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ABSTRACT
We distinguish that Web query processing is composed of
two phases: (a) retrieving information on documents related
to the queries and ranking them, and (b) generating snip-
pets, title, and URL information for the answer page. Us-
ing real data and a small cluster of index servers, we study
four basic and key issues related to this first phase of query
processing: load balance, broker behavior, performance by
individual index servers, and overall throughput. Our study
reveals interesting tradeoffs: (1) that load unbalance at low
query arrival rates can be controlled with a simple measure
of randomizing the distribution of documents among the in-
dex servers, (2) that the broker is not a bottleneck, (3) that
disk and CPU utilization at individual servers depends on
the relationship between memory size and the distribution of
frequencies for the query terms, and (4) that load unbalance
at high loads prevents higher throughput.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—distributed systems, performance evaluation;
H.3.5 [Online Information]: [Web-based services]

General Terms
Performance, design
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Distributed query processing, search engines, load balance
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When a user query reaches a search engine, its processing
is broken down into two phases: (a) the extraction of the
data from the disks and the ranking of the answers, and (b)
the production of the answer page to be sent to the user [4].

The first phase consists of taking the query terms, extract-
ing from the disks information on documents that contain
each query term, executing a conjunction of the sets of docu-
ments that contain each query term, and finally ranking the
selected documents. It is a time consuming task that costs at
least as much as the second phase (production of the answer
page). Further, as the size of the search engine increases, the
processing cost for the second phase remains basically con-
stant while the processing cost of the first phase increases
(because, for instance, larger lists of documents have to be
read from the disks and manipulated). Thus, the first phase
is critically important for the performance of modern search
engines.

The second phase consists typically of taking the top 10
ranked answers and generating snippets, title, and URL in-
formation for each of them. For this, the search engine needs
to examine the texts of the documents of the collection. De-
spite that, no matter how large is the collection, the pro-
cessing has to be repeated for a fixed number of documents
(typically 10). This indicates that this part of the query
processing task is not affected (or is only slightly affected)
by the size of the document collection. That is, the effort
to produce the answer page for a search engine that handles
50 million documents and for a search engine that handles
5 billion documents is similar.

In this work, we concentrate our attention on the first
phase of the query processing task. We study four basic
issues that affect the internal operation and fine tuning of
the cluster of index servers. To validate our conclusions we
ran experiments on a real setup with real data obtained from
a search engine.

The paper is organized as follows. Section 2 discusses the
typical architecture of a cluster of index servers for modern
search engines. Section 3 presents the cluster of servers we
used in our experimentation and discusses the internal op-
eration of the servers. Following, we analyse 4 basic issues
that affect the performance of a cluster of index servers:
load balance in Section 4, operation of the broker in Sec-
tion 5, utilization of CPU and disk at the index servers in
Section 6, and throughput estimates for our experimental



cluster in Section 7. Section 8 goes over research related to
ours. Our conclusions follow.

2. ARCHITECTURE
Search engines use a network of workstations (or cluster

of servers) as platform for query processing [4, 17]. Typ-
ically, in this network there are two types of machines: a
single broker and p index servers. The whole collection of
documents is partitioned among the index servers, such that
each server stores its own local subcollection. That is, the p

subcollections compose the document collection C. Figure 1
illustrates this architecture.
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Figure 1: Architecture of a search engine: shared-
nothing, local subcollections, local index organiza-
tion, indexes are inverted files.

Assuming that the documents are evenly distributed among
the servers, let b be the size (in bytes) of any local subcol-
lection. Further, let n be the size (in bytes) of the whole
collection C. Then,

b =
n

p
(1)

An inverted file is adopted as the indexing structure for
each subcollection. Inverted files are useful because they can
be searched based mostly on the set of distinct words in all
documents of the collection. They are simple data structures
that perform well when the pattern to be searched for is
formed by conjunctions and disjunctions of words.

The structure of our inverted files is as follows. It is com-
posed of a vocabulary and a set of inverted lists. The vocab-
ulary is the set of all unique terms (words) in the document
collection. With each term is associated an inverted list.
This list contains an entry for each document in which the
term occurs. Each entry is composed of the document iden-
tifier (an integer) and the within-document frequency fd,t of
occurrence of the term t in the document d. Additionally,
the inverted lists are sorted by decreasing within-document
frequencies.

Each local inverted file has a size that is O(b). Thus, for
p index servers, the size of the index for the whole collection
is given by p× c1× b, where c1 is a proportionality constant.
This type of index organization, here referred to as a local

index organization [16], is the standard “the facto” in all
major search engines.

A user query reaches the broker through a client machine.
The broker then broadcasts the query to all index servers.
Each index server searches its own local index and produces
a partial ranked answer. These partial ranked answers are

collected by the broker and combined through an in-memory
merging operation. The final list of ranked documents is
then sent back to the client machine.

3. EXPERIMENTAL SETUP
For the experiments reported in this work we use a clus-

ter of 8 index servers. We opted for a small configuration to
facilitate experimentation and allow a more complete eval-
uation. Despite that, our conclusions hold for large clusters
that satisfy our assumptions.

In our setup, each index server is a Pentium IV with a
2.4 gigahertz processor, 1 gigabytes of main memory and a
ATA IDE disk of 120 gigabytes. The broker is an ATHLON
XP with a 2.2 gigahertz processor and 1 gigabytes of main
memory. The client machine, responsible for managing the
stream of user queries, is an AMD-K6-2 with a 500 mega-
hertz processor and 256 megabytes of main memory. All of
them run the Debian Linux operating system version 2.6.

The test collection, referred to as WBR03, is composed
of Web pages collected by the TodoBR [20] search engine
from the Brazilian Web in 2003. Each index server holds a
subcollection of 10 million pages. The inverted file for each
subcollection occupies roughly 5.7 gigabytes. Thus, with 8
servers, the size of the index for the whole collection is 45.6
gigabytes.

The query set used in our tests is composed by 10,000
unique queries with two or more terms. In this query set,
there are 8,052 unique terms. These queries were extracted
from a query log submitted to the TodoBR search engine in
January 2003. Notice that we use a set of unique queries to
reduce the influence of disk cache.

In this work, we have used a ranking procedure that is
based solely on the relative frequencies of occurrence of terms
within documents. This means that our ranking computa-
tion is faster than the ranking computation in a modern
large search engine (that takes into consideration other fac-
tors such as positions of terms within documents and anchor
texts). Nevertheless, our results allow understanding basic
tradeoffs in the operation of distributed index servers.

To rank the selected documents based on the relative fre-
quencies of occurrence of terms within documents, we use
the standard vector space model [3, 18, 24]. In this model,
queries and documents are represented as weighted vectors
in a t-dimensional space, where t is the number of terms
in the vocabulary of the collection. With each pair term-
document is associated a weight that is a function of the
frequency f(t, d) of the term t in the document d (the term
frequency tf) and the inverse document frequency (idf) of
the term t in the collection, computed as log N

nt

(where N

is the total number of documents in the collection and nt

is the number of documents in which the term t occurs).
Because of that, this weighting scheme is usually referred to
as a tf-idf weighting scheme. The rank of a document with
regard to a user query is computed as the cosine of the angle
between the query and document vectors.

In our experiments, the client machine submits the queries
to the broker at a fixed query arrival rate (which is var-
ied from one experiment to the other). For this, the client
employs the software httperf [13]. A copy of each query is
passed to each index server, which produces a partial ranked
result relative to its local subcollection. The index server
then sends its partial answer to the broker, which combines
the 8 partial ranked answers into a final ranking.



The broker processes queries concurrently using multiple
threads as follows. A thread continuously polls for incom-
ing client query requests and broadcasts them to all index
servers. A set of threads, one for each processing thread in
the servers, continuously poll for partial results generated by
the index servers. Whenever a partial result is retrieved it is
inserted into a buffer. As soon as all partial results relative
to a query have been received, the query is inserted into a
merge queue. A distinct thread is responsible for extract-
ing the queries from the merge queue, merging the partial
results into a final ranking, and sending this final ranked
results to the client machine.

To generate a partial ranked answer set, an index server
receives query requests from the broker and inserts them in a
queue. Queries in this queue are processed concurrently em-
ploying multiple threads. In our experiments we fine tuned
the number of processing threads per index server to provide
peak performance. As a result, all our experiments reported
here use 8 threads per index server.

Once a processing thread takes a query out of the queue,
it reads from disk the full inverted lists relative to the query
terms, intersect the lists to produce the set of documents
that contain all query terms (i.e., the conjunction of the
query terms), compute a relevance score for each document,
and sorts them by decreasing score. We read the full list
because we assume that the query is a conjunction of the
query terms, as done by modern search engines. As soon as
the ranking has been computed, the top ranked documents
are transferred to the broker machine.

Higher the variance in the processing times of the index
servers, slower tends to be the throughput of our cluster
of servers. Particularly, if a given index server is always
the slowest machine independently of the query, that server
becomes a bottleneck. Thus, it is critically important to
reduce the load unbalance among the various index servers,
as we discuss in the immediately following.

4. LOAD BALANCE
To reduce load unbalance among index servers we opt for

balancing the distributions of the sizes of the inverted lists
that compose the local inverted files (stored locally at the
index servers). Fortunately, this can be accomplished by a
simple procedure. Given a new document, we assign it to
an index server through a random sorting.

A random distribution of documents among index servers
works because it naturally spreads documents of various
sizes across the cluster. As a result, the distributions of
document sizes in the index servers become similar in shape,
which reflects in inverted lists whose size distributions are
also similar. Our motivation is to equalize the utilization of
space at the various index servers, which should reflect in
an equalization of processing time at the various servers, re-
ducing load unbalance. Let us examine first the utilization
of space at the disks of the index servers.

Figure 2 illustrates the distributions of sizes of the in-
verted lists that compose our 8 local inverted files. The
terms in the horizontal axis are sorted by decreasing size
of the corresponding inverted list. We observe that these
distributions are very similar in shape indicating that the
random assignment of documents to servers works.

Given that the utilization of disk space at the index servers
is even, let us examine the impact on local processing times.
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Figure 2: Distributions of sizes of the inverted lists
that compose our 8 local inverted files.

For this, we reprogram the client to send queries to the
broker one at a time. That is, the client sends query qi

and waits until the results have been produced. Only then
does the client proceeds to query qi+1. This procedure is
executed for all queries in our log. The motivation is to
evaluate local processing times independently of factors such
as interference among the various processing threads at each
index server.

Figure 3 illustrates the distributions of average, maxi-
mum, and minimum local processing times per query. Av-
erage time for a query q is computed as the average time
among all 8 local processing times. The time interval sur-
rounding average times have limits given by the slowest and
the fastest index server for that query. To allow visual in-
spection, we display results for selected queries at intervals
of 200 queries.

We notice that variance in processing times is small for the
slower queries. The slowest query in our log, for instance,
has average processing time of 210 milliseconds and maxi-
mum processing time of 225 milliseconds, a variance of 7%.
For the faster queries, variance is much higher. For instance,
the next to the last query shown in the figure has average
processing time of 10 milliseconds and maximum processing
time of 22 milliseconds, a variance of 120%. Not much can
be done regarding this variance due to interference of the
operating system and the inherent difficulties in controlling
disk access times at this time granularity.
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Figure 3: Distribution of average, maximum,
and minimum local processing times (seconds) per
query. Queries are executed one at a time. Process-
ing times are sorted by decreasing order of average
time. Only selected queries are shown explicitly, at
intervals of 200 queries.

We should comment that early experimentation reported
very high variance of local processing times. Our analysis
of those results showed that the distributions of list sizes
among index servers were very dissimilar. The reason was
that we were assigning documents to the index servers ac-
cording to a sequential assignment based on document iden-
tifiers. This suggested that a random assignment could re-
duce the problem, what really was the case, as reported by
our experiments.

Besides reducing load unbalance among the index servers,
another issue of concern is the fact that the broker is a po-
tential bottleneck, which we now discuss.

5. THE BROKER IS NOT A BOTTLENECK
Observing the architecture in Figure 1, we notice that the

broker constitutes a potential bottleneck. Every query that
is submitted to our cluster of servers is processed by the
broker, which has to merge the partial results produced by
the various servers. However, this merging of partial results
is done all in memory and can be done quickly. As a result,
the broker works at relatively low loads at all times, as we
now evaluate.

To stress the broker, we implemented a concurrent pro-
cess monitor that simulates a cluster with p index servers.
By varying p we can stress the broker and observe how it
behaves. The broker takes queries at an arrival rate r (which
we varied) and passes them to a single machine that runs
our concurrency monitor. For each query, the broker sends
p query requests to our monitor, one for each index server.
For each query request it receives, the monitor simulates a
local query processing task. For this, it sorts an execution
time ti from a real probability density function previously
computed, associates this time to a task, and inserts that
task in a time agenda, ti units of time ahead of the present
time.

Our monitor manages the time agenda by visiting its en-
tries in circular fashion. Whenever it finds a task in an entry

of the agenda, it sorts an answer from an array of precom-
puted answers stored in main memory, and sends this answer
to the broker. Thus, from the viewpoint of the broker ev-
erything goes on as if there were indeed p index servers in
the cluster.

Figure 4 reports the average time at the broker per query.
We observe that even at high loads and with a large number
of servers, time at the broker is not affected. In fact, with
256 servers and query arrival rates around 100 queries per
second, average time at the broker per query is less than 10
milliseconds. That is, the broker is not a bottleneck in our
architecture.
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Figure 4: Average time (seconds) at the bro-
ker per query as a function of query arrival rate
(queries/second).

This is because of two fundamental reasons. First, all the
work the broker does is carried out fully in main memory.
Second, all the tasks the broker executes are simple tasks
that do not take much CPU time. The broker does not have
to make ranking computations and does not have to exe-
cute algebraic operations (other than comparing document
scores). Further, since it has to wait for the partial results
for each query, it has plenty of free resources that can be
shared with the various queries in the input stream.

Eventually the broker saturates as shown in Figure 4. In
our case saturation is abrupt. The reason is that saturation
is caused by contention at the network drive interface. With
256 servers, for instance, each user query requires 256 write

operations to send the queries out and another 256 read op-
erations to retrieve the partial answers from the network.
At a rate above 150 queries per second, the network drive
interface fails to handle the load. This is not critical though
because, as we later show, the index servers saturate at a
rate one order of magnitude smaller (i.e., index servers satu-
rate at 18 queries per second). That is, a broker whose main
task is to merge partial answer sets is not a bottleneck.

Given that load unbalance among index servers is con-
trolled and that the broker is not a bottleneck, the individ-
ual performance of the index servers is a critical issue. Thus,
let us examine in more detail how local processing time is
affected by disk and CPU execution times.

6. CPU AND DISK TIMES AT SERVERS



Our interest is on examining how local processing time is
split among disk and CPU at each index server. For this we
again submitted the queries to the broker one at a time.

Figure 5 illustrates average local processing time, aver-
age disk access time, and average CPU execution time (in
seconds). We observe that CPU times are remarkably dom-
inant, particularly for the slowest queries. In fact, the shape
of the distribution of local processing times is established by
the distribution of CPU times. This is a result that we did
not anticipate, so we proceeded with further experimenta-
tion.
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Figure 5: Average local processing time (total), av-
erage disk access time, and average CPU execution
time (seconds) per query. Queries are sorted by de-
creasing order of local processing times (total).

We reasoned that maybe disk access time was relatively
small in our experiments because of some particularity of our
setup. For instance, a possibility could be that inverted lists
were being held indefinitely in a disk cache accelerating I/O.
To better understand this, we evaluated the distribution of
sizes of inverted lists corresponding just to the terms that
appear in our query log.

Figure 6 illustrates the distribution of sizes of inverted lists
relative to the distinct query terms of our log for the index
server 1. We notice that it presents a much “fatter” shape
than the distribution of sizes for all terms (for the index
server 1) illustrated in Figure 2. That is, the users prefer
to write queries using terms that appear more frequently in
the document collection. This suggests that terms that are
more frequently used by the editors of the Web pages are
also more likely to appear in the user queries.

The total space occupied by all lists in Figure 6 is 1.59
gigabytes (area under the curve). Index server 1 has 1 giga-
bytes of main memory of which roughly 800 megabytes are
available for use by the operating system for caching I/O
operations. This means that, in our setup, cache for disk
is half the total size of all inverted lists that have to be ac-
tually retrieved from disk to answer all queries in our log.
Notice that this is not evident from the examination of the
distributions of list sizes for the whole index (depicted in
Figure 2).

Given that disk cache (in our setup) is large compared
to the total volume of data retrieved from disks, our disk
times are smaller than CPU times. This is peculiar because
it shows that, even if the size of the inverted file is large, the
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Figure 6: Distribution of sizes of inverted lists for
the distinct (unique) terms in our query log at the
index server 1.

total volume of data actually retrieved from disk might be
much smaller, accelerating disk operations.

Figure 7 illustrates the distribution of average local pro-
cessing time for the 50 queries executed first in our log. We
notice that disk times now dominate the processing time and
that they are much larger than previously reported. This
clearly shows that our particular setup allowed the operat-
ing system to take large advantage of disk caching operations
when the entire log of queries was executed.
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Figure 7: Average local processing times for the 50
queries executed first in our log.

In a large search engine, one might accommodate a larger
collection of documents in each index server. To exemplify,
by storing 50 million documents in each index server we
could handle a collection of 5 billion documents using a
cluster with 100 index servers (that our broker could man-
age without becoming a bottleneck). This means that in-
verted lists would be larger and that, consequently, disk ac-
cess times would increase. Furthermore, if a positional index
is used (storing the positions of each term in a document)
one can expect the size of the inverted file to triple. In this
context, CPU time could become the smaller component of
the local processing time. This is one issue that deserves
careful attention while tuning the cluster of servers.

The point that we make here is that, depending on the



setup of the search engine, CPU time at individual index
servers might be significant, even dominant. In fact, in our
particular scenario of a cluster of 8 servers storing a col-
lection of 80 million documents, CPU time is determinant.
In this context, buying faster SCSI disks is not indicated.
Instead, if higher throughput is required with the same ar-
chitecture of 8 machines, faster CPUs should be the focus
of the buyer.

7. THROUGHPUT
We now examine throughput in our cluster of 8 servers.

The client sends queries to the broker at an average rate of
r queries per second. We vary r until the cluster saturates.

Figure 8 illustrates our results. Average throughput is
computed for the 10 thousand queries in our log. Through-
put increases linearly up to 18 queries processed per second
when the cluster starts to saturate. Despite this linear in-
crease in throughput, let us examine how load unbalance is
affected as arrival rates increase.
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Figure 8: Throughput as a function of arrival rate
for our cluster with 8 index servers. We vary arrival
rate at intervals of 2 queries per second.

Figure 9 illustrates average query response time for the
ten thousand queries in our log. Up to an arrival rate of
8 queries per second, our cluster provides answers to each
query in less than 100 milliseconds on average. At 12 queries
per second, average query response time is above 100 mil-
liseconds, reaching 150 milliseconds for an arrival rate of 14
queries per second.

If we do not allow an arrival rate higher than 12 queries
per second (deferring input traffic is a basic congestion con-
trol measure), and since our system is stable at this arrival
rate, we have a throughput of 12 queries per second with
low latency. This means that our cluster of 8 machines can
process up to 43,200 queries per hour or roughly a million
queries per day, with low latency. If we allow higher query
latencies we can go up to the 16-18 queries processed per
second, as illustrated in Figure 8.

Throughput of large search engines, while smaller because
index sizes are larger, are expected to follow a similar pat-
tern, since the broker is not a bottleneck.

Let us now examine the variance of query execution times.
Figure 10 illustrates the distribution of query execution times
at an arrival rate of 4 queries per second. We notice that
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Figure 9: Average query response time as a function
of arrival rate (cluster with 8 index servers).

load unbalance is controlled, similarly to what happens when
queries are submitted sequentially (see Figure 3). That is,
at low arrival rates the random distribution of documents
among the servers does work as an effective measure of load
balance.
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Figure 10: Distribution of query execution times at
a rate of 4 queries per second (cluster with 8 index
servers).

Figure 11 illustrates the distribution of query execution
times at an arrival rate of 12 queries per second. We notice
that, even though the cluster operation is still stable, load
unbalance is severe. That is, at high arrival rates the ran-
dom distribution of documents among the servers no longer
works as an effective measure of load balance. This clearly
suggests that other measures of load balance might be re-
quired, such as a load balancing module that takes decisions
based on global information on the operation of the servers,
if throughput is to be further increased with the same num-
ber of index servers. This issue is outside the scope of our
work, but it is one that deserves attention, particularly by
the community of systems performance and operating sys-
tems.

8. RELATED WORK
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The Google and FAST search engine architectures are pre-
sented in [4, 5, 17]. In the first phase of query execution, in-
dex servers consult an inverted index and determine a set of
relevant documents. In the second phase, document servers
take the ordered list of document identifiers and compute
their snippets. In both phases, documents are distributed
into pieces, having multiple machines responsible for han-
dling each piece. The work in [5] describes the features
adopted by Google to produce search results, such as the
link structure of the Web and anchor texts.

Our work is different from the works in [5, 4, 17] as fol-
lows. The work in [5] reports only four sample query times,
and the work in [4] does not include any performance evalu-
ation, while we analyse the strategy for partitioning a collec-
tion by document, broken down overall performance in costs
of critical phases of query execution and identified a set of
design trade-offs over a distributed architecture. The work
in [17] investigates strategies for partitioning a collection by
document, which take into consideration multiple proper-
ties of documents, and compares them against a reference
system that distributes documents randomly. Nevertheless,
they report only the ratio of query processing rate between
proposed strategies and the reference system.

An overview of current Web search engine design is offered
in [1]. After introducing a generic search engine architec-
ture, they examine each engine component. Nevertheless,
their work does not include any performance evaluation for
distributed query processing.

The work in [14] presents a parallel and distributed ar-
chitecture for a Web search engine. Both task-parallel and
data-parallel approaches are exploited within their frame-
work. Preliminary experiments highlighted the better per-
formance of a hybrid task+data parallelization strategy. How-
ever, they considered a sequential query service, used a small
collection as a benchmark, conducted experiments on a clus-
ter with only three machines, and reported only average
query time for performance evaluation.

The work in [7] evaluated the performance of a distributed
information retrieval system using a variety of workloads.
Their system consists of clients connected to information
retrieval engines through a central administration broker.
Engines hold independent collections. The connection server

forwards requests to the appropriate engines, according to
the command issued by the client.

Our work is different from the work in [7] as follows. First,
while their work explores an architecture that distributes
multiple autonomous text collections, we analyse distributed
query processing performance of an individual Web collec-
tion. Second, while their work derives results from simu-
lation, we implement and thoroughly evaluate distributed
query processing on a real case distributed architecture.
Third, we analyse the distinct phases of query processing,
and identify performance tradeoffs not present in their work.

Early studies on distributed indexes for information re-
trieval systems appeared in [2, 10, 16, 8, 21, 11, 19]. In [2,
10, 16, 8, 21, 11] various data partitioning schemes among
servers are discussed. This was an issue of early concern.
With modern search engines, however, there is a clear pref-
erence for document-based partitioning because it simplifies
management of the system and computation of conjunctions
of query terms. In [19] a parallel SIMD algorithm for doc-
ument retrieval is presented. In modern times, there is a
clear preference for networks of low cost workstations (like
our cluster of index servers).

Methods for efficient query evaluation have been stud-
ied extensively in the information retrieval literature. The
work in [22] classify evaluation strategies in term-ordered
query evaluation and document-ordered query evaluation
and the work in [9] compares them. The works in [12, 15,
23] presents algorithms that process query terms in some
order that lets the system identify the top n scoring docu-
ments without processing all query terms. The work in [6]
presents a method based on a two level approach: at the
first level, iterates in parallel over query term postings and
identifies candidate documents using an approximate eval-
uation; at the second level, promising candidates are fully
evaluated and their exact scores are computed. Strategies
for efficient query evaluation using pruning techniques are
beyond the scope of our paper.

9. CONCLUSIONS AND FUTURE WORK
We have studied 4 basic and key issues related to the in-

ternal operation and fine tuning of a cluster of index servers
for search engines: load balance, broker behavior, CPU and
disk times at individual index servers, and throughput for a
particular setup. Some of our findings were not anticipated,
as follows.

Load unbalance among index servers, which has to be lim-
ited to avoid penalties in throughput, can be controlled by
randomizing the distribution of the documents of the collec-
tion among the index servers. This works well at low arrival
rates, but is not effective at high arrival rates. This suggests
that adding a module of dynamic load balance to the sys-
tem might lead to improved throughput for a given setup.
While load balance has been long discussed in distributed
systems, to the best of our knowledge, it has not been ad-
dressed in the context of modern search engines. Thus, it
might constitute an interesting topic of research.

While we have always thought of the broker as a serious
candidate for bottleneck, this is not the case. In fact, a
single broker can handle hundreds of index servers at loads
10 times higher than the saturation load of the individual
index servers. The broker is not a bottleneck in a shared-
nothing architecture of independent index servers, as the
one used by modern search engines.

CPU and disk times at an index server are heavily affected



by the query load. Since users tend to use common (or
high frequency) terms in their queries, the actual number
of inverted lists that have to be retrieved from disk might
be a fraction of the inverted file. And, since even low end
servers have considerable availability in main memory, going
up to 1 gigabytes and beyond, memory space for disk caching
might considerably accelerate I/O operations making them
comparable to CPU times. In our particular setup with 8
index servers and a collection of 80 million documents, CPU
times at the index servers dominated local processing times.
These results are not definitive, but indicate that care might
be exercised during dimensioning of a cluster of servers for
handling a particular document collection.

Throughput figures at low arrival rates (such as 4 queries
per second) indicate that the cluster of servers operates sta-
bly with low variance in local processing times among in-
dex servers. At high loads, however, variance of local pro-
cessing times quickly increases limiting scalability of cluster
throughput. That is, randomizing the distribution of doc-
uments among servers does not help at high query arrival
rates. This suggests that adding a module of dynamic load
balance to a cluster of servers (of a search engine) might be
an effective measure to improve throughput at high arrival
rates.

Our views and findings on these basic issues regarding
the internal operation of search engines indicate that much
research needs to be done to fully address all the relevant
issues.
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