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ABSTRACT

We propose a random layout for distributed information re-
trieval systems based on a global index. The random lay-
out is used to implement a random global index, which
allows balancing the load and attaining improved perfor-
mance. The distributed system adopts a network of work-
stations model and the client-server paradigm. Documents
are ranked using the vector space model along with a doc-
ument filtering technique. In the random global index, a
global inverted file is generated for all documents in the text
database and fixed size blocks of the inverted lists are ran-
domly distributed among processors. Using a real Web data
collection, we compare its performance against two other
index partitioning schemes, namely lexicographical global
index and local index. For this, an analytical model coupled
with a simulator is developed and validated. Regarding load
balance, the random layout outperforms the lexicographical
with gains reaching two times. Regarding response time, the
random layout and the lexicographical have similar perfor-
mance on average. Both layout schemes outperform signi-
ficatively the local index, with gains that reached five times.
Due to its better load balancing, competitive query process-
ing performance and flexibility for system reconfiguration,
we believe that global indexes based on random layouts are
a good choice for the design of large distributed information
retrieval systems.

1. INTRODUCTION

Electronic commerce is a rapidly growing area on the
World Wide Web. Applications on electronic business must
be able of serving an increasing number of suppliers and
customers with an expanding commercial data content. Fur-
thermore, web-based commerce demands for very high lev-
els of efficiency, availability and scalability. To achieve such
efficient and dependable service, underlying information re-
trieval systems can turn to distributed and parallel storage
and searching.

To find documents quickly, information retrieval systems
build inverted indexes on disk. Two approaches have been
proposed in the work presented in [17] to distribute the in-
verted index among various computers. They are the local
index (LI) and lexicographical global index (LGI). In the lo-
cal index, the documents in the text database are distributed
among the processors, and each processor generates an in-
verted file for its documents. In the lexicographical global
index, an inverted file is generated for all the documents
in the text database and the inverted lists are distributed
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among processors according to a lexicographical order of
terms.

Generating and maintaining local indexes is simple be-
cause all the work can be done locally without interaction
among the processors. However, each processor has to ex-
ecute the whole query, which provides high parallelism but
also degrades performance considerably. In the lexicograph-
ical global indexes, the terms of a query are sent only to
the processors that hold the related inverted lists, which
provides high concurrency. Nevertheless, this scheduling
scheme might deteriorate load balance, because the proces-
sor holding the most frequent terms in a query is heavily
loaded.

The objective of this paper is to present a new layout for
organizing a global index for distributed query processing,
called random global index (RGI). We divide the inverted
lists in blocks of the same size and randomly select a pro-
cessor to hold each block of each inverted list. This random
layout for the global index combines the advantages of the
local and lexicographical global index partitioning schemes
because it provides a better load balance among processors
and allows a good degree of query concurrency within the
system. As inverted lists are randomly distributed among
processors, the execution of a query is not restricted to a
processor, which provides for parallelism. Not all processors
hold blocks of the same inverted list, which allows concur-
rency. Further, random layouts are simple to maintain; if
processors are added to the system, it is much easier to re-
distribute the data. As we shall see, these effects favor the
random global index organization in detriment of the local
index and lexicographical global index organizations.

The distributed system uses a network of workstations
model. The workstations are tightly coupled by fast net-
work switching technology. The retrieval system adopts the
client-server paradigm that consists of a set of processors
and a designated broker. An analytical model coupled with
a simulator was developed and validated, in order to evalu-
ate query performance in our distributed text database for
more system configurations than are currently available.

Our results show that the random global index is competi-
tive and sometimes outperforms the traditional lexicograph-
ical global index and local index techniques, considering re-
sponse time, throughput, load balance, and processing cost.
We used a Web data collection for performance measure-
ment. The random global index and lexicographical global
index have similar performance on average in response time,
and both outperformed significatively the local index, where
the gains reached five times approximately. A similar result



is observed regarding the system throughput.

This paper is organized as follows. Section 2 covers the re-
lated work. Section 3 presents the distributed text database,
describing the system architecture, the index structure, the
vector space model as ranking strategy and the query pro-
cessing. Section 4 describes an analytical model for pre-
dicting distributed query performance. Section 5 shows the
experimental results, and Section 6 presents the conclusions
and future work.

2. RELATED WORK

The work presented in [17] proposes the two basic and
distinct options for storing the inverted lists, namely local
index and lexicographical global index. The work in [7] con-
siders the two basic schemes for index partitioning proposed
in [17] for a shared-everything multiprocessor machine with
multiple disks. The work in [11] considers the two index or-
ganizations proposed in [17] for a tightly coupled network,
and investigates how query performance is affected by the
index organization, the network speed, and the disks trans-
fer rate. Our work differs from those presented in [17, 7,
11] in the following aspects. First, while the works in [17,
7] adopt the boolean model, we use the vector space model.
Second, while the works in [17, 7] model documents and
queries, and the work in [11] uses documents and queries in
the TREC-3 collection [5], we base our experimental results
on a Web data collection maintained by the TodoBR [16]
search engine. Third, while the works in [17, 7] consider only
a sequential query service, we address a concurrent query
service. Fourth, none of these works have used a random
index allocation.

In the works presented in [9, 1], the two traditional types
of index partitions proposed in [17] are investigated using a
real distributed architecture implementation. Our work dif-
fers from those presented in [9, 1] in the following aspects.
First, while the work in [9] uses part of the documents and
queries in the TREC-7 collection [6], and the work in [1] em-
ploys documents and queries in the TREC-3 collection [5],
we base our experimental results on a real Web data collec-
tion. Second, while they implement a real case framework,
we develop and validate an analytical model in order of eval-
uating performance for more system configurations than are
currently available. Third, while the work in [9] addresses
only a sequential query service, we consider a concurrent
query service. Fourth, none of these works have used a ran-
dom index allocation.

The works presented in [14, 8] compare performance of a
multimedia storage server based on a random data alloca-
tion layout with traditional data striping techniques. Ran-
dom data allocation for multimedia servers has also been
considered in [15, 3, 4]. The work in [15] analyzes the per-
formance of a clustered video server with random allocation
of data blocks. In the works in [3, 4], random data allocation
is considered on RAID systems for 3D interactive applica-
tions. Our work differs from those presented in [14, 8, 15,
3, 4] because while we evaluate performance of a textual
query processing system, they investigate performance for
multimedia systems, that have different requirements and
workloads from ours.

3. DISTRIBUTED TEXT DATABASE

The distributed system uses a network of workstations

model, as illustrated in Figure 1. The workstations are
tightly coupled by fast network switching technology. Each
workstation has its own local memory and local disk. The
advantages of this shared nothing model are that all com-
munication between processors is done through messages,
which eliminates interference from operating system mem-
ory control processes, and that disks are directly accessed
by processors without going through the network.

Network Switch
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Processor 1 Processor 2 Processor 3 Processor p

Figure 1: Network of workstations model.

The retrieval system adopts the client-server paradigm
that consists of a set of processors and a designated bro-
ker, responsible for accepting client queries, distributing the
queries to the processors, collecting intermediate results from
the processors, combining the intermediate results into the
final result and sending the final result to the client. Each of
the processors and the broker runs on a separate machine.
Figure 2 illustrates the client-server paradigm.
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Figure 2: Client-server paradigm.

The text database is indexed using the inverted file tech-
nique [2, 18]. An inverted file is an indexing structure com-
posed of two elements: the vocabulary and a set of inverted
lasts. The vocabulary contains each term t in the text doc-
ument collection; the terms are sorted in lexicographical
order. There is one inverted list for each term ¢, consist-
ing of the identifiers of the documents containing the term
and, with each identifier d, the frequency fi: of ¢ in d.
Thus, inverted lists consist of term entries, that is, pairs of
< d, fa,+ > values. As we adopt the vector space model along
with a technique for filtering documents during ranking, the
inverted lists are sorted by decreasing within-document fre-
quency [10].



3.1 Index Partitioning

As mentioned, in this paper we compare three partitioning
schemes for the index, as a strategy for answering queries
faster:

Local index (LI): each processor generates an inverted file
for its local documents.

Lexicographical global index (LGI): a global inverted
file for the whole text database is generated, and the
inverted lists are distributed among processors in lexi-
cographical order. According to this strategy, one pos-
sible partitioning for the global index might be one in
which processor 1 holds the inverted lists for all the
terms that start with the letters A, B and C; proces-
sor 2 holds the inverted lists for all the terms that start
with the letters D, E, F and G; and so on, such that
each processor holds a portion of the global index with
approximated size. More details on the performance
of the local and lexicographical global indexes may be
found in the work presented in [1, 11].

Random global index (RGI): an inverted file is gener-
ated for all documents in the text database and fixed
size blocks of the inverted lists are randomly distributed
among processors.

3.2 Ranking with the Vector Space M odel

The documents in the text database collection are ranked
using the vector space model [12]. In the vector space model,
documents and user queries are represented as vectors of the
weight of terms. We assign the weight to a term in a docu-
ment or a query using the tf-idf scheme [13]. The standard
algorithm for ranking documents uses a set of accumulators,
one accumulator for each document in a collection, and a
set of inverted lists. For each query term ¢, the contribution
made by the term ¢ to the degree of similarity between the
query g and each document d in the inverted list is added
to the document d’s accumulator’s value. The final result is
composed by the documents with the highest accumulator
values.

The work in [10] proposes a technique for filtering doc-
uments during ranking which allows a significant reduction
of ranking evaluation costs without degradation in retrieval
effectiveness. In the sequential algorithm the filtering mech-
anism uses thresholds that are determined as a function of
the accumulated partial similarity of the currently most rel-
evant document S,,qz.

In the lexicographical and random global indexes, when
processors receive only a few terms, the value of S,q. is
a fraction of that in the sequential algorithm. In the local
index, if one of the processors holds only a few high weighted
documents; the rising of Siq. is low. Consequently, the
amount of pruned resources in the distributed algorithms
is smaller than in the sequential algorithm, which might
deteriorate the performance of the distributed algorithms.

The work in [11] proposes a solution to this problem that
previews the rising of the Sy,q, value before query process-
ing. In this way, the pruning thresholds used during ranking
evaluation can be previously calculated by the broker and
distributed to the processors, along with the query. This
strategy equalizes the pruning of term entries processed from
the distributed index, no matter how it is partitioned. By
adopting this adaptation of the filtering technique to the

distributed processing, we obtain approximately the same
effectiveness as the standard algorithm of the vector space
model, for all the index partitioning strategies, upon signif-
icant reductions in ranking evaluation cost.

3.3 Distributed Query Processing

In this section we discuss the characteristics of a dis-
tributed information retrieval system, which consists of a set
of processors and a designated broker, each running on a sep-
arate machine. The broker is responsible for scheduling the
queries to the processors, receiving the intermediate results
returned by each one of the processors and combining the
intermediate results into the final result. Next, we describe
the query processing algorithms implemented in the broker,
which differ according to the index partitioning strategy.

Local index (LI): In the local index, the broker sends the
query to all processors. Each processor retrieves the
documents related to that query in the local subcollec-
tion and ranks them; selects a number of documents
from the top of the ranking; and returns them to the
broker as the local answer set. The broker uses a mul-
tiway merge [18] to fuse the local answer sets and pro-
duce the final ranked answer set.

Lexicographical global index (LGI): In the lexicograph-
ical global index, the broker determines which proces-
sors hold inverted lists relative to the query terms,
breaks the query into subqueries and sends them to
the respective processors. Once a processor has re-
ceived a subquery, it retrieves the documents related
to its subquery and ranks them; selects a number of
documents from the top of the ranking; and returns
them to the broker as the local answer set. The broker
adds the weights of the documents which are present in
more than one local answer set and perform a sort us-
ing the quicksort algorithm to produce the final ranked
answer set.

Random global index (RGI): In the random global in-
dex, the broker determines which processors hold blocks
of the inverted lists relative to the query terms, breaks
the query into subqueries and sends them to the re-
spective processors. For selecting the processors which
might be involved in the execution of a query, the bro-
ker pre-calculates the pruning thresholds to be used
during ranking evaluation of that query, and examines
which processors hold blocks with frequencies higher
than the thresholds; a processor holding a block with
low frequencies is not scheduled for that query. Once
a processor has received a subquery, it retrieves the
documents related to its subquery in the local sub-
set of blocks of inverted lists and ranks them; selects
a number of documents from the top of the ranking;
and returns them to the broker as the local answer set.
The broker adds the weights of the documents which
are present in more than one local answer set and do a
sort using the quicksort algorithm to produce the final
ranked answer set.

For both global indexes (lexicographical and random), lo-
cal rankings are less precise, which complicates the cutting
strategy that consists of the selection of a number of docu-
ments to be sent back to the broker. To solve this problem,



we adopted the cutoff factor presented to the lexicographical
global index in [11], given by p x f2, where p is the number
of processors, f2 = 5x fi and f; is the number of documents
in the final answer set. Using such factor, they observed no
significant variation in the final answer precision.

4. ANALYTICAL MODEL

To evaluate query performance in our distributed text
database for more system configurations than are currently
available, an analytical model coupled with a simulator was
developed and validated. Despite its simplicity, the model
perfectly captures the key workload variables and system
parameters that determine processing time in our system,
with a considerably low estimated deviation from real time.

4.1 Variablesand Parameters

Next, we define the notation for the basic workload vari-
ables and critical system parameters that cause impact on
our system performance.

Workload Variables:

a;: sum of the number a; ; of pairs <document, similarity>
in the local answer sets returned by processors j for query
Gi, that is, a; = Z?:l ai,j

a;,;: number of pairs <document, similarity> in the local
answer set returned by processor j for query §;

Ci,a;: number of operations (comparison and swap) during
merging of local answer sets for query §; at the broker

c¢i,ji number of operations (comparison or swap) during
ranking of documents for query §; at processor j (in local
index)

csij: number of operations (comparison or swap) during
ranking of documents for subquery §i; at processor j (in
lexicographical and random indexes)

ct;: time between the arrival of query ¢; in the system and
the beginning of its processing in any of the processors
ctip: time between the arrival of local answer sets in the
broker and the beginning of their merging

h;,j: number of pairs <document, similarity> inserted or
accumulated in the set of accumulators during ranking of
query §; at processor j

gl size (in number of blocks of 4 kilobytes) of the global
inverted list for term k (in lexicographical index)

gty ;¢ size (in number of blocks of 4 kilobytes) of the global
inverted list for term k at processor j (random index)
20y, ;: size (in number of blocks of 4 kilobytes) of the local
inverted list for term k at processor j (in local index)

p: number of processors

¢i: number of terms in query §;

Gi: vector of terms of query ¢

¢i,j: number of terms in subquery § ;

ds.;: vector of terms extracted from query ¢ and sent (by the
broker) to the processor j

t;: total time (in seconds) to process query §;

t;,;: time (in seconds) to process subquery §;; at processor

J

tf;: finishing time of processing of query ¢; in any of the
Processors

ts;: beginning time of processing of query ¢; in any of the
Processors

System parameters:

b: number of bytes of a pair <document, similarity>

f1: number of pairs <document, similarity> from the top of
the ranking which are returned as local answer set (in local
index)

f2: proportionality constant which affects the number of
pairs <document, similarity> from the top of the ranking
which are returned as local answer set (in lexicographical
and random indexes)

tc: average time (in seconds) to execute an operation of
comparison or swap during ranking of documents

ty: average time (in seconds) to insert or accumulate a pair
<document, similarity> in a hash table

t,: average time (in seconds) to read a block of 4 kilobytes
from disk excluding seek time

ts: average time (in seconds) to read a block of 4 kilobytes
from disk including seek time

tt: average time (in seconds) to transfer a byte from one
machine to another

In the local index, the query ¢ is sent to all processors,
which implies that each processor has to execute a query
whose length is given by g;. In the lexicographical index, the
query is broken in subqueries that are sent to the processors
that hold the relative inverted lists, which implies that each
processor j has to execute only a subquery §;,; whose length
is given by ¢; ;. In the random index, the query is broken in
subqueries that are sent to the processors holding blocks of
their inverted lists, which implies that each processor j has
to execute only a subquery ¢ ;.

When a processor j receives a query ¢; (or subquery ¢,;),
it reads from disk the inverted lists relative to their terms
and processes such lists to generate the local answer set.
Considering that the inverted list for term k has a size given
by g%k,j, the number of blocks read from disk is given by
Deq 9be-

The variable h; ; counts the number of pairs <document,
similarity> inserted or accumulated in the set of accumu-
lators (represented by a hash table) during ranking evalua-
tion at the various processors. The variables c; ; and cs; ;
count the number of operations (comparison and swap) ex-
ecuted during ranking evaluation at the various processors.
The variable a;; counts the number of pairs <document,
similarity> from the top of the ranking which are returned
as local answer set by processor j for query ¢;. The variable
Ci,a; counts the number of operations (comparison and swap)
during merging of the local answer sets at the broker. The
parameters fi and f» are used to determinate the number
of documents to be sent back to the broker. The parameter
b is the number of bytes of a pair <document, similarity>.
The remaining parameters relate to system time measures.

4.2 Analysisof Query Processing Time

We distinguish five main phases during the distributed
query processing: (1) reading of inverted lists from disk; (2)
accumulation of document weights using the vector space
model; (3) ranking of the local answer set; (4) transference
of the local answer sets to the broker; (5) merging of the
local answer sets at the broker. Phase 1 (F1) to phase 4
(F4) are executed by the processors while phase 5 (F5) in-
volves only the broker. As we consider a concurrent query
service scheme, these five phases are overlapped and inter-
leaved during the execution of the various queries.

In the local index, each processor must execute the whole
query, which implies that the processing of a query §; lasts



at processor j for a time t; ;, given by:

ti,]' = q; Xts+ Zqu‘i Eék,j X t,+ (Fl)

hij X th+ (F'2) (1)
Cij X te+ (F3)
fixbxitt (F4)

In the lexicographical index, the broker first determines
which processors hold inverted lists of the query terms, breaks
the query into subqueries and sends the subqueries to the
respective processors. The time ¢; ; to process subquery g ;
at processor j can be modeled by:

ti,j = Qij X ts + Zkeq‘i,j gfk X t,+ (Fl)
hi,]‘ X tp+ (F2) (2)
cSij X te+ (F3)
pX faxbxtt (F4)

In the random index, the broker determines which pro-
cessors hold blocks of the inverted lists relative to the query
terms, breaks the query into subqueries and sends them to
the respective processors. Only the time for F1 changes,
given by:

qi,j X ts + Zketﬁ,j gfk,j Xty (F].) (3)

For the local index, the time ¢; ; to merge the local answer
sets of query @; is given by:

tib = Cia; X te (F5) (4)

For merging the local answer sets, we use the multiway
merge [18] algorithm, whose complexity is O(f1.log(j)).

For both global indexes (lexicographical and random), the
time ¢;, to merge the local answer sets of query ¢; must
include the addition of weights of documents present in more
than one local answer set, being given by:

tip = a; Xth+Cia; Xte (F5H) (5)

For adding the weights of documents, we insert each of the
pairs <document, similarity> in a set of accumulators (rep-
resented by a hash table), with a complexity of O(a;); for
sorting the total number of documents, we use the quicksort
algorithm, whose complexity is O(a;.log(a;)).

In the distributed query processing of a query §;, some
processors finish the execution of F4 before others. These
processors can then start immediately the execution of the
next query, instead of waiting for the conclusion of F5 for
the query ¢;. To capture such behavior, we employed a sim-
ulator to replicate the execution for a batch of queries of F1
through F4 in each processor, and estimate the processing
time of each query in each of the processors in the system,
according to Eq.(1), Eq.(2) and Eq.(3) for the local, lexico-
graphical and random indexes, respectively. Also, the sim-
ulator processes and times F5 in the broker for each query
G, using Eq.(4) and Eq.(5) for the local, and lexicographical
and random indexes, respectively.

We applied other simulator to estimate contention ct; be-
fore service, starting time ¢s; and finishing time ¢ f; of query
@ in any of the processors, and contention ct;; in the bro-
ker, for varying request rates. In this way, for all the index
partitioning strategies, the final processing time ¢; of a query
G is given by:

ti= ct; + max]?:l(tfi,j) — minle(tsi,j) +ctip +tip

where max¥_, (tf; ;) is the maximum finishing time of query
G; at processors j = 1 to p, and minle(ts,-,j) is the mini-
mum starting time of query §; at processors 7 =1 to p.

To estimate the variables involved in each of the phases
at the processors, the simulator replicates the execution of a
batch of queries in each processor and counts: the number of
terms of the query (or subquery) and the number of blocks
read in F1; the number of pairs <document, similarity>
inserted or accumulated in the set of accumulators in F2; the
number of documents ranked and the number of operations
of comparison or swap for ranking documents in F3; and the
number of bytes transferred to the broker in F4. Also, the
simulator processes the merging of the local answer sets for
a batch of queries to count the size of the local answer sets
(in lexicographical and random indexes) and the number of
operations of comparison and swap done for generating the
final ranking of documents in F5 at the broker.

4.3 Experimental Setup

The machine we used in experiments is an AMD-K6-2
with a 500 MHz processor, 256 megabytes of main memory,
30 gigabytes IDE hard disk, and running Linux operating
system version 2.4.7-10.

The data comprise 20 gigabytes of Web pages collected
by the TodoBR [16] search engine. Real lengths of the in-
verted lists in TodoBR are used. The query set is composed
by 100, 256 queries of a partial log of queries submitted to
TodoBR. In this log, there is a total of 37,450 unique queries,
and 23,751 unique terms.

4.4 Validation of the Analytical M odel

For predicting I/O time for accessing data on disk, we
made experiments using a raw device, which can be bound
to an existing block device (e.g. a disk) and be used to
perform raw I/O with that existing block device. Such raw
I/0O bypasses the caching that is normally associated with
block devices. Hence a raw device offers a more direct route
to the physical device and allows an application more control
over the timing of I/O to that physical device. The system
time parameters used in our analysis, which we have shown
to be valid in our test machine, are given in Table 1.

We firstly measured the service time to random data blocks,
for a large number of requests, and then estimated the mean
of these times. Secondly, we measured the service time of
sequential data blocks, and again estimated the mean of
these times. The first mean ¢, includes seek time, as it re-
lates to randomly accessed data blocks. The second mean
t, excludes seek time, because it relates to sequentially ac-
cessed data blocks. In this way, we consider ¢, while reading
the first block of an inverted list and ¢, while reading the
subsequent blocks of the same inverted list.

In order of inferring CPU time for retrieving documents,
we measured the time to insert a number of pairs <document,
similarity> in the set of accumulators represented by a hash
table, and then estimated the average time ¢, to insert one
pair in the hash. In fact, we timed this insertion proce-
dure for an increasing number of pairs and confirmed that
our predictions are accurate ones. For predicting CPU time
for ranking documents, we timed the sorting of a number
of pairs <document, similarity> and estimated the average



| System Time Parameters

Disk read (including seek time)
Disk read (excluding seek time)

Operation of floating point division
Operation of comparison or swap
Network transfer time

1.02192 x 102 secs per block of 4 kilobytes

2.99654 x 10~ 4 secs per block of 4 kilobytes
Insertion in the set of accumulators | 8.03982 x 10~ 7 secs per pair <document, similarity>
1.6892 x 1077 secs

5.82213 x 10~ 8 secs per pair <document, similarity>
2.4 x 10~7 secs per byte

Table 1: System time parameters in our test machine.

time ¢. of an operation of comparison or swap during sorting.
Again, we repeated this sorting procedure for an increasing
number of pairs to certify the precision of our estimations.

Once we had derived system time parameters, in order of
validating F1 to F3 of our analytical model, we timed the
execution of these phases for 100 batches of 50 queries in a
single processor. Each batch were executed 10 times, which
proved to be a sufficient number of runs with an estimated
coefficient of variation of 1.02% on average.

We also evaluated the execution of F1 to F3 for these same
100 batches of 50 queries using our analytical model. The
results are shown in Figure 3. As can be seen, agreement be-
tween the real and the analytical processing times is rather
good, with an estimated relative deviation of 3.12%.
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Figure 3: Comparison between real and analytical
processing times for 100 batches of 50 queries.

Regarding F'5, it is entirely analogous to F3 in the local in-
dex, and a combination of F2 and F3 in the global index. In
this way, our prediction is fairly accurate, because it worked
for F2 and F3. Regarding F4, we estimated a value for net-
work transfer time based on a third of the nominal value of
our network, in order to take into consideration the over-
heads due to the operating system and the communication
protocols which affect the transmission of data.

5. RESULTS

The random global, lexicographical global, and local in-
dexes are compared in the aspects of concurrency and par-
allelism, disk seek, load balance, size of inverted lists, fault
tolerance, and system configuration, as presented in Table 2.

Experimental results show the practical impact of the
three index partitioning strategies on the performance of
our distributed information retrieval system. We employ
a simulator to read a log of 100,256 (a hundred thousand
and two hundred fifty six) queries submitted to the TodoBR

search engine, replicate its execution and generate a trace
with the processing time, estimated by the analytical model,
of each query in each of the processors in the system.

For analyzing the performance of the system for varying
request rates, we apply other simulator to read the timing
trace and report, among other information, the average re-
sponse time for the system to send an answer, the through-
put of the system, the average cost by active processor, and
the average load imbalance by active processor. The cost is
the processing time of a processor, and the load imbalance is
the difference between the processing time of the processors
and the average processing time by active processor.

Figure 4 presents the characteristics of the inverted lists
of the TodoBR log used in the experiments. Regarding the
size of the inverted lists assigned to each processor, in the lo-
cal index and random global index inverted lists are smaller
because in the former they contain only the documents from
the local subcollection, and in the latter only the documents
from the blocks of inverted lists assigned to the processor.
On the other hand, in the lexicographical global index the
inverted lists assigned to each processor are larger, because
they contain documents from the whole text database col-
lection.
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Figure 4: Popularity versus size for inverted lists,
relative to a TodoBR log of roughly 100 thousand
queries.

Regarding concurrency and parallelism, in the local in-
dex all processors are devoted to the execution of a single
query, thus providing high parallelism. In the lexicograph-
ical global index, not all processors might be involved with
the processing of a single query (e.g., when the number of
processors is larger than the number of query terms, or when
many query terms are stored in a single processor releasing
the others), thus allowing high concurrency. The random
global index combines both parallelism and concurrency.



LI

LGI [

RGI

High parallelism

High concurrency

Both parallelism and concurrency

More disk seeks

Less disk seeks

Less disk seeks

Better load balance

Worse load balance

Better load balance

Smaller inverted lists

Larger inverted lists

Smaller inverted lists

Reasonable fault tolerance

Low fault tolerance

High fault tolerance

Reasonable system configuration

Harder system configuration

Easier system configuration

Table 2: Comparison between the local, lexicographical global, and random global index partitioning strate-

gies.

Parallelism is allowed because the blocks of an inverted list
are spread among processors, which implies that more than
one processor might be involved with the processing of a
same term mentioned in a query. Concurrency is allowed
because if only a small number of processors happen to hold
all the blocks of the terms of a given query, then those pro-
cessors are able to execute that query without need to co-
operate with the others. As a result, more than one query
might be processed simultaneously.

Regarding disk seek, in the local index retrievals require
more disk seeking operations, because each processor re-
ceives all query terms. In the lexicographical global index
and random global index retrievals require less disk seeking
operations, because the processors do not necessarily receive
all query terms.

Figure 5 shows the response time as a function of the
request rate for 8 and 64 processors. The configurations
employing 64 processors provided better response times and
RGI outperformed LGI by 18% on average for the interval
between 1 and 50 requests per second. As the number of
request per second increases, and because the RGI organi-
zation achieves more parallelism, the workload of the broker
increases, becoming a relevant part of the response time.
Hence, the LGI becomes better.
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Figure 5: Average response time as a function of
the request rate, for the random global index (RGI)
with block size of 64 kilobytes, lexicographical global
index (LGI) and local index (LI), with 8 and 64 pro-

cessors.

Figure 6 shows the throughput as a function of the re-
quest rate for 8 and 64 processors. We observe that the
LGI configurations achieved higher throughput rates, where
we observe average gains of about 10% of LGI over RGI.
Further, as expected, both RGI and LGI outperformed sig-
nificatively LI, where the gains reached five times.
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Figure 6: Throughput obtained by the system as a
function of the request rate, for the random global
index (RGI) with block size of 64 kilobytes, lexico-
graphical global index (LGI) and local index (LI),
with 8 and 64 processors.

Regarding load balance, in the lexicographical global in-
dex the load balance level is worse than in the random and
local index. The reason is that in the lexicographical global
index, the terms in a query are sent only to the processors
which store their inverted lists. This implies that the pro-
cessor that holds the most frequent terms in the query is
heavily loaded, while the processor that holds the least fre-
quent query terms stays relatively idle. In the random global
index, load balance is better, because fixed sized blocks of
an inverted list are randomly distributed among processors.
In this way, the probability distribution of blocks in the
processors tends to be uniform, which provides a good load
balance. In the local index, all terms of a query are sent
to all processors and a good load balance level is always
provided.

Figure 7 shows the load imbalance as a function of the
number of processors, where we can see that RGI reduces the
LGI load imbalance by about half. We explain these gains
by verifying how the different index partitioning strategies
affect the load balance among the various processors. LGI
is well-known for its poor load balancing, since the process-
ing is quite localized and the sizes of the lists merged for
answering a given query are usually quite different.

Another factor that helps reducing the load imbalance is
that the average number of processors per query employed
by RGI is consistently greater than the number of processors
employed by LGI, as shown in Table 3. A better usage of
computational resources, as well as the distribution of list
segments among processors explain the better load balanc-
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Figure 7: Average load imbalance by active pro-
cessor as a function of the number of processors in
the system, for the random global index (RGI) with
block size of 64 kilobytes, lexicographical global in-
dex (LGI) and local index (LI).

ing associated with RGI. LI, as expected, presents the lowest
load imbalance. The better results provided by RGI are also
explained by the average processing cost per processor, as
shown in Figure 8, where we observe that not only the cost
(in time) for 64 processors is 20% smaller than the other
strategies, but also that the gain increases with the number
of processors. This last observation is a good indication of
the better scalability of RGI, making it suitable for large
scale systems.

Number of processors Ratio between RGI and LGI of the
in the system average n. of processors used per query
2 1.0362
4 1.0588
8 1.1019
16 1.1186
32 1.1276
64 1.1355

Table 3: Ratio between the random global index
(RGI) with block size of 64 kilobytes and lexico-
graphical global index (LGI) of the average number
of processors used per query.

Finally, we analyzed the trade-offs in terms of the block
size. As expected, the average cost per processor increases
with the block size and the number of processors used per
query decreases as the block size increases, as shown in Fig-
ures 9 and 10.

Regarding fault tolerance, the random global index and
local index are more resilient to failures than the lexico-
graphical global index. In the lexicographical global index,
when a processor that holds a set of terms fails, the queries
that refer to terms in that set cannot be answered. On the
other hand, a failure of a processor in the random global in-
dex represents the loss of only a subset of documents present
in the blocks held by that processor. Also, in the local index
a failure does not prevent any query from being answered,
though the final answer set might not contain all the relevant
documents in the collection.

System reconfiguration is easier with the random global
index than with the local and lexicographical global index.
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Figure 8: Average cost (in time) by active proces-
sor as a function of the number of processors in
the system, for the random global index (RGI) with
block size of 64 kilobytes, lexicographical global in-
dex (LGI) and local index (LI).
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Figure 9: Average number of processors used per
query as a function of the number of processors in
the system, for the random global index (RGI) when
varying the block size from 4 to 64 kilobytes.

If more processors are added to a system using local index,
some documents have to be re-distributed across processors
and inverted locally. With the lexicographical global index,
the addition of more processors requires the re-distribution
of global inverted lists among processors. On the other hand,
with a random allocation approach only a fraction of ran-
dom selected blocks have to be moved to the new processors,
in order to keep the average load balanced across the pro-
Cessors.

6. CONCLUSIONSAND FUTURE WORK

A lexicographically partitioned global index is a quasi-
random order for the inverted lists. We could hash the vo-
cabulary to have a real random order, but still, parallelism
does not increase too much because we have very long lists
that are used partially or belong to words that are never
queried. In this paper we proposed a technique that allows
a full random order by splitting the inverted lists in blocks
and randomizing its processor allocation. Our simulation re-
sults show that this technique outperforms the lexicograph-
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Figure 10: Average cost by active processor as a
function of the number of processors in the system,
for the random global index (RGI) when varying the
block size from 4 to 64 kilobytes.

ical global index.

Further work includes a thorough experimental compari-
son, tuning our technique to find the optimal block size, and
coupling it with other solutions to increase parallelism and
load balance, such as using query frequencies or hierarchical
indexes. Further work is also needed in better broker design,
such that is not the bottleneck for large request rates. This
can be achieved also exploiting parallelism.
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