
Distributed Architecture for Information Retrieval

Claudine Badue1 Ricardo Baeza-Yates2 Wagner Meira3 Berthier Ribeiro-Neto4
Nivio Ziviani5flaudine,meira,berthier,niviog�d.ufmg.br rbaeza�d.uhile.l1;3;4;5Federal University of Minas Gerais 2University of ChileBelo Horizonte, Brazil Santiago, Chile

ABSTRACTWe propose a random layout for distributed information re-trieval systems based on a global index. The random lay-out is used to implement a random global index, whihallows balaning the load and attaining improved perfor-mane. The distributed system adopts a network of work-stations model and the lient-server paradigm. Doumentsare ranked using the vetor spae model along with a do-ument �ltering tehnique. In the random global index, aglobal inverted �le is generated for all douments in the textdatabase and �xed size bloks of the inverted lists are ran-domly distributed among proessors. Using a real Web dataolletion, we ompare its performane against two otherindex partitioning shemes, namely lexiographial globalindex and loal index. For this, an analytial model oupledwith a simulator is developed and validated. Regarding loadbalane, the random layout outperforms the lexiographialwith gains reahing two times. Regarding response time, therandom layout and the lexiographial have similar perfor-mane on average. Both layout shemes outperform signi-�atively the loal index, with gains that reahed �ve times.Due to its better load balaning, ompetitive query proess-ing performane and exibility for system reon�guration,we believe that global indexes based on random layouts area good hoie for the design of large distributed informationretrieval systems.
1. INTRODUCTIONEletroni ommere is a rapidly growing area on theWorld Wide Web. Appliations on eletroni business mustbe able of serving an inreasing number of suppliers andustomers with an expanding ommerial data ontent. Fur-thermore, web-based ommere demands for very high lev-els of eÆieny, availability and salability. To ahieve suheÆient and dependable servie, underlying information re-trieval systems an turn to distributed and parallel storageand searhing.To �nd douments quikly, information retrieval systemsbuild inverted indexes on disk. Two approahes have beenproposed in the work presented in [17℄ to distribute the in-verted index among various omputers. They are the loalindex (LI) and lexiographial global index (LGI). In the lo-al index, the douments in the text database are distributedamong the proessors, and eah proessor generates an in-verted �le for its douments. In the lexiographial globalindex, an inverted �le is generated for all the doumentsin the text database and the inverted lists are distributed

among proessors aording to a lexiographial order ofterms.Generating and maintaining loal indexes is simple be-ause all the work an be done loally without interationamong the proessors. However, eah proessor has to ex-eute the whole query, whih provides high parallelism butalso degrades performane onsiderably. In the lexiograph-ial global indexes, the terms of a query are sent only tothe proessors that hold the related inverted lists, whihprovides high onurreny. Nevertheless, this shedulingsheme might deteriorate load balane, beause the proes-sor holding the most frequent terms in a query is heavilyloaded.The objetive of this paper is to present a new layout fororganizing a global index for distributed query proessing,alled random global index (RGI). We divide the invertedlists in bloks of the same size and randomly selet a pro-essor to hold eah blok of eah inverted list. This randomlayout for the global index ombines the advantages of theloal and lexiographial global index partitioning shemesbeause it provides a better load balane among proessorsand allows a good degree of query onurreny within thesystem. As inverted lists are randomly distributed amongproessors, the exeution of a query is not restrited to aproessor, whih provides for parallelism. Not all proessorshold bloks of the same inverted list, whih allows onur-reny. Further, random layouts are simple to maintain; ifproessors are added to the system, it is muh easier to re-distribute the data. As we shall see, these e�ets favor therandom global index organization in detriment of the loalindex and lexiographial global index organizations.The distributed system uses a network of workstationsmodel. The workstations are tightly oupled by fast net-work swithing tehnology. The retrieval system adopts thelient-server paradigm that onsists of a set of proessorsand a designated broker. An analytial model oupled witha simulator was developed and validated, in order to evalu-ate query performane in our distributed text database formore system on�gurations than are urrently available.Our results show that the random global index is ompeti-tive and sometimes outperforms the traditional lexiograph-ial global index and loal index tehniques, onsidering re-sponse time, throughput, load balane, and proessing ost.We used a Web data olletion for performane measure-ment. The random global index and lexiographial globalindex have similar performane on average in response time,and both outperformed signi�atively the loal index, wherethe gains reahed �ve times approximately. A similar result



is observed regarding the system throughput.This paper is organized as follows. Setion 2 overs the re-lated work. Setion 3 presents the distributed text database,desribing the system arhiteture, the index struture, thevetor spae model as ranking strategy and the query pro-essing. Setion 4 desribes an analytial model for pre-diting distributed query performane. Setion 5 shows theexperimental results, and Setion 6 presents the onlusionsand future work.
2. RELATED WORKThe work presented in [17℄ proposes the two basi anddistint options for storing the inverted lists, namely loalindex and lexiographial global index. The work in [7℄ on-siders the two basi shemes for index partitioning proposedin [17℄ for a shared-everything multiproessor mahine withmultiple disks. The work in [11℄ onsiders the two index or-ganizations proposed in [17℄ for a tightly oupled network,and investigates how query performane is a�eted by theindex organization, the network speed, and the disks trans-fer rate. Our work di�ers from those presented in [17, 7,11℄ in the following aspets. First, while the works in [17,7℄ adopt the boolean model, we use the vetor spae model.Seond, while the works in [17, 7℄ model douments andqueries, and the work in [11℄ uses douments and queries inthe TREC-3 olletion [5℄, we base our experimental resultson a Web data olletion maintained by the TodoBR [16℄searh engine. Third, while the works in [17, 7℄ onsider onlya sequential query servie, we address a onurrent queryservie. Fourth, none of these works have used a randomindex alloation.In the works presented in [9, 1℄, the two traditional typesof index partitions proposed in [17℄ are investigated using areal distributed arhiteture implementation. Our work dif-fers from those presented in [9, 1℄ in the following aspets.First, while the work in [9℄ uses part of the douments andqueries in the TREC-7 olletion [6℄, and the work in [1℄ em-ploys douments and queries in the TREC-3 olletion [5℄,we base our experimental results on a real Web data olle-tion. Seond, while they implement a real ase framework,we develop and validate an analytial model in order of eval-uating performane for more system on�gurations than areurrently available. Third, while the work in [9℄ addressesonly a sequential query servie, we onsider a onurrentquery servie. Fourth, none of these works have used a ran-dom index alloation.The works presented in [14, 8℄ ompare performane of amultimedia storage server based on a random data alloa-tion layout with traditional data striping tehniques. Ran-dom data alloation for multimedia servers has also beenonsidered in [15, 3, 4℄. The work in [15℄ analyzes the per-formane of a lustered video server with random alloationof data bloks. In the works in [3, 4℄, random data alloationis onsidered on RAID systems for 3D interative applia-tions. Our work di�ers from those presented in [14, 8, 15,3, 4℄ beause while we evaluate performane of a textualquery proessing system, they investigate performane formultimedia systems, that have di�erent requirements andworkloads from ours.
3. DISTRIBUTED TEXT DATABASEThe distributed system uses a network of workstations

model, as illustrated in Figure 1. The workstations aretightly oupled by fast network swithing tehnology. Eahworkstation has its own loal memory and loal disk. Theadvantages of this shared nothing model are that all om-muniation between proessors is done through messages,whih eliminates interferene from operating system mem-ory ontrol proesses, and that disks are diretly aessedby proessors without going through the network.
Processor 2

Memory 2 Memory 3

Processor 3 Processor p

Memory p

Processor 1

Memory 1

Disk 1 Disk 3 Disk pDisk 2

Network Switch

. . .

Figure 1: Network of workstations model.The retrieval system adopts the lient-server paradigmthat onsists of a set of proessors and a designated bro-ker, responsible for aepting lient queries, distributing thequeries to the proessors, olleting intermediate results fromthe proessors, ombining the intermediate results into the�nal result and sending the �nal result to the lient. Eah ofthe proessors and the broker runs on a separate mahine.Figure 2 illustrates the lient-server paradigm.
Network

Network
P1

RjQj

Server

2P Pp

Server

3

Server

P P4

Server

Client 1 Client cClient 2 Client 3

Broker

. . .

. . .

Figure 2: Client-server paradigm.The text database is indexed using the inverted �le teh-nique [2, 18℄. An inverted �le is an indexing struture om-posed of two elements: the voabulary and a set of invertedlists. The voabulary ontains eah term t in the text do-ument olletion; the terms are sorted in lexiographialorder. There is one inverted list for eah term t, onsist-ing of the identi�ers of the douments ontaining the termand, with eah identi�er d, the frequeny fd;t of t in d.Thus, inverted lists onsist of term entries, that is, pairs of< d; fd;t > values. As we adopt the vetor spae model alongwith a tehnique for �ltering douments during ranking, theinverted lists are sorted by dereasing within-doument fre-queny [10℄.



3.1 Index PartitioningAs mentioned, in this paper we ompare three partitioningshemes for the index, as a strategy for answering queriesfaster:Loal index (LI): eah proessor generates an inverted �lefor its loal douments.Lexiographial global index (LGI): a global inverted�le for the whole text database is generated, and theinverted lists are distributed among proessors in lexi-ographial order. Aording to this strategy, one pos-sible partitioning for the global index might be one inwhih proessor 1 holds the inverted lists for all theterms that start with the letters A, B and C; proes-sor 2 holds the inverted lists for all the terms that startwith the letters D, E, F and G; and so on, suh thateah proessor holds a portion of the global index withapproximated size. More details on the performaneof the loal and lexiographial global indexes may befound in the work presented in [1, 11℄.Random global index (RGI): an inverted �le is gener-ated for all douments in the text database and �xedsize bloks of the inverted lists are randomly distributedamong proessors.
3.2 Ranking with the Vector Space ModelThe douments in the text database olletion are rankedusing the vetor spae model [12℄. In the vetor spae model,douments and user queries are represented as vetors of theweight of terms. We assign the weight to a term in a dou-ment or a query using the tf-idf sheme [13℄. The standardalgorithm for ranking douments uses a set of aumulators,one aumulator for eah doument in a olletion, and aset of inverted lists. For eah query term t, the ontributionmade by the term t to the degree of similarity between thequery q and eah doument d in the inverted list is addedto the doument d's aumulator's value. The �nal result isomposed by the douments with the highest aumulatorvalues.The work in [10℄ proposes a tehnique for �ltering do-uments during ranking whih allows a signi�ant redutionof ranking evaluation osts without degradation in retrievale�etiveness. In the sequential algorithm the �ltering meh-anism uses thresholds that are determined as a funtion ofthe aumulated partial similarity of the urrently most rel-evant doument Smax.In the lexiographial and random global indexes, whenproessors reeive only a few terms, the value of Smax isa fration of that in the sequential algorithm. In the loalindex, if one of the proessors holds only a few high weighteddouments, the rising of Smax is low. Consequently, theamount of pruned resoures in the distributed algorithmsis smaller than in the sequential algorithm, whih mightdeteriorate the performane of the distributed algorithms.The work in [11℄ proposes a solution to this problem thatpreviews the rising of the Smax value before query proess-ing. In this way, the pruning thresholds used during rankingevaluation an be previously alulated by the broker anddistributed to the proessors, along with the query. Thisstrategy equalizes the pruning of term entries proessed fromthe distributed index, no matter how it is partitioned. Byadopting this adaptation of the �ltering tehnique to the

distributed proessing, we obtain approximately the samee�etiveness as the standard algorithm of the vetor spaemodel, for all the index partitioning strategies, upon signif-iant redutions in ranking evaluation ost.
3.3 Distributed Query ProcessingIn this setion we disuss the harateristis of a dis-tributed information retrieval system, whih onsists of a setof proessors and a designated broker, eah running on a sep-arate mahine. The broker is responsible for sheduling thequeries to the proessors, reeiving the intermediate resultsreturned by eah one of the proessors and ombining theintermediate results into the �nal result. Next, we desribethe query proessing algorithms implemented in the broker,whih di�er aording to the index partitioning strategy.Loal index (LI): In the loal index, the broker sends thequery to all proessors. Eah proessor retrieves thedouments related to that query in the loal subolle-tion and ranks them; selets a number of doumentsfrom the top of the ranking; and returns them to thebroker as the loal answer set. The broker uses a mul-tiway merge [18℄ to fuse the loal answer sets and pro-due the �nal ranked answer set.Lexiographial global index (LGI): In the lexiograph-ial global index, the broker determines whih proes-sors hold inverted lists relative to the query terms,breaks the query into subqueries and sends them tothe respetive proessors. One a proessor has re-eived a subquery, it retrieves the douments relatedto its subquery and ranks them; selets a number ofdouments from the top of the ranking; and returnsthem to the broker as the loal answer set. The brokeradds the weights of the douments whih are present inmore than one loal answer set and perform a sort us-ing the quiksort algorithm to produe the �nal rankedanswer set.Random global index (RGI): In the random global in-dex, the broker determines whih proessors hold bloksof the inverted lists relative to the query terms, breaksthe query into subqueries and sends them to the re-spetive proessors. For seleting the proessors whihmight be involved in the exeution of a query, the bro-ker pre-alulates the pruning thresholds to be usedduring ranking evaluation of that query, and examineswhih proessors hold bloks with frequenies higherthan the thresholds; a proessor holding a blok withlow frequenies is not sheduled for that query. Onea proessor has reeived a subquery, it retrieves thedouments related to its subquery in the loal sub-set of bloks of inverted lists and ranks them; seletsa number of douments from the top of the ranking;and returns them to the broker as the loal answer set.The broker adds the weights of the douments whihare present in more than one loal answer set and do asort using the quiksort algorithm to produe the �nalranked answer set.For both global indexes (lexiographial and random), lo-al rankings are less preise, whih ompliates the uttingstrategy that onsists of the seletion of a number of dou-ments to be sent bak to the broker. To solve this problem,



we adopted the uto� fator presented to the lexiographialglobal index in [11℄, given by p� f2, where p is the numberof proessors, f2 = 5�f1 and f1 is the number of doumentsin the �nal answer set. Using suh fator, they observed nosigni�ant variation in the �nal answer preision.
4. ANALYTICAL MODELTo evaluate query performane in our distributed textdatabase for more system on�gurations than are urrentlyavailable, an analytial model oupled with a simulator wasdeveloped and validated. Despite its simpliity, the modelperfetly aptures the key workload variables and systemparameters that determine proessing time in our system,with a onsiderably low estimated deviation from real time.
4.1 Variables and ParametersNext, we de�ne the notation for the basi workload vari-ables and ritial system parameters that ause impat onour system performane.Workload Variables:ai: sum of the number ai;j of pairs <doument, similarity>in the loal answer sets returned by proessors j for query~qi, that is, ai =Ppj=1 ai;jai;j : number of pairs <doument, similarity> in the loalanswer set returned by proessor j for query ~qii;ai : number of operations (omparison and swap) duringmerging of loal answer sets for query ~qi at the brokeri;j : number of operations (omparison or swap) duringranking of douments for query ~qi at proessor j (in loalindex)si;j : number of operations (omparison or swap) duringranking of douments for subquery ~qi;j at proessor j (inlexiographial and random indexes)ti: time between the arrival of query ~qi in the system andthe beginning of its proessing in any of the proessorsti;b: time between the arrival of loal answer sets in thebroker and the beginning of their merginghi;j : number of pairs <doument, similarity> inserted oraumulated in the set of aumulators during ranking ofquery ~qi at proessor jg`k: size (in number of bloks of 4 kilobytes) of the globalinverted list for term k (in lexiographial index)g`k;j : size (in number of bloks of 4 kilobytes) of the globalinverted list for term k at proessor j (random index)``k;j : size (in number of bloks of 4 kilobytes) of the loalinverted list for term k at proessor j (in loal index)p: number of proessorsqi: number of terms in query ~qi~qi: vetor of terms of query iqi;j : number of terms in subquery ~qi;j~qi;j : vetor of terms extrated from query i and sent (by thebroker) to the proessor jti: total time (in seonds) to proess query ~qiti;j : time (in seonds) to proess subquery ~qi;j at proessorjtfi: �nishing time of proessing of query ~qi in any of theproessorstsi: beginning time of proessing of query ~qi in any of theproessorsSystem parameters:b: number of bytes of a pair <doument, similarity>

f1: number of pairs <doument, similarity> from the top ofthe ranking whih are returned as loal answer set (in loalindex)f2: proportionality onstant whih a�ets the number ofpairs <doument, similarity> from the top of the rankingwhih are returned as loal answer set (in lexiographialand random indexes)t: average time (in seonds) to exeute an operation ofomparison or swap during ranking of doumentsth: average time (in seonds) to insert or aumulate a pair<doument, similarity> in a hash tabletr: average time (in seonds) to read a blok of 4 kilobytesfrom disk exluding seek timets: average time (in seonds) to read a blok of 4 kilobytesfrom disk inluding seek timett: average time (in seonds) to transfer a byte from onemahine to anotherIn the loal index, the query ~qi is sent to all proessors,whih implies that eah proessor has to exeute a querywhose length is given by qi. In the lexiographial index, thequery is broken in subqueries that are sent to the proessorsthat hold the relative inverted lists, whih implies that eahproessor j has to exeute only a subquery ~qi;j whose lengthis given by qi;j . In the random index, the query is broken insubqueries that are sent to the proessors holding bloks oftheir inverted lists, whih implies that eah proessor j hasto exeute only a subquery ~qi;j .When a proessor j reeives a query ~qi (or subquery ~qi;j),it reads from disk the inverted lists relative to their termsand proesses suh lists to generate the loal answer set.Considering that the inverted list for term k has a size givenby g`k;j, the number of bloks read from disk is given byPk2~qi g`k;j .The variable hi;j ounts the number of pairs <doument,similarity> inserted or aumulated in the set of aumu-lators (represented by a hash table) during ranking evalua-tion at the various proessors. The variables i;j and si;jount the number of operations (omparison and swap) ex-euted during ranking evaluation at the various proessors.The variable ai;j ounts the number of pairs <doument,similarity> from the top of the ranking whih are returnedas loal answer set by proessor j for query ~qi. The variablei;ai ounts the number of operations (omparison and swap)during merging of the loal answer sets at the broker. Theparameters f1 and f2 are used to determinate the numberof douments to be sent bak to the broker. The parameterb is the number of bytes of a pair <doument, similarity>.The remaining parameters relate to system time measures.
4.2 Analysis of Query Processing TimeWe distinguish �ve main phases during the distributedquery proessing: (1) reading of inverted lists from disk; (2)aumulation of doument weights using the vetor spaemodel; (3) ranking of the loal answer set; (4) transfereneof the loal answer sets to the broker; (5) merging of theloal answer sets at the broker. Phase 1 (F1) to phase 4(F4) are exeuted by the proessors while phase 5 (F5) in-volves only the broker. As we onsider a onurrent queryservie sheme, these �ve phases are overlapped and inter-leaved during the exeution of the various queries.In the loal index, eah proessor must exeute the wholequery, whih implies that the proessing of a query ~qi lasts



at proessor j for a time ti;j , given by:ti;j = qi � ts +Pk2~qi ``k;j � tr+ (F1)hi;j � th+ (F2)i;j � t+ (F3)f1 � b� tt (F4) (1)In the lexiographial index, the broker �rst determineswhih proessors hold inverted lists of the query terms, breaksthe query into subqueries and sends the subqueries to therespetive proessors. The time ti;j to proess subquery ~qi;jat proessor j an be modeled by:ti;j = qi;j � ts +Pk2~qi;j g`k � tr+ (F1)hi;j � th+ (F2)si;j � t+ (F3)p� f2 � b� tt (F4) (2)In the random index, the broker determines whih pro-essors hold bloks of the inverted lists relative to the queryterms, breaks the query into subqueries and sends them tothe respetive proessors. Only the time for F1 hanges,given by: qi;j � ts +Pk2~qi;j g`k;j � tr (F1) (3)For the loal index, the time ti;b to merge the loal answersets of query ~qi is given by:ti;b = i;ai � t (F5) (4)For merging the loal answer sets, we use the multiwaymerge [18℄ algorithm, whose omplexity is O(f1: log(j)).For both global indexes (lexiographial and random), thetime ti;b to merge the loal answer sets of query ~qi mustinlude the addition of weights of douments present in morethan one loal answer set, being given by:ti;b = ai � th + i;ai � t (F5) (5)For adding the weights of douments, we insert eah of thepairs <doument, similarity> in a set of aumulators (rep-resented by a hash table), with a omplexity of O(ai); forsorting the total number of douments, we use the quiksortalgorithm, whose omplexity is O(ai: log(ai)).In the distributed query proessing of a query ~qi, someproessors �nish the exeution of F4 before others. Theseproessors an then start immediately the exeution of thenext query, instead of waiting for the onlusion of F5 forthe query ~qi. To apture suh behavior, we employed a sim-ulator to repliate the exeution for a bath of queries of F1through F4 in eah proessor, and estimate the proessingtime of eah query in eah of the proessors in the system,aording to Eq.(1), Eq.(2) and Eq.(3) for the loal, lexio-graphial and random indexes, respetively. Also, the sim-ulator proesses and times F5 in the broker for eah query~qi, using Eq.(4) and Eq.(5) for the loal, and lexiographialand random indexes, respetively.We applied other simulator to estimate ontention ti be-fore servie, starting time tsi and �nishing time tfi of query~qi in any of the proessors, and ontention ti;b in the bro-ker, for varying request rates. In this way, for all the indexpartitioning strategies, the �nal proessing time ti of a query~qi is given by:

ti = ti +maxpj=1(tfi;j)�minpj=1(tsi;j) + ti;b + ti;bwhere maxpj=1(tfi;j) is the maximum �nishing time of query~qi at proessors j = 1 to p, and minpj=1(tsi;j) is the mini-mum starting time of query ~qi at proessors j = 1 to p.To estimate the variables involved in eah of the phasesat the proessors, the simulator repliates the exeution of abath of queries in eah proessor and ounts: the number ofterms of the query (or subquery) and the number of bloksread in F1; the number of pairs <doument, similarity>inserted or aumulated in the set of aumulators in F2; thenumber of douments ranked and the number of operationsof omparison or swap for ranking douments in F3; and thenumber of bytes transferred to the broker in F4. Also, thesimulator proesses the merging of the loal answer sets fora bath of queries to ount the size of the loal answer sets(in lexiographial and random indexes) and the number ofoperations of omparison and swap done for generating the�nal ranking of douments in F5 at the broker.
4.3 Experimental SetupThe mahine we used in experiments is an AMD-K6-2with a 500 MHz proessor, 256 megabytes of main memory,30 gigabytes IDE hard disk, and running Linux operatingsystem version 2.4.7-10.The data omprise 20 gigabytes of Web pages olletedby the TodoBR [16℄ searh engine. Real lengths of the in-verted lists in TodoBR are used. The query set is omposedby 100; 256 queries of a partial log of queries submitted toTodoBR. In this log, there is a total of 37,450 unique queries,and 23,751 unique terms.
4.4 Validation of the Analytical ModelFor prediting I/O time for aessing data on disk, wemade experiments using a raw devie, whih an be boundto an existing blok devie (e.g. a disk) and be used toperform raw I/O with that existing blok devie. Suh rawI/O bypasses the ahing that is normally assoiated withblok devies. Hene a raw devie o�ers a more diret routeto the physial devie and allows an appliation more ontrolover the timing of I/O to that physial devie. The systemtime parameters used in our analysis, whih we have shownto be valid in our test mahine, are given in Table 1.We �rstly measured the servie time to random data bloks,for a large number of requests, and then estimated the meanof these times. Seondly, we measured the servie time ofsequential data bloks, and again estimated the mean ofthese times. The �rst mean ts inludes seek time, as it re-lates to randomly aessed data bloks. The seond meantr exludes seek time, beause it relates to sequentially a-essed data bloks. In this way, we onsider ts while readingthe �rst blok of an inverted list and tr while reading thesubsequent bloks of the same inverted list.In order of inferring CPU time for retrieving douments,we measured the time to insert a number of pairs<doument,similarity> in the set of aumulators represented by a hashtable, and then estimated the average time th to insert onepair in the hash. In fat, we timed this insertion proe-dure for an inreasing number of pairs and on�rmed thatour preditions are aurate ones. For prediting CPU timefor ranking douments, we timed the sorting of a numberof pairs <doument, similarity> and estimated the average



System Time ParametersDisk read (inluding seek time) 1:02192 � 10�2 ses per blok of 4 kilobytesDisk read (exluding seek time) 2:99654 � 10�4 ses per blok of 4 kilobytesInsertion in the set of aumulators 8:03982 � 10�7 ses per pair <doument, similarity>Operation of oating point division 1:6892� 10�7 sesOperation of omparison or swap 5:82213 � 10�8 ses per pair <doument, similarity>Network transfer time 2:4� 10�7 ses per byteTable 1: System time parameters in our test mahine.time t of an operation of omparison or swap during sorting.Again, we repeated this sorting proedure for an inreasingnumber of pairs to ertify the preision of our estimations.One we had derived system time parameters, in order ofvalidating F1 to F3 of our analytial model, we timed theexeution of these phases for 100 bathes of 50 queries in asingle proessor. Eah bath were exeuted 10 times, whihproved to be a suÆient number of runs with an estimatedoeÆient of variation of 1:02% on average.We also evaluated the exeution of F1 to F3 for these same100 bathes of 50 queries using our analytial model. Theresults are shown in Figure 3. As an be seen, agreement be-tween the real and the analytial proessing times is rathergood, with an estimated relative deviation of 3:12%.
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 10 20 30 40 50 60 70 80 90 100

Pr
oc

es
si

ng
 ti

m
e 

(s
ec

on
ds

)

Batch of 50 queries

analytical time
real time

Figure 3: Comparison between real and analytialproessing times for 100 bathes of 50 queries.Regarding F5, it is entirely analogous to F3 in the loal in-dex, and a ombination of F2 and F3 in the global index. Inthis way, our predition is fairly aurate, beause it workedfor F2 and F3. Regarding F4, we estimated a value for net-work transfer time based on a third of the nominal value ofour network, in order to take into onsideration the over-heads due to the operating system and the ommuniationprotools whih a�et the transmission of data.
5. RESULTSThe random global, lexiographial global, and loal in-dexes are ompared in the aspets of onurreny and par-allelism, disk seek, load balane, size of inverted lists, faulttolerane, and system on�guration, as presented in Table 2.Experimental results show the pratial impat of thethree index partitioning strategies on the performane ofour distributed information retrieval system. We employa simulator to read a log of 100; 256 (a hundred thousandand two hundred �fty six) queries submitted to the TodoBR

searh engine, repliate its exeution and generate a traewith the proessing time, estimated by the analytial model,of eah query in eah of the proessors in the system.For analyzing the performane of the system for varyingrequest rates, we apply other simulator to read the timingtrae and report, among other information, the average re-sponse time for the system to send an answer, the through-put of the system, the average ost by ative proessor, andthe average load imbalane by ative proessor. The ost isthe proessing time of a proessor, and the load imbalane isthe di�erene between the proessing time of the proessorsand the average proessing time by ative proessor.Figure 4 presents the harateristis of the inverted listsof the TodoBR log used in the experiments. Regarding thesize of the inverted lists assigned to eah proessor, in the lo-al index and random global index inverted lists are smallerbeause in the former they ontain only the douments fromthe loal subolletion, and in the latter only the doumentsfrom the bloks of inverted lists assigned to the proessor.On the other hand, in the lexiographial global index theinverted lists assigned to eah proessor are larger, beausethey ontain douments from the whole text database ol-letion.
0.0001

0.001

0.01

0.1

1

10 100 1000 1e+04 1e+05 1e+06 1e+07

Fr
ac

tio
n 

of
 r

ef
er

en
ce

s

Size (in bytes) of inverted listsFigure 4: Popularity versus size for inverted lists,relative to a TodoBR log of roughly 100 thousandqueries.Regarding onurreny and parallelism, in the loal in-dex all proessors are devoted to the exeution of a singlequery, thus providing high parallelism. In the lexiograph-ial global index, not all proessors might be involved withthe proessing of a single query (e.g., when the number ofproessors is larger than the number of query terms, or whenmany query terms are stored in a single proessor releasingthe others), thus allowing high onurreny. The randomglobal index ombines both parallelism and onurreny.



LI LGI RGIHigh parallelism High onurreny Both parallelism and onurrenyMore disk seeks Less disk seeks Less disk seeksBetter load balane Worse load balane Better load balaneSmaller inverted lists Larger inverted lists Smaller inverted listsReasonable fault tolerane Low fault tolerane High fault toleraneReasonable system on�guration Harder system on�guration Easier system on�gurationTable 2: Comparison between the loal, lexiographial global, and random global index partitioning strate-gies.Parallelism is allowed beause the bloks of an inverted listare spread among proessors, whih implies that more thanone proessor might be involved with the proessing of asame term mentioned in a query. Conurreny is allowedbeause if only a small number of proessors happen to holdall the bloks of the terms of a given query, then those pro-essors are able to exeute that query without need to o-operate with the others. As a result, more than one querymight be proessed simultaneously.Regarding disk seek, in the loal index retrievals requiremore disk seeking operations, beause eah proessor re-eives all query terms. In the lexiographial global indexand random global index retrievals require less disk seekingoperations, beause the proessors do not neessarily reeiveall query terms.Figure 5 shows the response time as a funtion of therequest rate for 8 and 64 proessors. The on�gurationsemploying 64 proessors provided better response times andRGI outperformed LGI by 18% on average for the intervalbetween 1 and 50 requests per seond. As the number ofrequest per seond inreases, and beause the RGI organi-zation ahieves more parallelism, the workload of the brokerinreases, beoming a relevant part of the response time.Hene, the LGI beomes better.
0.01

0.1

1

10

0 10 20 30 40 50 60 70 80

R
es

po
ns

e 
tim

e 
(i

n 
se

co
nd

s)

Requests per second

RGI64k8p
LGI8p

LI8p
RGI64k64p

LGI64p
LI64pFigure 5: Average response time as a funtion ofthe request rate, for the random global index (RGI)with blok size of 64 kilobytes, lexiographial globalindex (LGI) and loal index (LI), with 8 and 64 pro-essors.Figure 6 shows the throughput as a funtion of the re-quest rate for 8 and 64 proessors. We observe that theLGI on�gurations ahieved higher throughput rates, wherewe observe average gains of about 10% of LGI over RGI.Further, as expeted, both RGI and LGI outperformed sig-ni�atively LI, where the gains reahed �ve times.

1

10

100

1 10 100

T
hr

ou
gh

pu
t

Requests per second

RGI64k8p
LGI8p

LI8p
RGI64k64p

LGI64p
LI64p

Figure 6: Throughput obtained by the system as afuntion of the request rate, for the random globalindex (RGI) with blok size of 64 kilobytes, lexio-graphial global index (LGI) and loal index (LI),with 8 and 64 proessors.Regarding load balane, in the lexiographial global in-dex the load balane level is worse than in the random andloal index. The reason is that in the lexiographial globalindex, the terms in a query are sent only to the proessorswhih store their inverted lists. This implies that the pro-essor that holds the most frequent terms in the query isheavily loaded, while the proessor that holds the least fre-quent query terms stays relatively idle. In the random globalindex, load balane is better, beause �xed sized bloks ofan inverted list are randomly distributed among proessors.In this way, the probability distribution of bloks in theproessors tends to be uniform, whih provides a good loadbalane. In the loal index, all terms of a query are sentto all proessors and a good load balane level is alwaysprovided.Figure 7 shows the load imbalane as a funtion of thenumber of proessors, where we an see that RGI redues theLGI load imbalane by about half. We explain these gainsby verifying how the di�erent index partitioning strategiesa�et the load balane among the various proessors. LGIis well-known for its poor load balaning, sine the proess-ing is quite loalized and the sizes of the lists merged foranswering a given query are usually quite di�erent.Another fator that helps reduing the load imbalane isthat the average number of proessors per query employedby RGI is onsistently greater than the number of proessorsemployed by LGI, as shown in Table 3. A better usage ofomputational resoures, as well as the distribution of listsegments among proessors explain the better load balan-



0

0.002

0.004

0.006

0.008

0.01

0.012

0 10 20 30 40 50 60 70

L
oa

d 
im

ba
la

nc
e

Processors

RGI64k
LGI

LI

Figure 7: Average load imbalane by ative pro-essor as a funtion of the number of proessors inthe system, for the random global index (RGI) withblok size of 64 kilobytes, lexiographial global in-dex (LGI) and loal index (LI).ing assoiated with RGI. LI, as expeted, presents the lowestload imbalane. The better results provided by RGI are alsoexplained by the average proessing ost per proessor, asshown in Figure 8, where we observe that not only the ost(in time) for 64 proessors is 20% smaller than the otherstrategies, but also that the gain inreases with the numberof proessors. This last observation is a good indiation ofthe better salability of RGI, making it suitable for largesale systems.Number of proessors Ratio between RGI and LGI of thein the system average n. of proessors used per query2 1.03624 1.05888 1.101916 1.118632 1.127664 1.1355Table 3: Ratio between the random global index(RGI) with blok size of 64 kilobytes and lexio-graphial global index (LGI) of the average numberof proessors used per query.Finally, we analyzed the trade-o�s in terms of the bloksize. As expeted, the average ost per proessor inreaseswith the blok size and the number of proessors used perquery dereases as the blok size inreases, as shown in Fig-ures 9 and 10.Regarding fault tolerane, the random global index andloal index are more resilient to failures than the lexio-graphial global index. In the lexiographial global index,when a proessor that holds a set of terms fails, the queriesthat refer to terms in that set annot be answered. On theother hand, a failure of a proessor in the random global in-dex represents the loss of only a subset of douments presentin the bloks held by that proessor. Also, in the loal indexa failure does not prevent any query from being answered,though the �nal answer set might not ontain all the relevantdouments in the olletion.System reon�guration is easier with the random globalindex than with the loal and lexiographial global index.

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0 10 20 30 40 50 60 70

C
os

t (
in

 s
ec

on
ds

)

Processors

RGI64k
LGI

LI

Figure 8: Average ost (in time) by ative proes-sor as a funtion of the number of proessors inthe system, for the random global index (RGI) withblok size of 64 kilobytes, lexiographial global in-dex (LGI) and loal index (LI).
1
2
3
4
5
6
7
8
9

10
11

0 10 20 30 40 50 60 70

Pr
oc

es
so

rs
 u

se
d

Processors

RGI4k
RGI8k

RGI16k
RGI32k
RGI64k

RGI128k

Figure 9: Average number of proessors used perquery as a funtion of the number of proessors inthe system, for the random global index (RGI) whenvarying the blok size from 4 to 64 kilobytes.If more proessors are added to a system using loal index,some douments have to be re-distributed aross proessorsand inverted loally. With the lexiographial global index,the addition of more proessors requires the re-distributionof global inverted lists among proessors. On the other hand,with a random alloation approah only a fration of ran-dom seleted bloks have to be moved to the new proessors,in order to keep the average load balaned aross the pro-essors.
6. CONCLUSIONS AND FUTURE WORKA lexiographially partitioned global index is a quasi-random order for the inverted lists. We ould hash the vo-abulary to have a real random order, but still, parallelismdoes not inrease too muh beause we have very long liststhat are used partially or belong to words that are neverqueried. In this paper we proposed a tehnique that allowsa full random order by splitting the inverted lists in bloksand randomizing its proessor alloation. Our simulation re-sults show that this tehnique outperforms the lexiograph-



0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0 10 20 30 40 50 60 70

C
os

t

Processors

RGI4k
RGI8k

RGI16k
RGI32k
RGI64k

RGI128k

Figure 10: Average ost by ative proessor as afuntion of the number of proessors in the system,for the random global index (RGI) when varying theblok size from 4 to 64 kilobytes.ial global index.Further work inludes a thorough experimental ompari-son, tuning our tehnique to �nd the optimal blok size, andoupling it with other solutions to inrease parallelism andload balane, suh as using query frequenies or hierarhialindexes. Further work is also needed in better broker design,suh that is not the bottlenek for large request rates. Thisan be ahieved also exploiting parallelism.
7. REFERENCES[1℄ C. S. Badue, R. Baeza-Yates, B. Ribeiro-Neto, andN. Ziviani. Distributed query proessing usingpartitioned inverted �les. In Proeedings of the 8thString Proessing and Information RetrievalSymposium, pages 10{20, Laguna de San Rafael,Chile, 2001. IEEE Computer Soiety.[2℄ R. Baeza-Yates and B. Ribeiro-Neto, editors. ModernInformation Retrieval. ACM Press New York, AddisonWesley, 1999.[3℄ S. Berson, R. Muntz, and W. Wong. Randomized dataalloation for real-time disk i/o. In Proeedings of theCOMPCON'96, pages 286{290, 1996.[4℄ Y. Birk. Random raids with seletive exploitation ofredundany for high performane video servers. InProeedings of the 7th International Workshop onNetwork and Operating Sytem Support for DigitalAudio and Video (NOSSDAV'97), pages 13{23, St.Louis, MO, 1997.[5℄ D. Harman. Overview of the third text retrievalonferene. In D. Harman, editor, Proeedings of theThird Text REtrieval Conferene (TREC-3), pages1{19, Gaithersburg, Maryland, U.S.A., 1994. NISTSpeial Publiation 500-207.[6℄ D. Hawking, N. Craswell, and P. Thistlewaite.Overview of TREC-7 very large olletion trak. InE.M. Voorhess and D.K.Harman, editors, Proeedingsof the Seventh Text Retrieval Conferene, pages257{268, Gaithersburg, Maryland, U.S.A., 1998. NISTSpeial Publiation 500-242.[7℄ B. S. Jeong and E. Omieinski. Inverted �lepartitioning shemes in multiple disk systems. IEEE

Transations on Parallel and Distributed Systems,6(2):142{153, 1995.[8℄ J. Korst. Random dupliated assignment: Analternative to striping in video servers. In Proeedingsof the ACM Multimedia 97, pages 219{226, Seattle,WA, USA, 1997.[9℄ A. MaFarlane, J. A. MCann, and S. E. Robertson.Parallel searh using partitioned inverted �les. InProeedings of the 7th International Symposium onString Proessing and Information Retrieval, pages209{220, La Coruna, Spain, 2000. IEEE ComputerSoiety.[10℄ M. Persin, J. Zobel, and R. Saks-Davis. Filtereddoument retrieval with frequeny-sorted indexes.Journal of the Amerian Soiety for InformationSiene, 47(10):749{764, 1996.[11℄ B. A. Ribeiro-Neto and R. A. Barbosa. Queryperformane for tightly oupled distributed digitallibraries. In Proeedings of the third ACM Confereneon Digital Libraries, pages 182{190, 1998.[12℄ G. Salton. The SMART retrieval system {Experiments in automati doument proessing.Prentie Hall In., Englewood Cli�s, NJ, 1971.[13℄ G. Salton and C. Bukley. Term-weighting approahesin automati retrieval. Information Proessing andManagement, 24(5):513{523, 1988.[14℄ J. R. Santos, R. R. Muntz, and B. A. Ribeiro-Neto.Comparing random data alloation and data stripingin multimedia servers. In Proeedings of the ACMSIGMETRICS 2000, pages 44{55, Santa Clara,California, USA, 2000.[15℄ R. Tewari, R. Mukherjee, D. M. Dias, and H. M. Vin.Design and performane tradeo�s in lustered videoservers. In Proeedings of the IEEE InternationalConferene on Multimedia Computing and Systems1996 (ICMCS'96), pages 144{150, Tokyo, Japan, 1996.[16℄ TodoBR. Main page: http://www.todobr.om.br.[17℄ A. Tomasi and H. Garia-Molina. Performane ofinverted indies in shared-nothing distributed textdoument information retrieval systems. InProeedings of the Seond International Conferene onParallel and Distributed Information Systems, pages8{17, San Diego, California, U.S.A., 1993.[18℄ I. H. Witten, A. Mo�at, and T. C. Bell. ManagingGigabytes - Compressing and Indexing Douments andImages. Morgan Kaufmann Publishers, In., 2aedition, 1999.


