
Git & Github tutorial

Jorge Ramírez
jorge.ramirezmedina@unitn.itSlides: https://tinyurl.com/se2-git-tutorial

Part #1

Git basics

Getting a Git Repository

$ git init
$ git clone

Configuring git

$ git config

$ git config --global user.name "Mario Rossi"
$ git config --global user.email "mr@gmail.com"

Saving changes

$ git add
$ git commit

The file status lifecycle. Source: The git book

Staging area

Checking status and changes

$ git status
$ git diff

Ignoring files

$ cat .gitignore
*.pyc

Removing files

$ git rm

Viewing commits

$ git log
$ git show

Tags

$ git tag

$ git tag -a v0.1.0 -m "version 0.1.0"
$ git tag v0.1.0
$ git tag -a v0.1.0 6bc0f6b

Tags can be
lightweight or
annotated

annotated

lightweight tag a specific
commit

Branching

How git works: snapshots

Storing data as snapshots. Source: The git book

Pointer to
File B

How git works: commit

$ git add README test.rb LICENSE
$ git commit -m "Initial commit"

snapshotcommit

blobs

Git commit tree. Source: The git book

How git works: commit, commit, commit

A sequence of commits. Source: The git book

Branch = a movable pointer to a commit

$ git branch
$ git checkout

A git branch and its history. Source: The git book

Git's default
branch name

A pointer to the
current local
branch

Working with branches

$ git branch f-53
$ git checkout f-53
$ … some work …
$ git commit -m "Implement load balancing".

Chart generated using
learngitbranching.js.org

Part #2

Fast-forward merging

Chart generated using learngitbranching.js.org

git merge f-53 git branch -d f-53

Working with branches: a real life example

$ git branch f-54
$ git checkout f-54
$ … some work …
$ … the boss asks you to fix an urgent bug…
$ git commit -m "Current progress on issue 54"
$ git checkout master
$ git checkout -b hotfix
$ … fix the bug …
$ git commit -m "Fix the user form"
$ git checkout master
$ git merge hotfix
$ … you notify the boss …

Chart generated using
learngitbranching.js.org

forward merge

Recursive or three-way merging

Chart generated using learngitbranching.js.org

git merge f-54

Solving merge conflicts
Branches f-55 and f-56 changed the same part of a file differently.

Chart generated using learngitbranching.js.org

Github

Working with remotes

$ git remote [add, show, rename, remove, ...]
$ git pull
$ git fetch
$ git push

Working with remotes

● Put things online

● Pull/push changes

● Push a local branch

● Delete a remote branch

$ git push -u origin master

$ git pull
$ git push

$ git push origin my-branch

$ git push -d origin my-branch

Some extra features of Github

● autolinked references
https://help.github.com/en/articles/autolinked-references-and-urls

● closing issues
https://help.github.com/en/articles/closing-issues-using-keywords

Branching model

Gitflow is a development model that defines a strict branching strategy centered
around the idea of releases.

Elements

● Main branches: master branch, develop branch
● Supporting branches: feature branches, hotfix branches, release branches.

References
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://nvie.com/posts/a-successful-git-branching-model/

Gitflow

Master and Develop branches

Image from Atlassian

Feature branches

Image from Atlassian

Release branches

Image from Atlassian

Hotfix branches

Image from Atlassian

Gitflow practice

1. Create a develop branch and push it to your Github repository.
2. Add some commits to the branch develop and push.
3. Create a hotfix branch off of master branch add a commit and push.
4. Merge the hotfix branch into master and push.
5. Merge the hotfix branch into develop.

Assignment #1
https://tinyurl.com/se2-a1

(some) Advanced git

git rebase

Another way of integrating changes.

$ git commit
$ git commit
$ git checkout -b exp
$ git commit
$ git checkout master
$ git commit

Setup $ git merge exp

Merge

$ git checkout exp
$ git rebase master
$ git checkout master
$ git merge exp

Rebase
three-way merge

Rebase + fast-forward merge

Use learngitbranching.js.org to see the differences

git stash

Stashing allows us to store half-done work without doing a commit.

$ … started working on feature-58 …
$ … the boss asks you to fix an urgent bug…
$ git stash
$ … work on hotfix and push. Then …
$ git checkout feature-58
$ git stash apply
$ … continue working on feature-58 …

References
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://www.internalpointers.com/post/squash-commits-into-one-git

git rebase -i
Interactive rebasing allows us, among other things, to squash multiple
commits into one.

$ … started working on feature-58 …
$ git commit -m "day #1 on feature-58"
$ git commit -m "day #2 on feature-58"
$ git commit -m "day #3 on feature-58"
$ git rebase -i HEAD~3
$ … interactive rebase, pick, squash, squash …
$ git checkout develop
$ git merge feature-58
$ git push

Part #3

Understanding git reset: the trees

The "three trees". Source: The git book

Staging area

Pointer to
the current
branchOur directory

Understanding git reset: creating a repo

Git basically populates the Working Directory tree.
Source: The git book

$ git init

Understanding git reset: preparing for commit

Git moves things from the Working Directory to the Index.
Source: The git book

$ git add

Understanding git reset: commit changes

Git takes what's on the Index and creates an snapshot, a commit object and updates master.
Source: The git book

$ git commit

Source: The git book

Understanding git reset: git status revisited
Changes not staged for commit (diff between Index and Working directory)

Understanding git reset: git status revisited
Changes to be committed (diff between HEAD and Index)

Source: The git book

The role of reset

Source: The git book

git reset allows us to
manipulate the "three trees", in 3
steps.

Steps

1. Move HEAD
2. Update Index
3. Update Working Directory

Move HEAD: undo a commit

$ git reset --soft HEAD~

Source: The git book

Update Index: undo a commit and unstage

$ git reset --mixed HEAD~

Source: The git book

Update Working Directory: undo, unstage, erase

$ git reset --hard HEAD~

Source: The git book

Reset with a path

$ git reset HEAD file.txt

Source: The git book

Reset with a path

$ git reset eb43 README.md

Source: The git book

The role of checkout

git checkout allows us to manipulate the "three trees" too. But it is different
from git reset depending on whether it receives a file path or not.

$ git checkout develop $ git checkout -- <file>

Like doing git reset --hard develop
in that git updates the "three trees" to look like
the develop branch. Then checkout updates
HEAD to point to the develop branch.

Like reset, it does not move HEAD. And it is
similar to git reset [branch] file
BUT it also updates the Working Directory.

Moving to a branch Undoing changes

Editing our last commit

● Use git commit --amend to edit the last commit.
● ONLY for local commits (not yet pushed).

Thanks!

Questions from the class

How can I remove a global configuration?

● The "clean" way: remove the user section (user.name, user.email)

$ git config --global --remove-section user

● The "not-so-clean" way: edit the configuration file by manually
removing the section.

$ vi $HOME/.gitconfig

How can I "see" what's on the Index? (1/2)
The Index is our proposed changes for the next commit, also known as the
"staging area". So this question is twofold:

● git status shows what's going to be part of the next commit. But it shows
only the files we changed and staged using git add. However, in the Index,
there are also files that didn't change. And for this unchanged files, Git stores
a pointer to the last snapshot of the file.

● But once we committed, we can inspect the Index by:
○ Using git show and see what was part of our last commit.

■ git show --stat
○ Using git ls-file and inspect how the Index currently looks like. This is a

plumbing command. A concrete example of this on the next slide.
■ git ls-files --stage

How can I "see" what's on the Index? (2/2)
We see the index of our
last commit. Here, git
status will show you
"nothing to commit".

We edit a file, but we DO
NOT add the changes to
the Index. Here git status
only tells you "Changes not
staged for commit".

We do git add. This updates
the Index. Now you can
notice that the README
has changed (check the
hash value). And git status
will tell you "Changes to be
committed".

How can I see a git object?

● Use git cat-file to inspect the objects in Git's database (i.e., .git
folder). This is another plumbing command.

● For example, to see a commit object:

$ git cat-file -p <commit hash>

