecture for web
search engines. In: Proceedings of the First Latin American Web Congress
(LAWEB’03). Santiago, Chile, pp. 132–143.

Salton, G., McGill, M. J., 1983. Introduction to Modern Information Retrieval.
McGraw-Hill.

TodoBR, 2003. http://www.todobr.com.br.
Tomasic, A., Garcia-Molina, H., 1993. Performance of inverted indices in

shared-nothing distributed text document information retrieval systems. In:
Proceedings of the Second International Conference on Parallel and Dis-
tributed Information Systems (PDIS’93). San Diego, California, USA, pp.
8–17.

Witten, I. H., Moffat, A., Bell, T. C., 1999. Managing Gigabytes: Compress-
ing and Indexing Documents and Images, 2nd Edition. Morgan Kaufmann
Publishers, Inc.

26

