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Resumo

O objetivo deste trabalho é estudar o processamento de consultas em um banco de

dados textual distribúıdo. A principal contribuição é a implementação de uma arquitetura

distribúıda real que oferece um serviço concorrente de consultas. O sistema distribúıdo

adota o modelo de rede de estações de trabalho e o paradigma cliente-servidor. A coleção

de documentos é indexada por arquivos invertidos. Adotamos duas estratégias distintas de

partição do ı́ndice no sistema distribúıdo, denominadas partição de ı́ndice local e partição

de ı́ndice global. Na partição de ı́ndice local, os documentos da coleção do banco de dados

textual são distribúıdos entre os processadores, e cada processador gera um arquivo inver-

tido para os seus documentos. Na partição de ı́ndice global, um arquivo invertido é gerado

para todos os documentos da coleção do banco de dados textual e as listas invertidas são

distribúıdas entre os processadores. Em ambas as estratégias, os documentos são recuper-

ados e ordenados através do modelo vetorial juntamente com uma técnica de filtragem de

documentos, que permite uma redução significativa nos custos de ordenação sem degradar

a eficácia da recuperação. Avaliamos e comparamos o impacto das duas estratégias de

partição do ı́ndice no desempenho do processamento de consultas. Em relação a eficácia

da recuperação, mostramos que obtemos aproximadamente a mesma eficácia do algoritmo

seqüencial, para ambas as estratégias de partição de ı́ndice local e partição de ı́ndice global.

Em relação a eficiência da recuperação, os resultados experimentais sobre o desempenho

geral do processamento de consultas mostram que, dentro do nosso arcabouço, a partição

de ı́ndice global supera a partição de ı́ndice local.
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Abstract

The objective of this work is to study query processing in a distributed text database.

The novelty is a real distributed architecture implementation that offers concurrent query

service. The distributed system adopts a network of workstations model and the client-

server paradigm. The document collection is indexed by inverted files. We adopt two

distinct strategies of index partitioning in the distributed system, namely local index par-

titioning and global index partitioning. In the local index partitioning, the documents in

the text database are distributed among the processors, and each processor generates an

inverted file for its documents. In the global index partitioning, an inverted file is gen-

erated for all the documents in the text database and the inverted lists are distributed

among processors. In both strategies, documents are retrieved and ranked using the vector

space model along with a document filtering technique, that allows significant reduction in

ranking costs without degradation in retrieval effectiveness. We evaluate and compare the

impact of the two index partitioning strategies on query processing performance. Regard-

ing retrieval effectiveness, we show that we obtain approximately the same effectiveness as

the sequential algorithm, for both the local index partitioning and the global index parti-

tioning. Regarding retrieval efficiency, experimental results on the overall query processing

performance show that, within our framework, the global index partitioning outperforms

the local index partitioning.
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To Jesus Christ

”He [God] has rescued us from the dominion of darkness and brought us into

the kingdom of the Son [Jesus Christ] he loves, in whom we have redemption,

the forgiveness of sins. He [Jesus Christ] is the image of the invisible God,

the firstborn over all creation. For by him all things were created: things in

heaven and on earth, visible and invisible, whether thrones or powers or rulers

or authorities; all things were created by him and for him. He is before all

things, and in him all things hold together. And he is the head of the body,

the church; he is the beginning and the firstborn from among the dead, so that

in everything he might have the supremacy. For God was pleased to have all

his fullness dwell in him, and through him to reconcile to himself all things,

whether things on earth or things in heaven, by making peace through his

blood, shed on the cross.”

from the Bible (New International Version) in the book of Colossians 1:13-20.
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Chapter 1

Introduction

1.1 Motivation

Traditional information retrieval systems usually adopt terms to index and retrieve docu-

ments. In its more general form, an index term is simply any word that appears in the text

of a document in the collection. The user expresses his information needs through a query

that, in its simpler form, is composed by index terms. The information system retrieves

the documents that contain such terms and ranks them according to a degree of similarity

to the user query. This model of information retrieval has been the most popular one along

the years due to its efficiency and simplicity of implementation and use.

The appearance of large text databases, mainly the WWW, caused a sudden change

in the setting of information technology. The new requirements of modern search envi-

ronments have demanded a sophistication of this traditional information retrieval model.

Architectures and algorithms that exploit parallel and distributed techniques offer a solu-

tion to this problem. The current technology trends benefit the network of workstations

model, which motivates application of the distributed computing. Some of the reasons

are [ACPtNT95]:

• Network of workstations has become extraordinarily powerful and offer a better price-

performance than parallel computers;

• Most networks of workstations have a huge amount of memory and very fast proces-

sors, both of which sit idle most of the time;

• Switched networks allow bandwidth to scale with the number of processors and low

1



2 CHAPTER 1. INTRODUCTION

overhead communication protocols have made it possible to do very fast communi-

cation among workstations.

For efficient query processing, an indexing mechanism has to be used with the text

database. The main indexing techniques for text collections are inverted files, suffix arrays

and signature files [FBY92]. Inverted files have been the most popular indexing technique

for text databases due to its simplicity and good performance.

For effective query processing, it is necessary to rank the retrieved documents according

to some measure of relevance. The classic models to retrieve and rank text documents are

called vector and probabilistic. The vector space model has been appreciated for yielding

results either superior or almost as good as the known alternatives [BYRN99].

In the distributed system, in order to index the text database using an inverted file,

it is necessary to apply a strategy to physically organize such index. The work presented

in [TGM93] characterizes two basic and distinct index organizations. In the first one, each

processor generates an inverted file for its local documents and stores this index locally. In

the second one, a global inverted file for all the documents in the text database is generated

and distributed among the various processors.

The objective of this work is to study query processing in a distributed text database.

We implement and evaluate a real distributed architecture that offers concurrent query

service. The distributed system adopts a network of workstations model and the client-

server paradigm. We adopt two distinct types of inverted file partitions for indexing the text

database, namely local index partitioning and global index partitioning. In the local index

partitioning, the documents in the text database are distributed among the processors, and

each processor generates an inverted file for its documents. In the global index partitioning,

an inverted file is generated for all the documents in the text database and the inverted

lists are distributed among processors. In both index partitioning strategies, documents

are retrieved and ranked using the vector space model along with a document filtering

technique, that allows significant reduction in ranking costs without degradation in retrieval

effectiveness.

We evaluate and compare the impact of the two index partitioning strategies on query

processing performance. Regarding retrieval effectiveness, we show that we obtain ap-

proximately the same effectiveness as the sequential algorithm, for both the local index

partitioning and the global index partitioning. Further, we show that the queries are pro-

cessed in only 2% of the memory of the basic algorithm for ranking and that only 10%

of all term entries in the inverted lists are required, which reduces disk traffic and CPU
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processing time.

Regarding retrieval effectiveness, results on overall query processing performance show

that, within our framework, the global index partitioning outperforms the local index

partitioning specially when the number of processors exceeds the average number of terms

in a query, as follows. First, the processing time with the global index partitioning might

be twice smaller as that with the local index partitioning. Second, the speedup in the

global index partitioning might be 1.7 times as that in the local index partitioning.

To the best of our knowledge, this is the first work that presents experimental results

on the performance of a distributed query processing system that offers concurrent service

implemented on a real case framework.

1.2 Related Work

The work in [TGM93] compares the performance impact on query processing of different

physical organizations for inverted lists. It proposes two basic options for storing the in-

verted lists: disk index and system index. With the disk index organization, the documents

are evenly partitioned into sets, one for each disk; in each partition, inverted lists are built

for the documents that reside there. In the system index organization, the full lists are

evenly spread across all the disks in the system. The adopted query type is the “boolean

and”. The architecture is that of a LAN, where the number of CPUs, the number of I/O

controllers per CPU, and the number of disks per controller are varied. The data used

are synthetic documents and queries. Simulation experiments attempt to determine under

what conditions each index organization is better, how each index organization scales up

to large systems (more documents, more processors) and what is the impact of key param-

eters, such as seeking time of the storage device, load level, and number of keywords in a

query. The experimental results indicate that the disk index organization is a good choice.

Our work differs from that presented in [TGM93] in the following aspects. First, while

they adopted the boolean model, we adopt the vector space model that has the following

advantages: i) its term-weighting scheme improves retrieval performance; ii) its partial

matching strategy allows retrieval of documents that approximate the query conditions; and

(iii) its cosine ranking formula sorts the documents according to their degree of similarity

to the query [BYRN99]. Second, while they model the document collection and the queries,

we base our results on the TREC-3 collection [Har94] and its set of real queries. Third, we

implement and thoroughly evaluate distributed query processing performance on a real case
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framework, while they derive experimental results from a simulation model, that hardly

foresee all the factors that influence system performance. Fourth, while their simulator

considers a sequential query service, we address a concurrent query service, that provides

a higher performance than the poor and unrealistic sequential query service. Fifth, while

they conclude that, within their framework, the local index organization is a preferable

choice, our results show that the global index organization is the best.

The work in [Bar98, RNB98] studies the query performance for a distributed digital

library in a tightly coupled environment. It adopts the two basic and distinct index orga-

nizations proposed in [TGM93], and renames them as local index organization and global

index organization. In the local index organization, each machine generates an inverted

file for its local documents and stores this index locally. In the global index organization,

a global inverted file (for all the documents in the library) is generated and distributed

among the various machines. The vector space model is adopted as ranking strategy. All

estimates are based on the documents and queries in the TREC-3 collection [Har94]. The

architecture is that of a network of workstations, where each machine has its own local

memory and disk (shared-nothing). Experiments, based on an analytical model coupled

with a small simulator, investigate how query performance is affected by the index organi-

zation, the network speed, and the disks transfer rate. The results indicate that a global

index organization outperforms a local index organization consistently in the presence of

fast communication channels.

Our work differs from that presented in [Bar98, RNB98] in the following way. Instead

of studying query performance using an analytical model coupled with a simulator, we

implement and thoroughly evaluate distributed query processing performance on a real case

framework. Our experimental results show that the global index organization overcomes

the local index organization, confirming their simulation model results.

The work in [MMR00] examines the search of partitioned inverted files with particular

emphasis on issues that arise from different types of partitioning methods. The two types

of index partitions proposed in [TGM93] are investigated and renamed as TermId and

DocId. TermId partitioning is a type of partitioning which distributes unique word data to

a single partition, while DocId partitioning distributes unique document data to a single

partition. Documents are searched using the probabilistic model. The search topology

is a master/slave topology with a top node and n leaf nodes (each with its own disk).

The data used in experiments are part of the documents and queries in the TREC-7

collection [HCT98]. The results from runs on the two types of partitioning are compared
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and contrasted. The results indicate that the DocId method is the best.

Our work differs from that presented in [MMR00] in the following aspects. First, we

adopt the vector space model for ranking documents, while they adopt the probabilistic

model, a less powerful model that does not take into account the frequency that each

index term occurs inside a document [BYRN99]. Second, we implement a concurrent

query service, while they address a sequential query service. They consider that users tend

to submit smaller queries [SHMM99], which implies that in the sequential query service

only one or two of the processors in the system will be servicing a query using TermId;

the other processors will be doing no work at all. Using DocId, if a processor finishes

the execution of a query before the others, then the faster processor stays idle waiting for

all the others to finish their computation. So, the sequential query service dramatically

deteriorates the system performance, penalizing specially the TermId partitioning. On the

other hand, the concurrent query service aims at increasing the system throughput by

avoiding to the utmost the idleness in the processors. As soon as a processor returns its

local answer set for a query, the broker schedules to it the next query waiting for being

serviced. Third, our work differs from that presented in [MMR00] from the fact that our

results show that the global index partitioning is the best, while they conclude that, within

their framework, the local index partitioning is a superior choice.

1.3 Contributions of the Thesis

In this work, we present a performance evaluation of a distributed query processing sys-

tem using partitioned inverted files. Our study compares the impact on query processing

performance of two strategies for partitioning inverted files across the network of worksta-

tions: local index partitioning and global index partitioning. The main contributions are

as follows:

1. A real distributed architecture implementation. Related works base their results on

simulation models that hardly foresee all the factors that cause impact on system

performance.

2. Concurrent query service implementation. Related works do not evaluate concur-

rent query service, that provides a much superior performance than the poor and

unrealistic sequential query service.



6 CHAPTER 1. INTRODUCTION

For supporting concurrent query service, the real case implementation adopts a net-

work of workstations model and the client-server paradigm, as presented in Sec-

tion 2.1. The network is composed by five workstations, each one having its own

local memory and disk (shared-nothing). The client-server paradigm consists of four

server processes and a designated broker process, that run separately in the different

workstations.

The broker offers a concurrent service presented in Section 2.2 for the queries that

arrive in the system. It maintains an insertion task, a merging task, and different

scheduling tasks for each of the servers in the network. The insertion task inserts

queries in the system. The scheduling tasks in parallel and in asynchronous mode

dispatch several queries to their respective servers and receive the related responses.

This scheduling scheme increases the system throughput by avoiding to the utmost

the idleness of processors in the network. The merging task fuses the local answer

sets, as soon as all the servers return them, and produces a final answer set for each

query in the system.

In respect to the implementation aspects presented in Section 4.1, the interprocess

communication between the broker and server processes is socket-based. The data

transmission mechanism is stream-based, which provides sequenced, reliable, two-

way and connection-based byte streams. The tasks, maintained by the broker, are

implemented with threads that run in parallel. Semaphores are used to synchronize

the access to shared memory segments.

3. Efficient ranking evaluation without degradation in retrieval effectiveness. The rank-

ing method is based on the vector space model along with a technique presented in

Section 3.3 for filtering documents during ranking. Experimental results presented

in Section 5.3 on the sequential query processing algorithm show that the distributed

filtering technique allows significant reduction in ranking costs without degradation

in retrieval effectiveness. Queries are processed in only 2% of the memory of the

basic algorithm for ranking. Disk traffic and CPU processing time are also reduced,

as a result of the distributed filtering technique requiring only 10% of all term en-

tries in the inverted lists. Experimental results on the distributed query processing

algorithm show that both the local index partitioning and global index partitioning

provide retrieval effectiveness comparable to the sequential algorithm.

4. Comparison of two different strategies for partitioning inverted files. Experimental
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results presented in Section 5.4.2 show that the global index partitioning outperforms

the local index partitioning specially when the number of processors exceeds the

average number of terms in a query. In this situation, the global index partitioning

takes half the processing time of the local index partitioning, and its speedup might

be 1.7 times as that in the local index partitioning.

The main reason is that the global index partitioning allows the parallelization of the

most time consuming phase of the algorithm - disk seeking. Further, the global index

partitioning provides a high concurrent query service, which is particularly evidenced

when the number of processors exceeds the average number of terms in a query.

Experimental results on the overall query processing performance also show that load

imbalance was found to be just over 1 in the local index partitioning, but perceptibly

worse in the global index partitioning, because of the probability distribution of terms

in a query. Therefore, if load balance was uniform, then the performance with the

global index partitioning would be even better.

We also analyzed the costs involved in the main phases of the algorithm. According

to the cost analysis presented in Section 5.4.1, both index partitioning strategies are

compared in the aspects of disk seeking, reading and processing of inverted lists,

ranking of the local answer set, network communication and merging of the local

answer sets. In spite of some of these aspects performing better in the local in-

dex partitioning, the disk seeking is the dominant effect to make the global index

partitioning the best.

5. Proposal of the following future work, as presented in Section 6.2:

(a) In this work, there is only one broker responsible for scheduling queries to the

different servers and merging intermediate results into final results. In future

work, we are interested in implementing two types of brokers, one for query

scheduling and another for merging of intermediate results, in order of relieving

the bottleneck in the merging task.

(b) In this work, we consider only one query per server at the same time. In future

work, for increasing system throughput and decreasing response time, we intend

to evaluate the system performance while varying the multiprogramming level

in the server.
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(c) As the number of processors increases in the network, the number of interme-

diate results to be sent to the broker enlarges and consequently, the network

traffic becomes higher. In future work, in order of minimizing network traffic,

we are interested in investigating alternatives for diminishing the amount of

information sent to the broker.

(d) We intend to evaluate the behavior of our system while processing Web data,

that comprises very large collections and very short queries. We suspect that

the advantages of the global index partitioning over the local index partition-

ing might decrease as the size of the collection increases, not underestimating,

however, the fact that the global index partitioning allows high concurrency,

specially processing very small queries.

(e) In this work, for the global index partitioning, the inverted lists are evenly

distributed by size between processors. In future work, we are interested in

studying new strategies to generate the global index by exploiting usage statis-

tics and other measures, for achieving better speedup and load balance.

(f) Also, in order of decreasing the index accessing time, we intend to investigate

the global index structured in two levels. The first level is an index for the

most frequent queries stored in main memory, and the second an index for the

remaining of the queries stored in secondary memory.

(g) Finally, we are interested in studying how the caching of query results and

inverted lists proposed in [SMZ+ar] can improve the performance of our system

or favor one of the index partitioning strategies.

1.4 Structure of the Thesis

The thesis is organized as follows. Chapter 2 presents the distributed text database, de-

scribing the system framework and query processing. Chapter 3 describes the technique

for retrieving and ranking documents using the vector space model along with a document

filtering technique. Chapter 4 explains the implementation aspects of the system. Chap-

ter 5 shows the experimental results, and Chapter 6 presents the conclusions and future

work.



Chapter 2

Distributed Text Database

In this chapter, we present the distributed text database. First, we describe the dis-

tributed system framework, explaining the system architecture, the index structure and

the two strategies to partition it across the network, namely global index partitioning and

global index partitioning. Second, we describe query processing in the distributed text

database, presenting the differences between the local index partitioning and the global

index partitioning.

2.1 Distributed System Framework

Next, we present the framework of our system, describing the features of the distributed

architecture, the technique for indexing the text database and the strategies to partition

the text database index across the network.

2.1.1 Distributed System Architecture

The distributed system uses a network of workstations model. The workstations are tightly

coupled by fast network switching technology. Each workstation has its own local memory

and local disk. The advantages of this shared nothing model are that all communication

between processors is done through messages, which eliminates interference from operat-

ing system memory control processes, and that disks are directly accessed by processors

without going through the network. Figure 2.1 illustrates the network of workstations

model.

The retrieval system adopts the client-server paradigm that consists of a set of server

9
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Network Switch

Figure 2.1: Network of workstations model.

processes and a designated broker process, responsible for accepting client queries, dis-

tributing the queries to the servers, collecting intermediate results from the servers, com-

bining the intermediate results into the final result and sending the final result to the

client. Each of the server processes and the broker process runs on a separate processor.

Figure 2.2 illustrates the client-server paradigm. We do not implement the interactions

with client applications that might request for service in varied rates. Instead, we consider

that the query arrival rate is high enough to fill a query processing queue.

2.1.2 Index Structure

The text database is indexed using the inverted file technique [BYRN99]. The main ad-

vantages of the inverted file are the relatively low cost for building and maintaining it, a

searching strategy based mostly on the vocabulary, which usually fits in main memory, and

a good retrieval performance.

An inverted file is an indexing structure composed of two elements: the vocabulary and

a set of inverted lists. The vocabulary contains each term t in the text document collection;

the terms are sorted in lexicographical order. There is one inverted list for each term t,

consisting of the identifiers of the documents containing the term and, with each identifier

d, the frequency fd,t of t in d. Thus, inverted lists consist of term entries, that is, pairs of

< d, fd,t > values.

As we adopt the vector space model along with a technique for filtering documents
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Figure 2.2: Client-server paradigm.

during ranking, the inverted lists are sorted by decreasing within-document frequency.

2.1.3 Index Partitioning

We consider two strategies to partition the inverted file across the network: local index

and global index. Next, we describe both strategies.

Local Index

One possible alternative to partition the text database index is to have a local inverted file

for each subcollection. This strategy of index partitioning is denominated local index in

the work presented in [Bar98, RNB98]. In the local index partitioning, documents are dis-

tributed among processors and each processor generates an inverted file for its documents.

Documents in the text database collection are evenly distributed across processors. The
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size sc (in bytes) of the local subcollections is approximately given by Equation( 2.1):

sc =
N

p
(2.1)

where N is the size (in bytes) of the whole text database collection and p is the number of

processors. In other words, considering that documents are evenly distributed, each pro-

cessor holds in its local disk a subcollection whose size is approximately given by sc. The

value of sc is approximated, because we cannot split a document in the text database col-

lection. Figure 2.3 illustrates the local index partitioning, considering a network composed

by 4 processors.
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Figure 2.3: Local index partitioning.

In the local index partitioning, information on the global occurrence of terms in the

text database is not available. The absence of this information slacks the estimates for the

inverse document frequency (idf ) weights, used by the vector space model to retrieve and
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rank documents in the text database collection. A solution to this problem is to compute

the idf for all index terms and distribute this information to all processors.

Global Index

The other alternative to partition the index is to have a global inverted file for the whole

text database. This strategy of index partitioning is denominated global index in the work

presented in [Bar98, RNB98]. In the global index partitioning, an inverted file is generated

for documents in the text database and the inverted lists are distributed among processors.

The inverted lists of terms in the text database are evenly distributed among proces-

sors. The size sl (in bytes) of the local subset of inverted lists is approximately given by

Equation( 2.2):

sl =
L

p
(2.2)

where L is the size of the set of inverted lists in the text database and p is the number

of processors. In other words, considering that the inverted lists are evenly distributed,

each processor holds in its local disk a subset whose size is approximately given by sl. The

value of sl is approximated, because we cannot split an inverted list of a term in the text

database collection.

We consider that inverted lists are distributed among processors in lexicographical

order. According to this strategy, one possible partitioning for the global index might

be one in which processor 1 holds the inverted lists for all the terms that start with the

letters A, B and C; processor 2 holds the inverted lists for all the terms that start with the

letters D, E, F and G; and so on, such that each processor holds a portion of the global

index whose size is approximately sl. Figure 2.4 illustrates the global index partitioning,

considering a network composed by 4 processors.

2.2 Distributed Query Processing

Our distributed query system consists of a set of server processes and a designated broker

process, each running on a separate processor (see Section 2.1.1). The broker process is

responsible for scheduling the queries to the server processes, receiving the intermediate

results returned by each one of the server processes and combining the intermediate results

into the final result.

We do not study how the performance is affected by the query arrival rate. Instead, we

assume that the arrival rate of queries in the system is enough to fill a query processing
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Figure 2.4: Global index partitioning.

queue. Hence, we do not compute the actual user response time for a query, but the

system response time. Next, we describe the query processing algorithms implemented in

the broker, which differ according to the index partitioning.

2.2.1 Local Index

In the local index partitioning, an individual query is processed in the following way. The

broker process sends the query to all server processes. Each server retrieves the documents

related to that query in the local subcollection and ranks them, using the vector space

model along with the document filtering technique; selects a number of documents from

the top of the ranking; and returns them to the broker as the local answer set. The broker

uses a multiway merge [WMB99] to fuse the local answer sets and produce the final ranked

answer set.

The broker offers a concurrent service for the queries that arrive in the system as follows.

The broker maintains an insertion task, a merging task, and different scheduling tasks for
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each of the servers in the network. The insertion task is responsible for inserting a query

in the system, the scheduling tasks for scheduling queries to servers and receiving local

answer sets, and the merging task for fusing local answer sets into final answer sets for

each query in the system. All these tasks run in parallel and cooperate with each other in

the following way.

The tasks share different scheduling queues, one for each server in the network. As

queries arrives in the system, the insertion task inserts them in each of the scheduling

queues. Each of the scheduling tasks takes a query out of the related queue, sends the

query to the respective server and waits for the server to finish its computation before

sending the next query. By this scheduling strategy, the faster server starts the processing

of the next query even while the slower server is still processing the previous one. So,

the faster server does not stay idle waiting for all the others to finish the execution of the

current query. Therefore, this scheduling strategy allows some degree of concurrency with

the local index partitioning, that intrinsically provides only a parallel query service, as

discussed at Section 2.2.3.

The tasks also share the buffer of intermediate results, where the local answer sets are

stored by the scheduling tasks. As soon as all the local answer sets are returned by the

servers, the merging task fuses them to generate the final ranked answer set.

Regarding the selection of a number of documents to be returned to the broker, consider

that answer precision is evaluated through the first r documents in the top of the ranking.

In the worst case, the broker will select the first r documents from only one of the local

answer sets. This implies that each server needs to send to the broker at most the top r

documents of its ranking, in order of guaranteeing that the final answer precision is not

diminished.

2.2.2 Global Index

In the global index partitioning, an individual query is processed in the following way. The

broker process determines which server processes hold inverted lists relative to the query

terms, breaks the query into subqueries and sends them to the respective servers. Each

subquery is composed by the terms which are stored in the server it is sent to. Once a

server has received a subquery, it retrieves the documents related to its subquery and ranks

them, using the vector space model along with the document filtering technique; selects a

number of documents from the top of the ranking; and returns them to the broker as the

local answer set. The broker adds the weights of the documents which are present in more
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than one local answer set and do a sort to produce the final ranked answer set.

Analogous to the local index partitioning, the broker offers a concurrent service for the

queries that arrive in the system by maintaining an insertion task, a merging task, and

different scheduling tasks for each of the servers in the network. All these tasks run in

parallel and cooperate with each other as follows.

The tasks share different scheduling queues, one for each server in the network. As

queries arrives in the system, the insertion task breaks them in subqueries and each sub-

query is inserted in the scheduling queue related to the server that hold their terms. Each

of the scheduling tasks takes a subquery out of the related queue, sends the subquery to the

respective server and waits for the server to finish its computation before sending the next

subquery. This scheduling scheme in parallel and in asynchronous mode dispatches the

various subqueries, originated from several queries, to the respective servers and receives

the related responses. In this way, more than one query might be processed simultaneously,

which increases the system throughput and avoids to the utmost the idleness of processors.

Also analogous to the local index partitioning, the tasks share the buffer of intermediate

results, where the local answer sets are stored by the scheduling tasks. As soon as all the

local answer sets are returned by the servers, the merging task adds their partial weights

and does a sort to generate the final ranked answer set.

Regarding the merging of the local answer sets, the broker cannot use the local rankings

generated by individual servers, because such rankings are based in partial information

present in the subqueries. In other words, the local answer sets returned by the servers

contain partial similarities between each document and each term present in the subquery;

it is necessary to sum the partial similarities into the global similarity, which expresses the

measure of relevance between each document and the query.

The fact that the local rankings are based in partial information complicates the cutting

strategy, that consists of the selection of a number of documents to be sent to the broker.

The work in [Bar98, RNB98] suggests a cutoff factor that depends on the number p of

processors. The cutoff factor is given by Equation 2.3:

cutoff factor = c× p× r (2.3)

where c is a constant and r is the number of documents in the final answer set. Using such

factor, they observed no significant variation in the final answer precision.
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2.2.3 Comparison between the Local Index Partitioning and

Global Index Partitioning Strategies

The local index partitioning and global index partitioning are compared in the following

aspects, as presented in Table 2.1.

LI GI

High parallelism High concurrency

More disk seeks Less disk seeks

Better load balance Worse load balance

Smaller inverted lists Larger inverted lists

Top r documents Top (c · p · r) documents

are sent to the broker are sent to the broker

Table 2.1: Comparison between the local and global index partitioning.

In the local index partitioning, all processors are devoted to the execution of a single

query. Therefore, the local index partitioning always provides high parallelism. On the

other hand, in the global index partitioning, not all processors might be involved with the

processing of a single query. A scenario that confirms this statement is when the number

of processors is larger than the number of query terms. Another scenario is when many

query terms are stored in a single processor releasing the others. Therefore, the global

index partitioning might allow high concurrency.

In the local index partitioning, retrievals require more disk seeking operations, because

the processors receive all query terms. On the other hand, in the global index partitioning,

retrievals require less disk seeking operations, because the processors do not necessarily

receive all query terms.

In the local index partitioning, the load balance level is better than in the global index

partitioning. In the global index partitioning, the terms in a query are sent only to the

processors which store their inverted lists. This implies that the processor that holds

the most frequent terms in a query is heavily loaded, while the processor that holds the

least frequent query terms stays relatively idle. On the other hand, in the local index

partitioning, all terms of a query are sent to all processors. Consequently, a good load

balance level is always provided.

In the local index partitioning, inverted lists are smaller, because they contain only the

documents from the subcollection assigned to the processor. On the other hand, in the
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global index partitioning, inverted lists are larger, because they contain documents from

the whole text database collection.

In the local index partitioning, the local rankings consider the global information related

to the query, which allows the selection of a set of documents, from the top of the ranking,

to be sent to the broker. This quantity is equal to the number of documents in the

final answer. In the global index partitioning, the local rankings consider only partial

information related to the subquery, which implies that the number of documents to be

sent to the broker must be larger than the number of documents in the final answer.

In this work, we investigate how these differences, which are determinant in query

processing performance, can favor one of the index partitioning strategies in detriment of

the other. The results are presented in Chapter 5.



Chapter 3

Ranking with the Vector Space

Model

In this chapter, we describe the technique for retrieving and ranking documents using the

vector space model. We present a document filtering technique for fast ranking proposed

in [Per94, PZSD96] and adapted to the distributed processing in [Bar98].

3.1 Vector Space Model

The documents in the text database collection are retrieved and ranked using the vector

space model. The main advantages of the vector space model are its term-weighting scheme

that improves retrieval performance, its partial matching strategy which allows retrieval

of documents that approximate the query conditions, and its cosine ranking formula that

sorts the documents according to their degree of similarity to the query. A large variety

of alternative ranking methods have been compared to the vector space model, but the

consensus seems to be that, in general, the vector model is either superior or almost as

good as the known alternatives. Furthermore, it is simple and fast. For these reasons, the

vector space model is a popular retrieval model nowadays [BYRN99].

In the vector space model, documents and user queries are represented as vectors of

the weight of terms. The document vector is defined as ~d = (wd,1, wd,2, . . . , wd,v) and the

query vector as ~q = (wq,1, wq,2, . . . , wq,v), where v is the total number of index terms in the

collection.

The vector space model proposes to evaluate the degree of similarity of the document d

with regard to the query q as the correlation between the vectors ~d and ~q. This correlation

19
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can be quantified, for instance, by the cosine of the angle between these two vectors, given

by Equation 3.2:

sim(q, d) =
~q • ~d

| ~q | · | ~d |
(3.1)

=

∑v

t=1
wq,t · wd,t

√

∑v

t=1
w2

q,t ·
√

∑v

t=1
w2

d,t

(3.2)

where | ~d | is the norm of the document vector, | ~q | is the norm of the query vector, wd,t is

the weight associated to the term t of document d, and wq,t is the weight associated to the

term t of query q. The factor | ~q | does not affect the ranking, because it is the same for

all documents. The factor | ~d | provides a normalization in the space of the documents.

Several term weighting systems have been proposed and explored. We assign the weight

to a term in a document or a query using the inverse document frequency, given by Equa-

tion 3.3:

wx,t = fx,t · log
N

ft

(3.3)

where fx,t is the number of occurrences of the term t in a document or query x, N is the

total number of documents in the collection, and ft is the number of documents containing

t. This function assigns a high weight to terms which occur in only a small number of

documents in a collection. It is supposed that rare terms have high discrimination value,

and the presence of such a term in both a document and a query is a good sign that the

document is relevant to the query.

A basic algorithm for retrieving and ranking documents using the vector space model

uses a set of accumulators, one accumulator for each document in a collection, and a set

of inverted lists. For each query term t, the contribution simq,d,t, made by the term t to

the degree of similarity between the query q and each document d in the inverted list, is

added to the document d’s accumulator’s value; this contribution, called partial similarity,

is given by Equation 3.4:

simq,d,t = wd,t · wq,t (3.4)

The final result is composed by the documents with the highest accumulator values. A

simple version of this algorithm is shown in Figure 3.1.
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1. For each document d in the collection, set accumulator Ad ← 0.

2. For each term t in the query,

(a) Retrieve the inverted list for t from disk.

(b) For each term entry < d, fd,t > in the inverted list,

set Ad ← Ad + simq,d,t.

3. Divide each non-zero accumulator Ad by the document norm | ~d |.

4. Identify the r highest accumulator values (where r is the number of

documents to be presented to the user) and retrieve the corresponding

documents.

Figure 3.1: Basic algorithm for ranking using the vector space model.

3.2 Filtering Technique

For a large document database, the ranking evaluation cost - volume of main memory, CPU

processing time and disk traffic - can be prohibitively high, because it assigns a similarity

value to every document containing any of the query terms. The work in [Per94, PZSD96]

proposes a technique for filtering documents during ranking, which allows a significant

reduction in both the volume of main memory required and the time of query evaluation,

without degradation in retrieval effectiveness. The approach uses early recognition of which

documents are likely to be highly ranked to reduce costs and works as follows.

Query terms are sorted by decreasing ft, so that important terms are processed first.

Before each term t is processed, two thresholds are computed, an insertion threshold sins

and an addition threshold sadd, where sadd ≤ sins. As the inverted list for t is processed, the

partial similarity simq,d,t of query q and each document document d in the list is compared

to the thresholds. If simq,d,t ≥ sins, then document d is inserted in the set of candidate

documents for the final answer and the simq,d,t is added to the value of the accumulator

for d. Otherwise, if sadd ≤ simq,d,t < sins, although document d is not important enough to

be one of the candidates, the simq,d,t might affect the ranking; so if d has an accumulator,

then simq,d,t is added to its value. Otherwise, if simq,d,t < sadd, then this partial similarity

is discarded and the processing goes to the next query term.

Inverted lists are sorted by decreasing fd,t, so that the identifiers of the interesting

documents are brought to the start of the list, yielding a reduction in disk traffic because
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only part of each inverted list needs to be retrieved. In other words, once an fd,t value is

encountered that is below sins, processing of the inverted list can stop. This implies that

if the inverted list is longer than a disk block, then only one block of the list needs to be

retrieved at a time.

The threshold sins allows us to ignore some documents, thus saving memory space.

Using the threshold sadd, the inverted list entries that yield small partial similarities can be

ignored, thus saving CPU processing time and disk traffic. The value of both thresholds are

determined as a function of the accumulated partial similarity of the currently most relevant

document Smax. This heuristic supposes that if the current most relevant document has a

high weight, then we do not need to process a document that has a small value of similarity

to a query, as it is unlikely to significantly change the final ranking or identify an important

document that is not yet included in the candidate set.

The threshold sins is given by Equation 3.5 and the threshold sadd by Equation 3.6:

sins = cins · Smax (3.5)

sadd = cadd · Smax (3.6)

where 0 ≤ cadd ≤ cins are constants.

The term entry < d, fd,t > in the inverted list of t is processed only if the partial

similarity simq,d,t of document d and query q is greater than the current values of the

threshold sins or sadd. This condition can be expressed by Equation 3.9:

s ≤ simq,d,t (3.7)

s ≤ fd,t · ft · fq,t · ft (3.8)
s

fq,t · f
2
t

≤ fd,t (3.9)

where s is either sins or sadd.

So the thresholds can be directly expressed by Equations 3.10 and 3.11:

fins =
cins · Smax

fq,t · f 2
t

(3.10)

fadd =
cadd · Smax

fq,t · f 2
t

(3.11)

For the first terms processed, the value of Smax is small and the value of ft is large,

so that most documents are considered. As Smax rises and ft falls, the thresholds rise
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until all fd,t values are less than fadd, so that processing an inverted list has no effect on

accumulator values. The algorithm for the filtering technique is shown in Figure 3.2.

The constants cins and cadd are used to control the resources required by the algorithm.

By increasing the constant cins, we reduce the number of documents that can be candidates

for the final answer, and hence decrease memory usage; by increasing the constant cadd,

we reduce the number of term entries processed and accumulated by the algorithm, and

hence decrease CPU processing time and disk traffic. The value for these constants can

be adjusted by running queries for several values of each constant and choosing the best

values according to the distortion introduced into the answer set.

1. Create an empty structure of accumulators.

2. Sort the query terms by decreasing weight.

3. Set Smax to 0.

4. For each term t in the query,

(a) Compute the values of the thresholds fins and fadd.

(b) Retrieve the inverted list for t from the disk.

(c) For each term entry < d, fd,t > in the inverted list,

i. If fd,t ≥ fins, then create an accumulator for Ad if necessary,

and set Ad ← Ad + simq,d,t.

ii. Otherwise, if fd,t ≥ fadd and Ad is present in the set of

accumulators, then set Ad ← Ad + simq,d,t.

iii. Set Smax ← max(Smax, Ad).

5. Divide each non-zero accumulator Ad by the document norm | ~d |.

6. Identify the r highest accumulator values (where r is the number of

documents to be presented to the user) and retrieve the corresponding

documents.

Figure 3.2: Filtering algorithm for fast ranking using the vector space model.
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3.3 Distributed Filtering Technique

The efficiency of the filtering technique is influenced by the constants cins and cadd, and

specially by the accumulated partial similarity of the currently most relevant document

Smax. The value of Smax rises progressively as the value of accumulated similarity of

documents in the set of answers grows.

The growth of the Smax value in the distributed algorithm, using both the local and

global index partitioning, differs from that in the sequential algorithm, as illustrated in

Figure 3.3 and Figure 3.4, for the local and global index partitioning, respectively, using a

network composed by 4 processors to execute the query derived from the topic description

193 in TREC-3 [Har94].
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Figure 3.3: Increasing of Smax in the sequential and distributed algorithm using local index

partitioning with 4 processors to execute the TREC-3 query 193.

In the local index partitioning, if one of the processors holds only a few high weighted

documents, then the rising of Smax is low; consequently, the amount of pruned resources

is smaller than in the sequential algorithm. This effect can deteriorate the performance of
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Figure 3.4: Increasing of Smax in the sequential and distributed algorithm using global

index partitioning with 4 processors to execute the TREC-3 query 193.

the distributed algorithm, making it even worse than the sequential one. In the example

shown in Figure 3.3, the execution time in processor 0 was higher than all the time taken

by the sequential algorithm, because the rising of the Smax value was low, making poor the

pruning of resources.

In the global index partitioning, when the processors receive only a few terms, the value

of Smax is a fraction of that in the sequential algorithm. Again, the performance of the

distributed algorithm might be seriously damaged.

The work in [Bar98] proposes a solution to this problem. They argued that it is neces-

sary to preview the rising of the Smax value before query processing. They observed that,

in fact, there is a pattern to the rising of Smax. It follows the growth of the accumulated

partial similarity of the most relevant documents, which are often the documents that con-

tain the most query terms. Based in this fact, they put forward the following hypothesis:

for each query, there is at least one document that contains all the terms.

Turning back to Equation 3.3 and Equation 3.4, the partial similarity yielded by each
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term can be calculated in a global way, if the values of N , ft, fd,t and fq,t are known. The

value of N is the number of documents in the collection, ft is the number of documents

containing t, and fq,t is the number of occurrences of term t in the query q. To estimate

the value of fd,t, they adopted the maximum within-document frequency fmaxt
of term t.

In this way, the points of growth of Smax can be previously calculated and distributed to

the processors, along with the query. The pre-calculation of the points of growth of Smax

can be given by Equation 3.12:

PGSmaxt = fq,t · log
N

ft

· fmaxt
· log

N

ft

(3.12)

Besides of adapting the filtering technique to the distributed processing, the work

in [Bar98] obtained results even better than the original filtering technique proposed

in [Per94, PZSD96] for the sequential algorithm. The distributed filtering algorithm is

shown in Figure 3.5.

1. Create an empty structure of accumulators.

2. Sort the query terms by decreasing weight.

3. Set Smax to 0.

4. For each term t in the query,

(a) Set Smax ← Smax + PGSmax(t).

(b) Compute the values of the thresholds fins and fadd.

(c) Retrieve the inverted list for t from the disk.

(d) For each term entry < d, fd,t > in the inverted list,

i. If fd,t ≥ fins, then create an accumulator for Ad if necessary,

and set Ad ← Ad + simq,d,t.

ii. Otherwise, if fd,t ≥ fadd and Ad is present in the set of

accumulators, then set Ad ← Ad + simq,d,t.

5. Divide each non-zero accumulator Ad by the document norm | ~d |.

6. Identify the r highest accumulator values (where r is the number of

documents to be presented to the user) and retrieve the corresponding

documents.

Figure 3.5: Distributed filtering algorithm for fast ranking using the vector space model.
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Implementation Aspects

In this chapter, we describe some details of the real case implementation of query processing

in the distributed text database.

The algorithms are implemented with the C programming language and compiled by

the GCC 2.91.66 compiler. We use the C programming language, because of its efficiency

and its easy integration with operating systems in general. The operating system is the

Linux kernel 2.2.14.

4.1 Client/Server Model

In this work, we adopt the client/server paradigm. In this scheme, client processes request

services from a server process. A server process normally listens at a known address for

service requests. That is, the server process remains dormant until a connection is requested

by a client’s connection to the server’s address. At such a time, the server process “wakes

up” and services the client, performing whatever appropriated requested actions.

According to these properties, the server process is a passive entity, listening for client

connections, while the client process is an active entity, initiating a connection when in-

voked. In our model, the service is the processing of a query. Clients request service to a

central server, called broker. In its turn, the broker requests service to the other servers

in the distributed architecture. When the broker requests service to a server, it plays the

role of a client.

The broker offers a concurrent service for the queries that arrive in the system. It

is constituted by different tasks that in parallel and in asynchronous mode dispatch sev-

eral queries to the different servers, receive the intermediate results and generate the final

27



28 CHAPTER 4. IMPLEMENTATION ASPECTS

results. This scheduling scheme increases the system throughput by allowing the simul-

taneous processing of more than one query and by avoiding to the utmost the idleness of

processors in the network.

The interprocess communication between broker and servers is socket-based. The data

transmission mechanism is stream-based, which provides sequenced, reliable, two-way and

connection-based byte streams. The tasks, maintained by the broker, are implemented

with threads that run in parallel. Semaphores are used to synchronize the access to shared

memory segments.

Next, we describe more closely how we model the interactions between the broker

process (B-Process) and server processes (S-Processes), thinking of the broker as a client,

while it requests service to the other servers. Also, we describe how the threads of the

broker process cooperate in order of carrying on their conjoined function of providing

concurrent query service.

4.1.1 Broker Process (B-Process)

The function of the broker process (B-Process) is to insert queries in the system, schedule

queries to the S-Processes, receive the local answer sets returned by the S-Processes and

merge local answer sets into final answer sets. For carrying out its task and guaranteeing

concurrent service, the B-Process runs an insertion thread (I-Thread), a merging thread

(M-Thread), and different scheduling threads (Sch-Threads) for each S-Process. All these

threads run in parallel in the B-Process. The I-Thread is responsible for inserting a query

in the system, the Sch-Threads for scheduling queries to S-Processes and receiving local

answer sets, and the M-Thread for fusing local answer sets into final answer sets for each

query in the system.

The main data structures shared by the threads in the B-Process are the scheduling

queues (Sch-Queues), the buffer of intermediate results (R-Buffer) and the merging queue

(M-Queue). There is one Sch-Queue for each Sch-Thread. The Sch-Queues contain queries,

if the index partitioning is the local one, or subqueries, if the index partitioning is the global

one. The R-Buffer temporarily contains local answer sets waiting for being merged into

final answer sets. The M-Queue contains identifiers of queries whose local answer sets are

ready for being merged.

The main synchronization primitive is the merging semaphore (M-Semaphore), that

synchronizes the access to the M-Queue shared by the S-Thread and the M-Thread. Next,

we describe the implementation of the threads in details.
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Insertion Thread (I-Thread)

The function of the insertion thread (I-Thread) is to insert a query in the system. A high

level description of the implementation is presented in Figure 4.1 and Figure 4.2, for the

local and global index partitioning, respectively.

1. Forever,

(a) Receive a query;

(b) Insert the query in all the scheduling queues;

Figure 4.1: Insertion thread algorithm of the broker process in the local index partitioning.

1. Forever,

(a) Receive a query;

(b) For each term t in the query,

i. Determine the first character char of t;

ii. Identify the processor p that holds terms initiating with char;

iii. Insert t in the subquery to be sent to p;

(c) Insert each subquery in the scheduling queue related to the processor that

hold their terms;

Figure 4.2: Insertion thread algorithm of the broker process in the global index partitioning.

In the local index partitioning, the query to be serviced is inserted in each of the Sch-

Queues related with the various S-Processes. In the global index partitioning, the query to

be serviced is broken in subqueries and each subquery is inserted in the Sch-Queue related

to the S-Process that hold their terms. The breaking of a query in subqueries is as follows.

The inverted lists of terms are distributed among processors in lexicographical order. In

this way, the sequence of terms designated to each processor can be easily determined by

two characters of the alphabet. For example, the processor 1 might hold the sequence of
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terms that begin with A to C. To break a query in subqueries, the I-Thread parses the

query for identifying the terms. For each term t identified, the I-Thread determines the

first character char of t; identifies the processor p that holds terms initiating with char;

and inserts t in the subquery to be sent to p.

Scheduling Threads (Sch-Threads)

The function of the scheduling threads (Sch-Threads) is to schedule the queries to S-

Processes and receive the local answer sets returned by the S-Processes. A high level

description of the implementation is presented in Figure 4.3.

1. Forever,

(a) Take a query (or subquery) out of the scheduling queue;

(b) Request a connection to the server;

(c) Send the query (or subquery) to the server;

(d) Receive the local answer set from the server;

(e) If all the local answer sets were returned by the servers, then insert the

query identifier in the merging queue;

Figure 4.3: Scheduling thread algorithm of the broker process.

For each query (or subquery) in the Sch-Queue, the Sch-Thread requests service from

the S-Process by creating a socket and initiating a connection to the S-Process ’s socket.

The connect() system call is used to initiate a connection.

With the connection established, data may begin to flow. The write() system call

applied to the socket is used to send the query to the S-Process. To read the local answer

set from the S-Process, the read() system call is used on the socket. The local answer set

is stored in the R-Buffer.

After receiving the local answer set, the Sch-Thread checks if all the S-Processes re-

turned their intermediate results for the query. This checking is done in the following way.

To each query is associated a bit map that indicates if the S-Processes returned their re-

sults. The map contains a bit for each S-Process and initiates with zero. When a S-Process

returns its result, the Sch-Thread updates the map, turning on the bit related with that
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S-Process. The Sch-Thread deduces that all intermediate results have been returned if all

the bits are turned on.

If all the S-Processes returned their intermediate results for the query, then the Sch-

Thread inserts the query identifier into the M-Queue for being merged. Further, the Sch-

Thread increments the M-Semaphore, in order of releasing the M-Queue to the M-Thread.

The sem op system call is used to increment the semaphore’s current value.

Merging Thread (M-Thread)

The function of the merging thread (M-Thread) is to fuse the local answer sets returned

by the S-Processes and produce a final answer set to each query in the system. A high

level description of the implementation is presented in Figure 4.4.

1. Forever,

(a) Suspend until the merging queue is not empty;

(b) Take a query identifier out of the merging queue;

(c) Merge the local answer sets related to the query identifier;

Figure 4.4: Merging thread algorithm of the broker process.

The M-Thread suspends until the M-Queue is not empty. Here, a semaphore (M-

Semaphore) is used to synchronize the access to the M-Queue. The value of the M-

Semaphore’s variable at any point in time is the number of elements available in the

M-Queue. To wait until the M-Semaphore’s value becomes greater than zero, the M-

Thread uses the sem op system call. Then the value is decremented by one.

If the M-Semaphore’s value is greater than zero, then the M-Thread takes a query

identifier out of the M-Queue. The query identifier indicates the positions in the R-Buffer

that store the local answer sets related to the query. The merging of the local answer sets

differs for the local and global index partitioning and is done as follows.

In the local index partitioning, we use a p-way merge [WMB99], where p is the number

of processors and consequently the number of local ranked answer sets to be merged. A

heap is employed to obtain the minimum of a slowly changing set of candidates to be

maintained. The merge begins with the insertion of the first element of each local ranked
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answer set into the heap. Next, an element is extracted from the heap and inserted into

the final ranked answer set. Subsequently, the local ranked answer set that contains the

element extracted from the heap inserts the next element of its ranking in the heap. The

extraction of elements from the heap and the subsequent insertion into the heap of elements

in the local ranked answer sets continues until all the elements passes through the heap,

or until the final ranked answer set contains r elements. The time complexity of the p-way

merge is O(p · log p).

In the global index partitioning, the merging procedure needs to add the partial weights

of documents present in different local answer sets and do a sort to generate the final

ranked answer set. A hash table is employed in the addition phase and the quicksort

algorithm [Ziv93] is used in the sorting phase. In the addition phase, all the elements

(pairs document-weight < d, w >) from all the local answer sets are inserted into the hash

table. To insert the elements < d, w >, the algorithm uses d as the key and w as the value.

When the algorithm tries to insert the element < d, w > in the hash table, if d is already

present in position pos, then the weight w is summed to the current value of the position

pos. Otherwise, d is inserted in an empty position pos and the value of pos is initiated with

w. As the size of each local answer set is (c · p · r), where c is a constant, p is the number

of processors (and consequently the number of local answer sets), and r is the number of

documents in the final ranked answer set, and as the time complexity to insert an element

into the hash table is O(1), so the time complexity of the addition phase is O(p2 · r).

Once all the elements are inserted into the hash table, the quicksort algorithm is used

to sort them in decreasing order of weight. The first r elements of the sorted sequence

composes the final ranked answer set. The time complexity for the sorting phase is O(n ·

log n), where n is the number of elements in the set to be sorted. In the worst case, where

all the elements in the local answer sets represent distinct documents, the time complexity

of the sorting phase is O((p2 · r) · log (p2 · r)).

4.1.2 Server Process (S-Process)

The function of the server process (S-Process) is to service a query by retrieving and ranking

documents in the local subcollection. A high level description of the implementation is

presented in Figure 4.5.

The S-Process, willing to offer its query service, binds a socket to an address associated

with the service and then passively listens on its socket. The bind() system call is used

to bind the socket to the service address. After binding its socket, the S-Process must



4.1. CLIENT/SERVER MODEL 33

1. Forever,

(a) Block until a connection is requested by the broker;

(b) Receive a query (or subquery) from the broker;

(c) Process the query (or subquery);

(d) Send the local answer set to the broker;

Figure 4.5: Server process algorithm.

indicate a willingness to listen for incoming connection requests, which can be done with

the listen() system call. The listen() call also specifies the maximum number of outstanding

connections that may be queued awaiting acceptance by the S-Process.

With the socket marked as listening, the S-Process may accept a connection with the

B-Process, which can be done with the accept() system call. The accept() call will not

return until a connection is available. Once the connection was established, the S-Process

is ready to receive a query (or subquery) from the B-Process. The normal read() system

call is used on the socket for receiving the query (or subquery).

The algorithm used to process the query (or subquery) is described in Figure 3.5. It uses

the vector space model along with a document filtering technique for reduction in ranking

costs proposed in [Per94, PZSD96] and adapted to the distributed processing in [Bar98].

More details on this algorithm may be obtained in Section 3.3.

The data structure of accumulators is a hash table. The key of the hash table is the

document identifier, and the value is the accumulated similarity between the query and

the documents. Before processing the query (or subquery), the positions in the hash table

used to process the last query are initialized with zero.

For each term t in the query (or subquery) q, the values of the insertion and addition

thresholds are calculated. Then, only one block of the inverted list of t is read from disk.

For each term entry < d, fd,t > in the inverted list (where d is a document identifier and fd,t

is the frequency of t in d), the partial similarity simq,d,t between d and q is calculated. If

fd,t is greater than or equal to the insertion threshold, then d is inserted into the hash table

in the position pos and the value of pos is initiated as simq,d,t; if d is already present in

position pos, then simq,d,t is summed to the current value of the position pos. Otherwise, if
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fd,t is greater than or equal to the addition threshold, and if d is already present in position

pos, then simq,d,t is summed to the current value of the position pos. Otherwise, if fd,t is

smaller than the addition threshold, then simq,d,t is discarded and the processing goes to

the next query term.

If fd,t of the last term entry in the current inverted list block is greater than or equal

to the addition threshold, then the processing continues on the next inverted list block of

the current query term. In this way, we reduce disk traffic by reading only one block of the

inverted list at a time. The time complexity to insert an element in the hash table is O(1).

So, the time complexity for accumulating the partial similarities depends on the number

of term entries processed.

After all terms in the query (or subquery) are processed, each non-zero position in the

hash table is divided by the norm of the related document. Next, the quicksort algorithm

is used to sort the documents in decreasing order of accumulated similarity. The time

complexity for the sorting phase is O(n · log n), where n is the number of documents in

the set to be sorted. The time complexity for identifying the non-zero positions in the

hash table and for dividing accumulated similarities by the norm of the related document

is O(h), where h is the size of the hash table. Given this time complexity and aiming at

improving speedup, we minimized the hash table size with the increase in the number of

processors in the network. For the local index partitioning, as the number of processors

doubles the hash table size is divided in half. For the global index partitioning, as the

number of processors increases the hash table size decreases in a small proportion. The

reason is that the pruning of candidate documents must be less rigorous in the global index

partitioning for guaranteeing retrieval effectiveness.

Finally, the S-Process sends the top r documents of the local ranking to the B-Process.

The write() system call applied to the socket is used to send the local ranked answer set to

the B-Process.
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Experimental Results

In this chapter, we present the experimental results on the real case implementation of

query processing in the distributed text database. We compare the performance impact on

query processing of both the local and the global index partitioning strategies, in regard

to retrieval effectiveness and retrieval efficiency.

5.1 Experimental Setup

The network of workstations we used in the experiments is composed by 5 PCs with the

same configuration. Each PC is an AMD-K6-2 with a 500MHz processor, 256Mbyte of

main memory, 30Gbyte IDE hard disk, and running Linux kernel 2.2.14. The workstations

are connected by a 100Mbps fast Ethernet with a 16 port switch.

The data we used in the experiments comprise the disks 1 and 2 of the TREC-3 col-

lection [Har94]. Each of the disks is about 1 gigabyte in size. We used two sets of queries,

namely a TREC query set and an artificial query set, as presented in Table 5.1.

TREC Artificial

Query Set Query Set

Number of queries 50 2000

Origin of terms topics 151-200 vocabulary

Number of terms 21 2

on average

Table 5.1: TREC query set and artificial query set.
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The TREC query set is based on topics 151 to 200 of the ad-hoc task, totalizing 50

queries in all. The terms were automatically extracted from the topic descriptions, after

eliminating SGML tags and stop words. The average number of terms per query is 21. In

the artificial query set, composed by 2000 queries, the terms were randomly chosen from

the collection vocabulary, but avoiding stop words [ANZ97]. The number of terms per

query is 2 or 3.

5.2 Metrics

Next, we define the various performance metrics used in our experiments.

1. Recall of a ranking method for some value r is the fraction of the total number of

relevant documents that were retrieved in the top r:

Rr =
number relevant that are retrieved

total number relevant

For example, there are 70 relevant documents; if 50 documents are retrieved in answer

to some query and 35 of them are relevant, then the recall at 50 is R50 = 50%, since

35/70 of the relevant documents were selected within the top 50. Recall is usually

reported at 11 standard points - 0%, 10%, . . . , 100% [WMB99].

2. Precision of a ranking method for some value r is the fraction of the top r ranked

documents that are relevant to the query:

Pr =
number retrieved that are relevant

total number retrieved

For example, if 50 documents are retrieved in answer to some query and 35 of them

are relevant, then the precision at 50 is P50 = 70% [WMB99].

3. Interpolated Precision. Let rj , j ∈ 0, 10, 20, . . . , 100, be a reference to the j-th

standard recall level. Then,

P (rj) = max rj≤r≤rj+1
P (r)

which states that the interpolated precision at the j-th standard recall level is the

maximum known precision at any recall level between the j-th recall level and the

(j + 1)-th recall level. The utilization of precision interpolation procedure is often

necessary, since the recall levels for a query might be distinct from the 11 standard

recall levels [BYRN99].
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4. 11-pt Effectiveness is the average of interpolated precision at 11 standard recall

levels (0%, 10%, . . . , 100%) [BYRN99].

5. Retrieval Effectiveness is a measure of how useful (or relevant) are the answers

produced by an algorithm. We measured retrieval effectiveness from the 11-pt effec-

tiveness metric.

6. Processing Time is the elapsed time in seconds to process a batch of queries in

the distributed system using p processors. It comprehends the elapsed time since the

broker takes the first query out of the batch of queries until the broker merges all

the local answer sets for the last query in the batch.

7. Speedup is defined as:

S =
processing time of sequential algorithm

processing time of parallel algorithm with p processors

Ideally, when running a parallel algorithm on p processors, we would obtain perfect

speedup, or S = p. In practice, perfect speedup is unattainable either because the

problem cannot be decomposed into p equal subtasks, the parallel architecture im-

poses control overhead (e.g., scheduling or synchronization), or the problem contains

an inherently sequential component [BYRN99].

8. Load Imbalance is the non-uniform spread of a given computation across a number

of nodes in a parallel computer. It is given by:

S =
maximum processing time of processors

average processing time of processors

Ideally all nodes should have the same computational load [MMR00].

9. Retrieval Efficiency is a measure of the algorithm ability to provide high query

processing rates. We measured retrieval efficiency from the processing time, speedup

and load imbalance metrics.

10. Seek Time is the time to move the arm, located over the disk surface and containing

a read/write head, to the desired track [HP90].
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5.3 Retrieval Effectiveness

In this section, we compare the retrieval effectiveness between the original filtering tech-

nique (Section 3.2) and its adaptation to the distributed processing (Section 3.3). We

show that for the same retrieval effectiveness the filtering technique adaptation requires

less resources than the original one. The experimental results are based on the sequential

query processing algorithm.

We measured the retrieval effectiveness from interpolated precision at 11 standard recall

levels (from 0 percent through 100 percent) and from 11-pt effectiveness. We retrieved only

the top 200 documents for each query and the results are average values over all 50 TREC

queries.

Afterwards, we present the retrieval effectiveness obtained for both index partitioning

strategies, adopting the filtering technique adaptation in the distributed query processing

algorithm. We show that we obtain approximately the same retrieval effectiveness as the

sequential algorithm, no matter the index partitioning strategy considered.

5.3.1 Filtering Technique

The objective of this experiment is to adjust the values of the insertion constant cins and

addition constant cadd. For more details about cins and cadd, please refer to Section 3.2.

In order of reducing the number of accumulators required and the percentage of term

entries processed by the filtering algorithm, without causing a deterioration in the retrieval

effectiveness, the values for cins and cadd were obtained as follows:

1. First, we measured the retrieval effectiveness with cins = cadd = 0, that is, for the

basic algorithm described in Figure 3.1. The value of retrieval effectiveness we found

with the basic algorithm was 10.68%.

2. Second, we fixed cadd = 0 and increased cins until achieving the largest value that

still gives an equal or even better retrieval effectiveness as the basic algorithm. This

experiment is shown in Figure 5.1. The value we chose was cins = 1× 10−2.

3. Finally, we fixed cins = 1 × 10−2 and measured retrieval effectiveness for increasing

values of cadd, observing also the percentage of term entries processed by each value

of cadd. The results are shown in Figure 5.2 and Table 5.2.
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Figure 5.1: Retrieval effectiveness for increasing values of cins (cadd = 0).

cadd Processed term entries (%) Retrieval effectiveness (%)

0 100 10.72

3.3× 10−4 70 10.68

5.7× 10−4 50 10.52

1.64× 10−3 20 10.34

3.1× 10−3 10 10.01

Table 5.2: Percentage of term entries processed and retrieval effectiveness for increasing

values of cadd (cins = 1× 10−2) using the filtering algorithm.

The main saving yielded by this technique is a sharp reduction in the number of accu-

mulators. The basic algorithm requires 340, 394 accumulators, while the filtering technique

using cins = 1× 10−2 results in 13, 189 accumulators. Furthermore, for this number of ac-

cumulators, we obtain even better retrieval effectiveness (10.72%) in comparison to the

basic algorithm (10.68%), using only 4% of the accumulators.

The technique also yields substantial savings in either disk traffic and CPU processing

time. For cadd = 3.1 × 10−3, processing only 10% of all term entries, the deterioration in

the overall retrieval effectiveness is only 0.67%.

Unfortunately, this filtering technique does not work very well for the distributed pro-

cessing. Next, we describe the results using the adaptation presented in Section 3.3 of this

filtering technique to the distributed processing.
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Figure 5.2: Retrieval effectiveness for increasing values of cadd (cins = 1× 10−2).

5.3.2 Distributed Filtering Technique

Using the distributed filtering algorithm and following the same procedure used in the

previous section, we adjusted the values of the insertion constant cins and addition constant

cadd. The value we chose for cins was 6×10−3 and the results for cadd are shown in Table 5.3.

cadd Processed term entries (%) Retrieval effectiveness (%)

0 100 10.75

1× 10−4 70 10.73

1.8× 10−4 50 10.61

5.2× 10−4 20 10.43

1.03× 10−3 10 10.11

Table 5.3: Percentage of term entries processed and retrieval effectiveness for increasing

values of cadd (cins = 6× 10−3) using the distributed filtering algorithm.

In the distributed filtering technique, we observe a sharper reduction in the number

of accumulators compared to the original filtering technique. The latter requires 13, 189

accumulators (4% of the amount used by the basic algorithm), and the former results

in 7, 096 accumulators (2% of the amount used by the basic algorithm). Moreover, for

this number of accumulators, we observe a small improvement on retrieval effectiveness

(10.75%) against the original filtering algorithm (10.72%).
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The distributed technique also yields larger savings in the number of term entries pro-

cessed. Comparing Table 5.2 and Table 5.3, we observe that the distributed filtering tech-

nique gives a little greater retrieval effectiveness than the original one, while processing the

same percentage of term entries.

Next, we show in details the retrieval effectiveness obtained using the distributed filter-

ing technique in the distributed query processing algorithm, for both the local and global

index partitioning strategies.

Local Index Partitioning

For the local index partitioning, we adopt cins = 6 × 10−3 and cadd = 1.03 × 10−3, that

allows us to process only 10% of all term entries with a deterioration in the overall retrieval

effectiveness of only 0.57%.

We are evaluating answer precision through the first 200 documents in the top of

the ranking. Then, each processor needs to send to the broker at most the first 200

documents in the top of its ranking, in order of guaranteeing that final answer precision

is not diminished. The values of recall versus precision for the local index partitioning are

shown in Table 5.4. We note that the precision at levels of recall higher than 80% drops

to 0 because not all relevant documents have been retrieved.

recall (%) precision (%)

0 46.82

10 24.42

20 16.43

30 10.95

40 6.10

50 2.34

60 1.59

70 1.48

80 1.11

90 0.00

100 0.00

11-pt effectiveness (%) 10.11

Table 5.4: Recall versus interpolated precision for the local index partitioning.
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Global Index Partitioning

For the global index partitioning we maintain the same value for the addition constant

(cadd = 1.03×10−3), but reduce the value of the insertion constant to 5×10−3. The reason

is that each processor has no information on documents inserted in the local answer set

of the others. This implies that in the global index partitioning the number of candidate

documents must be larger than in the local index partitioning.

The fact that the local rankings consider only partial information related to its subquery

also implies that more documents have to be sent to the broker. We adopted the cutoff

factor given by (c × p × r) (see Equation 2.3), fixing c = 6 and r = 200. The values of

recall versus precision for the global index partitioning are shown in Table 5.5. As we can

observe, there is no significant variation in the answer precision for different number of

processors.

recall (%) precision (%)

p=1 p=2 p=3 p=4

0 46.82 46.34 45.85 44.88

10 24.42 23.56 23.25 23.23

20 16.43 15.06 14.91 14.52

30 10.95 9.82 9.93 9.65

40 6.10 4.25 5.40 4.29

50 2.34 2.57 2.61 2.72

60 1.59 1.59 1.59 1.51

70 1.48 1.48 1.48 1.45

80 1.11 1.11 1.11 1.11

90 0.00 0.00 0.00 0.00

100 0.00 0.00 0.00 0.00

11-pt effectiveness (%) 10.11 9.61 9.65 9.40

Table 5.5: Recall versus interpolated precision for the global index partitioning.

5.4 Retrieval Efficiency

In this section, we first analyze the costs involved in the main phases of the algorithm.

We show the analysis for the 50 TREC queries only, because it is analogous for the 2000
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artificial queries.

Second, we compare overall query processing performance between the local index par-

titioning and the global index partitioning. We discuss the results for the 50 TREC queries,

which are larger and force parallelism, and the results for the 2000 artificial queries, which

are smaller and allow concurrency in our system. The metrics used are:

• Processing time;

• Speedup;

• Load imbalance.

5.4.1 Cost Analysis

We distinguish six main phases during distributed query processing:

1. Establishment of network connection and transfer of a query;

2. Disk seeking;

3. Reading of inverted lists from disk and accumulation of document weights;

4. Ranking of the local answer set;

5. Transference of the local answer sets;

6. Merging of the local answer sets.

The phases 2 to 4 are executed by the server processes while phase 6 involves only

the broker process. The phases 1 and 5 represent the network communication cost among

broker and servers for transferring the queries and the local answer sets.

The percentage of contribution of each phase, averaged by processor, to the time con-

sumed in the processing of the 50 TREC queries is illustrated in Figure 5.3 and Figure 5.4,

for the local and global index partitioning, respectively. As it can be seen, in the local

index partitioning the disk seeking stands as the dominant cost. The reason is that each

processor has to execute all terms in the query, which implies in performing as many seek

operations as the number of terms in the query.

On the other hand, in the global index partitioning disk seeking time becomes propor-

tionally smaller as the number of processors increases in the network. The reason is that
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Figure 5.3: Percentage of contribution of the costs averaged by processor to execute the

50 TREC queries in LI.

each processor has to execute only the subquery relative to its local subcollection. So, as

the number of processors exceeds the average number of terms in the query, each processor

tends to process only a single term and consequently, perform only a single disk seeking

operation.

However, in the global index partitioning network communication time becomes propor-

tionally larger with the increase in the number of processors in the network, until turning

out to be the dominant cost. Since each processor has no information on the documents in

the local answer set of the others, it has to send to the broker a larger local answer set that

grows with the number of processors. Thus, on the positive side disk seeking cost decreases

to a minimum, because the number of disk seeking operations, while on the negative side

network communication cost might increase considerably, because larger local answer sets

have to be sent to the broker.

Therefore, the global index partitioning allows trading disk seeking to network commu-

nication. Depending on the size of the text collection, the size of the queries, the speed

of the disk and network, such trading might become quite advantageous, as presented in

Section 5.4.2.

For better understanding the reasons of the differences between the two index parti-

tioning strategies, we detailed the costs involved in the main phases of the algorithm to
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Figure 5.4: Percentage of contribution of the costs averaged by processor to execute the

50 TREC queries in GI.

execute the 50 TREC queries, as shown in Table 5.6 and Table 5.7 for the local and global

index partitioning, respectively. The time consumed by each phase, averaged by processor,

to execute the 50 TREC queries is illustrated in Figure 5.5. The cost analysis is as follows.

Disk Seeking

The sequential query processing system is composed by the following phases: i) disk seek-

ing; ii) reading of inverted lists from disk and accumulation of document weights; and iii)

ranking of the answer set.

For efficient parallelization of the system, it is important to find out the most time

consuming phase of the algorithm. In the sequential system, it is disk seeking. For this

reason, we believe that the parallelism of disk seeking operations is a crucial point for

obtaining an efficient distributed system.

The global index partitioning requires only one I/O request per term, while the local

index partitioning requires p requests, where p is the number of processors in the network.

This implies that, in the global index partitioning, as the number of processors doubles,

the average number of seeks per processor is divided in half (see Table 5.7). On the other

hand, in the local index partitioning, the number of seeks per processor keeps the same as

the number of processors increases (see Table 5.6).
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Number of Cost Counts

processors P1 P2 P3 P4 Average

2 Seeks 2.126 2.126 2.126

< d, f > read 1.686.706 1.556.698 1.621.702

Documents ranked 185.637 169.196 177.417

< d,w > transferred 10.000 10.000 10.000

3 Seeks 2.126 2.126 2.126 2.126

< d, f > read 1.203.331 911.459 1.117.988 1.077.593

Documents ranked 138.273 95.845 120.715 118.278

< d,w > transferred 10.000 9.908 10.000 9.969

4 Seeks 2.126 2.126 2.126 2.126 2.126

< d, f > read 720.274 961.006 783.981 809.217 818.620

Documents ranked 83.483 102.154 86.499 82.697 88.708

< d,w > transferred 9.740 10.000 10.000 10.000 9.935

Table 5.6: Cost by processor to execute the 50 TREC queries in LI.

As shown in Figure 5.5, for the local index partitioning, the time consumed by disk

seeking decreases as the number of processors increases, although it should be kept the

same. This apparently contradictory effect is due to the small size of the collection we

used in comparison to the main memory available. Thus, if a term repeatedly occurs in

the query set, then its inverted list is not read from disk again and again; on the contrary,

the operating system keeps the inverted list in the memory cache, whose reading time is

quite smaller.

Another justification is related to the inter-seek distance through the disk [HP90]. The

seek time depends on the distance traversed by the disk head from the current to the next

position, that is, the smaller the inter-seek distances, the smaller the time consumed by the

seek operations. This implies that, as the size of the local inverted lists decreases with the

increase in the number of processors in the local index partitioning, the inter-seek distance

becomes smaller, which reduces the time consumed by the seek operations.

Both the memory cache and the inter-seek distance also affect the seek time in the

global index partitioning. Nevertheless, they cause an stronger impact on the local index

partitioning, where the inverted lists become smaller with the increase in the number of

processors in the network.

Although the local index partitioning could be favored by the false effect on disk seek

time, the global index partitioning still performs better in what concerns disk access.
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Number of Cost Counts

processors P1 P2 P3 P4 Average

2 Seeks 1.424 702 1.603

< d, f > read 2.238.990 920.288 1.579.639

Documents ranked 535.277 264.505 399.891

< d,w > transferred 118.208 105.586 111.897

3 Seeks 896 766 464 709

< d, f > read 1.467.274 1.074.933 617.071 1.053.093

Documents ranked 323.256 322.539 180.572 275.456

< d,w > transferred 155.925 157.176 121.584 144.895

4 Seeks 740 684 254 448 532

< d, f > read 1.221.137 1.017.853 321.296 598.992 789.820

Documents ranked 272.173 292.251 102.173 168.838 208.859

< d,w > transferred 171.325 188.090 84.756 137.889 145.515

Table 5.7: Cost by processor to execute the 50 TREC queries in GI.

Reading and Processing of Inverted Lists

The number of document-frequency pairs < d, f > read from disk and averaged by pro-

cessor is approximately equal for both the index partitioning strategies, as it can be seen

at Table 5.6 and Table 5.7. The reason is that the distributed filtering technique equal-

izes the pruning of term entries processed from the distributed index, no matter how it is

partitioned. Also, as the number of processors doubles, the average amount of document-

frequency pairs read per processor is divided in half.

Therefore, regarding the reading and processing of inverted lists, both the local and

global index partitioning present comparable performance.

Ranking of the Local Answer Set

The selection of candidate documents must be less severe in the global index partitioning,

because each processor has no information on the documents inserted in the local answer

set of the others. This implies that, in the global index partitioning, the local answer set

is larger than in the local one. Averaged by processor, the number of documents ranked

in the former is about 2 times larger than in the latter (see Table 5.6 and Table 5.7).

Consequently, the cost related to the ranking of documents is higher in the global index

partitioning than in the local one, as shown in Figure 5.5.
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Figure 5.5: Cost averaged by processor to execute the 50 TREC queries.

Therefore, regarding the ranking of the local answer set, the local index partitioning

performs better. As the cost of operation at CPU is not expensive in comparison to the

disk access cost, the global index partitioning still remains the most advantageous, as we

shall see at Section 5.4.2.

Network Communication

In our system, the communication between the broker and servers is based on a message

passing mechanism. It comprehends the algorithm phases 1 and 5; the phase 1 is respon-

sible for establishing network connection and transferring a query, and the phase 5 for

transferring the local answer sets. We put forward the hypothesis that phase 5 is predomi-

nant in the communication time, based on the two following facts. First, phase 5 transfers

a far larger amount of data than phase 1. Second, the time consumed in connection es-

tablishment by phase 1 is insignificant, which we confirmed by the implementation of a

connectionless data transmission and subsequent observation that communication time was

almost the same as the connection-based data transmission.

The hypothesis was confirmed through the empirical results, because the local index

partitioning that transfers smaller local answer sets consumes less time in communication

than the global index partitioning that transfers larger local answer sets (see Figure 5.5).

The reason why the local index partitioning transfers smaller local answer sets that the

global index partitioning is as follows.



5.4. RETRIEVAL EFFICIENCY 49

In the local index partitioning, the final result is completed in a single processor for

its local document set. In this way, if the broker intends to generate a final answer set

composed by r documents, then it is necessary for each processor returning at most the r

documents in the top of its ranking.

On the other hand, with the global index partitioning, the final results for any given

document cannot be guaranteed to be completed in a single processor. This implies that

each processor needs to return more than the r documents in the top of its ranking, if it is

supposed for the broker to generate a final answer set composed by r documents. According

to the cutting strategy we adopted, the size of the local answer set to be sent to the broker

enlarges as the number of processors increases in the network. With 2 processors in the

network, the number of documents averaged by processor to be returned to the broker is

11 times larger in the global index partitioning than in the local one; with 4 processors, it

is 14 times larger (see Table 5.6 and Table 5.7).

Therefore, regarding the communication between broker and servers, the local index

partitioning performs better. However, the positive counter effects still favored the global

index partitioning, as we shall see at Section 5.4.2.

Merging of the Local Answer Sets

Figure 5.6 compares the 50 TREC queries total processing time with the merging time at

the broker, for the local and global index partitioning. In the local index partitioning, the

broker uses a simple multiway merge to fuse the ranked local answer sets and produce the

final ranked answer set. On the other hand, in the global index partitioning, the merging

is more complicated. The reason is that, in the global partitioning strategy, the broker

cannot use the rankings generated by the processors, because such rankings contain only

the partial similarities between each document and each term present in the subqueries.

Then, it is necessary to sum the partial similarities into the total similarity for documents

present in different local answer sets and finally, do a sort to produce the final ranked

answer set.

Therefore, regarding the merging of the local answer sets at the broker, the local index

partitioning performs better. However, this negative effect did not disfavor the global index

partitioning, because the total merging time was much smaller than the processing time

consumed by the slowest processor.
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Figure 5.6: Cost of merging at the broker for the 50 TREC queries.

Summary of the Cost Analysis

In summary, for the 50 TREC queries, both the local index partitioning and the global

index partitioning are compared in the following aspects of cost:

1. Disk Seeking: In the global index partitioning, as the number of processors doubles,

the average number of seeks per processor is divided in half. On the other hand, in

the local index partitioning, it is kept the same. As disk seeking is the most time

consuming phase of the algorithm, it is the dominant effect to make the global index

partitioning the best.

2. Reading and Processing of Inverted Lists: The average amount of document-frequen-

cy pairs read per processor is approximated in both index partitioning strategies.

Therefore, regarding the reading and processing of inverted lists, both index parti-

tioning strategies present comparable performance.

3. Ranking of the Local Answer Set: Averaged by processor, the number of documents

ranked in the global index partitioning is about 2 times larger than in the local index

partitioning. Therefore, regarding the ranking of the local answer set, the local index

partitioning performs better. As the cost of operation at CPU is not expensive in

comparison to the disk access cost, the global index partitioning still remains the

most advantageous.
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4. Network Communication: With 4 processors in the network, the number of docu-

ments averaged by processor to be returned to the broker is 14 times larger in the

global index partitioning than in the local one. Therefore, regarding network commu-

nication, the local index partitioning performs better. However, the positive counter

effects still favored the global index partitioning.

5. Merging of the Local Answer Sets: In the local index partitioning, the broker uses

a multiway merge to fuse the ranked local answer sets, which cannot be done in

the global index partitioning, because the local rankings generated with this latter

index organization is based only in partial information present in the subqueries.

Therefore, regarding the merging of the local answer sets at the broker, the local

index partitioning performs better. However, this negative effect did not disfavored

the global index partitioning, because the total merging time was much smaller than

the processing time consumed by the slowest processor.

Therefore, in the local index partitioning the disk seeking stands as the dominant cost.

In the global index partitioning, there is a trading of disk seeking to network communication

that might be very advantageous, depending on the size of the text collection, the size of

the queries, the speed of the disk and network.

5.4.2 Overall Query Processing Performance

In this section, we compare query processing performance between the local and global

index partitioning strategies using both the TREC query set and the artificial query set.

The TREC query set is larger - 21 terms per query on average -, which forces a parallel

query service. In a different manner, the artificial query set is much smaller - 2 terms per

query on average -, which allows a concurrent query service. It follows the results and the

corresponding interpretations.

TREC Queries

Figure 5.7 shows the time to process the 50 TREC queries as a function of the number of

processors in the network, for the local and global index partitioning. As it can be seen,

the local index partitioning outperformed the global index partitioning with a network

composed by 2 processors, but the global index partitioning outperformed the local index

partitioning with a network composed by 3 and 4 processors. The interpretation for this

result is as follows.
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Figure 5.7: Processing time for the 50 TREC queries.

In the global index partitioning, with a network composed by 3 and 4 processors, the

number of seeks performed locally dropped to the point of counterbalancing the ranking

and communication costs, which are higher than in the local index partitioning. However,

with a network composed by only 2 processors, the number of seeks performed locally did

not reduce enough for offsetting those prejudicial effects.

Figure 5.8 shows the speedup while processing the 50 TREC queries. We observe that

speedup in the global index partitioning is not that much superior than in the local index

partitioning, as a result of the parallelism constrained by the large size of TREC queries.
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Figure 5.8: Speedup for the 50 TREC queries.

Figure 5.9 shows the load imbalance while processing the 50 TREC queries. In the local
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index partitioning, load imbalance is not an issue as for any network configuration it was

found to be just over 1. However, it is perceptibly worse in the global index partitioning.

The interpretation for these results is as follows.
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Figure 5.9: Load imbalance for the 50 TREC queries.

In the global index partitioning, the query terms are routed to the processors which

hold the respective inverted lists. So, if some terms are more frequently requested in a

query, then the processor that stores those terms is heavily loaded; on the contrary, the

processor that stores the least frequent query terms stays relatively idle. Otherwise, in

the local index partitioning, all query terms are sent to all processors. This implies that

all processors are involved with the execution of all queries. Consequently, a good level of

load balance is always provided. A modest load imbalance might occur if a processor holds

documents that are more relevant to the query than other processors. In this scenario, the

cost for reading inverted lists, accumulating document weights and ranking will be higher

in the processors which hold the most relevant documents.

It is important to note that if the load balance were uniform in our system, then the

global index partitioning would have a better performance than the local index partitioning,

no matter the number of processors in the network, as it can be seen in Figure 5.10 and

Figure 5.11 that show the processing time and speedup, respectively. Also, the relative

performance improvement would increase with the number of processors, as shown in

Table 5.8. For simulating the load balanced scenario, we simply averaged by processor

the time taken by the broker to collect the local answer sets, instead of considering the

maximum time associated with the slowest processor.
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Figure 5.10: Processing time in the load balanced scenario for the 50 TREC queries.

Number of Processors GI as percentage of LI (%)

2 80.94

3 74.39

4 73.36

Table 5.8: Processing time in the load balanced scenario for the 50 TREC queries: GI as

percentage of LI.

Artificial Queries

Figure 5.12 shows the time to process the 2000 artificial queries as a function of the number

of processors in the network, for the local and global index partitioning. As we can observe,

the global index partitioning consistently outperformed the local index partitioning. In

addition, the relative performance improvement increases with the number of processors,

as shown in Table 5.9. As it can be seen, the global index partitioning might be twice as

faster than the local index partitioning. The reason is as follows.

Number of Processors GI as percentage of LI (%)

2 76.93

3 63.94

4 58.75

Table 5.9: Processing time for the 2000 artificial queries: GI as percentage of LI.

In the local index partitioning, all the processors are forced to process the 2 terms (on
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Figure 5.11: Speedup in the load balanced scenario for the 50 TREC queries.
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Figure 5.12: Processing time for the 2000 artificial queries.

average) of each query. Otherwise, in the global index partitioning, 2 processors at most

are involved with the execution of a single query, as a result of one of the following events

(or a combination of them): i) the query terms are held by a single processor, releasing

the others to execute another query; or ii) the number of processors are larger than the

number of query terms.

Figure 5.13 shows the speedup while processing the 2000 artificial queries. As it can

be seen, the global index partitioning presented a much superior speedup than the local

index partitioning, as a result of the higher concurrent query service provided by the first

index organization.

Figure 5.14 shows the load imbalance while processing the 2000 artificial queries. For
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Figure 5.13: Speedup for the 2000 artificial queries.

the local index partitioning, load imbalance is also found to be just over 1, like we discussed

for the TREC query set. In the global index partitioning, load imbalance was not that

much superior than in the local index partitioning. This result is due to the method used

to generate the artificial queries, by which terms were randomly chosen from the collection

vocabulary. In this way, the probability distribution of terms in the artificial queries tends

to be uniform, which provides a better load balance.
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Figure 5.14: Load imbalance for the 2000 artificial queries.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, we study query processing in a distributed text database. We have imple-

mented a real distributed architecture supporting concurrent query service and compared

the impact of two different types of inverted file partitions on system performance. Doc-

uments are retrieved and ranked using the vector space model along with a document

filtering technique, that allows significant reduction in ranking costs without degradation

in retrieval effectiveness.

Experimental results on retrieval effectiveness show that both the local index partition-

ing and the global index partitioning provide approximately the same effectiveness as the

sequential algorithm. Further, results show that the queries are processed in only 2% of

the memory of the basic algorithm for ranking and that only 10% of all term entries in the

inverted lists are required, which reduces disk traffic and CPU processing time.

Experimental results on retrieval efficiency show that, within our framework, the global

index partitioning outperforms the local index partitioning specially when the number of

processors exceeds the average number of terms in a query, as follows. First, the processing

time with the global index partitioning might be twice smaller as that with the local index

partitioning. Second, the speedup in the global index partitioning might be 1.7 times as

that in the local index partitioning. The main reason is that the global index partitioning

allows the parallelization of the most time consuming phase of the algorithm - disk seeking.

Further, the global index partitioning provides a high concurrent query service, which is

particularly evidenced when the number of processors exceeds the average number of terms

in a query.

57
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6.2 Future Work

6.2.1 Two Types of Brokers

In this work, there is only one broker responsible for scheduling queries to the different

servers and merging intermediate results into final results. In future work, we are interested

in implementing two types of brokers, one for query scheduling and another for merging of

intermediate results, in order of relieving the bottleneck in the merging task. Both types of

broker has different constraints. The scheduling broker can reside in a simpler processor,

because the computational load for scheduling queries to servers is not very high. On the

other hand, the merging broker requires a more complex processor, because of the much

more higher workload for merging intermediate results of the various queries.

We also want to investigate the possibility of sending part of the work of the merging

broker to the other processors in the network. The distribution of the merging task with

other processors should be a decision made dynamically, only when the workload is so high

that the scheduling broker is not able by itself to accomplish it on time.

6.2.2 Multiprogramming in the Server

In this work, the queries are processed in the servers once at a time, that is, we consider

only one query per server at the same time. In future work, in order of increasing system

throughput and decreasing response time, we intend to make use of multiprogramming

in the server and evaluate the system performance while varying the multiprogramming

level (number of simultaneous queries per server). Also, we want to compare the effect of

multiprogramming level in various operating systems.

6.2.3 Minimization of Network Traffic

As the number of processors increases in the network, the number of intermediate results

to be sent to the broker enlarges and consequently, the network traffic becomes higher.

In future work, in order of minimizing network traffic, we are interested in investigating

alternatives for diminishing the amount of information sent to the broker. One alternative

would be the transfer of compressed data. Another alternative would the fusion of inter-

mediate results between processors, which might generate small answer sets to be sent to

the broker.
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6.2.4 Performance Evaluation with Web Data

Other future direction of research is to evaluate the behavior of our system while processing

Web data, that comprises very large collections and very short queries. We suspect that

the advantages of the global index partitioning over the local index partitioning might

decrease as the size of the collection increases. In other words, for larger collections, the

time consumed by disk seeking becomes proportionally small in comparison to the time

consumed by reading inverted lists, communicating through the network and merging at

the broker. However, for very small queries, the global index partitioning might allow high

concurrency, which is not present with the local index partitioning. In light of these facts,

it is important to study the relation between the growth of the size of the collection and the

amount of bytes read and transferred to the broker. Moreover, we intend to model queries

using a Zipf-like term distribution [BYC00] and to specify a query arrival distribution, in

order of simulating Web data and workload respectively.

6.2.5 New Strategies for the Global Index Partitioning

In this work, for the global index partitioning, the inverted lists are evenly distributed by

size between processors. In future work, we intend to study new strategies to generate the

global index by exploiting usage statistics and other measures, in order of achieving better

speedup and load balance. First, we want to evaluate separately the different strategies,

in order of quantifying the gain obtained with each of them and subsequently, determining

which are really good. Second, we want to investigate the possibility of combining the good

strategies into an optimal global index partitioning strategy. As a strategy is designed to

benefit a specific metric, such as speedup and load balance, the combination might disfavor

some of them. So, it is necessary to identify the tradeoffs over the range of partitioning

strategies.

Besides of distributing the inverted lists in subsets Qpi
, each one held by the processor

pi, we also aim to minimize the difference between the minimum and average size Spi
of

Qpi
and consequently, minimizing the lost of disk space. The disk lost can be measured

by the ratio between the minimum space and the average space occupied in the different

disks. Figure 6.1 illustrates the global index partitioning, where VI is the size of the index

vocabulary and VQ is the size of the query vocabulary. Next, we describe suggestions of

global index partitioning strategies and the corresponding metrics each one favors.
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Figure 6.1: Global index partitioning.

Global Index Partitioning by Frequency or Time

In the global index partitioning by size, if a processor receives more query terms than

others, then load balance will not be uniform. We suppose that if the distribution of the

global inverted lists among processors follows the distribution of terms in a query, then we

will obtain a better load balance. Besides the frequency of terms in a query, we believe that

load balance is also related to the term processing time, which is a function of its inverted

list size. Therefore, in order of optimizing load balance, we suggest two new strategies for

distributing inverted lists among processors, namely global index partitioning by frequency

and global index partitioning by time.

In the global index partitioning by frequency, each processor pi holds the inverted list

set Qpi
composed of tpi

terms. The sum of the frequency in a query of the terms in Qp1
,

held by processor p1, is approximately equal to the sum of the frequency in a query of

the terms in Qp2
, held by processor p2, which is approximately equal to the sum of the

frequency in a query of the terms in Qpi
, held by processor pi.

In the global index partitioning by time, each processor pi holds the inverted list set Qpi

composed of tpi
terms. The sum of processing time of the terms in Qp1

, held by processor

p1, is approximately equal to the sum of processing time of terms in Qp2
, held by processor

p2, which is approximately equal to the sum of processing time of the terms in Qpi
, held
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by processor pi.

Global Index Partitioning by Co-occurrence

In the global index partitioning, the best scenario is when a single processor holds the

inverted lists for all the terms in a query, which enables that processor to execute the query

by itself without need to cooperate with any other processor. In this way, the neighbor

processors are released to execute other queries, which allows a higher concurrent query

service and consequently a better speedup. Moreover, in this best scenario, only one local

answer set is generated for a query, which reduces network traffic and computing time in the

merging broker. Therefore, in order of improving speedup in our system, besides network

traffic and computing in the merging broker, we suggest the global index partitioning by

co-occurrence, by which the terms that co-occur in the same query are stored in the same

processor.

In the global index partitioning by co-occurrence, each processor pi holds the inverted

list set Qpi
composed by different pairs of terms {tx, ty} that co-occur in the same query.

We are considering the Web query pattern in which queries are composed by two terms on

average, which explains the clustering of terms in pairs.

6.2.6 Global Index in Two Levels

The global index can be structured in two levels1:

• Index for the most frequent queries (IS);

• Index for the remaining of the queries (IU).

Let VI be the size of the index vocabulary and VQ the size of the query vocabulary.

The size of IS is given by VQ′, VQ′ < VQ, and the size of IU is given by VI − VQ′. The value

of VQ′ must be optimum in function of query processing time. Figure 6.2 illustrates the

global index in two levels.

IS is usually smaller and can be stored in main memory; IU is usually bigger and must

be stored in secondary memory. We believe that such scheme of storage favors query

processing performance, because IS, whose terms are accessed more frequently, is stored

in main memory, whose reading time is smaller.

1To the best of our knowledge, this seems to be the index organization adopted by the Infoseek search

engine.
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Figure 6.2: Global index in two levels.

In future work, we are interested in verifying if such assumptions are correct.

6.2.7 Caching of Query Results and Inverted Lists

The work in [SMZ+ar] describes two caching schemes that reduces computing and I/O

requirements to support the functionality of a Web search engine. Their strategy for

caching query results is to keep in memory the list of documents associated with a given

query, and for caching inverted lists is to keep in memory the list of documents associated

with a given query term. In future work, we intend to study how the caching of query

results and inverted lists can improve the performance of our system or favor one of the

index partitioning strategies.
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