
Effect of Multicycle Instructions on the Integer
Performance of the Dynamically Trace Scheduled VLIW

Architecture

Alberto Ferreira de Souza and Peter Rounce

Department of Computer Science
University College London

Gower Street, London WC1E 6BT - UK
a.souza@cs.ucl.ac.uk, p.rounce@cs.ucl.ac.uk

Abstract. Dynamically trace scheduled VLIW (DTSVLIW) architectures can be used to
implement machines that execute code of current RISC or CISC instruction set
architectures in a VLIW fashion, delivering instruction level parallelism (ILP) with
backward code compatibility. This paper presents the effect of multicycle instructions
on the performance of a DTSVLIW architecture running the SPECint95 benchmarks.

1 Introduction
The classic approaches to providing ILP are VLIW and superscalar architectures. With
VLIW, the compiler is required to extract the parallelism from the program and to build
Very Long Instruction Words for execution. This leads to fast and (relatively) simple
hardware, but puts a heavy responsibility on the compiler, and object code
compatibility[4] is a problem. In Superscalar, the extraction of parallelism is done by
the hardware which dynamically schedules the sequential instruction stream on to the
functional units. The hardware is much more complex, and therefore slower than a
corresponding VLIW design. The peak instruction feed into the functional units is
lower for Superscalar. A number of approaches[1][2][3] have been examined that marry
the advantages of the contrasting designs: the Superscalar dynamic extraction of ILP,
the simplicity of the VLIW architectures. The approach presented here follows that
first presented by Nair and Hopkins[3]. Our architecture, the dynamically trace
scheduled VLIW architecture (DTSVLIW) [4], demonstrates similar results to theirs in
providing significant parallelism, but with a simpler architecture that should be much
easier to implement. In our earlier work[5], we had zero latency load/store instructions.
Here we present results with more realistic latencies.

2 The DTSVLIW Architecture
The DTSVLIW has two execution engines: the Primary Processor and the VLIW
Engine, and two caches for instructions: the Instruction Cache and the VLIW Cache.
The Primary Processor, a simple pipelined processor, fetches instructions and does the
first execution of this code. The instruction trace it produces is dynamically
scheduled by the Scheduler Unit into VLIW instructions, saved in blocks to the VLIW
Cache for re -execution by the VLIW Engine. The Primary Engine, executing the Sparc-7
ISA, provides object-code compatibility; the VLIW Engine VLIW performance and
simplicity. The Scheduler unit works in parallel with the Primary Engine. Scheduling
does not impact on VLIW performance as it does in Superscalar.

2.1 The Scheduler Algorithm
The major design problem is the scheduling, which has to maximise the parallelism
extracted from the trace, while not extending the machine cycle time. The Scheduler
Unit uses a pipelined version of the First Come First Served (FCFS) scheduling
algorithm[6]. FCFS has advantages for hardware implementation: it operates with one
instruction at a time in execution order; it produces optimum or near-optimum
scheduling[6]. We showed it to be suitable for pipelined implementation in [5]. The
Scheduler Unit uses a circular scheduling list, to build a block of VLIW instructions,
using out-of-order execution, register renaming, and speculative execution. An
instruction arriving from the Primary Engine is placed at the end of the block, moving
up the block on subsequent clock cycles, dependencies allowing. The block starts with
one element, increasing to a fixed block maximum. Only one instruction in each block
element has to be checked for moving up on a cycle: moving up produces out-of-order
execution. Speculative execution moves an instruction up past conditional branches,
but delays its write-back stage until the branch outcomes are determined.

For a multicycle instruction, two copies, A and B, are inserted, separated by the
instruction latency, into the scheduling list to identify the list region where the
instruction is active. B’s role is for dependency checking against instructions moving
up. A and B are treated partly as other instructions, partly as one instruction, e.g. their
separation is kept constant. B is not saved in the VLIW Cache. Scheduling a
multicycle instruction lengthens a block by the latency of the instruction, impacting
efficiency since the longer block is more difficult to fill, reducing parallelism.

3 Methodology and Experiments
A simulator of the DTSVLIW has been implemented in C. All results were produced
with the simulator running in test mode: a test machine is run in tandem with the
DTSVLIW. Comparison of the state of the 2 machines after an instruction or a VLIW
block completes validates the DTSVLIW machine. The test machine measures the
instructions executed to determine the ILP achieved. Model parameters, benchmark
programs (SPECint95), together with the input sets used can be found in [5]. Each
program was run for 50 million or more instructions, as counted by the test machine.

3.1 Effect of the Block Size and Geometry
Fig 1 shows the effect of the block size in terms of the number of instructions and
block geometry (instructions per VLIW instruction (width) versus VLIW instructions
per block (length) on performance. The experiments were performed with perfect
instruction and data caches, large VLIW Cache (3072-Kbyte), and no next VLIW
instruction miss penalty. The performance of machines with the same block sizes and
different geometry is significantly different. Thus, the performance with 4x8 geometry
is lower than with 8x4 geometry for all benchmarks. The block width and length affect
the machine cost in different ways. Block width impacts on the number of functional
units, data cache ports, and register file ports; the block length on the number of
renaming registers, the length of load/store and checkpoint recovery lists [5], and the
required size of the VLIW Cache for the same performance. To increase just the width
or just the length of the block does not appear to be the best approach. A DTSVLIW
with 8x8-block geometry generally performs better than with 4x16 and 16x4 geometries.

Benefits from large block size do not grow linearly. The performance of the 16x16
geometry on the ijpeg benchmark is extraordinary. This benchmark spends most of its
execution in one loop. With a large enough block size, more than one iteration of the
loop can be scheduled into a single block, allowing instructions from these iterations
to be overlapped, extracting much greater parallelism.

Fig 1. Variation of parallelism with the block size and geometry

3.2 Effect of the Load/Store Instructions Latency
Fig 2 shows the effect of the load/store instructions latency on an 8x8 geometry: LxSy
stands for loads with latency x and stores with latency y. Latency is the number of
cycles before an instruction’s results can be used. Load latency has a severe impact –
25.4% average performance loss with 1-cycle and 50.2% with 2-cycle latency, because
loads are frequent and their data is usually required imminently. Store latency does not
have such a strong impact, as stored data is usually not imminently required.

With longer blocks the impact of Load/Store latency is smaller. For 8x16 (Fig 3) there
is 20.5% average performance loss with 1-cycle latency and 42.6% with 2-cycle latency.
With a longer block, there is more opportunity to accommodate instructions in the
empty VLIW instructions created by the multicycle scheduling. This results in better
scheduling and performance, but the latency impact is still high.

 Fig 2. Variation of the parallelism with the load/store instructions latency – 8x8-block

0

1

2

3

4

5

6

7

8

compress gcc go ijpeg m88ksim perl vortex xlisp

Benchmark

In
st

ru
ct

io
n

s
p

er
 C

yc
le

4 4 4 8 8 4 4 16 8 8 16 4 8 16 16 8 16 16

0

0.5
1

1.5
2

2.5

3

3.5

4

compress gcc go ijpeg m88ksim perl vortex xlisp

Benchmark

In
st

ru
ct

io
ns

 p
er

 C
yc

le

L0S0 L1S0 L1S1 L2S0 L2S2

Fig 3. Variation of the parallelism with the load/store latency – 8x16-block

4 Conclusion
The results show that the DTSVLIW can achieve ILP as high as 7 and average ILP
superior to 4 with a large machine geometry. Multicycle load instructions impose a
severe performance penalty on the DTSVLIW architecture and it is clear that it is
important to get their latency as close to zero as possible: single cycle load operation.
Single cycle stores are not so important. Low load/store latency (2 cycles) is
achievable with a high frequency clock as demonstrated in the DEC-Alpha[7]. We
calculated across all our benchmark results the average number of VLIW cycles per
program with 8x16-block geometry of 98.57%, strongly suggesting that the DTSVLIW
architecture is effective in taking advantage of its VLIW Engine. The Primary Processor
and the VLIW Engine in the DTSVLIW can have high clock rates. The simplicity of the
scheduling algorithm means that a similar high clock rate should be achieved for the
Scheduler Unit, leading to an overall clocking rate similar to, if not higher than, high
clock rate superscalar architectures, but achieving higher ILP.

References

1. B. R. Rau, “Dynamically Scheduled VLIW Processors”, Proc. of the 26th International Symposium on

Microarchitecture, pp. 80-92, 1993.
2. K. Ebcioglu, E. R. Altman, “DAISY: Dynamic Compilation for 100% Architectural Compatibility”, Proc. of

the 24th International Symposium on Computer Architecture, pp. 26-37,1997.
3. R. Nair, M. E. Hopkins, “Exploiting Instructions Level Parallelism in Processors by Caching Scheduled

Groups”, Proc. of the 24th International Symposium on Computer Architecture, pp. 13-25,1997.
4. A. F. de Souza and P. Rounce, “Dynamically Trace Scheduled VLIW Architectures”, Proceedings of

HPCN’98, in Lecture Notes on Computer Science, Vol. 1401, pp. 993-995, April 1998.
5. A. F. de Souza and P. Rounce, “Dynamically Scheduling the Trace Produced during Program Execution into

VLIW Instructions”, To be published in the Proceedings of 13th International Parallel Processing
Symposium, 1999.

6. S. Davidson, D. Landskov, B. D. Shriver, P. W. Mallett, “Some Experiments in Local Microcode
Compaction for Horizontal Machines”, IEEE Transactions on Computers, Vol. C30, No. 7, pp. 460-477, July
1981.

7. J. Keller, “The 21264: A Superscalar Alpha Processor with Out-of-Order Execution”, 9th Microprocessor
Forum, 1996.

0
0.5

1
1.5

2
2.5

3
3.5

4

compress gcc go ijpeg m88ksim perl vortex xlisp

Benchmark

In
st

ru
ct

io
ns

 p
er

 C
yc

le

L0S0 L1S0 L1S1 L2S0 L2S2

