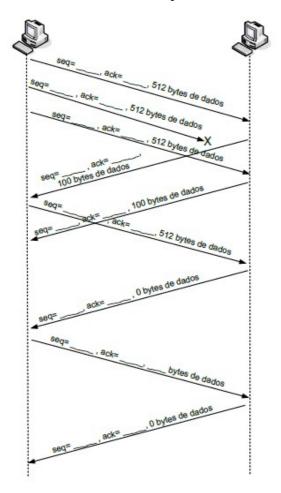
PROVA FINAL DE REDES DE COMPUTADORES – 2009/2

Aluno:

- 1) (1,0) Dadas duas camadas X e Y (X > Y) e supondo-se que a entidade da camada X é orientada a conexão e a entidade da camada Y é não orientada a conexão e com serviços não confirmados, elabore um diagrama de ordem temporal relacionando as camadas X e Y durante um estabelecimento de conexão (dado Serviços: X-Connect e Y-Data).
- 2) (1,0) Qual o endereço IP de rede do host 156.72.34.125 e máscara de rede 255.255.255.224? Qual é o endereço de broadcast nesta rede?
- 3) (1,0) Considere a tabela de rotas de um roteador IP:

Rede IP	Máscara	Próximo Roteador	Interface
139.80.40.64	255.255.255.192	-	139.80.40.65
139.80.40.128	255.255.255.192	-	139.80.40.129
139.80.45.0	255.255.255.0	139.80.40.66	139.80.40.65
139.80.45.64	255.255.255.192	139.80.40.130	139.80.40.129
0.0.0.0	0.0.0.0	200.24.40.2	200.24.40.1


Supondo que este roteador recebeu datagramas para os endereços IP de destino especificados abaixo, quais as interfaces de saída e os roteadores usados para alcançar cada um deles?

- a) 139.80.40.115
- b) 139.80.45.72
- 4) (1,0) Um host A envia um segmento TCP para um host B com as informações no cabeçalho mostradas abaixo e com 600 bytes de dados. Sabendo que o buffer de recepção de B tinha 4000 bytes de espaço livre antes de receber o segmento acima, quais as informações dos mesmos campos no próximo segmento TCP enviado de B para A carregando 800 bytes de dados, após receber corretamente o segmento acima?

Sequence number: 1001 Acknowledgement number: 2020 Window: 3000

- 5) (2,0) Marque Falso ou Verdadeiro:
 - a) Os endereços do tipo 127.x.x.x são utilizados em redes do tipo Intranet
 - b) Os endereços do tipo 10.x.x.x são endereços de *Loopback*
 - c) De acordo com o padrão Internet, uma rede de endereços classe C, com máscara 255.255.255.128 não possui nenhuma máguina
 - d) Para um endereço classe C, utilizando-se uma máscara com 4 bits no quarto octeto podemos ter 224 máquinas
 - e) Cada vez que o pacote IP passe em um roteador, o campo TTL é decrementado em 2 (um para cada porta)
 - f) Se o campo TTL do pacote IP ficar igual a 0 o pacote é fragmentado
 - g) É possível dizer explicitamente no pacote IP qual rota ele deve seguir, independente das informações de roteamento.
 - h) A fragmentação ocorre pois arquivos podem ser grandes
 - i) Um pacote é sempre fragmentado em uma rede Ethernet
 - j) Pacotes só são fragmentados se a área de dados da próxima rede for menor do que a área de dados da rede atual.
 - k) O ICMP permite que gateways intermediários reportem erros à origem
 - O PING é um programa que utiliza o formato de pacotes ICMP para verificar se uma máquina destino está desconectada da rede e verificar se gateways estão congestionados

- m) O TTL é um campo do IP que identifica a hora que o pacote saiu da estação de origem
- n) As mensagens ICMP são encapsuladas em pacotes IP
- o) O número da porta do servidor tem que ser igual ao do cliente para eles estabelecerem uma conexão.
- p) O número de porta só é necessário com o protocolo TCP, já que o UDP não tem garantia de entrega de pacotes.
- q) O tamanho da tabela de roteamento é proporcional à quantidade de gateways ligados à rede
- r) As tabelas de roteamento tem que ser alteradas diariamente ou no máximo semanalmente. Isto justifica o trabalho do analista de redes
- s) A administração do DNS é feita por um único organismo denominado NIC (Network Information Center)
- t) Toda máquina na Internet precisa ter um endereço IP e um nome hierárquico
- 6) (2,0) Numa requisição DNS pode haver 0 ou mais trocas de mensagens entre o cliente e os vários servidores DNS da rede. Dê um exemplo onde ocorre 0 troca de mensagens. Idem para 2, 4, 6 e 8 mensagens, caso seja possível.
- 7) (1,0) No cenário da figura complete os valores dos campos *seq* e *ack* para cada um dos segmentos indicados, assumindo que a conexão TCP tenha acabado de ser estabelecida.

8) (1,0) O número de seqüência no cabeçalho de TCP ocupa 32 bits, o que permite descrever mais de 4 bilhões de bytes de dados. Explique porque, mesmo que nunca transmitamos tantos dados, o número de sequência poderá transbordar (passar de 2**32 - 1 para 0).