
Basic Issues on the Processing of Web Queries

Claudine Badue1

claudine@dcc.ufmg.br
Ramurti Barbosa2

ramurti@akwan.com.br
Paulo Golgher3

golgher@akwan.com.br

Berthier Ribeiro-Neto4

berthier@dcc.ufmg.br
1,4,5Federal University of

Minas Gerais
Belo Horizonte, Brazil

Nivio Ziviani5

nivio@dcc.ufmg.br
2,3Akwan Information

Technologies
Belo Horizonte, Brazil

ABSTRACT
In this paper we study three basic and key issues related to
Web query processing: load balance, broker behavior, and
performance by individual index servers. Our study, while
preliminary, does reveal interesting tradeoffs: (1) load un-
balance at low query arrival rates can be controlled with
a simple measure of randomizing the distribution of doc-
uments among the index servers, (2) the broker is not a
bottleneck, and (3) disk utilization is higher than CPU uti-
lization.

Categories and Subject Descriptors: H.3.4 Informa-

tion Storage and Retrieval: Systems and Software - dis-

tributed systems, performance evaluation; H.3.5 Online In-
formation Services - Web-based services

General Terms: Performance, design.

Keywords: Distributed query processing, search engines,
load balance.

1. THE PROBLEM
When a user query reaches a search engine, its processing

is broken down into two phases. The first phase consists of
taking the query terms, extracting from the disks informa-
tion on documents that contain each query term, executing
a conjunction of the sets of documents that contain each
query term, and finally ranking the selected documents. The
second phase consists typically of taking the top 10 ranked
answers and generating snippets, title, and URL information
for each of them.

In this work, we concentrate our attention on the first
phase of the query processing task, studying three basic is-
sues that affect the internal operation and fine tuning of the
cluster of servers where the indexes are stored.

Copyright is held by the author/owner.
SIGIR’05, August 15–19, 2005, Salvador, Brazil.
ACM 1-59593-034-5/05/0006.

2. ARCHITECTURE
Search engines use a cluster of servers as platform for

query processing [1, 4]. Typically, in this network there
are two types of machines: a single broker and p index
servers. The whole collection of documents is evenly parti-
tioned among the index servers, such that each server stores
its own local subcollection with approximated size (in bytes).
This type of index organization, here referred to as a local

index organization [3], is the standard “the facto” in all ma-
jor search engines.

A user query reaches the broker through a client machine.
The broker then broadcasts the query to all index servers.
Each index server searches its own local index and produces
a partial ranked answer. These partial ranked answers are
collected by the broker and combined through an in-memory
merging operation. The final list of ranked documents is
then sent back to the client machine.

An inverted file is adopted as the indexing structure for
each subcollection. To rank documents, the index server
reads from disk the inverted lists relative to query terms,
intersect the lists to produce the set of documents that con-
tain all query terms, and compute a relevance score for each
document. The relevance score is computed in function of
the relative frequencies of occurrence of terms within doc-
uments and anchor texts, the authoritative degree of docu-
ments [2], URL and title information of documents, and the
proximity of query terms within documents.

For the experiments reported in this work we use a cluster
of 8 index servers. The test collection is composed of Web
pages collected by the TodoBR [5] search engine from the
Brazilian Web in 2003. Each index server holds a subcol-
lection of 10 million pages. The index for each subcollec-
tion occupies roughly 16 gigabytes. The queries are a set
of 10,000 unique queries submitted to the TodoBR search
engine in January of 2003.

3. BASIC ISSUES

3.1 Load Balance
To reduce load unbalance among index servers we opt for

balancing the distributions of the sizes of the inverted lists
that compose the local inverted files. (stored locally at the
index servers). This can be accomplished by a random dis-

tribution of documents among index servers, which natu-
rally spreads documents of various sizes across the cluster.
As a result, the distributions of document sizes in the index
servers become similar in shape, which reflects in inverted
lists whose size distributions are also similar.

First, we programmed the client to submit queries one at
a time, for evaluating local processing times independently
of interference among the various processing threads at in-
dex servers. Figure 1 illustrates the distributions of average,
maximum, and minimum local processing times per query.
Average time for a query q is computed as the average time
among all 8 local processing times. The time interval sur-
rounding average times have limits given by the slowest and
the fastest index server for that query.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
tim

e
(s

ec
)

Query

1: Average, maximum, and minimum local processing times (sec-
onds) per query. Queries are sorted by decreasing order of average
time. Only selected queries are shown explicitly, at intervals of
200 queries.

We notice that load unbalance is controlled when queries
are submitted sequentially. Second, we programmed the
client to submit queries at an average rate of r queries per
second. We vary r until the cluster saturates. We notice
that at high arrival rates, variance of local processing times
quickly increases limiting scalability of cluster throughput.
That is, randomizing the distribution of documents among
servers does not help at high query arrival rates. This clearly
suggests that adding a module of dynamic load balance to a
cluster of servers (of a search engine) might be an effective
measure to improve throughput at high arrival rates.

3.2 The Broker is not a Bottleneck
In this cluster architecture, the broker constitutes a po-

tential bottleneck. To stress the broker and observe how it
behaves, we implemented a concurrent process monitor that
simulates a cluster with p index servers. The broker takes
queries at an arrival rate r (which we varied) and passes
them to a single machine that runs our concurrent monitor.
For each query, the broker sends p requests to our monitor,
one for each index server. For each request it receives, the
monitor simulates a local query processing task.

We observe that even at high loads and with a large num-
ber of servers, time at the broker is not affected. In fact,
with 256 servers and query arrival rates around 100 queries
per second, average time at the broker per query is less than
10 milliseconds. That is, the broker is not a bottleneck in
our architecture. This is because all the tasks the broker
executes are simple tasks that do not take much CPU time
and carried out fully in main memory.

3.3 Disk and CPU Times at Servers
For examining how local processing time is split among

disk and CPU at index servers, we again submitted the
queries to the servers one at a time. Figure 2 illustrates
average local processing time, average disk access time, and
average CPU execution time (in seconds). We observe that
disk times are remarkably dominant.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
tim

e
(s

ec
)

Query

total
disk
cpu

2: Average local processing time (total), average disk access time,
and average CPU execution time (seconds) per query. Queries are
sorted by decreasing order of local processing times (total).

4. CONCLUSIONS
We have studied three basic and key issues related to

the internal operation and fine tuning of a cluster of index
servers for search engines: load balance, broker behavior,
and CPU and disk times at individual index servers. Load
unbalance among index servers can be controlled by ran-
domizing the distribution of the documents of the collection
among the servers. This works well at low arrival rates, but
is not effective at high arrival rates. The broker is not a
bottleneck in a shared-nothing architecture of independent
index servers. Disk times dominate local processing times.

5. ACKNOWLEGMENTS
This work was supported by the GERINDO project–grant

MCT/CNPq/CT-INFO 552.087/02-5, by CNPq scholarship
140262/2001-6 (Claudine Badue), by CNPq grant 520.916/94-
8 (Nivio Ziviani) and by CNPq grant 30.0188/95-1 (Berthier
Ribeiro-Neto).

6. REFERENCES
[1] L. A. Barroso, J. Dean, and U. Holzle. Web search for a

planet: The google cluster architecture. In IEEE Micro,
pages 22–28, 2003.

[2] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. In Journal of the ACM, volume 46, pages
604–632, 1999.

[3] B. A. Ribeiro-Neto and R. A. Barbosa. Query performance
for tightly coupled distributed digital libraries. In
Proceedings of the third ACM Conference on Digital
Libraries, pages 182–190, 1998.

[4] K. M. Risvik, Y. Aasheim, and M. Lidal. Multi-tier
architecture for web search engines. In Proceedings of the
First Latin American Web Congress, pages 132–143,
Santiago, Chile, 2003.

[5] TodoBR. Main page: http://www.todobr.com.br.

