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Abstract. Dynamically trace scheduled VLIW (DTSVLIW) architectures can be used to 
implement machines that execute code of current RISC or CISC instruction set 
architectures in a VLIW fashion, delivering instruction level parallelism (ILP) with 
backward code compatibility. This paper presents the effect of multicycle instructions 
on the performance of a DTSVLIW architecture running the SPECint95 benchmarks.  

1 Introduction 
The classic approaches to providing ILP are VLIW and superscalar architectures. With 
VLIW, the compiler is required to extract the parallelism from the program and to build  
Very Long Instruction Words for execution. This leads to fast and (relatively) simple 
hardware, but puts a heavy responsibility on the compiler, and object code 
compatibility[4] is a problem.  In Superscalar, the extraction of parallelism is done by  
the hardware which dynamically schedules the sequential instruction stream on to the 
functional units. The hardware is much more complex, and therefore slower than a 
corresponding VLIW design.  The peak instruction feed into the functional units is 
lower for Superscalar. A number of approaches[1][2][3] have been examined that marry 
the advantages of the contrasting designs: the Superscalar dynamic extraction of ILP, 
the simplicity of the VLIW architectures. The approach presented here follows that 
first presented by Nair and Hopkins[3]. Our architecture, the dynamically trace 
scheduled VLIW architecture (DTSVLIW) [4], demonstrates similar results to theirs in 
providing significant parallelism, but with a simpler architecture that should be much 
easier to implement. In our earlier work[5], we had zero latency load/store instructions. 
Here we present results with more realistic latencies. 

2 The DTSVLIW Architecture 
The DTSVLIW has two execution engines: the Primary Processor and the VLIW 
Engine, and two caches for instructions: the Instruction Cache and the VLIW Cache. 
The Primary Processor, a simple pipelined processor, fetches instructions and does the 
first execution of  this code. The instruction trace it produces is dynamically 
scheduled by the Scheduler Unit into VLIW instructions, saved in blocks to the VLIW 
Cache for re -execution by the VLIW Engine. The Primary Engine, executing the Sparc-7 
ISA, provides object-code compatibility; the VLIW Engine VLIW performance and 
simplicity. The Scheduler unit works in parallel with the Primary Engine. Scheduling 
does not impact on VLIW performance as it does in Superscalar. 



2.1 The Scheduler Algorithm 
The major design problem is the scheduling, which has to maximise the parallelism 
extracted from the trace, while not extending the machine cycle time. The Scheduler 
Unit uses a pipelined version of the First Come First Served (FCFS) scheduling 
algorithm[6]. FCFS has advantages for hardware implementation: it operates with one 
instruction at a time in execution order; it produces optimum or near-optimum 
scheduling[6]. We showed it to be suitable for pipelined  implementation in [5]. The 
Scheduler Unit uses a circular scheduling list, to build a block of VLIW instructions, 
using out-of-order execution, register renaming, and speculative execution. An 
instruction arriving from the Primary Engine is placed at the end of the block, moving 
up the block on subsequent clock cycles, dependencies allowing. The block starts with 
one element, increasing to a fixed block maximum. Only one instruction in each block 
element has to be checked  for moving up on a cycle: moving up produces out-of-order 
execution. Speculative execution moves an instruction up past conditional branches, 
but delays its write-back stage until the branch outcomes are determined.  

For a multicycle instruction, two copies, A and B, are inserted, separated by the 
instruction latency, into the scheduling list to identify the list region where the 
instruction is active. B’s role is for dependency checking against instructions moving 
up. A and B are treated partly as other instructions, partly as one instruction, e.g. their 
separation is kept constant.  B is not saved in the VLIW Cache. Scheduling a 
multicycle instruction lengthens a block by the latency of the instruction, impacting 
efficiency since the longer block is more difficult to fill, reducing parallelism.  

3 Methodology and Experiments 
A simulator of the DTSVLIW has been implemented in C. All results were produced 
with the simulator running in test mode: a test machine is run in tandem with the 
DTSVLIW. Comparison of the state of the 2 machines after an instruction or a VLIW 
block completes validates the DTSVLIW machine. The test machine measures the  
instructions executed to determine the ILP achieved.  Model parameters, benchmark 
programs (SPECint95), together with the input sets used can be found in [5]. Each 
program was run for 50 million or more instructions, as counted by the test machine.  

3.1 Effect of the Block Size and Geometry 
Fig 1 shows the effect of the block size in terms of the number of instructions and 
block geometry (instructions per VLIW instruction (width) versus VLIW instructions 
per block (length) on performance. The experiments were performed with perfect 
instruction and data caches, large VLIW Cache (3072-Kbyte), and no next VLIW 
instruction miss penalty. The performance of machines with the same block sizes and 
different geometry is significantly different. Thus, the performance with 4x8 geometry 
is lower than with 8x4 geometry for all benchmarks. The block width and length affect 
the machine cost in different ways. Block width impacts on the number of functional 
units, data cache ports, and register file ports; the block length on the number of 
renaming registers, the length of  load/store and checkpoint recovery lists [5], and the 
required size of the VLIW Cache for the same performance. To increase just the width 
or just the length of the block does not appear to be the best approach. A DTSVLIW 
with 8x8-block geometry generally performs better than with 4x16 and 16x4 geometries. 



Benefits from large block size do not grow linearly.  The performance of the 16x16 
geometry on the ijpeg benchmark is extraordinary. This benchmark spends most of its 
execution in one loop. With a large enough block size, more than one iteration of the 
loop can be scheduled into a single block, allowing instructions from these iterations 
to be overlapped, extracting much greater parallelism.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Variation of parallelism with the block size and geometry 

3.2  Effect of the Load/Store Instructions Latency 
Fig 2 shows the effect of the load/store instructions latency on an 8x8 geometry: LxSy 
stands for loads with latency x and stores with latency y. Latency is the number of 
cycles before an instruction’s results can be used.  Load latency has a severe impact – 
25.4% average performance loss with 1-cycle and 50.2% with 2-cycle latency, because 
loads are frequent and their data is usually required imminently. Store latency does not 
have such a strong impact, as stored data is usually not imminently required. 

With longer blocks the impact of Load/Store latency is smaller. For 8x16 (Fig 3) there 
is 20.5% average performance loss with 1-cycle latency and 42.6% with 2-cycle latency. 
With a longer block, there is more opportunity to accommodate instructions in the 
empty VLIW instructions created by the multicycle scheduling. This  results in better 
scheduling and performance, but the latency impact is still high.  

 
 
 
 
 
 
 
 
 
 

 
 

 Fig 2. Variation of the parallelism with the load/store instructions latency – 8x8-block 
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Fig 3. Variation of the parallelism with the load/store latency – 8x16-block 

4 Conclusion  
The results show that the DTSVLIW can achieve ILP as high as 7 and average ILP 
superior to 4 with a large machine geometry. Multicycle load instructions impose a 
severe performance penalty on the DTSVLIW architecture and it is clear that it is 
important to get their latency as close to zero as possible: single cycle load operation. 
Single cycle stores are not so important. Low load/store latency (2 cycles) is 
achievable with a high frequency clock as demonstrated in the DEC-Alpha[7]. We 
calculated across all our benchmark results the average number of VLIW cycles per 
program with 8x16-block geometry of 98.57%, strongly suggesting that the DTSVLIW 
architecture is effective in taking advantage of its VLIW Engine. The Primary Processor 
and the VLIW Engine in the DTSVLIW can have high clock rates. The simplicity of the 
scheduling algorithm means that a similar high clock rate should be achieved for the 
Scheduler Unit, leading to an overall clocking rate similar to, if not higher than, high 
clock rate superscalar architectures, but achieving higher ILP. 
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