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ABSTRACTWe propose a random layout for distributed information re-trieval systems based on a global index. The random lay-out is used to implement a random global index, whi
hallows balan
ing the load and attaining improved perfor-man
e. The distributed system adopts a network of work-stations model and the 
lient-server paradigm. Do
umentsare ranked using the ve
tor spa
e model along with a do
-ument �ltering te
hnique. In the random global index, aglobal inverted �le is generated for all do
uments in the textdatabase and �xed size blo
ks of the inverted lists are ran-domly distributed among pro
essors. Using a real Web data
olle
tion, we 
ompare its performan
e against two otherindex partitioning s
hemes, namely lexi
ographi
al globalindex and lo
al index. For this, an analyti
al model 
oupledwith a simulator is developed and validated. Regarding loadbalan
e, the random layout outperforms the lexi
ographi
alwith gains rea
hing two times. Regarding response time, therandom layout and the lexi
ographi
al have similar perfor-man
e on average. Both layout s
hemes outperform signi-�
atively the lo
al index, with gains that rea
hed �ve times.Due to its better load balan
ing, 
ompetitive query pro
ess-ing performan
e and 
exibility for system re
on�guration,we believe that global indexes based on random layouts area good 
hoi
e for the design of large distributed informationretrieval systems.
1. INTRODUCTIONEle
troni
 
ommer
e is a rapidly growing area on theWorld Wide Web. Appli
ations on ele
troni
 business mustbe able of serving an in
reasing number of suppliers and
ustomers with an expanding 
ommer
ial data 
ontent. Fur-thermore, web-based 
ommer
e demands for very high lev-els of eÆ
ien
y, availability and s
alability. To a
hieve su
heÆ
ient and dependable servi
e, underlying information re-trieval systems 
an turn to distributed and parallel storageand sear
hing.To �nd do
uments qui
kly, information retrieval systemsbuild inverted indexes on disk. Two approa
hes have beenproposed in the work presented in [17℄ to distribute the in-verted index among various 
omputers. They are the lo
alindex (LI) and lexi
ographi
al global index (LGI). In the lo-
al index, the do
uments in the text database are distributedamong the pro
essors, and ea
h pro
essor generates an in-verted �le for its do
uments. In the lexi
ographi
al globalindex, an inverted �le is generated for all the do
umentsin the text database and the inverted lists are distributed

among pro
essors a

ording to a lexi
ographi
al order ofterms.Generating and maintaining lo
al indexes is simple be-
ause all the work 
an be done lo
ally without intera
tionamong the pro
essors. However, ea
h pro
essor has to ex-e
ute the whole query, whi
h provides high parallelism butalso degrades performan
e 
onsiderably. In the lexi
ograph-i
al global indexes, the terms of a query are sent only tothe pro
essors that hold the related inverted lists, whi
hprovides high 
on
urren
y. Nevertheless, this s
hedulings
heme might deteriorate load balan
e, be
ause the pro
es-sor holding the most frequent terms in a query is heavilyloaded.The obje
tive of this paper is to present a new layout fororganizing a global index for distributed query pro
essing,
alled random global index (RGI). We divide the invertedlists in blo
ks of the same size and randomly sele
t a pro-
essor to hold ea
h blo
k of ea
h inverted list. This randomlayout for the global index 
ombines the advantages of thelo
al and lexi
ographi
al global index partitioning s
hemesbe
ause it provides a better load balan
e among pro
essorsand allows a good degree of query 
on
urren
y within thesystem. As inverted lists are randomly distributed amongpro
essors, the exe
ution of a query is not restri
ted to apro
essor, whi
h provides for parallelism. Not all pro
essorshold blo
ks of the same inverted list, whi
h allows 
on
ur-ren
y. Further, random layouts are simple to maintain; ifpro
essors are added to the system, it is mu
h easier to re-distribute the data. As we shall see, these e�e
ts favor therandom global index organization in detriment of the lo
alindex and lexi
ographi
al global index organizations.The distributed system uses a network of workstationsmodel. The workstations are tightly 
oupled by fast net-work swit
hing te
hnology. The retrieval system adopts the
lient-server paradigm that 
onsists of a set of pro
essorsand a designated broker. An analyti
al model 
oupled witha simulator was developed and validated, in order to evalu-ate query performan
e in our distributed text database formore system 
on�gurations than are 
urrently available.Our results show that the random global index is 
ompeti-tive and sometimes outperforms the traditional lexi
ograph-i
al global index and lo
al index te
hniques, 
onsidering re-sponse time, throughput, load balan
e, and pro
essing 
ost.We used a Web data 
olle
tion for performan
e measure-ment. The random global index and lexi
ographi
al globalindex have similar performan
e on average in response time,and both outperformed signi�
atively the lo
al index, wherethe gains rea
hed �ve times approximately. A similar result



is observed regarding the system throughput.This paper is organized as follows. Se
tion 2 
overs the re-lated work. Se
tion 3 presents the distributed text database,des
ribing the system ar
hite
ture, the index stru
ture, theve
tor spa
e model as ranking strategy and the query pro-
essing. Se
tion 4 des
ribes an analyti
al model for pre-di
ting distributed query performan
e. Se
tion 5 shows theexperimental results, and Se
tion 6 presents the 
on
lusionsand future work.
2. RELATED WORKThe work presented in [17℄ proposes the two basi
 anddistin
t options for storing the inverted lists, namely lo
alindex and lexi
ographi
al global index. The work in [7℄ 
on-siders the two basi
 s
hemes for index partitioning proposedin [17℄ for a shared-everything multipro
essor ma
hine withmultiple disks. The work in [11℄ 
onsiders the two index or-ganizations proposed in [17℄ for a tightly 
oupled network,and investigates how query performan
e is a�e
ted by theindex organization, the network speed, and the disks trans-fer rate. Our work di�ers from those presented in [17, 7,11℄ in the following aspe
ts. First, while the works in [17,7℄ adopt the boolean model, we use the ve
tor spa
e model.Se
ond, while the works in [17, 7℄ model do
uments andqueries, and the work in [11℄ uses do
uments and queries inthe TREC-3 
olle
tion [5℄, we base our experimental resultson a Web data 
olle
tion maintained by the TodoBR [16℄sear
h engine. Third, while the works in [17, 7℄ 
onsider onlya sequential query servi
e, we address a 
on
urrent queryservi
e. Fourth, none of these works have used a randomindex allo
ation.In the works presented in [9, 1℄, the two traditional typesof index partitions proposed in [17℄ are investigated using areal distributed ar
hite
ture implementation. Our work dif-fers from those presented in [9, 1℄ in the following aspe
ts.First, while the work in [9℄ uses part of the do
uments andqueries in the TREC-7 
olle
tion [6℄, and the work in [1℄ em-ploys do
uments and queries in the TREC-3 
olle
tion [5℄,we base our experimental results on a real Web data 
olle
-tion. Se
ond, while they implement a real 
ase framework,we develop and validate an analyti
al model in order of eval-uating performan
e for more system 
on�gurations than are
urrently available. Third, while the work in [9℄ addressesonly a sequential query servi
e, we 
onsider a 
on
urrentquery servi
e. Fourth, none of these works have used a ran-dom index allo
ation.The works presented in [14, 8℄ 
ompare performan
e of amultimedia storage server based on a random data allo
a-tion layout with traditional data striping te
hniques. Ran-dom data allo
ation for multimedia servers has also been
onsidered in [15, 3, 4℄. The work in [15℄ analyzes the per-forman
e of a 
lustered video server with random allo
ationof data blo
ks. In the works in [3, 4℄, random data allo
ationis 
onsidered on RAID systems for 3D intera
tive appli
a-tions. Our work di�ers from those presented in [14, 8, 15,3, 4℄ be
ause while we evaluate performan
e of a textualquery pro
essing system, they investigate performan
e formultimedia systems, that have di�erent requirements andworkloads from ours.
3. DISTRIBUTED TEXT DATABASEThe distributed system uses a network of workstations

model, as illustrated in Figure 1. The workstations aretightly 
oupled by fast network swit
hing te
hnology. Ea
hworkstation has its own lo
al memory and lo
al disk. Theadvantages of this shared nothing model are that all 
om-muni
ation between pro
essors is done through messages,whi
h eliminates interferen
e from operating system mem-ory 
ontrol pro
esses, and that disks are dire
tly a

essedby pro
essors without going through the network.
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Figure 1: Network of workstations model.The retrieval system adopts the 
lient-server paradigmthat 
onsists of a set of pro
essors and a designated bro-ker, responsible for a

epting 
lient queries, distributing thequeries to the pro
essors, 
olle
ting intermediate results fromthe pro
essors, 
ombining the intermediate results into the�nal result and sending the �nal result to the 
lient. Ea
h ofthe pro
essors and the broker runs on a separate ma
hine.Figure 2 illustrates the 
lient-server paradigm.
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Figure 2: Client-server paradigm.The text database is indexed using the inverted �le te
h-nique [2, 18℄. An inverted �le is an indexing stru
ture 
om-posed of two elements: the vo
abulary and a set of invertedlists. The vo
abulary 
ontains ea
h term t in the text do
-ument 
olle
tion; the terms are sorted in lexi
ographi
alorder. There is one inverted list for ea
h term t, 
onsist-ing of the identi�ers of the do
uments 
ontaining the termand, with ea
h identi�er d, the frequen
y fd;t of t in d.Thus, inverted lists 
onsist of term entries, that is, pairs of< d; fd;t > values. As we adopt the ve
tor spa
e model alongwith a te
hnique for �ltering do
uments during ranking, theinverted lists are sorted by de
reasing within-do
ument fre-quen
y [10℄.



3.1 Index PartitioningAs mentioned, in this paper we 
ompare three partitionings
hemes for the index, as a strategy for answering queriesfaster:Lo
al index (LI): ea
h pro
essor generates an inverted �lefor its lo
al do
uments.Lexi
ographi
al global index (LGI): a global inverted�le for the whole text database is generated, and theinverted lists are distributed among pro
essors in lexi-
ographi
al order. A

ording to this strategy, one pos-sible partitioning for the global index might be one inwhi
h pro
essor 1 holds the inverted lists for all theterms that start with the letters A, B and C; pro
es-sor 2 holds the inverted lists for all the terms that startwith the letters D, E, F and G; and so on, su
h thatea
h pro
essor holds a portion of the global index withapproximated size. More details on the performan
eof the lo
al and lexi
ographi
al global indexes may befound in the work presented in [1, 11℄.Random global index (RGI): an inverted �le is gener-ated for all do
uments in the text database and �xedsize blo
ks of the inverted lists are randomly distributedamong pro
essors.
3.2 Ranking with the Vector Space ModelThe do
uments in the text database 
olle
tion are rankedusing the ve
tor spa
e model [12℄. In the ve
tor spa
e model,do
uments and user queries are represented as ve
tors of theweight of terms. We assign the weight to a term in a do
u-ment or a query using the tf-idf s
heme [13℄. The standardalgorithm for ranking do
uments uses a set of a

umulators,one a

umulator for ea
h do
ument in a 
olle
tion, and aset of inverted lists. For ea
h query term t, the 
ontributionmade by the term t to the degree of similarity between thequery q and ea
h do
ument d in the inverted list is addedto the do
ument d's a

umulator's value. The �nal result is
omposed by the do
uments with the highest a

umulatorvalues.The work in [10℄ proposes a te
hnique for �ltering do
-uments during ranking whi
h allows a signi�
ant redu
tionof ranking evaluation 
osts without degradation in retrievale�e
tiveness. In the sequential algorithm the �ltering me
h-anism uses thresholds that are determined as a fun
tion ofthe a

umulated partial similarity of the 
urrently most rel-evant do
ument Smax.In the lexi
ographi
al and random global indexes, whenpro
essors re
eive only a few terms, the value of Smax isa fra
tion of that in the sequential algorithm. In the lo
alindex, if one of the pro
essors holds only a few high weighteddo
uments, the rising of Smax is low. Consequently, theamount of pruned resour
es in the distributed algorithmsis smaller than in the sequential algorithm, whi
h mightdeteriorate the performan
e of the distributed algorithms.The work in [11℄ proposes a solution to this problem thatpreviews the rising of the Smax value before query pro
ess-ing. In this way, the pruning thresholds used during rankingevaluation 
an be previously 
al
ulated by the broker anddistributed to the pro
essors, along with the query. Thisstrategy equalizes the pruning of term entries pro
essed fromthe distributed index, no matter how it is partitioned. Byadopting this adaptation of the �ltering te
hnique to the

distributed pro
essing, we obtain approximately the samee�e
tiveness as the standard algorithm of the ve
tor spa
emodel, for all the index partitioning strategies, upon signif-i
ant redu
tions in ranking evaluation 
ost.
3.3 Distributed Query ProcessingIn this se
tion we dis
uss the 
hara
teristi
s of a dis-tributed information retrieval system, whi
h 
onsists of a setof pro
essors and a designated broker, ea
h running on a sep-arate ma
hine. The broker is responsible for s
heduling thequeries to the pro
essors, re
eiving the intermediate resultsreturned by ea
h one of the pro
essors and 
ombining theintermediate results into the �nal result. Next, we des
ribethe query pro
essing algorithms implemented in the broker,whi
h di�er a

ording to the index partitioning strategy.Lo
al index (LI): In the lo
al index, the broker sends thequery to all pro
essors. Ea
h pro
essor retrieves thedo
uments related to that query in the lo
al sub
olle
-tion and ranks them; sele
ts a number of do
umentsfrom the top of the ranking; and returns them to thebroker as the lo
al answer set. The broker uses a mul-tiway merge [18℄ to fuse the lo
al answer sets and pro-du
e the �nal ranked answer set.Lexi
ographi
al global index (LGI): In the lexi
ograph-i
al global index, the broker determines whi
h pro
es-sors hold inverted lists relative to the query terms,breaks the query into subqueries and sends them tothe respe
tive pro
essors. On
e a pro
essor has re-
eived a subquery, it retrieves the do
uments relatedto its subquery and ranks them; sele
ts a number ofdo
uments from the top of the ranking; and returnsthem to the broker as the lo
al answer set. The brokeradds the weights of the do
uments whi
h are present inmore than one lo
al answer set and perform a sort us-ing the qui
ksort algorithm to produ
e the �nal rankedanswer set.Random global index (RGI): In the random global in-dex, the broker determines whi
h pro
essors hold blo
ksof the inverted lists relative to the query terms, breaksthe query into subqueries and sends them to the re-spe
tive pro
essors. For sele
ting the pro
essors whi
hmight be involved in the exe
ution of a query, the bro-ker pre-
al
ulates the pruning thresholds to be usedduring ranking evaluation of that query, and examineswhi
h pro
essors hold blo
ks with frequen
ies higherthan the thresholds; a pro
essor holding a blo
k withlow frequen
ies is not s
heduled for that query. On
ea pro
essor has re
eived a subquery, it retrieves thedo
uments related to its subquery in the lo
al sub-set of blo
ks of inverted lists and ranks them; sele
tsa number of do
uments from the top of the ranking;and returns them to the broker as the lo
al answer set.The broker adds the weights of the do
uments whi
hare present in more than one lo
al answer set and do asort using the qui
ksort algorithm to produ
e the �nalranked answer set.For both global indexes (lexi
ographi
al and random), lo-
al rankings are less pre
ise, whi
h 
ompli
ates the 
uttingstrategy that 
onsists of the sele
tion of a number of do
u-ments to be sent ba
k to the broker. To solve this problem,



we adopted the 
uto� fa
tor presented to the lexi
ographi
alglobal index in [11℄, given by p� f2, where p is the numberof pro
essors, f2 = 5�f1 and f1 is the number of do
umentsin the �nal answer set. Using su
h fa
tor, they observed nosigni�
ant variation in the �nal answer pre
ision.
4. ANALYTICAL MODELTo evaluate query performan
e in our distributed textdatabase for more system 
on�gurations than are 
urrentlyavailable, an analyti
al model 
oupled with a simulator wasdeveloped and validated. Despite its simpli
ity, the modelperfe
tly 
aptures the key workload variables and systemparameters that determine pro
essing time in our system,with a 
onsiderably low estimated deviation from real time.
4.1 Variables and ParametersNext, we de�ne the notation for the basi
 workload vari-ables and 
riti
al system parameters that 
ause impa
t onour system performan
e.Workload Variables:ai: sum of the number ai;j of pairs <do
ument, similarity>in the lo
al answer sets returned by pro
essors j for query~qi, that is, ai =Ppj=1 ai;jai;j : number of pairs <do
ument, similarity> in the lo
alanswer set returned by pro
essor j for query ~qi
i;ai : number of operations (
omparison and swap) duringmerging of lo
al answer sets for query ~qi at the broker
i;j : number of operations (
omparison or swap) duringranking of do
uments for query ~qi at pro
essor j (in lo
alindex)
si;j : number of operations (
omparison or swap) duringranking of do
uments for subquery ~qi;j at pro
essor j (inlexi
ographi
al and random indexes)
ti: time between the arrival of query ~qi in the system andthe beginning of its pro
essing in any of the pro
essors
ti;b: time between the arrival of lo
al answer sets in thebroker and the beginning of their merginghi;j : number of pairs <do
ument, similarity> inserted ora

umulated in the set of a

umulators during ranking ofquery ~qi at pro
essor jg`k: size (in number of blo
ks of 4 kilobytes) of the globalinverted list for term k (in lexi
ographi
al index)g`k;j : size (in number of blo
ks of 4 kilobytes) of the globalinverted list for term k at pro
essor j (random index)``k;j : size (in number of blo
ks of 4 kilobytes) of the lo
alinverted list for term k at pro
essor j (in lo
al index)p: number of pro
essorsqi: number of terms in query ~qi~qi: ve
tor of terms of query iqi;j : number of terms in subquery ~qi;j~qi;j : ve
tor of terms extra
ted from query i and sent (by thebroker) to the pro
essor jti: total time (in se
onds) to pro
ess query ~qiti;j : time (in se
onds) to pro
ess subquery ~qi;j at pro
essorjtfi: �nishing time of pro
essing of query ~qi in any of thepro
essorstsi: beginning time of pro
essing of query ~qi in any of thepro
essorsSystem parameters:b: number of bytes of a pair <do
ument, similarity>

f1: number of pairs <do
ument, similarity> from the top ofthe ranking whi
h are returned as lo
al answer set (in lo
alindex)f2: proportionality 
onstant whi
h a�e
ts the number ofpairs <do
ument, similarity> from the top of the rankingwhi
h are returned as lo
al answer set (in lexi
ographi
aland random indexes)t
: average time (in se
onds) to exe
ute an operation of
omparison or swap during ranking of do
umentsth: average time (in se
onds) to insert or a

umulate a pair<do
ument, similarity> in a hash tabletr: average time (in se
onds) to read a blo
k of 4 kilobytesfrom disk ex
luding seek timets: average time (in se
onds) to read a blo
k of 4 kilobytesfrom disk in
luding seek timett: average time (in se
onds) to transfer a byte from onema
hine to anotherIn the lo
al index, the query ~qi is sent to all pro
essors,whi
h implies that ea
h pro
essor has to exe
ute a querywhose length is given by qi. In the lexi
ographi
al index, thequery is broken in subqueries that are sent to the pro
essorsthat hold the relative inverted lists, whi
h implies that ea
hpro
essor j has to exe
ute only a subquery ~qi;j whose lengthis given by qi;j . In the random index, the query is broken insubqueries that are sent to the pro
essors holding blo
ks oftheir inverted lists, whi
h implies that ea
h pro
essor j hasto exe
ute only a subquery ~qi;j .When a pro
essor j re
eives a query ~qi (or subquery ~qi;j),it reads from disk the inverted lists relative to their termsand pro
esses su
h lists to generate the lo
al answer set.Considering that the inverted list for term k has a size givenby g`k;j, the number of blo
ks read from disk is given byPk2~qi g`k;j .The variable hi;j 
ounts the number of pairs <do
ument,similarity> inserted or a

umulated in the set of a

umu-lators (represented by a hash table) during ranking evalua-tion at the various pro
essors. The variables 
i;j and 
si;j
ount the number of operations (
omparison and swap) ex-e
uted during ranking evaluation at the various pro
essors.The variable ai;j 
ounts the number of pairs <do
ument,similarity> from the top of the ranking whi
h are returnedas lo
al answer set by pro
essor j for query ~qi. The variable
i;ai 
ounts the number of operations (
omparison and swap)during merging of the lo
al answer sets at the broker. Theparameters f1 and f2 are used to determinate the numberof do
uments to be sent ba
k to the broker. The parameterb is the number of bytes of a pair <do
ument, similarity>.The remaining parameters relate to system time measures.
4.2 Analysis of Query Processing TimeWe distinguish �ve main phases during the distributedquery pro
essing: (1) reading of inverted lists from disk; (2)a

umulation of do
ument weights using the ve
tor spa
emodel; (3) ranking of the lo
al answer set; (4) transferen
eof the lo
al answer sets to the broker; (5) merging of thelo
al answer sets at the broker. Phase 1 (F1) to phase 4(F4) are exe
uted by the pro
essors while phase 5 (F5) in-volves only the broker. As we 
onsider a 
on
urrent queryservi
e s
heme, these �ve phases are overlapped and inter-leaved during the exe
ution of the various queries.In the lo
al index, ea
h pro
essor must exe
ute the wholequery, whi
h implies that the pro
essing of a query ~qi lasts



at pro
essor j for a time ti;j , given by:ti;j = qi � ts +Pk2~qi ``k;j � tr+ (F1)hi;j � th+ (F2)
i;j � t
+ (F3)f1 � b� tt (F4) (1)In the lexi
ographi
al index, the broker �rst determineswhi
h pro
essors hold inverted lists of the query terms, breaksthe query into subqueries and sends the subqueries to therespe
tive pro
essors. The time ti;j to pro
ess subquery ~qi;jat pro
essor j 
an be modeled by:ti;j = qi;j � ts +Pk2~qi;j g`k � tr+ (F1)hi;j � th+ (F2)
si;j � t
+ (F3)p� f2 � b� tt (F4) (2)In the random index, the broker determines whi
h pro-
essors hold blo
ks of the inverted lists relative to the queryterms, breaks the query into subqueries and sends them tothe respe
tive pro
essors. Only the time for F1 
hanges,given by: qi;j � ts +Pk2~qi;j g`k;j � tr (F1) (3)For the lo
al index, the time ti;b to merge the lo
al answersets of query ~qi is given by:ti;b = 
i;ai � t
 (F5) (4)For merging the lo
al answer sets, we use the multiwaymerge [18℄ algorithm, whose 
omplexity is O(f1: log(j)).For both global indexes (lexi
ographi
al and random), thetime ti;b to merge the lo
al answer sets of query ~qi mustin
lude the addition of weights of do
uments present in morethan one lo
al answer set, being given by:ti;b = ai � th + 
i;ai � t
 (F5) (5)For adding the weights of do
uments, we insert ea
h of thepairs <do
ument, similarity> in a set of a

umulators (rep-resented by a hash table), with a 
omplexity of O(ai); forsorting the total number of do
uments, we use the qui
ksortalgorithm, whose 
omplexity is O(ai: log(ai)).In the distributed query pro
essing of a query ~qi, somepro
essors �nish the exe
ution of F4 before others. Thesepro
essors 
an then start immediately the exe
ution of thenext query, instead of waiting for the 
on
lusion of F5 forthe query ~qi. To 
apture su
h behavior, we employed a sim-ulator to repli
ate the exe
ution for a bat
h of queries of F1through F4 in ea
h pro
essor, and estimate the pro
essingtime of ea
h query in ea
h of the pro
essors in the system,a

ording to Eq.(1), Eq.(2) and Eq.(3) for the lo
al, lexi
o-graphi
al and random indexes, respe
tively. Also, the sim-ulator pro
esses and times F5 in the broker for ea
h query~qi, using Eq.(4) and Eq.(5) for the lo
al, and lexi
ographi
aland random indexes, respe
tively.We applied other simulator to estimate 
ontention 
ti be-fore servi
e, starting time tsi and �nishing time tfi of query~qi in any of the pro
essors, and 
ontention 
ti;b in the bro-ker, for varying request rates. In this way, for all the indexpartitioning strategies, the �nal pro
essing time ti of a query~qi is given by:

ti = 
ti +maxpj=1(tfi;j)�minpj=1(tsi;j) + 
ti;b + ti;bwhere maxpj=1(tfi;j) is the maximum �nishing time of query~qi at pro
essors j = 1 to p, and minpj=1(tsi;j) is the mini-mum starting time of query ~qi at pro
essors j = 1 to p.To estimate the variables involved in ea
h of the phasesat the pro
essors, the simulator repli
ates the exe
ution of abat
h of queries in ea
h pro
essor and 
ounts: the number ofterms of the query (or subquery) and the number of blo
ksread in F1; the number of pairs <do
ument, similarity>inserted or a

umulated in the set of a

umulators in F2; thenumber of do
uments ranked and the number of operationsof 
omparison or swap for ranking do
uments in F3; and thenumber of bytes transferred to the broker in F4. Also, thesimulator pro
esses the merging of the lo
al answer sets fora bat
h of queries to 
ount the size of the lo
al answer sets(in lexi
ographi
al and random indexes) and the number ofoperations of 
omparison and swap done for generating the�nal ranking of do
uments in F5 at the broker.
4.3 Experimental SetupThe ma
hine we used in experiments is an AMD-K6-2with a 500 MHz pro
essor, 256 megabytes of main memory,30 gigabytes IDE hard disk, and running Linux operatingsystem version 2.4.7-10.The data 
omprise 20 gigabytes of Web pages 
olle
tedby the TodoBR [16℄ sear
h engine. Real lengths of the in-verted lists in TodoBR are used. The query set is 
omposedby 100; 256 queries of a partial log of queries submitted toTodoBR. In this log, there is a total of 37,450 unique queries,and 23,751 unique terms.
4.4 Validation of the Analytical ModelFor predi
ting I/O time for a

essing data on disk, wemade experiments using a raw devi
e, whi
h 
an be boundto an existing blo
k devi
e (e.g. a disk) and be used toperform raw I/O with that existing blo
k devi
e. Su
h rawI/O bypasses the 
a
hing that is normally asso
iated withblo
k devi
es. Hen
e a raw devi
e o�ers a more dire
t routeto the physi
al devi
e and allows an appli
ation more 
ontrolover the timing of I/O to that physi
al devi
e. The systemtime parameters used in our analysis, whi
h we have shownto be valid in our test ma
hine, are given in Table 1.We �rstly measured the servi
e time to random data blo
ks,for a large number of requests, and then estimated the meanof these times. Se
ondly, we measured the servi
e time ofsequential data blo
ks, and again estimated the mean ofthese times. The �rst mean ts in
ludes seek time, as it re-lates to randomly a

essed data blo
ks. The se
ond meantr ex
ludes seek time, be
ause it relates to sequentially a
-
essed data blo
ks. In this way, we 
onsider ts while readingthe �rst blo
k of an inverted list and tr while reading thesubsequent blo
ks of the same inverted list.In order of inferring CPU time for retrieving do
uments,we measured the time to insert a number of pairs<do
ument,similarity> in the set of a

umulators represented by a hashtable, and then estimated the average time th to insert onepair in the hash. In fa
t, we timed this insertion pro
e-dure for an in
reasing number of pairs and 
on�rmed thatour predi
tions are a

urate ones. For predi
ting CPU timefor ranking do
uments, we timed the sorting of a numberof pairs <do
ument, similarity> and estimated the average



System Time ParametersDisk read (in
luding seek time) 1:02192 � 10�2 se
s per blo
k of 4 kilobytesDisk read (ex
luding seek time) 2:99654 � 10�4 se
s per blo
k of 4 kilobytesInsertion in the set of a

umulators 8:03982 � 10�7 se
s per pair <do
ument, similarity>Operation of 
oating point division 1:6892� 10�7 se
sOperation of 
omparison or swap 5:82213 � 10�8 se
s per pair <do
ument, similarity>Network transfer time 2:4� 10�7 se
s per byteTable 1: System time parameters in our test ma
hine.time t
 of an operation of 
omparison or swap during sorting.Again, we repeated this sorting pro
edure for an in
reasingnumber of pairs to 
ertify the pre
ision of our estimations.On
e we had derived system time parameters, in order ofvalidating F1 to F3 of our analyti
al model, we timed theexe
ution of these phases for 100 bat
hes of 50 queries in asingle pro
essor. Ea
h bat
h were exe
uted 10 times, whi
hproved to be a suÆ
ient number of runs with an estimated
oeÆ
ient of variation of 1:02% on average.We also evaluated the exe
ution of F1 to F3 for these same100 bat
hes of 50 queries using our analyti
al model. Theresults are shown in Figure 3. As 
an be seen, agreement be-tween the real and the analyti
al pro
essing times is rathergood, with an estimated relative deviation of 3:12%.
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Figure 3: Comparison between real and analyti
alpro
essing times for 100 bat
hes of 50 queries.Regarding F5, it is entirely analogous to F3 in the lo
al in-dex, and a 
ombination of F2 and F3 in the global index. Inthis way, our predi
tion is fairly a

urate, be
ause it workedfor F2 and F3. Regarding F4, we estimated a value for net-work transfer time based on a third of the nominal value ofour network, in order to take into 
onsideration the over-heads due to the operating system and the 
ommuni
ationproto
ols whi
h a�e
t the transmission of data.
5. RESULTSThe random global, lexi
ographi
al global, and lo
al in-dexes are 
ompared in the aspe
ts of 
on
urren
y and par-allelism, disk seek, load balan
e, size of inverted lists, faulttoleran
e, and system 
on�guration, as presented in Table 2.Experimental results show the pra
ti
al impa
t of thethree index partitioning strategies on the performan
e ofour distributed information retrieval system. We employa simulator to read a log of 100; 256 (a hundred thousandand two hundred �fty six) queries submitted to the TodoBR

sear
h engine, repli
ate its exe
ution and generate a tra
ewith the pro
essing time, estimated by the analyti
al model,of ea
h query in ea
h of the pro
essors in the system.For analyzing the performan
e of the system for varyingrequest rates, we apply other simulator to read the timingtra
e and report, among other information, the average re-sponse time for the system to send an answer, the through-put of the system, the average 
ost by a
tive pro
essor, andthe average load imbalan
e by a
tive pro
essor. The 
ost isthe pro
essing time of a pro
essor, and the load imbalan
e isthe di�eren
e between the pro
essing time of the pro
essorsand the average pro
essing time by a
tive pro
essor.Figure 4 presents the 
hara
teristi
s of the inverted listsof the TodoBR log used in the experiments. Regarding thesize of the inverted lists assigned to ea
h pro
essor, in the lo-
al index and random global index inverted lists are smallerbe
ause in the former they 
ontain only the do
uments fromthe lo
al sub
olle
tion, and in the latter only the do
umentsfrom the blo
ks of inverted lists assigned to the pro
essor.On the other hand, in the lexi
ographi
al global index theinverted lists assigned to ea
h pro
essor are larger, be
ausethey 
ontain do
uments from the whole text database 
ol-le
tion.
0.0001

0.001

0.01

0.1

1

10 100 1000 1e+04 1e+05 1e+06 1e+07

Fr
ac

tio
n 

of
 r

ef
er

en
ce

s

Size (in bytes) of inverted listsFigure 4: Popularity versus size for inverted lists,relative to a TodoBR log of roughly 100 thousandqueries.Regarding 
on
urren
y and parallelism, in the lo
al in-dex all pro
essors are devoted to the exe
ution of a singlequery, thus providing high parallelism. In the lexi
ograph-i
al global index, not all pro
essors might be involved withthe pro
essing of a single query (e.g., when the number ofpro
essors is larger than the number of query terms, or whenmany query terms are stored in a single pro
essor releasingthe others), thus allowing high 
on
urren
y. The randomglobal index 
ombines both parallelism and 
on
urren
y.



LI LGI RGIHigh parallelism High 
on
urren
y Both parallelism and 
on
urren
yMore disk seeks Less disk seeks Less disk seeksBetter load balan
e Worse load balan
e Better load balan
eSmaller inverted lists Larger inverted lists Smaller inverted listsReasonable fault toleran
e Low fault toleran
e High fault toleran
eReasonable system 
on�guration Harder system 
on�guration Easier system 
on�gurationTable 2: Comparison between the lo
al, lexi
ographi
al global, and random global index partitioning strate-gies.Parallelism is allowed be
ause the blo
ks of an inverted listare spread among pro
essors, whi
h implies that more thanone pro
essor might be involved with the pro
essing of asame term mentioned in a query. Con
urren
y is allowedbe
ause if only a small number of pro
essors happen to holdall the blo
ks of the terms of a given query, then those pro-
essors are able to exe
ute that query without need to 
o-operate with the others. As a result, more than one querymight be pro
essed simultaneously.Regarding disk seek, in the lo
al index retrievals requiremore disk seeking operations, be
ause ea
h pro
essor re-
eives all query terms. In the lexi
ographi
al global indexand random global index retrievals require less disk seekingoperations, be
ause the pro
essors do not ne
essarily re
eiveall query terms.Figure 5 shows the response time as a fun
tion of therequest rate for 8 and 64 pro
essors. The 
on�gurationsemploying 64 pro
essors provided better response times andRGI outperformed LGI by 18% on average for the intervalbetween 1 and 50 requests per se
ond. As the number ofrequest per se
ond in
reases, and be
ause the RGI organi-zation a
hieves more parallelism, the workload of the brokerin
reases, be
oming a relevant part of the response time.Hen
e, the LGI be
omes better.
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LI64pFigure 5: Average response time as a fun
tion ofthe request rate, for the random global index (RGI)with blo
k size of 64 kilobytes, lexi
ographi
al globalindex (LGI) and lo
al index (LI), with 8 and 64 pro-
essors.Figure 6 shows the throughput as a fun
tion of the re-quest rate for 8 and 64 pro
essors. We observe that theLGI 
on�gurations a
hieved higher throughput rates, wherewe observe average gains of about 10% of LGI over RGI.Further, as expe
ted, both RGI and LGI outperformed sig-ni�
atively LI, where the gains rea
hed �ve times.
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Figure 6: Throughput obtained by the system as afun
tion of the request rate, for the random globalindex (RGI) with blo
k size of 64 kilobytes, lexi
o-graphi
al global index (LGI) and lo
al index (LI),with 8 and 64 pro
essors.Regarding load balan
e, in the lexi
ographi
al global in-dex the load balan
e level is worse than in the random andlo
al index. The reason is that in the lexi
ographi
al globalindex, the terms in a query are sent only to the pro
essorswhi
h store their inverted lists. This implies that the pro-
essor that holds the most frequent terms in the query isheavily loaded, while the pro
essor that holds the least fre-quent query terms stays relatively idle. In the random globalindex, load balan
e is better, be
ause �xed sized blo
ks ofan inverted list are randomly distributed among pro
essors.In this way, the probability distribution of blo
ks in thepro
essors tends to be uniform, whi
h provides a good loadbalan
e. In the lo
al index, all terms of a query are sentto all pro
essors and a good load balan
e level is alwaysprovided.Figure 7 shows the load imbalan
e as a fun
tion of thenumber of pro
essors, where we 
an see that RGI redu
es theLGI load imbalan
e by about half. We explain these gainsby verifying how the di�erent index partitioning strategiesa�e
t the load balan
e among the various pro
essors. LGIis well-known for its poor load balan
ing, sin
e the pro
ess-ing is quite lo
alized and the sizes of the lists merged foranswering a given query are usually quite di�erent.Another fa
tor that helps redu
ing the load imbalan
e isthat the average number of pro
essors per query employedby RGI is 
onsistently greater than the number of pro
essorsemployed by LGI, as shown in Table 3. A better usage of
omputational resour
es, as well as the distribution of listsegments among pro
essors explain the better load balan
-
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Figure 7: Average load imbalan
e by a
tive pro-
essor as a fun
tion of the number of pro
essors inthe system, for the random global index (RGI) withblo
k size of 64 kilobytes, lexi
ographi
al global in-dex (LGI) and lo
al index (LI).ing asso
iated with RGI. LI, as expe
ted, presents the lowestload imbalan
e. The better results provided by RGI are alsoexplained by the average pro
essing 
ost per pro
essor, asshown in Figure 8, where we observe that not only the 
ost(in time) for 64 pro
essors is 20% smaller than the otherstrategies, but also that the gain in
reases with the numberof pro
essors. This last observation is a good indi
ation ofthe better s
alability of RGI, making it suitable for larges
ale systems.Number of pro
essors Ratio between RGI and LGI of thein the system average n. of pro
essors used per query2 1.03624 1.05888 1.101916 1.118632 1.127664 1.1355Table 3: Ratio between the random global index(RGI) with blo
k size of 64 kilobytes and lexi
o-graphi
al global index (LGI) of the average numberof pro
essors used per query.Finally, we analyzed the trade-o�s in terms of the blo
ksize. As expe
ted, the average 
ost per pro
essor in
reaseswith the blo
k size and the number of pro
essors used perquery de
reases as the blo
k size in
reases, as shown in Fig-ures 9 and 10.Regarding fault toleran
e, the random global index andlo
al index are more resilient to failures than the lexi
o-graphi
al global index. In the lexi
ographi
al global index,when a pro
essor that holds a set of terms fails, the queriesthat refer to terms in that set 
annot be answered. On theother hand, a failure of a pro
essor in the random global in-dex represents the loss of only a subset of do
uments presentin the blo
ks held by that pro
essor. Also, in the lo
al indexa failure does not prevent any query from being answered,though the �nal answer set might not 
ontain all the relevantdo
uments in the 
olle
tion.System re
on�guration is easier with the random globalindex than with the lo
al and lexi
ographi
al global index.
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Figure 8: Average 
ost (in time) by a
tive pro
es-sor as a fun
tion of the number of pro
essors inthe system, for the random global index (RGI) withblo
k size of 64 kilobytes, lexi
ographi
al global in-dex (LGI) and lo
al index (LI).
1
2
3
4
5
6
7
8
9

10
11

0 10 20 30 40 50 60 70

Pr
oc

es
so

rs
 u

se
d

Processors

RGI4k
RGI8k

RGI16k
RGI32k
RGI64k

RGI128k

Figure 9: Average number of pro
essors used perquery as a fun
tion of the number of pro
essors inthe system, for the random global index (RGI) whenvarying the blo
k size from 4 to 64 kilobytes.If more pro
essors are added to a system using lo
al index,some do
uments have to be re-distributed a
ross pro
essorsand inverted lo
ally. With the lexi
ographi
al global index,the addition of more pro
essors requires the re-distributionof global inverted lists among pro
essors. On the other hand,with a random allo
ation approa
h only a fra
tion of ran-dom sele
ted blo
ks have to be moved to the new pro
essors,in order to keep the average load balan
ed a
ross the pro-
essors.
6. CONCLUSIONS AND FUTURE WORKA lexi
ographi
ally partitioned global index is a quasi-random order for the inverted lists. We 
ould hash the vo-
abulary to have a real random order, but still, parallelismdoes not in
rease too mu
h be
ause we have very long liststhat are used partially or belong to words that are neverqueried. In this paper we proposed a te
hnique that allowsa full random order by splitting the inverted lists in blo
ksand randomizing its pro
essor allo
ation. Our simulation re-sults show that this te
hnique outperforms the lexi
ograph-
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Figure 10: Average 
ost by a
tive pro
essor as afun
tion of the number of pro
essors in the system,for the random global index (RGI) when varying theblo
k size from 4 to 64 kilobytes.i
al global index.Further work in
ludes a thorough experimental 
ompari-son, tuning our te
hnique to �nd the optimal blo
k size, and
oupling it with other solutions to in
rease parallelism andload balan
e, su
h as using query frequen
ies or hierar
hi
alindexes. Further work is also needed in better broker design,su
h that is not the bottlene
k for large request rates. This
an be a
hieved also exploiting parallelism.
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