
Modeling Performance-Driven Workload
Characterization of Web Search Systems

C.S. Badue1, R. Baeza-Yates2, B. Ribeiro-Neto3, A. Ziviani4, N. Ziviani5

1,3,5Department of Computer Science 4National Laboratory for
Federal University of Minas Gerais Scientific Computing (LNCC)

Belo Horizonte, Brazil Petrópolis, Brazil
{claudine,berthier,nivio}@dcc.ufmg.br ziviani@lncc.br
3Google Engineering Belo Horizonte 2Yahoo! Research

Belo Horizonte, Brazil Barcelona, Spain & Santiago, Chile
berthier@google.com ricardo.baeza@upf.edu

rbaeza@dcc.uchile.cl

ABSTRACT
In this paper we model workloads for a web search system
from the performance point of view. We analyze both work-
load intensity and service demand parameters expressed in
the context of web search systems as the distribution of
the interarrival times of queries and the per-query execution
time, respectively. Our results are derived from experiments
in an information retrieval testbed fed with real-world ex-
perimental data. Our findings unveil a certain number of
unexpected and interesting features. We verify in practice
that there is a high variability in both interarrival times of
queries reaching a search engine and service times of queries
processed in parallel by a cluster of index servers. We also
show that this highly variable behavior can be accurately
captured by hyperexponential distributions. These results
shed light on the usual assumption taken by previous an-
alytical models for web search systems found in the liter-
ature that interarrival times and service times are expo-
nentially distributed. We find evidence that the intensity
and service demand workloads of a typical web search sys-
tem present long-range dependence characteristics, leading
to self-similar behavior. This finding is important because,
in the presence of long-range dependence and self-similarity,
exponential-based models tend to underestimate response
times as self-similarity leads to increased queueing delays,
resulting in significant performance degradation. Based on
our findings, we also discuss possible steps toward a gener-
ative model for synthetic workloads.

1. INTRODUCTION
Performance evaluation of web search systems become in-
creasingly important given the key role such systems play
in Internet usage nowadays. The performance of any sys-
tem heavily depends on the characteristics of the load it is
subject to. Workload characterization is an important com-
ponent of performance evaluation and prediction in general,
being particularly critical for proper capacity planning of
web search systems. Nevertheless, previous work on work-
load characterization for web search systems mainly focuses
on the characterization of user search behavior, reporting
parameters such as the number of queries within a session,
mean number of terms per query, or number of resulting
pages a user views [31, 9, 29, 6, 16, 19]. However, a clear
understanding of both interarrival times of queries and query
execution times is needed for performance evaluation pur-
poses [27, 21].

The workload parameters for performance evaluation can
be classified into two categories: workload intensity param-
eters and workload service demand parameters [22]. The
workload intensity parameters provide a measure of the load
placed on a system, indicated by the number of units of work
that contend for system resources. In the case of web search
engines this measure corresponds to the number of incoming
queries per second. The workload service demand param-
eters specify the total amount of service time required by
each basic component of the workload on each resource of
the system. In a web search system, the service time for a
user query is equivalent to the amount of time needed to
retrieve the most relevant documents for this query.

When a user query reaches a search engine, the query pro-
cessing is split into two consecutive major phases [8]. The
first phase consists of retrieving documents from the storage
devices that contain each query term, executing a conjunc-
tion of the sets of these documents, and finally ranking the
selected documents using some relevance metric. The sec-
ond phase consists of taking the top ranked answers of the
first phase, typically 10, and generating snippets, title, and

URL information for each of them. For this, the search
engine needs to examine the full texts of the top ranked
documents. Both phases play important roles in the perfor-
mance of modern search engines. Nevertheless, as the size of
a search engine increases, the processing cost of the second
phase remains basically constant, whereas the processing
cost of the first phase increases—larger lists of documents
have to be read from the disks and processed. Therefore,
the performance of the first phase is crucial for maintaining
the scalability of modern search engines that deal with an
ever-increasing amount of Web documents.

Based on these considerations, we focus on the first phase of
the query processing task, i.e., the retrieval of the most rel-
evant documents for a given user query. In our architecture,
the whole collection of documents is partitioned among a set
of index servers organized in a computational cluster, such
that each server stores its own local subcollection. Upon
the arrival of an user query, each index server performs the
retrieving task for the query only on its partition of the
document collection. A broker is responsible for merging
the partial ranked answers from the servers to produce the
final ranked answer. In the case of web search systems, the
workload intensity parameters are represented by the distri-
bution of interarrival times of queries at the broker, and the
workload service demand parameters are expressed by the
distribution of service times of queries processed in parallel
by the cluster of index servers.

In this paper, we characterize the workload intensity and
service demand parameters. Our results are derived from
experiments in an information retrieval testbed fed with a
log of a real-world search engine. The main experimental
results on workload characterization are as follows. First,
they shed light on an assumption taken as valid by previous
analytical models for web search systems [11] that interar-
rival times and service times are governed by exponential
distributions. In contrast, we verify in practice that there is
a high variability in both interarrival times of queries reach-
ing a search engine and service times of queries processed
in parallel by a cluster of index servers. This high variabil-
ity in service times of queries is mainly due to the presence
of a certain level of imbalance in per-query execution times
among homogeneous index servers participating in the par-
allel processing [3]. We show that this highly variable be-
havior of the intensity and service demand workloads is very
well captured by hyperexponential distributions, thus allow-
ing the definition of some steps toward a generative model
for synthetic workloads of web search systems. Second, our
results confirm for web search systems the widespread ev-
idence that interarrival processes and service processes in
internet-related systems exhibit high variability [12, 1].

This paper is organized as follows. In Section 2, we present
an architecture for web search systems. In Section 3, we
present a characterization of the test collection used in the
experiments. In Section 4, we characterize the workload
intensity parameters and provide best fits for them. In Sec-
tion 5, we characterize the workload service demand param-
eters and provide best fits for them as well. In Section 6,
we discuss the applicability of our results on the definition
of a generative model for typical synthetic workloads of web
search systems. In Section 7, we present our conclusions and
directions for future work.

2. ARCHITECTURE
In this section we present an architecture for web search
systems and a description of our cluster testbed.

2.1 Cluster of Index Servers
Search engines typically adopt a computational cluster as a
platform for query processing [8, 28]. Usually, this cluster
is composed of a single broker and p index servers. The
whole collection of documents is partitioned among the in-
dex servers, such that each server stores its own local sub-
collection. Figure 1 illustrates this architecture for a typical
search engine. The broker accepts queries from a user and
forwards them to the index servers, triggering the parallel
query processing. Each index server searches its own local
subcollection and produces a partial ranked answer. These
partial ranked answers are collected by the broker and com-
bined through an in-memory merging operation. The final
list of ranked documents is then sent back to the user.

Broker

Client

Index 2 Index 3 Index p

Index
server 1

Index
server 2

Index
server 3

Index
server p

Index 1

. . .

Figure 1: Architecture of a typical search engine.

2.2 Index Organization
An inverted index is adopted as the indexing structure for
each subcollection [7, 35]. Inverted files are useful because
they can be searched based mostly on the set of distinct
words in all documents of the collection. They are simple
data structures that perform well when the pattern to be
searched for is formed by conjunctions and disjunctions of
words [7, 35].

The structure of our inverted indexes is composed of a vo-
cabulary and a set of inverted lists. The vocabulary is the set
of all unique terms (words) in the document subcollection.
Each term in the vocabulary is associated with an inverted
list that contains an entry for each document in which the
term occurs. Each entry is composed of a document iden-
tifier and the within-document frequency ft,d representing
the number of occurrences of term t within the document d.
The inverted lists are sorted by decreasing within-document
frequencies.

The documents of the whole collection are uniformly dis-
tributed among index servers. Let n be the size of the whole
collection and p the number of index servers in the cluster.
The size of any local inverted file is O(n/p). This type of

index organization, hereafter referred to as a local index or-
ganization [25, 4], is currently the de facto standard in all
major search engines.

2.3 Parallel Query Processing
We use the standard vector space model [30] to rank the
selected documents. In this model, queries and documents
are represented as weighted vectors in a t-dimensional space,
where t is the number of terms in the vocabulary of the col-
lection. Each pair term-document is weighted by the fre-
quency ft,d of term t in document d, the term frequency
tf and the inverse document frequency (idf) of the term t
among the documents in the whole collection. The rank of
a document with regard to a user query is computed as the
cosine of the angle between the query and document vec-
tors. Using the idf weight implies global knowledge about
the whole collection to be available at the index servers.
This could be accomplished if servers exchange their local
idf factors after the local index generation phase. Each in-
dex server may then derive the global idf factor from the set
of local idf factors [25].

In our experiments, a client machine submits queries to the
broker. This broker then broadcasts each query to all index
servers. Once each index server receives a query, it retrieves
the full inverted lists relative to the query terms, intersects
these lists to produce the set of documents that contains all
query terms (i.e., the conjunction of the query terms), com-
putes a relevance score for each document, and sorts them
by decreasing score—this results in a partial ranked answer
to be sent by each index server to the broker. Query terms
are processed by decreasing idf, i.e., by increasing order of
the number nt of documents in the whole collection contain-
ing the term t, thus leading to a significantly more efficient
conjunction of their inverted lists. As soon as the ranking is
computed, the top ranked documents selected at each index
server are transferred to the broker machine. The broker is
then responsible for combining the partial ranked answers
received from the index servers through an in-memory merg-
ing operation. The final list of top ranked documents is then
sent back to the client machine.

The broker is not a bottleneck in this architecture of local
document partitioning [5]. Our experimental results show
that the average execution time per query at the broker
is quite small, on the order of 10−5 seconds in our cluster
with 8 index servers. There are two fundamental reasons for
this. First, broker’s operation is fully carried out using main
memory. Second, all the tasks the broker executes are simple
tasks that do not take much CPU time. It should be noted
that the broker does not have to make ranking computations
and does not have to execute algebraic operations, other
than comparing document identifiers.

2.4 Cluster Testbed
For the experiments, we use a cluster of 8 identical index
servers. In our setup, each index server is a Pentium IV
with a 2.4 gigahertz processor, 1 gigabytes of main mem-
ory and a ATA IDE disk of 120 gigabytes. The broker is an
ATHLON XP with a 2.2 gigahertz processor and 1 gigabytes
of main memory. The client machine, responsible for man-
aging the stream of user queries, is an AMD-K6-2 with a
500 megahertz processor and 256 megabytes of main mem-

ory. All of them run the Debian Linux operating system
version 2.6.

3. TEST COLLECTION
The test collection, referred to as WBR03, is composed of
10 million Web pages collected by the TodoBR1 [32] search
engine from the Brazilian Web in 2003. The inverted index
for the whole collection occupies roughly 12 gigabytes, and
the collection vocabulary is composed of 3, 541, 678 terms.
The query set used in our tests is composed of 100 thousand
queries extracted from a partial log of queries submitted to
the TodoBR search engine in September 2003. There is a
total of 27, 396 unique queries and 17, 126 unique terms in
the query set.

The distribution of terms in queries follows a Zipf distribu-
tion, as shown in Figure 2. The plot shows the normalized
frequency of terms in queries. The x-axis shows the result-
ing rank of each term when these are sorted in decreasing
order of occurrence in queries. Therefore, the frequency in
queries that are expected for the x most frequent term is
given by

f(x) = O(x−b), b > 0. (1)

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104 105

N
or

m
al

iz
ed

 f
re

qu
en

cy

Text term

experiment

f(x)=O(x-0.59)
f(x)=O(x-1.10)

Figure 2: Frequency of terms in queries.

We identify two different regions in the distribution of terms
in queries as shown in Figure 2. The value of parameter b
is 0.59 for the first region with x ≤ 1000, and 1.10 for the
second region with x > 1000.

We analyze the distribution of the sizes of queries in our
query log, as shown in Figure 3. The plot shows the prob-
ability mass function(PMF)2 of the sizes of queries in our
query log. The size of a query is given by the number of
terms that appears in this query. The best fit we found

1TodoBR is a trademark of Akwan Information Technolo-
gies, which was acquired by Google in July 2005.
2For discrete random variables, such as the size of queries,
we use a probability mass function (PMF). For continuous
random variables described later, such as the service time of
queries, we use a probability density function (PDF).

for the PMF of the sizes of queries was a decay exponen-
tial function of query size given by O(e−0.88x), x ≥ 2. The
average size of queries in our log is 2.09 terms.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0 2 4 6 8 10 12

PM
F

Query size (number of terms)

experiment

f(x)=O(e-0.88 x)

Figure 3: PMF of the sizes of queries.

We further evaluate the relationship between terms and the
average size of queries in our query log, as shown in Figure 4.
The x-axis shows the resulting rank of each term when these
are sorted in decreasing order of occurrence in queries. We
observe that as the frequency of a term in the query log
decreases, the average size of queries that contain such term
increases.

 0

 2

 4

 6

 8

 10

 12

100 101 102 103 104 105A
ve

ra
ge

 q
ue

ry
 s

iz
e

(n
um

be
r

of
 te

rm
s)

Text term

Figure 4: Relationship between terms and average

query size.

It is also important to investigate the relationship between
the frequency of terms in queries and the frequency of terms
in documents. Figure 5 shows the normalized frequency of
terms in the document collection as a function of the nor-
malized frequency of terms in the query collection. Com-
paring the normalized frequency of terms in documents and
in queries, we observe that—even if dealing with rare query
terms—it is likely that query terms are mentioned in a large

number of documents. This is important because this indi-
cates that such a query set consistently generates a signifi-
cant query processing load in our system.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

10-5 10-4 10-3 10-2 10-1

N
or

m
al

iz
ed

 f
re

qu
en

cy
 o

f
te

rm
s

in
 d

oc
um

en
ts

Normalized frequency of terms in queries

Figure 5: Relationship between the frequency of

terms in queries and in documents.

4. CHARACTERIZING THE WORKLOAD
INTENSITY PARAMETERS

In this section, we evaluate the workload intensity param-
eters indicated by the distribution of interarrival times of
queries that reach the cluster of index servers. If queries ar-
rive at times t1, t2, . . . , ti, the random variables τi = ti−ti−1

are called the interarrival times of queries [15]. We first
compute the coefficient of variation of the interarrival times
observed in our test collection. The coefficient of variation
of a random variable is defined as the ratio of its standard
deviation by its mean. It can be thought of as a measure of
the deviation of the distribution found in the empirical data
from the exponential distribution, whose coefficient of vari-
ation is equal to one. In our test collection, the coefficient of
variation of interarrival times of queries is equal to 2.64, sug-
gesting that interarrival times of queries might be well fitted
by an hyperexponential distribution, which is characterized
by a coefficient of variation larger than one [33].

The hyperexponential distribution is an special case of the
phase-type (PH) distribution [26] that results from the com-
bination of a certain number of exponential distributions.
A PH distribution is fully represented by a vector τ and a
matrix T, related as in the following. The cumulative dis-
tribution function (CDF) of a PH distribution is given by:

F (x) = 1 − τeTx
e, (2)

where e is a column vector of ones with the appropriate
dimension. The probability density function (PDF) of a PH
distribution is equal to:

f(x) = τeTx(−T · e), (3)

and the nth moment is given by:

mn = (−1)n · n!τT−n
e. (4)

Observe that in the PDF and CDF definitions of a PH distri-
bution, the matrix T appears as an exponential coefficient.
As such, PH distributions are called matrix-exponential dis-
tributions. The term eTx is defined as

eTx =
X

n≥0

1

n!
(Tx)n. (5)

The cases of PH distributions that are used in practice typ-
ically have the majority of the elements in τ and T equal
to zero. For an hyperexponential distribution, 2n parame-
ters are needed to define this distribution, where n is the
number of combined exponential distributions that com-
pose the hyperexponential. Indeed, for an hyperexponen-
tial distribution—a special case of PH distributions—, the
definition of τ and T, assuming n = 3, is given by:

τ = [p1, p2, p3], and (6)

T =

2

4

−λ1 0 0
0 −λ2 0
0 0 −λ3

3

5 . (7)

By applying these definitions to Equation 3, we can derive
the PDF of an hyperexponential distribution Hn with n
phases as

f(x) = fHn
=

n
X

i=1

piλie
−λix, (8)

i.e., the weighted combination of n exponentials, each char-
acterized by λi, where pi represents the relative weight of
exponential i in this combination (

P

i
pi = 1). We use the

EMpht software package [23] to estimate the parameters of
hyperexponential distributions in this paper. EMpht im-
plements the estimation maximization (EM) algorithm pre-
sented in [2] to do so.

Figure 6 shows the empirical distribution of interarrival times
of queries, which is fitted into an exponential distribution
and into an hyperexponential distribution H3 composed of
3 exponential phases. The complexity and precision of the
fitting procedure into an hyperexponential distribution in-
creases with the number of exponential phases that com-
poses this hyperexponential distribution. We fitted our em-
pirical data into three distinct hyperexponential distribu-
tions H2, H3 and H4 composed of 2, 3 and 4 exponential
phases, respectively. To evaluate the accuracy of the fitting,
we use the Kolmogorov-Smirnov goodness-of-fit test [13] that

verifies that the maximum ordinate difference between the
distribution of interarrival times and each of the fitted hy-
perexponential distributions H2, H3 and H4 is 2.29%, 1.37%
and 1.37%, respectively. We observe that the fit H3 is more
accurate than the fit H2. Nevertheless, the more complex fit
H4 does not gain in precision over the fit H3. Therefore, we
select H3 as the best fit for our data because it achieves the
best balance between accuracy and complexity in number of
exponential phases. The parameters τa and Ta of the best
fit H3 for the distribution of interarrival times of queries are:

τa = [0.18, 0.80, 0.02], and

Ta =

2

4

−1.24 0 0
0 −0.90 0
0 0 −0.04

3

5 .

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

10-3 10-2 10-1 100 101 102

C
D

F

Interarrival time (seconds)

empirical
hyperexponential

exponential

Figure 6: Distribution of interarrival times.

We observe that the hyperexponential distribution captures
the highly variable behavior and does a good job in matching
the distribution of interarrival times. Conversely, we observe
that the exponential fitting is poor and is not capable of cap-
turing the high variability present in interarrival times. This
finding contradicts the basic assumption of exponentially
distributed interarrival times adopted by previous queue-
ing models for web search systems [11]. The Kolmogorov-
Smirnov goodness-of-fit test verifies that the maximum ordi-
nate difference between the distribution of interarrival times
and the fitted exponential distribution is 15.40%, while this
difference for the best fit hyperexponential distribution H3

is only 1.37%.

The high variability found in interarrival times of queries in
the test collection may have significant impact on the perfor-
mance of a web search system. The previous assumptions of
exponentially distributed interarrival times of queries sup-
pose memoryless behavior. Nevertheless, we found evidence
that the workload intensity of a typical web search system
presents long-range dependence (LRD) [18], leading to self-
similar behavior. The predominant way to quantify LRD

is through the Hurst parameter in the range 0.5 < H < 1.
The value 0.5 is the boundary between long and short range
dependence. The effect of low range dependence is higher
for H close to one. In our experimental data, interarrival
times of queries presented H = 0.88. A LRD workload im-
plies bursty behavior in comparison with loads of a workload
characterized by a Poisson process, i.e., with exponentially
distributed interarrival times. For a LRD workload, this
bursty behavior usually presents a certain level of periodic-
ity. Also, LRD characterizes processes that keep statistically
significant correlations across large time scales, while a pro-
cess is said to be self-similar if its behavior is roughly the
same across different spatial or time scales. We evaluate the
distribution of interarrival times for the first 10, 000 queries
of our query log, and verify that its shape is similar to that
of all 100, 000 queries of our log. Indeed, this similarity on
distribution shapes across different scales is an indication of
the self-similar behavior.

Our findings thus suggest that typical workload intensity
from a real-world web search system also presents LRD and
self-similarity characteristics as it has already been shown
for LAN [20] and WAN [24] traffic, as well as for WWW
traffic [12]. This finding is important because, in the pres-
ence of LRD and self-similarity, exponential-based models
tend to underestimate response times as self-similarity leads
to increased queueing delays, resulting in significant perfor-
mance degradation [14].

5. CHARACTERIZING THE WORKLOAD
SERVICE DEMAND PARAMETERS

We now characterize the workload service demand parame-
ters expressed by the distribution of service times of queries
processed in parallel by the cluster of index servers. In our
architecture, characterized by a local partitioning of the doc-
ument collection, the per-query service time is determined
by the maximum execution time among index servers par-
ticipating in the parallel processing of this particular query.

Our experimental results show that the coefficient of varia-
tion of the service times of queries in our cluster with 8 index
servers is equal to 1.39. This high variability in service times
of queries is mainly due to the presence of a certain level
of imbalance in per-query execution times among homoge-
neous index servers participating in the parallel processing.
The primary source of the per-query imbalance is the het-
erogeneous use of disk caching among the homogeneous in-
dex servers, as pointed out in [3]. Thus, the coefficient of
variation indicates the hyperexponential distribution as an
appropriate kind of distribution for fitting the service times
of queries.

Figure 7 shows the distribution of service times of queries
fitted into an hyperexponential distribution H3 composed of
3 exponential distributions. Similarly to the case of interar-
rival times, we observe that the fitting provided by the hy-
perexponential distribution with 3 phases is very accurate,
besides achieving the best balance between accuracy and
complexity when compared to those with 2 and 4 phases.
The Kolmogorov-Smirnov goodness-of-fit test verifies that
the maximum ordinate difference between the distribution
of service times and each of the fitted hyperexponential dis-
tributions H2, H3 and H4 is 3.21%, 2.29% and 2.29%, re-

spectively. In contrast, the goodness-of-fit test verifies that
the difference between the distribution of service times and
the fitted exponential distribution is higher and equal to
20.43%. The parameters τs and Ts of this best fit H3 dis-
tribution for service times in our experiments are:

τs = [0.20, 0.14, 0.65], and

Ts =

2

4

−568.48 0 0
0 −4359.17 0
0 0 −49.68

3

5 .

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

10-5 10-4 10-3 10-2 10-1

C
D

F

Service time (seconds)

empirical
hyperexponential

exponential

Figure 7: Distribution of per-query service times.

Likewise the distribution of interarrival times, the distribu-
tion of per-query service times also presents LRD and self-
similarity characteristics. In the case of the considered dis-
tribution of per-query service times, the Hurst parameter is
H = 0.74. This finding again suggests that a exponentially-
based model for per-query service times may underestimate
the performance of the system, leading to unrealistic results,
as the prediction without taking into account the high vari-
ability in service times might underestimate queueing delay
and, as a consequence, response time of the system as a
whole. Thus, an hiperexponential distribution is more ap-
propriate here.

6. TOWARD A GENERATIVE MODEL FOR
SEARCH SYSTEM WORKLOADS

In this section we discuss the applicability of our findings
in terms of workload characterization to generate synthetic
workloads of query traces. This model is not meant to be
unique, but an illustration on how useful our results may be
to the generation of such synthetic workloads. Basically, we
discuss choices on which variables can be used to define a
generative model for a synthetic workload, in a similar way
as Veloso et al. [34] do when characterizing workloads for
live streaming media.

The use of a generative model for a synthetic query trace
based on our workload characterization may be as follows.

To generate a synthetic query log, we must determine when
these queries arrive, how many terms each query contains,
and how frequent each query term is employed by users. To
determine when a query arrives, one may use the hyperex-
ponential distribution H3 that characterizes the interarrival
times of queries as shown in Figure 6 with the parameters τa

and Ta of Section 4. To determine how many terms should
be associated with each query, one may use the decay ex-
ponential function of Figure 3. Finally, to determine how
frequent users employ each term in queries, one may apply
the Zipf distribution of Figure 2. We assume here that the
probability of a term occurring in a query is proportional to
that term’s frequency in the query log, similar to the usual
assumption taken by previous query models in [17, 10].

Note that this simple model assumes that the number of
terms associated with a query is independent of the term.
Nevertheless, we observe in our query log that rare terms
are associated with queries of varied sizes, while popular
terms usually appears in short queries, as shown in Figure 4.
Also, this model disregards the usage correlation of words.
An improved algorithm might be to choose the first term
using Figure 2, and then choose the next terms using a joint-
distribution of words in queries that have that first term.
This is still an approximation, but considering that most
queries have one or two terms, the error would not be that
large. The main drawback of this improvement is the need
to keep the joint-distribution of all the words in the query
log.

7. CONCLUSIONS
In this paper we characterize performance-driven workloads
for a web search system by analyzing workload intensity
and service demand parameters based on experiments using
real world data. Our findings lead to a certain number of
unexpected and interesting features. We verify in practice
that there is a high variability in both interarrival times of
queries reaching a search engine and service times of queries
processed in parallel by a cluster of index servers. We also
show that this highly variable behavior can be accurately
captured by hyperexponential distributions. These results
shed light on the usual assumption taken by previous ana-
lytical models for web search systems that interarrival times
and service times are exponentially distributed.

Further, we find evidence that the intensity and service de-
mand workloads of a typical web search system present long-
range dependence (LRD) characteristics, leading to self-sim-
ilar behavior. This finding is important because, in the pres-
ence of LRD and self-similarity, exponential-based models
tend to underestimate response times as self-similarity leads
to increased queueing delays, resulting in significant perfor-
mance degradation. As future work, we intend to investigate
analytical models for performance prediction and capacity
planning of web search systems, while taking into account
the high variability and LRD behavior found in the intensity
and service demand workloads.

8. REFERENCES
[1] M. Arlitt and T. Jin. Workload characterization of the

1998 world cup web site. Technical report, HP Labs,
Hewlett Packard, Palo Alto, CA, September 1999.

[2] S. Asmussen, O. Nerman, and M. Olsson. Fitting
phase-type distributions via the EM algorithm.
Scandinavian Journal of Statistics, 23:419–441, 1996.

[3] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto,
A. Ziviani, and N. Ziviani. Analyzing imbalance
among homogeneous index servers in a web search
system. Information Processing and Management,
Submitted to.

[4] C. S. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and
N. Ziviani. Distributed query processing using
partitioned inverted files. In Proceedings of the Eighth
String Processing and Information Retrieval
Symposium (SPIRE’2001), pages 10–20, Laguna de
San Rafael, Chile, 2001. IEEE Computer Society.

[5] C. S. Badue, R. Barbosa, P. Golgher, B. Ribeiro-Neto,
and N. Ziviani. Basic issues on the processing of web
queries. In Proceedings of the 28th Annual
International ACM SIGIR Conference on Reseach and
Development in Information Retrieval (SIGIR’2005),
pages 577–578, Salvador, Bahia, Brazil, 2005.

[6] R. Baeza-Yates, C. Hurtado, M. Mendoza, and
G. Dupret. Modeling user search behavior. In 3rd
Latin American Web Congress (LAWEB’2005), pages
242–251. IEEE CS Press, October 2005.

[7] R. Baeza-Yates and B. Ribeiro-Neto, editors. Modern
Information Retrieval. ACM Press New York, Addison
Wesley, 1999.

[8] L. A. Barroso, J. Dean, and U. Holzle. Web search for
a planet: The google cluster architecture. IEEE
Micro, 23(2):22–28, 2003.

[9] S. Beitzel, E. Jensen, A. Chowdhury, D. Grossman,
and O. Frieder. Hourly analysis of a very large
topically categorized web query log. In Proceedings of
the 27th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval (SIGIR’2004), pages 321–328,
New York, NY, USA, 2004. ACM Press.

[10] F. Cacheda, V. Plachouras, and I. Ounis. A case study
of distributed information retrieval architectures to
index one terabyte of text. Information Processing and
Management, 41(5):1141–1161, 2004.

[11] A. Chowdhury and G. Pass. Operational requirements
for scalable search systems. In Proceedings of the
Twelfth international Conference on Information and
Knowledge Management (CIKM’2003), pages
435–442, New Orleans, LA, USA, 2003.

[12] M. E. Crovella and A. Bestavros. Self-similarity in
world wide web traffic: evidence and possible causes.
IEEE/ACM Transactions on Networking,
5(6):835–846, December 1997.

[13] R. D’Agostino and M. Stephens. Goodness-Of-Fit
Techniques. Marcel Dekker Inc., 1986.

[14] A. Erramilli, O. Narayan, and W. Willinger.
Experimental queueing analysis with long-range
dependence packet traffic. IEEE/ACM Transactions
on Networking, 4(2):209–223, April 1996.

[15] R. Jain. The Art of Computer Systems Performance
Analysis - Techniques for Experimental Design,
Measurement, Simulation, and Modeling. John Wiley
& Sons, Inc., 1991.

[16] B. Jansen and A. Spink. An analysis of web searching
by european alltheweb.com users. Information
Processing and Management, 41(2):361–381, 2005.

[17] B. S. Jeong and E. Omiecinski. Inverted file
partitioning schemes in multiple disk systems. IEEE
Transactions on Parallel and Distributed Systems,
6(2):142–153, 1995.

[18] T. Karagiannis, M. Molle, and M. Faloutsos.
Long-range dependence: Ten years of Internet traffic
modeling. IEEE Internet Computing, 8(5):57–64,
September 2004.

[19] U. Lee, Z. Liu, and J. Cho. Automatic identification of
user goals in web search. In Fourteenth International
World Wide Web Conference (WWW’2005), pages
391–400, Chiba, Japan, 2005. ACM Press.

[20] W. Leland, M. Taqqu, W. Willinger, and D. Wilson.
On the self-similar nature of ethernet traffic.
IEEE/ACM Transactions on Networking, 2(1):1–15,
1994.

[21] H. Li, D. Groep, and L. Wolters. Workload
characteristics of a multi-cluster supercomputer. In
10th International Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP’2004),
Lecture Notes on Computer Science, New York, NY,
USA, 2004.

[22] D. Menascé, V. Almeida, and L. Dowdy. Performance
by Design: Computer Capacity Planning by Example.
Prentice Hall, 2004.

[23] M. Olsson. The EMpht-Programme. Department of
Mathematics, Chalmers University of Technology, and
Gotebörg University, June 1998.

[24] V. Paxson and S. Floyd. Wide area traffic: The failure
of Poisson modeling. IEEE/ACM Transactions on
Networking, 3(3):226–244, June 1995.

[25] B. A. Ribeiro-Neto and R. A. Barbosa. Query
performance for tightly coupled distributed digital
libraries. In Proceedings of the Third ACM Conference
on Digital Libraries (JCDL’1998), pages 182–190,
1998.

[26] A. Riska, V. Diev, and E. Smirni. An EM-based
technique for approximating long-tailed data sets with
PH distributions. Performance Evaluation Journal,
55(1-2):147–164, 2004.

[27] A. Riska, M. Squillante, S. Yu, Z. Liu, and L. Zhang.
Matrix-analytic analysis of a MAP/PH/1 queue fitted
to web server data. In G. Latouche and P. Taylor,
editors, Matrix-Analytic Methods; Theory and
Applications, pages 333–356. World Scientific, 2002.

[28] K. M. Risvik, Y. Aasheim, and M. Lidal. Multi-tier
architecture for web search engines. In Proceedings of
the First Latin American Web Congress
(LAWEB’2003), pages 132–143, Santiago, Chile, 2003.

[29] D. Rose and D. Levinson. Understanding user goals in
web search. In Thirteenth International World Wide
Web Conference (WWW’2004), pages 13–19, New
York, NY, USA, 2004. ACM Press.

[30] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[31] C. Silverstein, M. Henzinger, H. Marais, and
M. Moriez. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[32] TodoBR. http://www.todobr.com.br, 2003.

[33] K. Trivedi. Probability and Statistics with Reliability,
Queueing, and Computer Science Applications. John
Wiley and Sons, 2001.

[34] E. Veloso, V. Almeida, W. Meira, A. Bestravos, and
S. Jin. A hierarchical characterization of a live
streaming media workload. IEEE/ACM Transactions
on Networking, 14(1):133–146, February 2006.

[35] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, Inc., second
edition, 1999.

