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Abstract

Nowadays, there are more and more software systems operating in highly open, dynamic

and unpredictable environments. Moreover, as technology advances, requirements for these

systems become ever more ambitious. We have reached a point where system complexity

and environmental uncertainty are major challenges for the Information Technology in-

dustry. A solution proposed to deal with this challenge is to make systems (self-)adaptive,

meaning they would evaluate their own behavior and performance, in order to re-plan and

reconfigure their operations when needed.

In order to develop an adaptive system, one needs to account for some kind of feedback

loop. A feedback loop constitutes an architectural prosthetic to a system proper, introducing

monitoring and adaptation functionalities to the overall system. Even if implicit or hidden

in the system’s architecture, adaptive systems must have a feedback loop among their

components in order to evaluate their behavior and act accordingly. In this thesis, we take

a Requirements Engineering perspective to the design of adaptive software systems and,

given that feedback loops constitute an (architectural) solution for adaptation, we ask the

question: what is the requirements problem this solution is intended to solve?

To answer this question, we define two new classes of requirements: Awareness Re-

quirements prescribe the indicators of requirements convergence that the system must strive

to achieve, whereas Evolution Requirements represent adaptation strategies in terms of

changes in the requirements models themselves. Moreover, we propose that System Iden-

tification be conducted to elicit parameters and analyze how changes in these parameters

affect the monitored indicators, representing such effect using differential relations.

These new elements represent the requirements for adaptation, making feedback loops

a first-class citizen in the requirements specification. Not only they assist requirements

engineers in the task of elicitation and communication of adaptation requirements, but

with the proper machine-readable representations, they can serve as input to a framework

that implements the generic functionalities of a feedback loop, reasoning about require-

ments at runtime. We have developed one such framework, called Zanshin, and validated

our proposals through experiments based on a well-known case study adopted from the

literature.

Keywords[Adaptive systems, requirements, feedback loops, awareness, evolution, system

identification, Zanshin, Qualia]
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Chapter 1

Introduction

The major cause [of the software crisis] is that the machines

have become several orders of magnitude more powerful! To put

it quite bluntly: as long as there were no machines, programming

was no problem at all; when we had a few weak computers,

programming became a mild problem, and now we have gigantic

computers, programming has become an equally gigantic problem.

Edsger W. Dijkstra†

As technology advances, the requirements for software systems become ever more am-

bitious. We have reached a point where complexity is now one of the major challenges

for the Information Technology (IT) industry. A solution that has been proposed by

researchers in the past years is to design systems that adapt themselves to undesirable

situations, such as new contexts, failures, suboptimal performance, etc. These solutions

invariably include, even if hidden or implicit, some form of feedback loop, as in control

systems. Only few of them, however, consider the issue of adaptation during the whole

software development process, starting from requirements engineering. In this chapter,

we discuss the issue of software adaptation under a requirements engineering perspective,

motivated by the increased complexity of software systems and uncertainty of the envi-

ronments on which they operate. At the end of this chapter, we present an overview of

this thesis’ proposal: a requirements-based approach for the design of adaptive systems.

1.1 Challenges of modern software systems

Nowadays, there are more and more software systems operating in highly open, dynamic

and unpredictable environments, e.g., automated car driving,1 real-time monitoring and

†All quotes in this thesis were taken from http://www.wikiquote.org.
1See, e.g., Google Driverless Car: http://googleblog.blogspot.it/2010/10/what-were-driving-at.html.

http://www.wikiquote.org
http://googleblog.blogspot.it/2010/10/what-were-driving-at.html
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control, business analytics,2 social networks, etc. This is pushing software to grow not

only in size, but also in variability, to cope with the increasingly larger sets of requirements

as a result of environmental uncertainty [Cheng and Atlee, 2007].

An example of the challenges ahead is the imminent need for Ultra-Large-Scale Systems

[Northrop et al., 2006], such as, for instance, next-generation military command and

control, future intelligent transportation management, critical infrastructure protection,

integrated health-care, disaster response, etc. According to Cheng and Atlee [2007],

for systems like these, requirements will come from many different stakeholders, involve

multiple disciplines and be presented at varying levels of abstraction.

Another factor that has a high impact on environmental uncertainty is the increasing

involvement of humans and organizations in system structures and operations, as more

and more aspects of human life are being automated or assisted by computer programs.

Here, there are challenges in defining system boundaries, accommodating both internal

organizational rules and external laws and regulations, understanding how the technical

component of the system affects the social one and vice-versa, among others [Bryl, 2009].

Lehman [1980] called these kinds of systems as E-Type systems. Such systems are

deployed (E is for Embedded) in the real world, which has an unbounded number of

properties and parameters, but are built according to a specification which is necessarily

bounded, leading to the explicit or implicit inclusion of assumptions about the real world in

the system specification [Lehman and Ramil, 2002]. In other words, more precisely those

of Fickas and Feather [1995], “requirements are typically formulated within the context

of an assumed set of resource and operating needs and capabilities. As the environment

changes, it may render those assumptions invalid.” Therefore, according to Lehman and

Ramil [2002], it follows that this kind of system naturally obeys a principle of software

uncertainty:

“The outcome of the execution of E-type software entails a degree of uncer-

tainty, the outcome of execution cannot be absolutely predicted”, or more fully,

“Even if the outcome of past execution of an E-type program has previously

been admissible, the outcome of further execution is inherently uncertain; that

is, the program may display inadmissible behaviour or invalid results”

This principle is also confirmed in practice. The Standish Group’s 2003 CHAOS

Chronicles3 showed that, over 13 thousand IT projects (among which 15% failed and 51%

overrun their time and/or cost constraints), only about half of the originally allocated

requirements appear in the final released version. Because this can lead to insufficient

2See, e.g., http://www-142.ibm.com/software/products/us/en/category/SWQ00.
3http://www.standishgroup.com/chaos/toc.php.

http://www-142.ibm.com/software/products/us/en/category/SWQ00
http://www.standishgroup.com/chaos/toc.php
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project planning, continuous changes in the project, delays, defects, and overall customer

dissatisfaction [Ebert and De Man, 2005], many approaches have been proposed to deal

with this challenge, such as, for instance, agile methods [Sillitti et al., 2005], requirements

definition and management techniques [Ebert and De Man, 2005], monitoring of claims

over environmental assumptions [Welsh et al., 2011], among others.

The high degree of uncertainty of the environment in which a software is deployed

increases its external complexity. On the other side of the coin, a software could also

have a high degree of internal complexity, i.e., the problem itself being solved is a difficult

one. Complexity is hard concept to define. Gell-Mann [1988] defines complexity of things

in nature as the degree of difficulty in communicating them in a predefined language,

comprising both how hard it is to represent them and how challenging it is to understand

the theory behind the chosen language. In the case of software systems, the chosen

language must be one that can be interpreted by a computer, so problems that appear to

be expressed quite easily in natural language become much more complex when specified

in a more formal notation, such as computer code. Moreover, problems that are currently

being solved by software projects are intrinsically complex, otherwise they are not much

of a problem [Hinchey and Coyle, 2012, Preface].

Internal complexity comes from the desire to automate more and more tasks in our

everyday lives. The average mobile device today has one million lines of code and that

number is doubling every two years; a Boeing 777 depends on 4 million lines of code

whereas older planes such as the Boeing 747 had only 400 thousand; it was predicted that

cars would average today about 100 million lines of code, which is ten times the amount

of code they had in early 1980s [Chelf and Chou, 2008]. If this complexity continues

to grow at its current rate, human intervention for system administration, maintenance,

evolution, etc. may soon become infeasible [Horn, 2001].

Following Moore’s law, there has been a half a million fold improvement in hardware

capability in the last 30 years, which consists of an opportunity to build more and more

ambitious systems. Hardware is not only becoming more powerful, but also smaller, re-

sulting in ubiquitous microprocessors which, coupled with advances also in communication

technologies, allowed for the creation of complex, globally distributed systems scaling to

intercontinental distances [Butler et al., 2004]. Distributed systems tend to have global

and local requirements that have to be reconciled and often change to adapt to market

demands. Managing complexity in such systems has become a profitable business, as can

be seen by the amount of success stories advertised by companies that are specialized in

IT management.4

A report published by The Royal Academy of Engineering, in the United Kingdom

4See, for instance, CA Technologies’ Success Stories: http://www.ca.com/us/Success-Stories.aspx.

http://www.ca.com/us/Success-Stories.aspx
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[Butler et al., 2004] collected evidence from more than 70 individuals, encompassing senior

directors, managers, project managers and software engineers from the public and private

sector, as well as academic experts, concluding, among other things, that more research

into complexity and associated issues is required to enable the effective development of

complex, globally distributed systems. The report points out the widespread perception

that the success rate of IT projects is unacceptably low, incurring losses of hundreds of

billions of dollars per year in the United States and the European Union alone.5

One of the solutions that are being considered to the problems discussed above is more

automation (which is ironic, given that the increased level of automation is one of these

causes of these problems). For instance, there has been growing interest in automating

activities of the software development process itself to aid in the construction of complex

systems. According to a SAP security expert, the use of automated scanning of code for

potential threats raised the number of security notes in their software by a huge amount

in 2010, when compared to previous years, remaining as high in 2011. The reason is not

that threats were not present in previous years, but that they could not be identified

using solely non-automated means [Schaad, 2012]. To cite another example, a study

commissioned by the National Institute of Standards and Technology (NIST) showed

that around US$ 22.2 billion could be saved by an improved Verification & Validation

infrastructure that enables earlier and more effective identification and removal of software

defects such as, for instance, static source code analysis [Chelf and Chou, 2008].

However, the challenges illustrated in this section do not affect software-intensive sys-

tems only during their development, but also at their maintenance and evolution stages,

after they have already been put into operation. In this case, it is important to build

systems that can change their own behavior (possibly with humans in the loop) to con-

tinue to fulfill their requirements, despite growing environmental uncertainty and internal

complexity. The next section focuses on this adaptation capability as a way of coping

with uncertainty and complexity.

1.2 Software system adaptation

A solution proposed to deal with the problems discussed above is to make systems self-

managed, meaning they would self-configure for operation, self-protect from attacks,

self-heal from errors, self-tune for optimal performance, etc. This section discusses how

(self-)adaptation can be used to manage uncertainty and complexity.

5We do recognize, however, there are many cases of successful IT projects involving complex, multi-million

lines of code artifacts. What this section is trying to highlight is that there are still problems that need to be

addressed regarding uncertainty and complexity in software projects.
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1.2.1 Definitions

Researchers refer to systems with the aforementioned self-* properties as autonomic sys-

tems [Kephart and Chess, 2003]. One particular self-* property that has been gaining

a lot of attention from the research community is self-adaptation. In December 1997,

four years before the publication of the autonomic manifesto by Horn [2001], the DARPA

Broad Agency Announcement BAA-98-12 provided a definition for self-adaptive software,

as quoted by Laddaga and Robertson [2004]:

Self Adaptive Software evaluates its own behavior and changes behavior when

the evaluation indicates that it is not accomplishing what the software is in-

tended to do, or when better functionality or performance is possible. [. . . ]

This implies that the software has multiple ways of accomplishing its purpose,

and has enough knowledge of its construction to make effective changes at

runtime. Such software should include functionality for evaluating its behavior

and performance, as well as the ability to re-plan and reconfigure its operations

Many researchers use the terms autonomic and self-adaptive interchangeably. How-

ever, according to Salehie and Tahvildari [2009] there are some similarities, but also some

differences between self-adaptive software and autonomic computing. In their view, the

term autonomic refers to a broader context, handling all layers of the system’s architecture

(from applications to hardware), whereas self-adaptive has less coverage — constrained

mostly to applications and middleware — and, thus, falling under the umbrella of auto-

nomic computing.

In our view, there are also differences in the underlying motivation and the approach for

solution in the research areas of autonomic computing and adaptive systems. The former,

triggered by the publication of the autonomic manifesto [Horn, 2001] by IBM, is motivated

by the maintenance cost of systems that have high internal complexity (e.g., compilers,

database management systems, etc.), whereas the latter is fueled by the need of deploying

software systems in social, open contexts with high degrees of uncertainty. Furthermore,

autonomic research focuses on architectural solutions for automating maintenance tasks,

whereas adaptive systems usually are more concerned with user requirements and envi-

ronmental assumptions.6 In this sense, adaptive research would have a broader scope,

considering the entire software development process from requirements to operation.

In this thesis we focus on adaptation, based on the definition of self-adaptive software

provided by DARPA’s announcement. We do, however, provide yet another distinction,

6Later, in Section 2.2, we also discuss architectural approaches for adaptation. However, although not focusing

on Requirements Engineering, these approaches do focus on concerns which are, in a way, user requirements, such

as, for instance, quality of service.
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one between the terms adaptive and self-adaptive:

• An adaptive software is a software system that has mechanisms for monitoring

and adaptation as per DARPA’s definition when complemented by external actors,

such as sensors or its (human) users. An example are socio-technical systems, which

include in their architecture and operation organizational and human actors along

with software and hardware ones [Bryl, 2009];

• A self-adaptive software is a software system whose monitoring and adaptation

mechanisms are fully automated, i.e., they do not involve humans in the loop when

evaluating their own behavior or reconfiguring their operations. These kinds of

systems are often also called autonomous ;

In the first case, by combining an adaptive software with human and organizational

actors we can form a socio-technical system that can be deemed a self-adaptive system

given that the human and organizational actors that implement (part of) the adaptation

capabilities are all included in the system as a whole. For simplicity, we henceforth refer

to these software-intensive systems (socio-technical or not) as adaptive systems. Note,

however, that other types of systems can also be (self-)adaptive. For example, living

organisms such as the human body (in effect, the autonomic nervous system that controls

the human body inspired proposals included in the autonomic manifesto [Horn, 2001]).

In other words, this thesis is concerned with adaptive software-intensive systems in

general, regardless whether they are self-adaptive or not. The discussions in this chapter

and the concepts in subsequent chapters apply to an autonomous cleaning robot with

no human intervention the same way they apply to a meeting scheduling system whose

output depends on the inputs of different members of the organization. In the former,

when presented with an obstacle, the robot would use its own components (e.g., actuators)

to change its course and overcome the obstacle. In the latter, it could be the case that a

secretary informs the system that all available rooms are full and the system decides to

delegate to managers the task of increasing the number of rooms available by arranging

new space for meetings.

Notice how, in the first case, monitoring and adaptation were automated by the robot,

whereas in the second scenario they both involve a human in the loop — the secretary

did the monitoring and the managers were in charge of the adaptation. Adaptive systems

can mix both kinds of monitoring/adaptation, depending on how designers choose to

implement them.
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1.2.2 Feedback loops

It follows from the above that in order to develop an adaptive system, one needs to account

for some kind of feedback loop. A feedback loop constitutes an architectural prosthetic

to a system proper, introducing monitoring, diagnosis, etc. functionalities to the overall

system. A well-known example is the autonomic computing MAPE loop [Kephart and

Chess, 2003], whose acronym stands for the four activities that it performs: monitor,

analyze, plan and execute. If adaptive systems need to evaluate their behavior and act

accordingly, they must have some kind of feedback loop among their components, even if

implicit or hidden in the system’s architecture.

For instance, let us recall the autonomous cleaning robot and the socio-technical adap-

tive meeting scheduler exemplified earlier. Following the terminology used in control sys-

tems development, we refer to these systems as target systems. In order to know that

there is an obstacle ahead or that there are no available rooms for meetings, target sys-

tems must have the ability to monitor these properties and feed them back into some

decision process — sometimes referred to as the controller or adaptation framework —

which will switch from the current behavior to an alternative one that overcomes the un-

desirable situation. For the robot this means calculating a new path of movement towards

the target, whereas the meeting scheduler could decide that a new room should be made

available, or that the meeting should be postponed, or yet that another meeting should

be canceled in order to make a room available, etc.

Recently, researchers have expressed the need to make these feedback loops first-class

citizens in the design of adaptive systems. Brun et al. [2009] notice that “while [some]

research projects realized feedback systems, the actual feedback loops were hidden or

abstracted. [. . . ] With the proliferation of adaptive software systems it is imperative to

develop theories, methods and tools around feedback loops.” Andersson et al. [2009] con-

sider that “a major challenge is to accommodate a systematic engineering approach that

integrates both control-loop approaches with decentralized agents inspired approaches.”

Cheng et al. [2009b] declare that “Even though control engineering as well as feedback

found in nature are not targeting software systems, mining the rich experiences of these

fields and applying principles and findings to software-intensive adaptive systems is a

most worthwhile and promising avenue of research for self-adaptive systems. We further

strongly believe that self-adaptive systems must be based on this feedback principle.”

Considering feedback loops as first class citizens implies a fundamental difference be-

tween the design of “vanilla” (i.e., non-adaptive) systems and that of adaptive systems:

requirements for the latter are not necessarily treated as invariants that must always be

achieved. Instead, we accept the fact that the system may fail in achieving any of its

initial objectives and provide a way of specifying the level of criticality of each goal as
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constraints on their success/failure and assigning adaptation actions to be carried out

when the system does not fulfill these constraints.

Feedback loops are a fundamental architectural element in the design of control sys-

tems, whereby the output to be controlled is compared to a desired reference value and

their difference is used to compute corrective control action [Doyle et al., 1992]. In other

words, measurements of a system’s output are used to achieve externally specified goals

by adjusting parameters that in some way affect indicators that these goals are being

achieved. For this reason, feedback loops are also called closed loops and are present in

some form in almost any system that is considered automatic [Hellerstein et al., 2004],

such as an automobile cruise control or an industrial control system of an electric power

plant.

On the other hand, open loops, also known as feed-forward loops, are different in the

sense that they calculate the control action without measuring the output of the system

[Hellerstein et al., 2004]. Instead, they change their behavior according to information

monitored exclusively from the environment in which they operate, regardles of what is

the current output of the system. Context-aware systems are examples of systems that

use open loops.

Control Theory, an interdisciplinary branch of engineering and mathematics, is con-

cerned with the behavior of dynamical systems, such as the ones cited above, providing

ways to determine the proper corrective action when a system’s output does not match

the desired, reference values. For example, one of these ways is a process known as System

Identification, which consists of relating the adjustable parameters to the monitored indi-

cators through differential relations. During the research that is compiled in this thesis,

we have applied and taken inspiration from Control Theory in several occasions, in order

to formulate our proposals on the design of adaptive systems.

1.2.3 Requirements-based adaptation

As we have just discussed, feedback loops provide the means through which adaptive

systems are able to monitor important indicators and, if they show the target system is

not working properly, take appropriate corrective action in order to adapt. Then, the

questions that follow are: which are the important indicators to monitor? What are the

proper corrective actions for their failure? Who decides these things? An answer to these

questions has been given more than three decades ago, by Ross and Schoman Jr. [1977]:

Requirements definition must encompass everything necessary to lay the ground-

work for subsequent stages in system development. [. . . ] It must say why a

system is needed, based on current or foreseen conditions, which may be in-
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ternal operations or an external market. It must say what system features

will serve and satisfy this context. And it must say how the system is to be

constructed.

Like any other kind of functionality, adaptivity features should also be described in the

software requirements specification in all of its aspects: why it is needed (i.e., what are

the goals to satisfy), what should be developed (i.e., what features will serve and satisfy

the goals) and how it should be constructed (i.e., what are the quality criteria used

to measure these features). Absence of this information can lead to delays in software

delivery, excessively high cost in development and ultimately dissatisfied clients [Ross and

Schoman Jr., 1977].

Take, for instance, a management system for an emergency service integrating police,

fire departments and emergency medical services of a given city or region. Dealing with

emergencies that may threaten people’s lives, this system is considered critical and, there-

fore, should ensure that it always satisfies stakeholder requirements. When developing

such a system, one may choose among different means to certify that it will always reach

its objectives, for instance:

• Perform longer and more thorough Verification & Validation during the software

development process and establish strict procedures to be followed by the staff in

order to attempt to avoid system failures altogether;

• Increasing available resources, such as staff and vehicles, in order to have them

available when undesirable situations present themselves, which would make it easier

to respond to these situations more quickly;

• Build adaptation mechanisms into the system, making it able to detect when some-

thing has failed, determine what could be done to overcome the failure and change

its own behavior in order to attempt to always satisfy its main requirements.

By stating the goals to be satisfied (e.g., critical services should always work properly)

and the possible different ways to achieve them (for instance, the examples above), one

can choose the best solution for the problem at hand before going into the requirements

for this solution, at the same time defining why the solution is needed (e.g., adaptation

is needed because system failures can have disastrous results). For the past couple of

decades, Requirements Engineering (RE) research has increasingly recognized the leading

role played by goals in the RE process [van Lamsweerde, 2001]. For the same reasons, our

research, presented herein, is based on the state-of-the-art in Goal-Oriented Requirements

Engineering (GORE).
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Goal-oriented, requirements-based adaptation consists, then, of combining the con-

cepts of GORE with the principles of Feedback Control Theory. Consider a goal model

that represents the requirements of a system-to-be (e.g., an i? strategic rationale model

[Yu et al., 2011] under the system’s perspective), using as modeling primitives concepts

such as goals, softgoals, quality constraints and domain assumptions [Jureta et al., 2008].

This model, which embodies, among other things, the system requirements, represents

what the system should do and how it should behave. A feedback loop around this sys-

tem could then be built in such a way that it considers the information represented in

this model as the reference value for the system, activating corrective actions whenever a

requirements divergence is detected, i.e., whenever the output indicates that the system

is not behaving as stated in the model.

Hence, the challenges here are extending the current state-of-the-art in GORE with

elements that allow requirements engineers to specify, preferably with different levels of

criticality, which requirements in particular should be monitored by the feedback loop (in

other words, which are the indicators of requirements convergence), what are the system

parameters that can be adjusted as part of the corrective control action and, finally, what

are the relations between these parameters and the chosen indicators.

Moreover, when eliciting and modeling requirements and information about the do-

main, in particular the aforementioned relations between parameters and indicators, it

is often the case that domain experts are not able to provide the same level of precision

that is expected in traditional Feedback Control Theory. We need, therefore, to be able

to represent and use information in different levels of precision and, for this purpose,

we could take advantage of research results in the area of qualitative representation and

reasoning [Forbus, 2004].

Finally, following trends set by research agendas and workshops on the subject (e.g.,

[Sawyer et al., 2010; Bencomo et al., 2011a,b]), this new, augmented requirements model

could be used at runtime by an adaptation framework that is able to perform the generic

steps of a feedback control loop, alleviating developers of much of the effort in imple-

menting the feedback controller from scratch. Having an online representation of the

requirements model at runtime (i.e., a machine-readable representation of the system

requirements that is parsed by a framework at runtime for reasoning purposes) is also

important when dealing with requirements evolution, which we discuss next.

1.2.4 Adaptation and evolution

Our work is part of a broader research project called Lucretius: Foundations for Software

Evolution,7 which is concerned with investigating the role of requirements in the evolution

7http://www.lucretius.eu/.
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of software systems. In particular, one of the objectives is to develop techniques for

designing software systems that evolve in response to changes in their requirements and

operational environment, i.e., systems that can cope with requirements evolution.

The problem of requirements evolution was initially addressed in the context of soft-

ware maintenance. In that context, requirements evolution was treated as a post-im-

plementation phenomenon (e.g., [Antón and Potts, 2001]) caused by changes in the op-

erational environment, user requirements, operational anomalies, etc. A lot of research

has been devoted to the classification of types of changing requirements such as mutable,

adaptive, emergent, etc. [Harker et al., 1993] and factors leading to these changes.

In our research, we consider that system evolution can be done in one of three possible

evolution modes, namely:

• Automatic evolution: the system monitors its own output and the environment

within which it operates and adapts its behavior to ensure that it continues to fulfill

its mandate. For example, suppose a meeting scheduler sends e-mail messages to

people that have been invited for a meeting, asking them for their schedule in the

following week before scheduling the meeting. Furthermore, imagine that there is a

quality constraint that imposes a threshold on the time it takes to schedule a meeting.

Then, if the system detects that it is not satisfying the constraint, it could switch to

checking people’s schedules in the organization’s personal information management

system (i.e., replace a requirement with another), because it takes much less time;

• Manual evolution: system developers/maintainers evolve the system by chang-

ing its requirements and domain (environment) models in accordance with external

changes, and then propagate these changes to other parts of the system, such as

its architecture, code and interfaces. Think of the same example as before, how-

ever the organization does not have a personal information management system and

managers decide that the meeting scheduler should be upgraded (i.e., new features

should be elicited, designed and implemented) in order to be able to serve also as

an integrated calendar for all of its users;

• Hybrid evolution: the system is operating with a feedback loop as in the automatic

case, but has humans in the loop to approve system-generated compensations, or

even contribute to their generation, as in the manual mode. Again using the same

example, suppose the solution is not to switch from e-mail to integrated calendar,

but instead have secretaries call people and ask for their availability. The secretary

is the human-in-the-loop in the new requirement, which replaces the old one.

Not surprisingly, the automatic and hybrid evolution modes resemble, respectively,

with what we have previously defined as self-adaptive and adaptive systems. This is
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a consequence of the fact that we define requirements evolution as any change in the

system’s original requirements, be it a foreseen change (which could be conducted in an

automatic fashion) or an unforeseen one (which would have to be done manually). Given

that the software evolution process is a feedback system [Lehman, 1980], some overlapping

between adaptation and evolution is, after all, expected.

For example, anticipated requirement evolution could be the result of stakeholder

statements such as “If we detect so many problems in satisfying requirement R, replace

it with a less strict version of it, R−” or “Starting January 1st, 2013, replace requirement

S with S ′ to comply with new legislation that has been recently approved”. Of course,

when replacing a requirement Q with a new requirement Q′ automatically, both Q and

Q′ must have already been implemented, i.e., software engineers must have already con-

ducted a software development process (elicitation, design, implementation, etc.) for both

alternatives.

Other proposals (e.g., [Ernst et al., 2011]), however, consider as evolution only unan-

ticipated changes that, therefore, are not able to be modeled, let alone developed, a

priori. Under this assumption, one cannot consider evolution to be conducted automati-

cally since, at least for the foreseeable future, software is not able to think and be truly

intelligent and creative [Berry et al., 2005] in order to autonomously conduct a software

development process for requirements that were not anticipated by the software engineers.

Hence, in the context of our work, to evolve the requirements model in an automatic

or hybrid mode consists of one way of adapting to undesirable situations, once these

are detected by the monitoring component of the system’s feedback loop. The main

difference between evolution and the “usual” form of adaptation — which henceforth will

be referred to as reconfiguration — is that the former adapts through changes in the

problem space (i.e., changes parts of the requirements model), whereas the latter looks

for corrective actions in the solution space (i.e., changes the current values of system

parameters, without modifying the requirements model). As will be described in the rest

of this chapter, the approach we propose in this thesis deals with both types of adaptation.

1.3 Objectives of our research

In Section 1.2, we have outlined the context in which this thesis is inserted, i.e., requirements-

based (self-)adaptation through reconfiguration or evolution, using concepts and tools

from Feedback Control Theory. We now specify more explicitly our research objective

and the questions that this thesis proposes to answer.

Research objective: to define a systematic process for the design of adaptive

software systems based on requirements, centered on a feedback loop that per-
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forms reconfiguration or evolution in order to adapt the system to undesirable

situations, represented as requirement divergences.

We decompose the above statement into the following research questions:

RQ1: What are the requirements that lead to the adaptation capabilities of a

software system’s feedback loop?

If feedback loops constitute an (architectural) solution for adaptation in software

systems, what is the requirements problem this solution is intended to solve? We

address this question by proposing new types of requirements that represent how

the different parts of the feedback loop should behave:

– Awareness Requirements represent the requirements for the monitoring part

of the loop, indicating, with different levels of criticality, which other re-

quirements should always be satisfied (and, therefore, if they are not, some

adaptation should be done);

– The process of System Identification is adapted from Control Theory, produc-

ing differential relations between adjustable system parameters to indicators

of requirements convergence (Awareness Requirements can be used as the lat-

ter). These indicator/parameter relations represent the requirements for the

adaptation (reconfiguration) part of the loop;

– Finally, Evolution Requirements represent the cases in which adaptation is

done through specific changes in the requirements models, as illustrated in

Section 1.2.4.

RQ2: How can we represent such requirements along with the system’s “vanilla”

requirements?

It is important not only to elicit the requirements that lead to the adaptation

capabilities of the system, but also to represent them in a way they can be easily

communicated to, and understood by other developers. In particular, we have to

consider the issue of qualitative representation of requirements outlined in Sec-

tion 1.2.3. We address this question by allowing analysts8 to represent informa-

tion such as the indicator/parameter relations that guide adaptation (mentioned

in RQ1) in different levels of precision, ranging from highly qualitative statements

such as “parameter P affects indicator I positively” to quantitative information

like “changing parameter P by x will provoke a change of 1.5x on indicator I”.

8In this thesis, we use the terms analyst and requirements engineer interchangeably.
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Moreover, the entire requirements model should also be represented in a way that

allows reasoning to be performed at runtime by the controller that operationalizes

the feedback loop. This representation would include both the “vanilla” require-

ments plus the requirements for system adaptation. We address this by using

representations that are formal enough to be interpreted by a framework but at

the same time not too formal in order not to impose unnecessary burden on re-

quirements engineers. This run-time framework is the subject of RQ3, next.

RQ3: How can we help software engineers and developers implement this

requirements-based feedback loop?

As suggested in RQ2, above, and also outlined in Section 1.2.3, requirement mod-

els can be used not only as a way of communicating information among software

engineers, but they can also be used as input to a run-time controller that opera-

tionalizes the feedback loop described in Sections 1.2.2 and 1.2.3. This controller

would implement both types of adaptation — i.e., reconfiguration and automatic

evolution — using the information described earlier in RQ1.

We address this question by suggesting a systematic process that starts from the

requirements of a non-adaptive software system using the state-of-the-art in Re-

quirements Engineering and builds, step by step, the specification of an adaptive

system. Such specification uses the modeling elements mentioned earlier, repre-

senting the system’s adaptation requirements in terms of the requirements for the

feedback loop that operationalizes the adaptation.

Furthermore, we propose a framework that takes as input: (a) the models of the

aforementioned specification of the adaptive system, represented in a machine-

readable format (as described in RQ2); and (b) log information that describes the

actual outcome of the running system, in order to: (1) detect when undesirable

situations have occurred; (2) calculate the appropriate corrective action to each

case; and (3) instruct the system on how to adapt. Our framework is generic, in

the sense that it can be used to adapt any kind of system, as long as the necessary

input and framework–system communication channels are provided. As a result,

any adaptation action that involves application-specific tasks will still need to be

implemented by the target system’s development team, which is one of the main

limitations of our approach (limitations are further discussed in the last chapter

of the thesis).

RQ4: How well does the approach perform when applied to realistic settings?

An important aspect of any research proposal is validation. Hevner et al. [2004]



Objectives of our research 15

describe five categories of evaluation methods in Design Science: Observational,

Analytical, Experimental, Testing and Descriptive. Methods range from simple

description of scenarios up to full-fledge case studies which are conducted in busi-

ness environments. In particular, we applied the following methods to the research

presented in this thesis (descriptions taken from [Hevner et al., 2004]):

– Scenarios (descriptive): construct detailed scenarios around the artifact to

demonstrate its utility;

– Informed argument (descriptive): use information from the knowledge base

(e.g., relevant research) to build a convincing argument for the artifact’s util-

ity;

– Controlled experiment (experimental): study artifact in controlled environ-

ment for qualities;

– Simulation (experimental): execute artifact with artificial data.

Therefore, to address this question, throughout the thesis we illustrate (i.e., use the

descriptive methods listed above9) the different aspects of our proposal using the

classic example of the Meeting Scheduler in order to facilitate the understanding

of the new concepts that our approach brings to the design of adaptive systems.

To take the evaluation a bit closer to real settings, however, we have conducted

experimental evaluation with the development of an Adaptive Computer-aided

Ambulance Dispatch (A-CAD) System, whose requirements were based on the

well-known London Ambulance Service Computer-Aided Despatch (LAS-CAD)

failure report [Finkelstein, 1993] and some of the publications that analyzed the

case (e.g., [Kramer and Wolf, 1996]). The requirements for the A-CAD’s adap-

tation capabilities were elicited (RQ1), represented in a machine-readable format

(RQ2) and, finally, simulations of real failure scenarios were implemented in order

to test the adaptation framework (RQ3).

We have also assisted in the orientation of a masters student that applied our

approach to the design of an adaptive system based on an existing project that

designed and implemented an Automatic Teller Machine (ATM) [Tallabaci, 2012].

His dissertation evaluated parts of the approach presented in this thesis and pro-

vided the initial models that can be used as the basis for an experiment in which

a real system — i.e., the GUI that simulates a physical ATM that was developed

9We have to recognize, however, that the experiments conducted did not have the required level of formality of

a controlled experiment, as described by Wohlin et al. [1999] or Easterbrook and Aranda [2006]. For this reason, we

henceforth refer to our empirical research using only the word experiments, without the aforementioned adjective.
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earlier — can be made adaptive through the elicitation of Awareness Requirements

and the execution of System Identification.

Although we have not been able to conduct deeper forms of validation, such as

surveys with practitioners, field experiments or case studies, we nonetheless recog-

nize their importance, especially if one intends to take the results of this research

into a more industrial setting.

In the following section we summarize our approach, showing in a little more detail

how it contributes to answering the above research questions.

1.4 Overview and contributions

Our approach for the design of adaptive systems can be described in three major steps:

Awareness Requirements engineering, System Identification and Evolution Requirements

engineering.

1.4.1 Awareness Requirements engineering

The first step of the approach is the elicitation of Awareness Requirements (AwReqs),

which are requirements that talk about the states assumed by other requirements — such

as their success or failure — at runtime. By basing our approach on GORE, AwReqs can

refer to:

• A task: to determine if the system is able to perform a specific set of actions

successfully. Using the Meeting Scheduler as illustration, an example of an AwReq

that refers to a task is “task Have the system schedule (the meeting) should never

fail” — in other words, every time the system attempts to produce a schedule for a

meeting, it should succeed;

• A goal: to determine if the system is able to satisfy an objective. Referring to

goals or tasks allows the system to monitor for failures in functional requirements.

Example: “considering one week periods, the success rate of goal Collect timetables

should not decrease three times consecutively”;

• A quality constraint: to determine if the system abides by the quality criteria that

have been imposed on it. Referring to quality constraints allow the system to monitor

for compliance to non-functional requirements. Example: “quality constraint At

least 90% of participants attend (meetings) should have 75% success rate”;
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• A domain assumption: to determine if things that were assumed to be true

for the system’s proper functioning indeed are (and continue to be) true during

system operation. Referring to domain assumptions allows the system to monitor

for changes in its environment (i.e., to be also context-aware). Example: “domain

assumption Participants use the system calendar should always be true”.

AwReqs can also refer to other AwReqs, e.g., “AwReq AR1 should succeed 90% of the

time”, constituting meta-AwReqs or “Level 2 AwReqs” (further levels are also possible),

being monitored in the same fashion as non-meta (i.e., Level 1) AwReqs. Note how

some AwReqs refer to single instances of requirements (the task and domain assumption

examples), whereas others refer to the the whole requirement class in an aggregate way

(goal and quality constraint examples). At runtime, the elements of the goal model are

represented as classes and instances of these classes are created every time a user starts

pursuing a requirement or when they are bound to be verified. Their state (succeeded,

failed, etc.) is then monitored by the feedback controller.

In summary, AwReqs represent undesirable10 situations to which stakeholders would

like the system to adapt, in case they happen. That way, they constitute the requirements

for the monitoring component of the feedback loop that implements the adaptive capa-

bilities of the system. As outlined in Section 1.2, adaptation can then be done through

reconfiguration or evolution. For the former, we conduct System Identification.

1.4.2 System Identification

AwReqs can be used as indicators of requirements convergence at runtime. If they fail, a

possible adaptation strategy is to search the solution space to identify a new configuration

(i.e., values for system parameters) that would improve the necessary indicators. In other

words, the system would be tuned in order to attempt to avoid further AwReq failures.

As in control systems (cf. Section 1.2.2), to know the effect each parameter change has

on indicators we conduct System Identification for the adaptive system. In some cases

(e.g., a car’s cruise control), and given the necessary resources, it is possible to represent

the equations that govern the dynamic behavior of a system from first principles (e.g.,

quantitative relations between the amount of fuel injected in the engine and the velocity

of the car in different circumstances). For most adaptive systems, however, such models

are overly complex or even impossible to obtain. For this reason, we adopt ideas from

Qualitative Reasoning (e.g., [Kuipers, 1989]) to propose a language and a systematic

system identification method for adaptive software systems that can be applied at the

10In general, adaptive systems will adapt to situations that are undesirable. However, AwReqs can represent

any situation that refers to the states assumed by requirements at runtime, being them undesirable or not.



18 Introduction

requirements level, with the system not yet developed and its behavior not completely

known.

For instance, suppose the example AwReq referring to the success rates of goal Collect

timetables presented earlier fails at runtime. When this happens, the controller should

know which parameter can be modified in order to improve the chances of success of

this goal. Suppose further there is a parameter FhM which indicates From how Many

participants we should contact in order to consider the goal satisfied (represented as a

percentage value). In this case, decreasing the value of FhM could be considered an

adaptation action here. Likewise, if this goal is OR-refined into tasks Email participants,

Call participants and Collect automatically from system calendar, selecting call instead

of email or system instead of call could also help. These same changes might also have

impact on other indicators (e.g., the quality constraint At least 90% of participants attend

(meetings) also mentioned earlier), therefore all available information should be taken

into consideration by the controller when deciding the new configuration of the system.

As the examples illustrate, in our approach parameters can be of two flavors. Variation

points consist of OR-refinements which are already present in high variability systems

and merely need to be labeled. For instance, we could label the refinement of goal Collect

timetables as VP1, with possible values email, call or system. Control variables are

abstractions over large/repetitive variation points, simplifying the OR-refinements that

would have to be modeled in order to represent such variability. In the case of FhM, which

is a numeric control variable, if it were translated to a variation point, it would produce an

excessively large (potentially infinite, if FhM were a real number) OR-refinement: Collect

timetables from 1% of participants, Collect timetables from 2% of participants, and so on.

After indicators and parameters have been identified, the effects that changes on pa-

rameters have on the outcome of indicators are analyzed and finally represented using

differential equations such as, e.g.:

∆ (AR2/FhM) < 0 (1.1)

∆ (AR2/V P1) {email→ call, email→ system, call→ system} > 0 (1.2)

Given that AR2 is the identifier for the AwReq that refers to goal Collect timetables,

Equation (1.1) states that increasing the value of FhM has a negative effect on the suc-

cess rate of AR2, whereas Equation (1.2) means that performing the changes illustrated

between curly brackets can have a positive effect on the same AwReq. Of course, the

analogous opposite relations are also inferred. Further steps of the System Identification

process would compare the equations, possibly indicating if a parameter is more effective

than the other in improving an indicator and represent the fact, for instance, that changes

in VP1 produce greater effect on AR2 than changes on FhM (as before, this information
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should be elicted from stakeholders and domain experts):

|∆ (AR1/V P1) | > |∆ (AR2/FhM) | (1.3)

Given this information, in order to “close the feedback loop” we propose a frame-

work that parses the goal model augmented with the information elicited during System

Identification, such as the ones illustrated above, and reconfigures the system in order

to adapt. An important characteristic of this framework is the ability to accommodate

different levels of precision of the qualitative information between parameters and indi-

cators. To accomplish that, the framework was made extensible, allowing for different

adaptation algorithms to be executed, depending on the availability and precision level

of the information.

This need comes from the fact that during requirement engineering, only some knowl-

edge about the behavior of the system might be available initially, with more information

being uncovered in time. For instance, some indicators could have all of their relations or-

dered by magnitude of the effect (e.g., as in Equation (1.3) above), whereas others would

have just some ordering or no ordering at all. Our proposed language (illustrated in the

examples above) also supports going from qualitative (e.g., ∆ (I/P ) > 0) to quantitative

(e.g., ∆ (I/P ) = 1.5) representations. The framework itself can have an important role in

eliciting, improving or even correcting information from System Identification by analyz-

ing the history of failures, reconfigurations and their outcome in practice (although this

is not implemented in our current prototypes).

1.4.3 Evolution Requirements engineering

As illustrated earlier, it is often the case that the requirements elicited from stakeholders

for a system-to-be are not carved in stone, never to change during the system’s lifetime.

Rather, stakeholders will often hedge with statements such as “If we detect so many

problems in satisfying requirement R, replace it with a less strict version of it, R−” or

“Starting January 1st, 2013, replace requirement S with S ′ to comply with new legislation

that has been recently approved”. Because they prescribe desired evolutions for other

requirements, we refer to this kind of statement as requirement evolution requirements,

Evolution Requirements or simply EvoReqs.

Although there are many potential benefits and uses for a systematic representation of

requirements of this sort in system models, in our approach we concentrate on the applica-

tion of EvoReqs to the design of adaptive systems. In other words, we use them to perform

evolution of the model in an automatic or hybrid way — as outlined in Section 1.2.4 —

in response to undesirable situations, i.e., system failures. Like the qualitative reconfig-

uration process described in the previous section, such evolution actions would also be
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conducted by the feedback loop controller, in response to AwReq failures.

EvoReqs are specified using a set of primitive operations to be performed over the

elements of the model. Each operation is associated with application-specific actions to

be implemented in the system. Furthermore, they can be combined using patterns in

order to compose adaptation strategies, such as “Retry”, “Delegate”, “Relax”, etc. A

simple example from the Meeting Scheduler could be attached to an AwReq that imposes

that “task Characterize meeting should never fail” in order to indicate that, if this AwReq

fails, the meeting organizer should simply retry the task in 5 seconds. The specification

for this EvoReq is shown in Listing 1.1.

Listing 1.1: Specification of an EvoReq that retries task Characterize meeting after 5 seconds.� �
1 t’ = new -instance(T_CharacMeet);
2 copy -data(t, t’);
3 terminate(t);
4 rollback(t);
5 wait(5s);
6 initiate(t’);� �

As the listing shows, the EvoReq is specified as a sequence of operations, in this case on

a particular instance of a requirement that failed. Every time someone uses the system to

schedule a meeting, requirements instances are created, in the same fashion as described

in Section 1.4.1. In the example, if an instance of the task Characterize meeting fails,

create a new instance of the same task, copy session data from the failed instance to the

new one, terminate and rollback the failed instance, wait 5 seconds and initiate the new,

undecided instance.

Each operation has a specific meaning for the controller (e.g., new-instance() tells the

controller to create a new run-time representation of a requirement) and/or for the Meet-

ing Scheduler (e.g., rollback() tells the system to undo any operations that were per-

formed before the failure that might leave the system in an inconsistent state). At runtime,

an Event-Condition-Action-based process uses the information expressed by EvoReqs in

order to direct the system on how to adapt. This process coordinates possible differ-

ent applicable strategies, choosing which one to apply and checking if the problem they

attempt to remedy has been solved.

1.4.4 Contributions

In summary, the contributions of this thesis are:

• New types of requirements — AwReqs and EvoReqs — and properties of the system

and its domain — parameters that can be adjusted at runtime and differential rela-

tions between these parameters and AwReqs (representing indicators of requirements

convergence). These new model elements constitute the requirements for a feedback
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control loop that monitors and adapts (through reconfiguration or evolution) the

system. Ergo, this contribution addresses research question RQ1;

• Representation of these requirements in languages more formal than natural lan-

guage in order to promote a clear and unambiguous way of describing them, ad-

dressing RQ2. Furthermore, these representations are adapted whenever necessary

in order to make them machine-readable, which contributes to RQ3;

• A systematic process for conducting System Identification, including heuristics on

how to identify indicators, parameters and relations between them, further refining

these relations in a final step. This also contributes to RQ3;

• A framework that operationalizes the generic operations of the feedback loop and,

therefore, capable of augmenting systems with adaptation capabilities, provided

these systems satisfy some prerequisites, such as the requirements for the feed-

back loop and a communication channel between the system and the framework.

This contribution addresses RQ3 and also RQ4, as the framework is an important

prerequisite for executing the experiments;

• Experiments with a system whose requirements are based on analyses of the failure

of a real system from a well-known case study in Software Engineering. Such exper-

iments produced a series of models as the result of the application of the approach

and simulations of real-world failures that allowed us to verify the response of the

framework to a few undesired situations. This addresses RQ4.

Moreover, a fundamental difference from our approach and the state-of-the-art in goal-

based adaptive systems design (presented later, in Section 2.2) is the fact that goals are not

necessarily treated as invariants that must always be achieved. Instead, we accept the fact

that the system may fail in achieving any of its initial requirements and, by considering

feedback loops as first class citizens in the language, provide a way of specifying the level

of criticality of each goal as constraints on their success/failure and assigning adaptation

actions to be carried out when the system does not fulfill these constraints.

1.5 Structure of the thesis

To present the approach summarized in the previous section, the remainder of the thesis

is structured as follows:

• Chapter 2 summarizes the state-of-the-art related to our work. First, the baseline

for our proposal, including Goal-Oriented Software Engineering (GORE), Feedback



22 Introduction

Control Theory and Qualitative Reasoning is presented. Then, other approaches

for the design of adaptive systems are described in separate categories, for an easier

comparison of related work;

• Chapter 3 characterizes the new requirements for system adaptation: Awareness

Requirements and Evolution Requirements. The former specifies the requirements

for the monitoring component of the feedback loop, whereas the latter prescribes

requirements for the adaptation component;

• Chapter 4 presents a qualitative approach for adaptation through reconfiguration of

system parameters that affect specific indicators of requirements convergence. Adap-

tation is guided by indicator/parameter differential relations which can be specified

in different levels of precision, depending on available information;

• Chapter 5 proposes a systematic process for the design of adaptive systems based

on the new modeling elements introduced in the previous chapters, including Sys-

tem Identification, the elicitation of Evolution Requirements and the adaptation

strategies they compose;

• Chapter 6 describes in detail the run-time adaptation framework that acts as the

controller in a feedback loop, reasoning over the requirements specification and the

system’s log and sending instructions on how to adapt;

• Chapter 7 reports the results of initial experimental evaluation conducted to validate

our proposals, which consisted on modeling an Adaptive Computer-aided Ambulance

Dispatch using our systematic process and simulating its failure to test the response

of the run-time framework;

• Chapter 8 concludes the thesis with a summary of our contributions, its advan-

tages and limitations, and the possibilities of future work that were opened by this

research.

1.6 Published papers

We list here published work related to this thesis, split into refereed and unrefereed, and

ordered by date of publication:

1.6.1 Refereed

• Souza, Vı́tor E. S. and Mylopoulos, John. Monitoring and Diagnosing Malicious

Attacks with Autonomic Software. In Laender, Alberto; Castano, Silvana; Dayal,
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Umeshwar; Casati, Fabio, and de Oliveira, José, editors, Conceptual Modeling - ER

2009, volume 5829 of Lecture Notes in Computer Science, pages 84–98. Springer,

2009;

• Ali, Raian; Chopra, Amit K.; Dalpiaz, Fabiano; Giorgini, Paolo; Mylopoulos, John,

and Souza, Vı́tor E. S. The Evolution of Tropos: Contexts, Commitments and

Adaptivity. In Proc. of the 4th International i* Workshop, pages 15–19, 2010a;

• Souza, Vı́tor E. S.; Lapouchnian, Alexei; Robinson, William N., and Mylopoulos,

John. Awareness Requirements for Adaptive Systems. In Proc. of the 6th Interna-

tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,

pages 60–69. ACM, 2011b;
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tive Systems: a Control-Theoretic Approach. In Proc. of the 2nd International Work-

shop on Requirements@Run.Time, pages 9–15. IEEE, 2011;

• Ali, Raian; Dalpiaz, Fabiano; Giorgini, Paolo, and Souza, Vı́tor E. S. Requirements

Evolution: From Assumptions to Reality. In Halpin, Terry; Nurcan, Selmin; Krogstie,

John; Soffer, Pnina; Proper, Erik; Schmidt, Rainer, and Bider, Ilia, editors, Enter-

prise, Business-Process and Information Systems Modeling, volume 81 of Lecture

Notes in Business Information Processing, pages 372–382. Springer, 2011a;

• Souza, Vı́tor E. S.; Mazón, Jose-Norberto; Garrigós, Irene; Trujillo, Juan, and My-

lopoulos, John. Monitoring Strategic Goals in Data Warehouses with Awareness

Requirements. In Proc. of the 2012 ACM Symposium on Applied Computing. ACM,

2012f;

• Souza, Vı́tor E. S.; Lapouchnian, Alexei, and Mylopoulos, John. (Requirement)

Evolution Requirements for Adaptive Systems. In Proc. of the 7th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems (to

appear), 2012d.

• Souza, Vı́tor E. S.; Lapouchnian, Alexei, and Mylopoulos, John. Requirements-

driven Qualitative Adaptation. In Proc. of the 20th International Conference on

Cooperative Information Systems (to appear). Springer, 2012b.
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Adaptive Systems 2 (to appear). Springer, 2012e;
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Chapter 2

State of the art

A state-of-the-art calculation requires 100 hours of CPU time on

the state-of-the-art computer, independent of the decade.

Edward Teller

Before we present our approach, we summarize the state-of-the-art in our chosen area

of research. This chapter is divided in two main parts: first, Section 2.1 introduces

background research used in subsequent chapters of this thesis, showing how this baseline

was used to develop the initial models for the Meeting Scheduler, our running example.

Then, Section 2.2 presents related work, i.e., other approaches that can be used for the

design of adaptive systems.

2.1 Baseline

As mentioned in Chapter 1, the objective of this thesis is to define a requirements-based

process for the design of adaptive systems centered on a feedback loop architecture. In the

foundations of our approach there are Goal-Oriented Requirements Engineering (GORE)

and Feedback Control Theory. Moreover, given our requirements perspective, our work

also applies concepts of Qualitative Reasoning when modeling the requirements for adap-

tation. The next sections introduce the techniques and concepts that form the baseline of

our proposal, with the aid of the running example of this thesis: the Meeting Scheduler.

2.1.1 Goal-Oriented Requirements Engineering

In the 1970s, Ross and Schoman Jr. [1977] proposed the Structured Analysis and Design

Technique (SADT), recognizing the existence of the “requirements problem”. According

to Mylopoulos et al. [1999], this and other proposals to tackle the requirements problem
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instituted the field of Requirements Engineering (RE). After roughly two decades of re-

search, some people in this field started to recognize limitations of RE practices of the

time, which lacked, for instance, support for reasoning about the composite system made

of the software and its environment, support for understanding requirements in terms of

their rationale, constructive methods for building correct models for complex systems and

support for representation, comparison and exploration of alternatives [van Lamsweerde

and Letier, 2002].

As a response, and inspired by well-established Artificial Intelligence techniques for

problem solving, knowledge representation and knowledge acquisition [van Lamsweerde

et al., 1991; Mylopoulos et al., 1992], new approaches were proposed around the concept

of goals. A goal is a declarative statement of intent to be achieved by the system under

consideration, formulated in terms of prescriptive assertions, covering different types of

concerns — functional (representing services) or non-functional (representing qualities)

— and different levels of abstraction — strategic (e.g., “optimize the use of resources”)

or technical/tactical (e.g., “send e-mail notifications to meeting participants”). Goals can

refer to the current system in operation or to a system-to-be under development. They

can also help indicate what parts of a system are or should be automated when respon-

sibility for their satisfaction is assigned to a software agent (creating a requirement for

automation), a human agent (a requirement for manual performance) or the environment

itself (a domain assumption) [van Lamsweerde, 2001; van Lamsweerde and Letier, 2002].

Goals provide several advantages when compared to previously used concepts, for in-

stance: precise criteria for sufficient completeness of a requirements specification (with

respect to stakeholder goals); the rationale of each single requirement, thus justifying their

pertinence; increased readability when structuring complex requirements documents; as-

sistance in exploring alternative system proposals and in conflict detection and resolution;

etc. [van Lamsweerde, 2001]. Furthermore, they are characteristically more stable than

the processes, organizational structures and operations of a system which continuously

evolve (although goals may also evolve when needed) [Antón, 1996]

Goal-oriented requirements elaboration processes end where most traditional specifi-

cation techniques would start [van Lamsweerde and Letier, 2002], thus driving the iden-

tification of requirements [van Lamsweerde, 2001]. Goal-oriented analysis amounts to an

intertwined execution of analyses of non-functional requirements, of functional require-

ments, and conflict analysis, and can be declared complete when all relevant goals have

been operationalized by the new system [Mylopoulos et al., 1999].

Many different approaches that follow the principles of GORE have been proposed.

In the early days, Kaindl [1997] proposed Requirements Engineering Through Hypertext

(RETH), a pragmatic approach that combines Object-Oriented Analysis with require-
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ments. The NFR Framework [Mylopoulos et al., 1992] promotes the analysis of different

solutions according to non-functional requirements modeled as softgoals. KAOS [van

Lamsweerde et al., 1991; Dardenne et al., 1993], which stands for Knowledge Acquisition

in autOmated Specification (or, alternatively, Keep All Objectives Satisfied), provides a

conceptual model, an associated language and a set of strategies for requirements acquisi-

tion based on goals. Antón’s [1996] Goal-Based Requirements Analysis Method (GBRAM)

offers techniques for analyzing, elaborating and refining goals.

i? [Yu and Mylopoulos, 1994] (more recently, [Yu, 2009; Yu et al., 2011]), which stands

for distributed intentionality, introduced aspects of social modeling and reasoning into RE,

by putting social concepts into the core of the daily activity of system analysts and de-

signers. Later, the Tropos methodology [Castro et al., 2002; Giunchiglia et al., 2003;

Bresciani et al., 2004] adopted i? and took its concepts beyond early requirement stages

and throughout the software development process. Also founded on i?, the Goal-oriented

Requirements Language (GRL)1 is part of an ITU-T Recommendation2 for systems de-

velopment called User Requirements Notation (URN), supporting goal modeling and rea-

soning. According to Yu [2009], URN brings together i?’s social and intentional modeling

with the scenario-oriented approach of Use Case Maps (UCM).

A report by Lapouchnian [2005] provides an overview of GORE and further informa-

tion on some of the approaches cited above. Another overview of this field can be seen in

[van Lamsweerde, 2001].

2.1.2 Illustrating GORE concepts: the Meeting Scheduler example

To illustrate some of the above concepts, we will consider the case of large companies

that have many employees who need to conduct meetings on their day-to-day business,

using one of several meeting rooms and other resources such as projectors, teleconference

equipment, etc. Although not a real case study, the meeting scheduler example was based

on the author’s experience during a consultancy project on business process modeling

within one of the business units of Petrobras,3 Brazil’s largest oil/energy company. The

project involved many meetings for business process analysis with other employees of the

company and the way meeting scheduling is described in this thesis mirrors what the

author had to do to organize meetings in that setting.

Goals could be used to model the meeting scheduling system-as-is, using, for instance,

i?’s Strategic Dependency diagrams as depicted in Figure 2.1. The diagram shows the

current social setting that has been established in order to accomplish the objective of

1http://www.cs.toronto.edu/km/GRL/.
2http://www.itu.int/rec/T-REC-Z.151/en.
3http://www.petrobras.com/en/about-us/.

http://www.cs.toronto.edu/km/GRL/
http://www.itu.int/rec/T-REC-Z.151/en
http://www.petrobras.com/en/about-us/
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Figure 2.1: Strategic Dependency model of the social environment around meeting scheduling.

scheduling meetings.

In this setting, an employee plays the role of the meeting scheduler when a meeting is

needed. To accomplish her goal of scheduling the meeting, she depends on the employees

participating in the meeting to send her their personal timetables in order to decide the

best time for the meeting. Then, she has to obtain an appropriate room (preferably fast)

from a secretary, providing the meeting parameters (number of people, desired date/time,

necessary equipment, etc.) and depending on the secretary to actually book the room

and other needed resources. Once the schedule is final, employees depend on the meeting

organizer to inform them about the meeting and to avoid conflicts of schedule (between

the scheduled meeting and their personal appointments). Finally, the meeting organizer

expects good participation (attendance) from the invited employees.

Imagine, now, that the aforementioned actors plus the company’s board of directors

are not satisfied with this system and would like to improve it by automating scheduling

by means of a software. Many non-GORE software development processes would start

by collecting the requirements for this software using, for instance, scenarios, use cases or

stories. Using a goal-oriented perspective, however, we take a step back and instead of

modeling the requirements for a solution directly, we analyze the problems stakeholders

find in the current system, identifying the strategic goals of the stakeholders. Strategic
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Figure 2.2: An i?-like diagram depicting the strategic goals of the stakeholders.

goals represent the rationale for the development of a system, answering the question

“why should we develop this or that solution?”

Figure 2.2 shows, again using i?, the strategic goals of each stakeholder. The goals

have been colored differently to denote their strategic level and are summarized next:

• The board of directors has identified that, in the current system, secretaries are

overloaded and, thus, usually provide rooms for meetings regardless if they are un-

necessarily larger, which wastes company resources. Furthermore, the current system

doesn’t allow them to evaluate which meetings have greater priority when booking

rooms and resources. For the board is also important to enforce diligence in schedul-

ing (e.g., if a meeting has been canceled, its booking should also be) and promote

good participation, but currently there is no way to guarantee either of them;

• Meeting organizers depend on secretaries to book rooms and resources as fast

as possible and avoiding conflicts but, again due to their overload, these goals are

not being satisfied. Also, in order to choose a good date and time for meetings,

organizers depend on knowing the timetables of other employees, but currently this

is a long and tedious process. Like the board of directors, good participation is also
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important for meeting organizers;

• Employees, in their turn, would like meeting organizers to avoid to schedule meet-

ings when they are busy and, therefore, cannot participate. Reconciling all par-

ticipant’s schedules to guarantee the satisfaction of this goal is very difficult and

currently not always guaranteed. Employees also mentioned that they would like

to have the freedom to change their own schedules even if this creates conflicts

with meetings that are already booked, having the meeting schedules automatically

adapted to the changes. This goal is not even considered in the current system;

• Finally, all the secretaries want is to spend less time scheduling rooms for meetings,

because it is a tedious and time-consuming task, which gets in the way of their many

other duties. This is obviously not considered in the current situation, as they are

currently responsible for room and resource booking.

Modeling the strategic goals of the stakeholders can also help in deciding the best

alternative to solve the problems at hand. Take, for instance, the model of Figure 2.3:

the diagram shows different possible solutions to satisfy the secretaries’ goal Spend less

time scheduling meetings. Using means-end relationships, the diagram states that this

goal can be satisfied either by (a) asking meeting organizers to help and not place un-

necessary load on the secretaries; (b) train secretaries to perform better; (c) replace the

secretaries with more capable ones; (d) hire more secretaries to help out; or (e) develop

a scheduling software that automates many of their tasks. Using qualitative contribution

links to softgoals that represent quality criteria (which should also be elicited from the

stakeholders) helps identify which would be the best solution to be implemented. In real

projects, however, a more thorough feasibility study and cost-benefit analysis is advised.

Once the solution to be implemented has been chosen, the social setting for the system-

to-be can be represented in a new Strategic Dependency diagram, as shown in Figure 2.4.

The diagram shows that stakeholders now depend on this new software system to satisfy

all of their strategic goals, thus setting a criteria for the completeness of the requirements

for the new system: the requirements have to satisfy all of the stakeholder goals.

The software-intensive meeting scheduler system has as main goal Schedule meeting,

which is represented in a different color to indicate a different type of concern: while

strategic goals referred to the problems, tactical/technical goals detail the solution, i.e.,

the functions/services to be provided by the software system. Although not illustrated

here, we can continue to harness the benefits of social modeling at the tactical level, by

decomposing the scheduler system’s top goal until the level of tasks that can be opera-

tionalized by the software (e.g., using i? Strategic Rationale diagrams). By performing

this decomposition, the socio-technical aspects of the system can become more evident
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Figure 2.3: Evaluating alternative solutions for the problem identified by the secretaries.

Figure 2.4: Strategic Dependencies for the meeting scheduler system-to-be.
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through dependency links from the software to one or more human actors (e.g., “secre-

taries need to confirm that meetings really happened”, “organizers have to provide the

system with the list of participants to invite”, etc.). Furthermore, how the system satis-

fies the stakeholder goals can become more evident by modeling contribution links from

tactical goals to strategic goals.

The process that this sub-section illustrated, sometimes identified as Early Require-

ments, is one among many possible ways of using GORE concepts to analyze a particular

problem with the purpose of designing a specification for a software-intensive system that

satisfies the stakeholder goals. Our proposals in this thesis, however, do not prescribe any

particular GORE methodology for early requirements, but does expect a goal-oriented

perspective in Late Requirements, i.e., that the specification for the solution be a goal

model. The next section discusses this further.

2.1.3 GORE-based specifications

After analyzing the stakeholder goals in early requirements phase and choosing a solution,

late requirements is then concerned with determining a specification S that, together with

domain knowledge K, satisfies the requirements R. Or, as Zave and Jackson [1997] put it:

S,K ` R. Our models, however, are based on the revised core ontology for RE proposed

by Jureta et al. [2008], which defines as primitive concepts goals, tasks/plans, softgoals,

quality constraints (QCs) and domain assumptions (DAs). Figure 2.5 shows an initial

specification for the meeting scheduler system, using these primitive concepts.

Goals , modeled by ovals, represent states of affairs that the actor wants to achieve,

for instance, Schedule meeting (or, put another way, “the state in which the meeting is

scheduled”). In our late requirements models, the actor is implicitly the system-to-be —

note that in Figure 2.4, the goal Schedule meeting belongs to the Scheduling software.

This does not necessarily means, however, that the goal is to be achieved autonomously,

without any humans in the loop. As mentioned in Chapter 1, socio-technical systems

include both software/hardware and human/organizational elements.

Tasks, modeled by hexagons, represent a sequence of actions to be conducted by the

actor (again, in a socio-technical system this could involve humans in the loop), usually

with the purpose of achieving some goal. In Figure 2.5, Characterize meeting represents

the series of steps taken by the meeting organizer using the scheduling software in order

to specify a meeting’s preferred date/time, list of participants, needed equipment and

detailed description. Tasks can be directly related to procedures/methods implemented

in code.

Domain assumptions , modeled by (square-cornered) rectangles, represent states

of affairs that are assumed by the actor to always be true. For example, it is assumed
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that Participants use the system calendar, and, therefore, the system (which is the actor

in this case) relies on this fact being true in order to satisfy the requirements. Domain

assumptions relate to Zave and Jackson’s [1997] domain knowledge.

Softgoals , modeled by clouds, are like (hard) goals, but have no clear-cut criteria for

satisfaction. For instance, Fast scheduling indicates that an important quality expected

from this system is not to take too long a time to schedule a meeting, but the softgoal

itself does not indicate how much time is too long. In contrast, hard goals like Schedule

meeting do provide a clear criteria in themselves: either the meeting was scheduled, or

it was not. Softgoals usually represent (non-functional) concerns that cut across many

other elements of the specification. As such, they are represented as top-level elements,

by themselves.

Finally, since for our purposes it is important to determine if requirements were sat-

isfied or not, quality constraints (van Lamsweerde [2009] calls them Fit Criteria),

modeled by round-cornered rectangles, provide a clear-cut criteria for the satisfaction of

softgoals. Taking the Fast scheduling example again, QC Schedules produced in less than

a day provide the precise criteria for its satisfaction: schedules produced in less than 24

hours are considered fast, whereas schedules that take more than that time to be produced

are not.

In the model of Figure 2.5, the top goal is then further refined using a relation that has

a single syntax (a solid line) but two possible semantics (decomposition or operational-

ization), as following:

• When connecting two elements of the same type, the association represents a de-

composition , i.e., a part-whole (AND-decompositions) or specialization (OR-de-

compositions) relation between the parent element and its children (as a convention,

parents are positioned above their children). For example, Collect timetables, Find

a suitable room and Manage meeting are all children of Schedule meeting, i.e., they

represent partial states of affairs, which are parts of a whole, the Schedule meeting

goal;

• When connecting goals to tasks or domain assumptions, or softgoals to quality con-

straints, the association represents an operationalization , i.e., a means by which

the (soft)goal can be satisfied. The concept of operationalization links is not new,

and was introduced by van Lamsweerde and Willemet [1998] for the KAOS language.

For instance, for the meeting scheduler, other than satisfying the aforementioned

sub-goals of Schedule meeting, to achieve the top goal of Figure 2.5 one has also

to Characterize meeting and Choose schedule. To satisfy Collect timetables, given

that Participants use the system calendar is true, it is enough to Collect [the timeta-
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bles] from system calendar. As mentioned before, QCs provide clear-cut criteria for

softgoals and each softgoal in our example is operationalized by one QC.

Refinement links — which is how we refer to both decomposition and operationaliza-

tion indistinguishably — can be of two types, AND or OR, with obvious semantics: an

AND-refinement means that in order to satisfy the parent (soft)goal, all of its children

must be satisfied, while for an OR-refinement, only one child needs to be attained. As

for the other elements, tasks are satisfied if they are executed successfully, domain as-

sumptions are satisfied if they hold (the affirmation is true) while the user is pursuing its

parent goal and the satisfaction of quality constraints is domain-dependent (the ones in

Figure 2.5, for instance, should be checked for each meeting that is scheduled).

We henceforth use this syntax for our goal models for two main reasons. First, it

highlights the fact that our proposals can be applied to any GORE methodology that

contains the primitive elements described above, not restricting itself to one specific ap-

proach. Second, using a single syntax for decomposition and operationalization makes

our models much more concise. To represent some of our refinements in i?, for instance,

one would have to use a combination of means-end links and task decompositions that

would make the model unnecessarily bigger.

Back to Zave and Jackson’s [1997] statement — S,K ` R — and considering that

our models are composed of sets GH (hard goals), GS (softgoals), T (tasks), D (domain

assumptions) and Q (quality constraints), we can relate to Zave and Jackson’s proposal

the following way:

• R = GH ∪GS: the requirements for this system is that it satisfies all goals. Here, in

order to avoid having vague requirements, we consider that to satisfy the softgoals

one should use the criteria established by the quality constraints associated with

them;

• S = T ∪Q: the specification for this system is the set of tasks and quality constraints

that operationalize the goals. Tasks specify exactly what is to be implemented,

whereas quality constraints affect the way these tasks are implemented;

• K = D: the domain knowledge consists of the domain assumptions made by the

stakeholders. The terminology change (knowledge → assumptions) show that DAs

are intentional, i.e., they represent the fact that the stakeholders agree on what

should be assumed to be true, as opposed to inferences made by a developer’s analysis

of the domain.

Furthermore, we believe that the specification plus the domain knowledge not only

infer the requirements (`, syntactic consequence), but they actually entail them (|=,
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semantic consequence). Therefore, the final equation for GORE-based requirement spec-

ifications is:

T ∪Q,D |= GH ∪GS (2.1)

2.1.4 Variability in goal models

In Section 2.1.2, we have shown how early requirements GORE approaches allow analysts

to model different solutions for the same problem in order to decide the best one to develop.

In Section 2.1.3, a specification for the chosen solution was illustrated in Figure 2.5 (p.

33), using the meeting scheduler example.

Note, however, that this solution lacks an important characteristic for adaptive sys-

tems: different ways of accomplishing the same goals. Granted, to Use local rooms one

can Get room suggestions or List available rooms. Moreover, to Book room one can Use

available room or Cancel less important meeting. However, timetables should always be

collected using the system calendar, only local rooms should be used and the schedule has

to be produced manually. As briefly explained in Section 1.4.2 (p. 17), adaptation can be

done by switching the system’s configuration in order to use a different means to satisfy

its goals, so this sort of redundancy — the representation of alternatives or variability —

is very important for adaptive systems.

Figure 2.6 shows a new goal model for the meeting scheduler, with added variability.

The sub-trees of goals Collect timetables, Find a suitable room and Choose schedule were

changed to address the issues that were mentioned in the previous paragraph.

This topic of research has been quite explored by the literature. According to van

Lamsweerde [2009], variability in the design of software-intensive systems can come from

many different sources, such as goal refinements (decomposition/operationalization), dif-

ferent countermeasures for risks, different resolutions for conflicts, and different actors to

which goals/tasks can be assigned. These situations lead to design decisions, which in

turn lead to different system proposals and different software architectures.

In our case, the model of Figure 2.6 contains different ways of achieving the system’s

goals not to allow the design-time choice of the best solution to be implemented, but

to allow the run-time reconfiguration of the system for adaptation. Therefore, the set of

tasks T in the specification is not the minimal set that can satisfy the top goal by applying

Boolean upwards propagation of refinements, but is the whole set of tasks in the model.

The same goes for quality constraints. If any task is not implemented and at run-time

the system decides to reconfigure and use that particular task as a solution, the system

will have to wait for developers to implement it before proceeding, which in many cases

is not an appropriate response.
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Other researchers have used variability for other purposes. To cite a couple of exam-

ples, Gonzalez-Baixauli et al. [2004] represent the variants of a product family using goal

models (amenable to formal analysis) and, based on the NFR Framework, use softgoals as

criteria to select a satisficing solution. Also in the field of Software Product Lines (SPL),

Semmak et al. [2008] extend the KAOS approach with variability to promote reuse during

requirements engineering.

Research on requirements for context-aware systems also addresses the issue of vari-

ability (which is expected, since context-aware systems are like adaptive systems, but with

an open loop instead of a feedback loop, cf. Section 1.2.2, p. 7). Hong et al. [2005] touches

the issue of variability in the research on Human Computer Interaction (HCI) to address

the requirements of ubiquitous applications in three different categories of contexts: com-

puting, user and physical. Salifu et al. [2007] uses concepts from SPL to propose an

approach to identify, represent, analyze and reason about variants in the descriptions of

product families using problem frames.

Specifically for GORE, Liaskos et al. [2006] propose an approach to goal decomposi-

tion to support requirements elicitation for highly customizable (i.e., variability-intensive)

software, characterizing OR-decomposition of goals semantically and identifying variabil-

ity by analyzing stakeholder speech using Linguistic tools. Liaskos et al.’s work only

captures intentional variability, and was therefore extended in [Lapouchnian and My-

lopoulos, 2009] to capture also domain variability. In this extension, the authors propose

a formal framework that defines contextual tags specified by Boolean statements based

on domain properties/assumptions and allows these tags to be organized in hierarchies

and assigned to elements of the goal model, thus determining when each element is active

or not, depending on the context. Ali et al. [2010b] has a similar proposal, in which the

Tropos methodology [Bresciani et al., 2004] is extended with a set of modeling constructs

to analyze, elicit and model relevant context information, plus reasoning techniques for

run-time derivation of goal model variants that reflect the current context / user priorities

and design-time derivation of specifications that cover all considered contexts.

As with the basic GORE methodology to use, our approach does not prescribe any

specific technique for elicitation, analysis and modeling of variability, be it domain-related

or intentional, and the analyst is free to use the one that fits her best. We do recommend

that the specification for the adaptive system-to-be is done with the sort of redundancy

illustrated in this sub-section in order to allow for the usage of reconfiguration as an

adaptation approach. In chapters 3 and 4, when we revisit the Meeting Scheduler ex-

ample to illustrate our modeling constructs, we will come back to Figure 2.6 as the final

specification for the non-adaptive version of this system.
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Figure 2.7: Simplified block diagram of a control system based on [Hellerstein et al., 2004].

2.1.5 Feedback Control Theory4

In our research, we assume the architecture for the design of an adaptive system uses one

or more feedback loops to implement adaptivity. In other words, we see adaptive systems

as feedback control systems, borrowing concepts from the field of Control Theory [Doyle

et al., 1992].

Figure 2.7 shows a simplified view of a control system, adapted from [Hellerstein et al.,

2004]. In this kind of system, the reference input is “the desired value of the measured

outputs”,5 while the measured output is “a measurable characteristic of the target system”.

For instance, consider a (simplified view of a) car’s cruise control mechanism, which is a

classic example of a control system. Its purpose is to maintain the car at some constant

speed SI . In this example, SI is the reference input, whereas the actual speed of the car

SO, which can be read from the car’s speedometer, is the measured output.

Given this information, the controller “computes values of the control input based on

current and past values of control error”. The control error is “the difference between the

reference input and the measured output”, while the control input is “a parameter that

affects the behavior of the target system and can be adjusted dynamically”. Back to the

example, the control error E can be calculated as E = SI−SO, leading to a straightforward

definition for the control input : if E > 0, the controller (the cruise control system) should

inject more fuel in the engine to speed up the vehicle (the target system). Analogously,

if E < 0, less fuel should be injected. The idea is to keep SO as close as possible to SI at

all times.

Finally, the disturbance input “are factors that affect the measured output but for

which there is no governing control input”. In other words, these are taken from the

4Another field of study that deals with systems involved in a closed signal loop is Cybernetics. During work

on this thesis, however, we have focused on Control Theory as baseline for our proposals.
5This and the following quotes were taken from Hellerstein et al. [2004], §1.1.
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context in which the system executes. Neither the system nor the controller have any

control over these values. For the cruise control system, the inclination of the road and

the direction and strength of the wind are examples of disturbance inputs, as they can

have an influence on the measured speed SO.

Another classic example of a control system is a thermostat that regulates the tem-

perature in a room. In this case, the reference input is the desired temperature, the target

system is the heating/cooling device, the measured output is the actual temperature in

the room and the control input is the amount of gas/electricity the controller will send to

the heating/cooling device in order for it to increase or decrease the room temperature.

Simple control systems like these are said to be SISO, meaning single input, single

output (e.g., desired and actual temperature, respectively). Such systems are usually

handled by a PID controller, widely used in the process control industry [Hellerstein

et al., 2004]. The PID controller consists of three components, or modes of control :

• Proportional: proportional control sets the value of the control input proportional to

the current control error. For instance, if the room is 10◦ cooler than desired, heating

power is set to 10×K, if it is 5◦ cooler, set to 5×K, and so forth. Therefore, as the

error decreases, so does the corrective action. The constant K is called proportional

gain and has to be tuned in order to avoid a controller that is too conservative (K is

too low, so it takes too long to adapt) or too unstable (K is too high, so it overshoots

the heater and the room gets too hot, then it overshoots the cooler and the room

gets too cold, etc).

• Integral: integral control addresses a limitation of the proportional component: it

cannot handle disturbances well. For instance, imagine the room is 5◦ cooler than

desired and the heating is turned up with power = 5K. For some reason, however,

the window is open and it turns out that the heating produced by the heater is

exactly the opposite of the cooling produced by the open window, resulting in the

proportional controller not being able to reduce the control error. The integral

mode works by setting the control input proportional not to the current control

error, but to the sum (i.e., the integral) of the past control errors, e.g., at time t0,

sum = 0; at t1, sum = 5; at t2, sum = 10, etc. Therefore, as the time passes, the

integral control becomes “stronger” and increases the control input (e.g., increases

the heating power).

• Derivative: derivative control is used to provide better performance. Depending on

how it is tuned, a P+I controller might take too long to reach stability either because

the change is too conservative (long time to reduce the control error) or too aggressive

(long time overshooting and oscillating around the desired value). To overcome this,
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Figure 2.8: View of an adaptive system as a feedback control system.

the derivative mode looks at the rate of change (i.e., the derivative) to predict if

the output is changing too slow or too fast, adjusting the control input accordingly.

However, because this mode of control can be highly affected by monitoring noise, it

is sometimes considered dangerous, making the P+I combination more commonly

used.

The PID controller works well, but more complex systems, such as information sys-

tems, usually have multiple inputs, multiple outputs (MIMO). State-of-the-art methods

for modeling and controlling MIMO systems — such as state/output feedback and Linear

Quadratic Regulator (see [Zhu et al., 2009], Section 3.4) — can be very complex and many

software projects may not dispose of the necessary (human/time) resources to produce

models with such degree of formality.

For these reasons, our proposals consider adaptive systems as simplified control sys-

tems, taking inspiration on the PID controller. This view is represented in Figure 2.8. The

different inputs and outputs for feedback control systems translate to adaptive systems

as follows:

• Reference input (requirements): in an adaptive system, the reference input con-

sists of the system requirements. As discussed in previous sub-sections, we adopt

GORE-based requirements specifications, e.g., the goal model depicted in Figure 2.6

(p. 37) for the Meeting Scheduler example. As will be shown in later chapters of

this thesis, however, system requirements should include not only “vanilla” (i.e., not

concerning adaptation) requirements such as the ones illustrated in Figure 2.6, but

also adaptivity requirements.

• Measured output (indicators): if requirements are the reference input, the mea-

sured output should then consist of indicators of requirements convergence. In other

words, we would like to measure, at runtime, if functional requirements are being
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met (e.g., are users able to successfully Find available rooms for their meetings?

What is the success rate for this goal?) and what are the degrees of satisfaction

of non-functional requirements (e.g., what is the participation percentage for each

scheduled meeting? Is it above 90%? What is the success rate for this quality con-

straint?). Such indicators are usually of Boolean nature (i.e., satisfied: true/false)

and measures in other domains (e.g., the response time of a task or the success

rate of a goal, both numeric) can be mapped to Boolean by a function that maps

each value of the domain to satisfied/unsatisfied (in the case of numeric values, a

threshold usually provides such mapping).

• Control error (divergence): given the above reference input and measured output,

the control error consists of a set of requirements (be they goals, quality constraints

or even domain assumptions) that were not satisfied either individually (i.e., during

a single execution of the system) or in an aggregate way (average success rate).

Negative answers to questions presented previously (Are user able to successfully

use the system? Is participation above 90%? Are 95% of all meeting participants

using the timetable database?) are examples of requirements divergence.

• Control input (adaptation): given the information on the control error, the control

input consists, of course, of the adaptation actions, which might include reconcil-

iation of system behavior and compensation to avoid inconsistent system states.

Later in this thesis we present two approaches to adaptation: reconfiguration and

evolution (cf. Section 1.2.4, p. 10).

• Disturbance input (context): the factors that can be measured but that neither

the target system nor the adaptivity framework have any control over are called con-

text information. Unlike the disturbance input in control systems, though, context

information in adaptive systems could be provided as input not only to the tar-

get system, but also to the adaptation framework. The reason for this is that the

controller itself can be context-sensitive, selecting appropriate adaptation actions

depending on the context. However, this thesis does not address this issue with the

necessary depth and regard the impact of contexts in our approach as future work.

Considering adaptive systems as feedback control systems comes from the realization

that, at runtime, things might not go as planned. As discussed earlier, in sub-section 2.1.3

(p. 32), our specifications consist of the set of tasks T and the set of quality constraints

Q that, when considered together with domain assumptions D, satisfy the system’s goals

and softgoals. Of course, this is an optimistic view of the world. The tasks that are part of

a specification may actually not be carried out during any one execution, or may not have
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the expected effects because of a fault. Also, quality constraints may not be satisfied.

And domain assumptions may not hold in particular circumstances. For example, we

assume all Participants use the system calendar in the Meeting Scheduler system, but is

that really the case at runtime? This is useful information to monitor for when trying to

satisfy the goal Collect timetables.

2.1.6 Requirements monitoring

The discussion in the previous sub-section highlights the fact that, in order to use system

requirements as the reference input to a feedback loop implementing adaptivity, require-

ments have to be monitored for their satisfaction at runtime. Requirements monitoring

research dates back to before there was this increased interest in adaptive / autonomic

systems by RE researchers.

The seminal work of Fickas and Feather [1995] already recognized that many systems

are deployed in environments that cannot be counted to remain static and, therefore,

“requirements monitors [should] be installed to gather and analyze pertinent information

about the system’s run-time environment”. Their approach relates the system require-

ments to assumptions made about the environment in which the system operates, gener-

ating monitors to detect when relevant changes to this environment take place. When a

mismatch between the assumptions and the current environment are detected, remedial

evolutions of the system’s design are applied.

The work of Fickas and Feather was further explored in [Feather et al., 1998], in the

context of the KAOS methodology. This approach uses the Formal Language for Ex-

pressing Assumptions (FLEA) to define, at design-time, events that represent violation of

assumptions over the system requirements. Moreover, reconciliation tactics are identified

and associated with each possible violation, in order to be applied at runtime when FLEA

fires any of the defined violation events. This work combined, for the first time, goal-based

requirements-time reasoning, event-based run-time monitoring and system self-adaptation

tactics.

Central to this thesis is the research of prof. William N. Robinson, which proposed

the ReqMon framework [Robinson, 2005, 2006], including a language for the definition of

requirements monitors and a methodology for the identification of potential requirements

obstacles and analysis of monitor feedback. Later on, this framework would be extended

into SerMon to monitor service systems [Robinson and Purao, 2011] and eventually gen-

eralized into the Event Engineering and Analysis Toolkit (EEAT).6

EEAT provides a programming interface (API) that simplifies temporal event reason-

ing. It defines a language to specify goals and can be used to compile monitors from the

6http://eeat.cis.gsu.edu:8080/.

http://eeat.cis.gsu.edu:8080/
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goal specification and evaluate goal fulfillment at runtime. Such monitors are specified

using a variant of the Object Constraints Language (OCL), called OCLTM — meaning

OCL with Temporal Message logic [Robinson, 2008]. OCLTM extends OCL 2.07 with:

• Flake’s [2004] approach to messages: replaces the confusingˆmessage(), ˆ̂ message()

syntax with sentMessage/s, receivedMessage/s attributes in class OclAny;

• Standard temporal operators: ◦ (next), • (prior), ♦ (eventually), �

(previously), � (always), � (constantly), W (always . . . unless), U (always

. . . until);

• The scopes defined by Dwyer et al. [1999]: globally, before, after, between and

after . . . until. Using the scope operators simplifies property specification;

• Patterns, also in Dwyer et al. [1999]: universal, absence, existence, bounded

existence, response, precedence, chained precedence and chained response;

• Timeouts associated with scopes: e.g. after(Q, P, ‘3h’) indicates that P should

be satisfied within three hours of the satisfaction of Q.

Listing 2.1 shows an example of OCLTM constraint on the Meeting Scheduler. The in-

variant confirmOrCancel determines that if a meeting object receives the characterize()

message, eventually, and within one day, it should either get the message confirm() or

the message cancel(). Given an instrumented JavaTM implementation of these objects

and a program in which they exchange messages through method calls, EEAT is able to

monitor and assert this invariant at runtime.

Listing 2.1: Example of OCLTM constraint on the Meeting Scheduler.� �
1 context Meeting
2 -- A meeting is either confirmed or canceled within 1 day.
3 def: charact: LTL:: OclMessage = receivedMessage(’characterize ’)
4 def: confirm: LTL:: OclMessage = receivedMessage(’confirm ’)
5 def: cancel: LTL:: OclMessage = receivedMessage(’cancel ’)
6 inv confirmOrCancel: after@1d(eventually(charact <> null),
7 eventually (( confirm <> null) or (cancel <> null)))� �

As will be shown in later chapters of this thesis, we have chosen OCLTM as the language

to specify the monitoring (awareness) requirements for our feedback loops and we have

used EEAT to operationalize this monitoring at runtime. In other words, EEAT was used

to provide the monitoring of indicators of requirements convergence shown in Figure 2.8.

7http://www.omg.org/cgi-bin/doc?formal/2006-05-01.

http://www.omg.org/cgi-bin/doc?formal/2006-05-01
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2.1.7 Qualitative Reasoning

In sub-section 2.1.5, we have represented adaptive systems as feedback control systems,

in which requirements are monitored for their satisfaction (as discussed above) and adap-

tation actions are sent to the target system by some kind of controller or framework. As

already mentioned earlier, one of these possible adaptation actions is to change the value

of some configuration parameters of the system in order to affect the output in the desired

way.

When designing adaptive systems at the requirements level, the system is not yet im-

plemented and its behavior is not completely known. With this incomplete information,

we are unable to fully identify how system configuration parameters affect outputs (a fun-

damental information for the type of adaptation defined as reconfiguration in Chapter 1).

For this reason, quantitative approaches cannot be applied and, therefore, we base the

approach presented in this thesis on ideas from Qualitative Reasoning.8

According to Forbus [2004], Qualitative Reasoning is “the area of artificial intelligence

(AI) that creates representations for continuous aspects of the world, such as space, time,

and quantity, which support reasoning with very little information”. In this field, there

is a spectrum of choices of qualitative representation languages, each of them providing

a different level of precision (sometimes referred to as resolution). Some examples of

qualitative quantity representation languages are [Forbus, 2004]:

• Status abstraction: represents a quantity by whether or not it is normal;

• Sign algebra: represents parameters according to the sign of their underlying con-

tinuous parameter — positive (+), negative (−) or zero (0). It is the weakest form

of representation that supports some kind of reasoning;

• Quantity space: represents continuous values through sets of ordinal relations, pro-

viding variable precision as new points of comparison are added to refine the space;

• Intervals : similar to quantity space representation, consists of a variable-precision

representation that uses comparison points but also includes more complete infor-

mation about their ordinal relationship;

• Order of magnitude: stratify values according to some notion of scale, such as hyper-

real numbers, numerical thresholds or logarithmic scales.

As can be seen in the above examples, the key feature of qualitative reasoning methods

is that while frequently there is not enough information to construct quantitative models,

8In effect, the use of qualitative information is quite common in Requirements Engineering approaches. An

example of such use is the NFR Framework [Mylopoulos et al., 1992].
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qualitative models can cope with uncertain and incomplete knowledge about systems and

still provide value by allowing some kind of reasoning over the produced models. In other

words, they do not require assumptions beyond what is known. Most qualitative reasoning

approaches can be seen as having two types of abstraction: domain and functional.

Domain abstraction abstracts the real domain values of variables into a finite number

of ordered symbols that describe qualitative values — landmarks [Kuipers, 1989] — that

are behaviorally significant. Landmarks can be numeric or symbolic and can include the

values such as 0 and ±∞. A qualitative variable value is either a landmark or an interval

between adjacent landmarks. The finite, totally ordered set of all the possible qualitative

values of a variable composes its quantity space.

Qualitative functional abstraction, which gives the ability to represent incompletely

known functional relationships between quantities, complements domain abstraction in

Qualitative Reasoning. For instance, as already mentioned above, signs (+, −, 0) can be

used to describe and reason about the direction of change in variables — one can state

that there exists some monotonically increasing function relating two quantities, without

elaborating further.

Merging qualitative information frequently results in ambiguity, such as when com-

bining positive and negative influences without knowing their magnitudes. The role of

ambiguity is important, as it reminds us that further action is necessary, in the form of

information gathering and analysis, to increase the level of precision in order to resolve

it. In other words, the initial low-level precision of our representations “reveals what the

interesting questions are” [Forbus, 2004], which is very useful when eliciting requirements

for a system.

Qualitative Reasoning plays a very important role in our approach, as will be shown

in the remainder of this thesis.

2.2 Related work

In a recent survey article, Salehie and Tahvildari [2009] propose a taxonomy of adapta-

tion, provide a landscape of the research on adaptive systems, applying the taxonomy to

research projects based on their impact in the area and the novelty and significance of

their approach. The authors conclude the paper with challenges for this research area

based on the comparison between different, existing proposals.

In our research group, Fabiano Dalpiaz [2011] has also published a review of the state-

of-the-art in adaptive systems as part of his PhD dissertation, organizing proposals in

eight different categories, namely: conceptual models, programming frameworks, software

architectures, service-oriented, requirements engineering, algorithms and policies, agent
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reasoning and planning and self-organization.

Other survey papers might focus on specific aspects of adaptation. For instance, Di

Nitto et al. [2008] reviews the progress if software engineering that led to the concepts

in service-oriented computing and Service-Oriented Architectures (SOA), discusses the

requirements for self-adaptive systems in the context of service-oriented technologies and

points out possible future evolution of this field.

Given the availability of literature reviews for our chosen area of research, our focus

in this section will be to present related work that has been analyzed during the time we

have worked on the proposals contained in this thesis. In Chapter 8, after we present our

approach for the design of adaptive systems, we come back to the research summarized

here in order to compare it to our approach.

We start with the research done in the context of Autonomic Computing (Section 2.2.1)

and other approaches that focus on architectural issues (Section 2.2.2). Then, we focus

on approaches that are more similar to our own, which are the ones that propose the use

of requirements models for the design of adaptive systems (Section 2.2.3). Finally, we also

touch on the subject of requirements evolution (Section 2.2.4).

2.2.1 Research on Autonomic Computing

Motivated by IBM’s autonomic manifesto [Horn, 2001], the past decade has seen a lot

of research on Autonomic Computing. As discussed back in Section 1.2.1 (p. 5), some

researchers consider autonomic and self-adaptive as synonyms, whereas others establish

differences between their scope and focus. Our research originally started in the context

of Autonomic Computing (see, e.g., [Souza and Mylopoulos, 2009]).

An autonomic system, as described by Kephart and Chess [2003], is made of interac-

tive collections of autonomic elements delivering services to users and to other elements

according to specified goals and constraints. Each autonomic element consists of one

or more managed (software or hardware) resources and an autonomic manager, which

controls interactions and the internal state of the element. They must be specified in a

standard format and be able to locate and negotiate services they need while provisioning

services that are needed from them.

In a 2003 issue of the IBM Systems Journal, Ganek and Corbi [2003] define self-

configuring, self-healing, self-optimizing and self-protecting as the cornerstones of auto-

nomic systems self-managing capabilities. Moreover, they proposed a gradual evolution of

current systems, starting from a basic level of management and moving towards managed,

predictive, adaptive and, finally, an autonomic level. In that same issue [Ritsko, 2003],

many other papers provided a glimpse into the research efforts that were being carried

out towards autonomic computing.
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To provide all of the above self-* properties, autonomic systems (like adaptive systems

in general) base themselves on a feedback loop architecture, called the MAPE-K loop

[Kephart and Chess, 2003]. Present in every autonomic manager, this loop performs

monitoring, analysis, planning and execution of actions, based on knowledge about the

environment, policies, etc., in order to achieve the purpose of self-management of the

autonomic element.

More recently, Huebscher and McCann [2008] published a literature review of the ma-

jor contributors to the aforementioned components of the MAPE-K loop and how this

research matches the degrees of autonomicity defined in [Ganek and Corbi, 2003]. The

review describes research proposals for the full MAPE-K architecture, monitoring infras-

tructures, planning models, policies, architectural models and knowledge representation.

2.2.2 Architectural approaches for run-time adaptation

Architecture-based approaches to adaptive systems assume the requirements for the system-

to-be — both “vanilla” requirements and those concerned with the adaptation capabilities

of the system — are given, and thus concentrate on helping designers build architectures

that promote the adaptation features needed by the system. They usually propose the

use of an architectural model that shows system components and how they communicate

amongst themselves through connectors [Huebscher and McCann, 2008].

The architecture proposed by Autonomic Computing researchers fall into this category,

but architectural approaches for adaptive systems have been around even before the pub-

lication of the autonomic manifesto. For instance, Oreizy et al. [1999] proposed one such

approach, based on an infrastructure that relies on software agents, explicit representa-

tion of software components and the environment, plus messaging and event services that

coordinate the adaptation. By abstracting the source code of the system into components

and their interconnections, adaptation can be performed in a higher level of abstraction

(the architecture) and automatically be reflected in the system’s implementation.

Another well-known architecture-based approach is that of Kramer and Magee [2007].

They propose a reference architecture for self-adaptive systems based on the three-layer

architecture for robotics proposed by Gat [1998]. At the bottom, the Component Control

layer reports events and status to the upper layer and supports modification of current

component configuration. The middle layer, Change Management, perform changes in

the bottom layer based on situations reported by the latter or new goals introduced by

it. It also relies on the top layer in case a situation is reported by the bottom layer and

no plans are currently available to tackle it. At the top, the Goal Management layer

produces change management plans in response to requests from the middle layer or the

introduction of new goals.
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Subsequent papers built on this architecture proposing the use of modes for service-

oriented architectures (SOA) [Foster et al., 2009] and a reactive planning from abstract

goals in the top layer together with a plan interpreter and configuration generator in the

middle layer [Sykes et al., 2007, 2008]. In the extended approach, the essential character-

istics of the environment are represented in a domain model, captured by a finite state

machine, which is later transformed to a Labeled Transition System that uses fluents to

specify properties of the environment and Linear Temporal Logic to constraint system and

environment actions. Based on this model, reactive plans drive adaptation in the change

management layer. A case study using this approach is presented in [Heaven et al., 2009]

and, more recently, the approach has been further extended to consider non-functional

preferences when generating plans for architecture adaptation [Sykes et al., 2010].

The Rainbow framework [Garlan et al., 2004; Cheng et al., 2009c] also uses an ar-

chitectural model as centerpiece for adaptation. Adaptation rules monitor operational

conditions for the system and define actions if the conditions are unfavorable. The key

feature of the framework is the use of architectural styles that allows designers to spe-

cialize the framework to specific application domains, defining style-specific architectural

operators and repair strategies [Garlan et al., 2003]. Monitoring is done with a set of

probes deployed in the target system, which send observations to gauges that interpret

the probe measurements in terms of higher-level models, making the result of this analysis

available to consumers who can, for instance, make repair decisions.

Architecture-based approaches usually employ some kind of Architecture Definition

Language (ADL) in their models. Kramer and Magee use the Darwin ADL and the Al-

loy language, specifying components, service ports and interface types [Georgiadis et al.,

2002]. The Rainbow framework uses the ACME ADL, which extends the usual com-

ponent/port representation with the concept of families, that allows designers to define

architectural styles [Schmerl and Garlan, 2002]. The framework also uses a language called

Stitch that aims to “capture routine human adaptation knowledge as explicit adaptation

policies”, specifying what, when and how to adapt, automating the adaptation process

[Cheng, 2008, Chapter 4].

Another architecture-based framework was proposed by Sousa et al. [2009], focusing

on allowing users to control Quality of Service (QoS) trade-offs and coordinate the use of

resources in a distributed environment composed of several applications. Utility functions

for each QoS dimension express user preferences in terms of thresholds for satiation and

starvation. Based on the combined utility of each QoS aspect, the Aura Environment

Manager [Garlan et al., 2002] was extended in order to compute the optimal resource

allocation for each application.

The SASSY framework [Menasce et al., 2011] also focuses on QoS tuning, targeting ser-
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vice oriented systems. The approach uses a BPMN9-based language called Service Activity

Schema (SAS) to represent the correct behavior of the system, allowing domain experts

to annotate such model with QoS goals. Based on the annotated SAS, the framework

generates the system architecture (using xADL — eXtensible Architecture Description

Language) selecting the most suitable service provider based on QoS architectural pat-

terns. When QoS violations are detected, the system generates a new architecture and

coordinates the process of switching to it at runtime in order to adapt.

As will be seen in more detail in the following chapters, the only contribution towards

the system architecture from our approach is the assumption that adaptation will be

operationalized by a feedback control loop. We are not alone in this choice. Taylor and

Tofts [2004] claim that “self-managed systems are actually closed loop control systems”,

also recognizing the challenge of directly applying Control Theory methods to complex

software systems (cf. Section 1.2.2, p. 7). Their proposal is, thus, to limit the set of

measure-response functions in the system so they are known to have the desired properties

at all times.

Laddaga and Robertson [2004] also recognize the control paradigm as useful for the

design of adaptive systems and propose that systems of this kind should be treated at

runtime like a factory, with inputs and outputs, and a control facility that manages it. The

functionalities of the controller, such as evaluation, measurement and control, would be

developed separately and plugged into the application to manage its reconfiguration. The

authors also recognize the planning paradigm as useful for adaptive systems development,

but describe it also as a loop including four activities: plan, execute, monitor and revise.

As stated before, the difference between our approach and the ones mentioned in this

sub-section is their focus: these approaches propose adaptation at the architectural level,

whereas ours is concerned with the requirements for the feedback loop that operational-

izes the adaptation. In this way, a system can adapt not only by changing/adjusting

components and other architectural elements but actually do it at a higher level of ab-

straction, adjusting parameters connected to system requirements or changing the system

requirements altogether. In this sense, requirements and architecture-based approaches

are orthogonal and could be used in combination given the proper transition process

(which, unfortunately, is not something that is addressed in this thesis).

2.2.3 Requirements-based approaches for the design of adaptive systems

Like the approach we present in this thesis, some other research proposals on the design of

adaptive systems also focus on requirements. The common trait in these proposals is the

9Business Process Model and Notation, see http://www.bpmn.org/.

http://www.bpmn.org/
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consideration of adaptation capabilities of the system during Requirements Engineering,

propagating such considerations throughout the software development process.

In what follows, we describe research on adaptive systems that fits the category of

requirements-based approaches. As mentioned earlier, a comparison between these ap-

proaches and ours is provided in Chapter 8.

RELAX and LoREM

The RELAX language [Whittle et al., 2009, 2010] aims at capturing uncertainty declar-

atively with modal, temporal, ordinal operators and uncertainty factors provided by the

language. RELAX is aimed at capturing uncertainty in the way requirements can be met,

mainly due to environmental factors. Unlike goal-oriented approaches, RELAX assumes

that structured natural language requirements specifications, containing the SHALL state-

ments that specify what the system ought to do, are available before their conversion to

RELAX specifications. The modal operators available, SHALL and MAY. . .OR, specify,

respectively, that requirements must hold or that there exist requirements alternatives

(variability).

In RELAX, points of flexibility/uncertainty are specified declaratively, thus allowing

designs based on rules, planning, etc. as well as to support unanticipated adaptations.

Some requirements are deemed invariant — they need to be satisfied no matter what.

Other requirements are made more flexible in order to maintain their satisfaction by

using “AS POSSIBLE”-type RELAX operators (e.g., “AS EARLY AS POSSIBLE”, “AS

CLOSE AS POSSIBLE”, etc.). Because of these, RELAX needs a logic with built-in

uncertainty to capture its semantics. The authors chose Fuzzy Branching Temporal Logic

for this purpose. It is based on the idea of fuzzy sets, which allows gradual membership

functions. Temporal operators such as EVENTUALLY and UNTIL allow for temporal

component in requirements specifications in RELAX.

In a separate thread of research, Zhang and Cheng [2005, 2006] argue that the seman-

tics for adaptive software should be explicitly captured at the requirements level and, to

that purpose, they introduce an extension of Linear Temporal Logic (LTL) called Adapt

operator-extended LTL. They propose a 6-step approach for the development of adaptive

systems that models global invariants and different domains that the system can oper-

ate, then constructs adaptation models from one domain to another. In this approach,

adaptive systems are considered to be a collection of steady-state systems and adapta-

tion consists of a dynamic transition from the currently active steady-state system, called

source system, to another steady-state system, called target system.

Here, it is important to note that this definition of target system is very different

from the one we use throughout this thesis, which is borrowed from Control Theory (as
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mentioned back in Section 1.2.2, p. 7). In our approach, target system refers to the system

that is controlled by the feedback loop, the latter providing adaptation capabilities to the

former. Except when referring to approaches based on the work of Zhang and Cheng, in

this thesis the term target system should be understood as described in this paragraph.

Based on [Zhang and Cheng, 2006], Brown et al. [2006] encapsulate the A-LTL spec-

ifications in KAOS models for a more intuitive and graphical representation, allowing

the system to switch between operational domains. Later on, Goldsby et al. [2008] pro-

posed the LoREM approach, which defined a systematic processes for performing (Goal-

Oriented) Requirements Engineering for adaptive systems. Its name comes from the work

of Berry et al. [2005], who defined four Levels of RE for Modeling adaptive systems.

In level 1, system developers identify the goals of the system and the steady-state

systems that are suitable for the domains that satisfy the goals. Then, in level 2, adap-

tation scenario developers creates the set of adaptation scenarios, which represent the

run-time transitions between source and target systems, including the requirements for

monitoring, decision-making and adaptation. Level 3 is concerned with identifying the

adaptation infrastructure necessary to support the previously identified scenarios. Fi-

nally, level 4 comprises the research done by the community to improve the methods and

techniques used in the other levels.

Finally, Cheng et al. [2009a] integrated LoREM and RELAX, adding to the mix an

approach to systematically explore the uncertainty form the environment to which the

adaptive system will be deployed using threat modeling in KAOS. When a goal threat

is identified, there are three possible mitigation strategies that can be applied: (a) add

subgoals to handle the condition of the threat; (b) use RELAX to add flexibility to the

goal definition; (c) create new high-level goals that capture the objective of correcting the

failure. The last strategy works like a feedback loop that adapts the system whenever the

goal fails at runtime.

FLAGS

A similar approach to RELAX is FLAGS [Baresi and Pasquale, 2010; Baresi et al., 2010],

which proposes crisp (Boolean) goals (specified in LTL, as in KAOS), whose satisfaction

can be easily evaluated, and fuzzy goals that are specified using fuzzy constraints. In

FLAGS, fuzzy goals are mostly associated with non-functional requirements. The key

difference between crisp and fuzzy goals is that the former are firm requirements, while

the latter are more flexible.

To provide semantics for fuzzy goals, FLAGS includes fuzzy relational and temporal

operators. These allow expressing requirements such as something be almost always

less than X, equal to X, within around t instants of time, lasts hopefully t instants,
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etc. Whenever a fuzzy membership function is introduced in FLAGS, its shape must be

defined by considering the preferences of stakeholders. This specifies exactly what values

are considered to be “around” the desired value.

Additionally, in FLAGS, adaptive goals define countermeasures to be executed when

goals are not attained, using Event-Condition-Action rules. The approach allows for the

definition of adaptive goals which, when triggered by a goal not being satisfied, execute

a set of adaptation actions that can change the system’s goal model in different ways —

add/remove/modify goals or agents, relax a goal, etc. — and in different levels — in

transient or permanent ways.

At the infrastructure level, Pasquale [2010] proposes an operationalization using a

service-oriented architecture. The augmented KAOS models are translated to a functional

model, composed of variables, activities and messages exchanged by services. Then, a

supervision model is created, containing directives for monitoring and adaptation of the

system, based on the degree of goals’ satisfaction. To guarantee safety, adaptations are

performed in specific execution points, called quiescent states [Zhang and Cheng, 2006].

Approaches based on i?/Tropos

i? and Tropos, introduced earlier in Section 2.1.1, have been extended to represent re-

quirements for system adaptation. Since agents are a very important component in the

foundation of these approaches, proposals that extend i?/Tropos usually keep the focus

on the interaction between different agents with one another and with the surrounding

environment while pursuing their goals. For an overview of the area, Morandini [2011]

provides a review of the state-of-the-art in multi-agent systems in his PhD thesis.

Morandini et al. [2008, 2009] propose extensions to the architectural design phase

of the Tropos methodology [Giorgini et al., 2005] to model adaptive systems based on

the Belief-Desire-Intention (BDI) model as a reference architecture [?]. The approach

is called Tropos4AS (Tropos for Adaptive Systems) and introduces new goal types —

namely, maintain-goals, achieve-goals and perform-goals — and a new inhibit relation

between goals that specifies that a goal (the inhibitor) has to be stopped in order for

another goal (the inhibited) to be achieved/maintained.

Tropos4AS also extends Tropos in order to allow designers to model non-intentional

elements using UML10 class diagrams, specifying resources that belong to an agent and

the ones that belong to the environment. The approach also allows for the modeling

of undesirable (faulty) states, which are known to be possible at runtime and should

trigger system adaptation. Finally, Morandini [2011] maps the goal models to the Jadex11

10The Unified Modeling Language, see http://www.uml.org/.
11A BDI Agent System, see http://jadex-agents.informatik.uni-hamburg.de/.

http://www.uml.org/
http://jadex-agents.informatik.uni-hamburg.de/
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platform for run-time implementation.

Ma et al. [2009] use i? and the NFR framework to represent preferences, which ulti-

mately drive service selection in service-oriented applications. NFR constructs are used to

model the interrelation among different criteria for service selection according to domain

experts, but the authors use quantitative values instead of the usual, qualitative labels

of NFR. i? actor dependencies are also used to represent alternative services networking

decisions. The authors provide algorithms that reason over these two kinds of models to

identify optimal solutions.

Another approach is the one from Dalpiaz et al. [2009, 2010, 2012], which proposes

an architecture that, based on requirements models, adds self-reconfiguring capabilities

to a system using a monitor-diagnose-compensate (MDC) loop. A monitor component

collects, filters and normalizes events/logs from the system, which serve as input to the

diagnose component, responsible for identifying failures and discovering their root causes.

Finally, the reconfigurator component selects, plans and deploys compensation actions in

response to failures.

The authors propose different algorithms for system reconfiguration at runtime. One

such algorithm finds all valid variants to satisfy a goal and compares them based on their

cost (to compensate tasks that failed or the ones that already started and will be canceled)

and benefit (e.g., contribution to softgoals) [Dalpiaz et al., 2012]. Another algorithm re-

configures the system in terms of interaction among autonomous, heterogeneous agents

based on commitments, proposing different adaptation tactics, such as exploiting vari-

ability, goal/commitment redundancy, switching debtors, division of labor, etc. [Dalpiaz

et al., 2010].

The Continuous Adaptive Requirements Engineering (CARE) method [Qureshi and

Perini, 2009, 2010; Qureshi et al., 2011b] is also based on Tropos, focusing on service-

based applications. At design time, developers specify adaptive requirements along with

“vanilla” requirements using goal models. Adaptive requirements take into account not

only functional and non-functional concerns but also monitoring and variability. Domain

ontologies represent the knowledge about the domain and are linked to the goal model to

help analysts detail the expected behavior of the system.

Based on these models, the system monitors for environmental changes (that violate

goals) or user requests (queries), representing them as Run-time Requirement Artifacts

(RRAs), which consist of service requests. Whenever an RRA is acquired, lookup is

performed in order to find a service that satisfies the request. Service selection can be

done automatically based on user preferences or manually by the user herself. Finally,

the system’s specification is modified, adding the selected service and possibly removing

others.
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In [Qureshi et al., 2011a], the authors formulate a runtime requirements adaptation

problem for self-adaptive system and extend the Core ontology for requirements [Jureta

et al., 2008] with the concepts of Context and Resource and new relations Relegation and

Influence between requirements. The former establishes that if a requirement cannot be

satisfied in one way, other less-preferred ways can be tried, whereas the latter indicates

how the satisfaction of one requirement influences in the satisfaction of another.

Reconfiguration approaches

In the context of GORE, Wang and Mylopoulos [2009] define a system configuration as

“a set of tasks from a goal model which, when executed successfully in some order, lead

to the satisfaction of the root goal.” In Chapter 1, we have called reconfiguration the

act of searching the solution space for parameters (e.g., the choice of the path to take in

OR-refinements, which determines the set of tasks to be executed) that can be changed in

order to improve the system’s outcome. Below, we present some approaches that propose

adaptation through reconfiguration.

Hawthorne and Perry [2004] propose a prescriptive architecture for self-adaptive sys-

tems called Distribution Configuration Routing (DCR). This KAOS-based approach starts

with goal-oriented requirements engineering, specifying object roles, whose behavior is

specified by intents. DCR is then able to compose system configurations that are confor-

mant with requirements by analyzing role and intent models.

Brake et al. [2008] automate the discovery of software tuning parameters at the code

level using reverse engineering techniques. A taxonomy of parameters and patterns to

aid in their automatic identification provides some sort of qualitative relation among

parameters, which may be “tunable” or just observed. The approach targets existing

and legacy software, compiling an initial catalog of parameters by analyzing the system’s

documentation, then executing a syntactical search of the source code to find fields that

match the identified parameters.

Khan et al. [2008] apply Case-Based Reasoning to the problem of determining the best

system configuration. System configurations are kept in the case-base as solutions and

associated to problems cataloged from past experience. At runtime, when problems are

detected, an algorithm searches for a solution in the case-base using a similarity measure.

Another algorithm evaluates if the problem is new (and should be cataloged) or if it can

be associated with a template in order to restrict the fast growth of the case-base, which

would make run-time adaptation more difficult.

Wang and Mylopoulos [2009] propose algorithms that suggest a new configuration

without the component that has been diagnosed as responsible for the failure. Their

framework receives as input a goal model, in which each goal/task is given a precondition,
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an effect and a monitor status. Preconditions and effects are propositional formulas

representing conditions that must be true before and after, respectively, a goal is satisfied

or a task is executed, whereas the monitor status indicates if a task or goal should be

monitored or not, making it possible to control the desired granularity level of diagnostics.

The monitoring layer instruments the source code of the program in order to provide

the diagnostic layer a log (truth values for observed literals or the occurrence of a task

at a specific time-step). The diagnostic layer can then produce axioms for deniability (a

task or goal occurred but either its precondition or its effect did not), label propagation

(propagate satisfiability and deniability between tasks and subgoals towards their parent

goals) and contribution (calculate the effect that contribution links have on their targets

based on the satisfiability or deniability of the source goal/task). Axioms and log entries

are encoded and passed to a SAT solver, which translates them into diagnoses.

Fu et al. [2010] represent the life-cycle of instances of goals at runtime using a state-

machine diagram and, based on it, an algorithm can prevent possible failures or repair

the system in case of requirements deviation. Coupled with event mapping rules in first-

order logic, the state-machine diagram specifies in detail the traceability between runtime

and requirements, allowing the system to reconfigure based on a standard set of activities

(e.g. retry, propagate, try a different path in an OR-refinement, etc.). The reconfiguration

policies can be associated with use limits (specifying the upper bound for the execution

of a given policy) and avoidance goal state patterns (regular expression-like pattern that

rules out the policy if the monitored goal’s history matches it).

Like our own work, Peng et al. [2010] propose an adaptation approach founded on goal

reasoning and feedback control theory (using the PID controller). A proposed procedure

receives as input a goal model with softgoals ranked by preference and finds a configu-

ration of the system (i.e., a set of leaf-level tasks, in the spirit of the NFR Framework)

that optimizes the achievement of of high-ranked softgoals. In practice, a SAT solver

is used to try and find a configuration that accommodates all soft-goals. If that can’t

be done, drop the lowest-ranked softgoal and try again, proceeding iteratively this way

until a configuration can be found (or all softgoals have been dropped). Architectural

reconfigurations are supported by a SOA and a reflective component model.

Moreover, modification of softgoal preference ranks are allowed at runtime. The control

input for the feedback loop is some business value that has to be reached. At runtime,

if a business value associated with a specific softgoal (e.g., value “response time” and

softgoal “minimal response time”) is below some threshold, the rank of the associated

softgoal is increased and the reconfiguration procedure is executed. The authors adapt

existing qualitative goal reasoning frameworks (e.g., [Giorgini et al., 2003]) to business

value propositions that are quantitative.
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Nakagawa et al. [2011] developed a compiler that generates architectural configurations

by performing conflict analysis on KAOS goal models. The compiler reads the models

and generates architectural configurations for self-adaptive systems. Such configurations

use multiple control loops based on an extension introduced in KAOS. Goal elements are

divided in 3 categories, one for each part of the control loop: monitor, analyze & decide,

and act.

Salehie and Tahvildari [2012] propose GAAM, the Goal-Action-Attribute Model. In

this approach, measurable/quantifiable properties of the system are modeled as attributes,

whereas goals are represented in their usual, hierarchical way. Goals are assigned weight-

s/priorities and the model also keeps track of each goal’s activation level. Moreover,

changes that are applicable to adaptable software entities are modeled as adaptation ac-

tions and a preference matrix specifies their order of preference toward goal satisfaction.

Finally, an aspiration level matrix determines the desired levels of attributes of each goal.

At runtime, polling monitors attributes and goals, comparing them to the aspiration lev-

els, and an action selection mechanism based on goal weights reconfigures the system in

case an attribute does not reach its aspired level.

Previously described approaches, such as the ones from Morandini et al. [2009] and

Dalpiaz et al. [2012], can also be considered reconfiguration approaches, in their case

focusing on agents, their goals and social relations. Recently, Ali et al. [2011b] also

explored the role of social relationships among system users when deciding how to adapt

a system.

Design-time trade-off analysis and risk management

Although not explicitly designed for run-time system adaptation, approaches that propose

design-time trade-off analysis or risk management could be adapted to be used at runtime

in order to decide the best system configuration. The former analyzes alternatives to

choose the best one for a given problem, whereas the latter is concerned with modeling

things that can go wrong with a software system, both of which are activities that adaptive

systems have to perform at runtime.

Letier and van Lamsweerde [2004] present an approach that allows for specifying par-

tial degrees of goal satisfaction for quantifying the impact of alternative designs on high-

level system goals. Their partial degree of satisfaction can be the result of, e.g., failures,

limited resources, etc. and is measured in terms of the probability that the goal is satisfied.

Thus, the approach augments KAOS with a probabilistic layer.

Here, goal behavior specification (in the usual KAOS temporal logic way) is separate

from the quantitative aspects of goal satisfaction: domain-specific quality variables as-

sociated with goals are modeled and objective functions define goal-related quantities to



58 State of the art

be maximized or minimized. An approach for propagating partial degrees of satisfaction

through the model is also part of the method, allowing one to determine the degree of

satisfaction of a goal from the degrees of satisfaction of its subgoals. Finally, alternative

designs can be evaluated and compared by computing the objective functions.

More recently, Heaven and Letier [2011] propose the use of stochastic simulations to

generate sample values for each leaf-level quality variable according to its probability

distribution in order to compute the objective functions obtained in the simulation. With

this simulation, manual comparison between distinct design choices can be performed, but

this is not easy and alternatives can grow exponentially with the increase of variability

points. Therefore, the authors propose to solve this multi-objective optimization problem

by finding the set of Pareto-optimal solutions (i.e., the ones that are not dominated by

other solutions and thus can be compared in a trade-off analysis) and using meta-heuristic

search algorithms (e.g., exhaustive search for small problems, genetic algorithms for large

ones, etc.).

The Defect Detection and Prevention (DDP) process [Cornford et al., 2006] was pro-

posed to achieve life-cycle risk management in software projects. The process starts by

capturing the system requirements using a tree structure. Then, possible situations in

which the requirements are not achieved are analyzed and represented in a tree of poten-

tial failure modes, which is prioritized based on the impact they have on requirements.

Finally, the developers devise Preventative measures, Analyses, process Controls and Tests

(PACTs) to mitigate the identified failures, aiming at minimizing the overall risk to the

project.

Menzies and Richardson [2006] propose to simulate (execute) qualitative models of

requirements to explore scenarios and learn from the models before spending resources

detailing them and developing the system. Since qualitative models generate scenarios

exponentially to the number of variables, the authors propose the identification of master

variables, i.e., key parameters that set the value of remaining slave variables. Then a tool

called TAR3 performs stochastic forward select (stochastic simulation/sampling) to search

for treatments (treatment learning, a treatment being a setting to the master variables

that improves the performance of the qualitative models).

According to the approach, after reading the early requirements, software process op-

tions are listed as Boolean parameters. Their effect on interesting indicators are specified

qualitatively (+, −, 0, ?) by experts. Stakeholders also assign utility values to each in-

dicator and a formula calculates the overall utility. Key parameters are identified and

simulation finds what is the value they should have in order to improve the indicators as

much as possible.

The proposals of Elahi and Yu [2011] on design-time trade-off analysis — pair-wise
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comparison of alternatives with respect to goals that were selected as indicators — could

be adapted to provide information for run-time adaptation if we could somehow remove

the need for stakeholder intervention in the analysis. For instance, contribution links in i?

can provide qualitative relations between alternatives and monitored indicators, although

they lack the means of differentiating between links with the same label (GRL provides

numeric contribution values and, thus, could be used here).

Control-theoretic approaches

In Chapter 1, we have cited a few road-map papers that highlight the need to apply

concepts from Control Theory, such as feedback loops, in the design and development of

adaptive systems [Brun et al., 2009; Andersson et al., 2009; Cheng et al., 2009b]. This

thesis is an effort in this direction, but we are certainly not the only ones.

Schmitz et al. [2008] (see also [Schmitz et al., 2009]) use i? goals to model the re-

quirements of control systems. The target/controlled system, the controller and their

combination are considered i? actors, then i? dependencies capture their relationships.

For instance, resource dependencies capture sensors and actuators. The approach fo-

cuses on reuse of software artifacts when designing control systems, providing an auto-

matic identification of potentially reusable components. Moreover, the authors propose a

semi-automatic process to derive mathematical models commonly used in control systems

development from the requirements.

Hebig et al. [2010] present a UML profile for the creation of architectural models that

represent control loops as first-class citizens. The profile defines roles for process com-

ponent, controller, sensor and actuator components, the latter three also featuring in

interface stereotypes that establish relationships among the different components. More-

over, strands define when control interfaces in the system are intended to be influenced by

an actuator, whereas effect propagation indicates that a change in the input of a compo-

nent leads to a change in the output of the component. Sensor interfaces can also define

the scope of the control loop by marking it as controllable or environmental. Multiple

loops are also supported.

Filieri et al. [2011] applied control theory to the problem of designing adaptive sys-

tems with a requirements perspective, focusing on adapting to failures in reliability and

modeling requirements using Discrete Time Markov Chains (DTMCs). There, transitions

are labeled with control variables, whose values can be set by a controller that decides the

system’s settings in order to keep satisfying the requirements. Well established control

theoretic tools are used to design such controller and the authors claim the approach can

be extended to deal with failures of different nature. This approach is extended in [Filieri

et al., 2012] with a more efficient solution for dynamic binding of components and an
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auto-tuning procedure.

2.2.4 Requirements evolution

The problem of requirements evolution was initially addressed in the context of software

maintenance, focusing on maintaining the requirements models synchronized with their

implementation once the system goes into maintenance. To cite a few examples, in [Wen-

jie and Shi, 2009] a method based on Π-Calculus and OWL-S12 is proposed for efficient

and controllable software evolution. Revolution2 [Duan, 2009] uses refined use cases and

refactoring techniques to propagate changes in use cases to subsequent models.

The approach proposed by Ben Charrada and Glinz [2010] analyses changes in test

suites and provides hints for updating the requirements specifications. Villela et al. [2008]

propose a method for identification of unstable features and anticipation of potential

adaptation needs for embedded systems, which is, according to the authors, easily gener-

alizable for software systems. Their method provides only designer-supported evolution,

which is based on analysis provided by domain and market experts in order to anticipate

the adaptation needs.

The topic has also been recently gaining attention from the Requirements Engineer-

ing research community. In a chapter of a recent book entitled “Design Requirements

Engineering: A Ten-Year Perspective”, Ernst et al. [2009] discuss the state-of-the-art for

research on the topic, and predict some of the research problems for the next 10 years.

The authors also provide a concrete proposal for a run-time monitoring framework based

on requirements. This is later extended to automate reconciliation in high-variability sys-

tems by reconfiguration — [Wang and Mylopoulos, 2009], cited earlier. Another approach,

by Nissen et al. [2009], investigates the consequences for the evolution of requirements for

control systems and proposes countermeasures to problems caused by this evolution. The

approach builds on earlier work by Schmitz et al. [2008], also cited above.

Based on the redefinition of the requirements problem by Jureta et al. [2008], Ernst

et al. [2011] developed a requirements engineering knowledge base that stores the infor-

mation acquired during requirements elicitation and provides tools for answering various

queries, such as, for instance, comparing alternative solutions. Then, the authors define

the requirements evolution problem as the one of finding a new solution for a requirements

problem that has been modified, focusing on reusing as much as possible the existing so-

lution.

Requirements evolution research has also focused on modeling requirements change

and its impact on the system. For instance, in Lam and Loomes [1998], environment

12See http://www.w3.org/Submission/OWL-S/.

http://www.w3.org/Submission/OWL-S/
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changes are propagated through requirements changes and down to design. Each trig-

gered requirements change is analyzed in terms of its risks and the impact it has on

the users’ needs. Another important aspect of requirement evolution is the completeness

and consistency of requirements models. For instance, to address this, Zowghi and Offen

[1997] propose a formal approach based to requirements evolution utilizing non-monotonic

default logics with belief revision.

2.3 Chapter summary

In this chapter, we have summarized the research that was used as baseline for the propos-

als in this thesis (§ 2.1). First, our proposal is to design adaptive systems with a Require-

ments Engineering (RE) perspective and, therefore, we start from the state-of-the-art in

RE, namely Goal-Oriented Requirements Engineering (GORE), more specifically the core

ontology for RE proposed by Jureta et al. [2008] (§ 2.1.1). By applying existing meth-

ods and tools for goal-oriented requirements elicitation and modeling, eventually one can

produce a GORE-based requirements specification in the form of a goal model (§ 2.1.3).

Given one such model, other fields of study provide us with tools that are very useful

in the process of engineering requirements for adaptive systems. First, variability in

requirements, in particular goal models (§ 2.1.4), allows for the representation of different

ways of satisfying the system goals at runtime, which is the basis for adaptation through

reconfiguration. Second, as stated in Section 1.2.2 (p. 7), adaptive systems contain some

kind of feedback loop and, thus, we adopt ideas from the field of Feedback Control Theory

(§ 2.1.5). Third, concerning the first step of the feedback loop, existing approaches of

requirements monitoring should be harnessed (§ 2.1.6). Last, but not least, given the

difficulty in providing precise information about the behavior of a system-to-be during

the elicitation of its requirements, approaches from the area of Qualitative Reasoning

become very useful and should be considered (§ 2.1.7).

While presenting the foundation for our work, we have also introduced the running

example of this thesis, namely the Meeting Scheduler (§ 2.1.2). Such example will be used

throughout the following chapters in order to illustrate our proposals.

Finally, this chapter also summarizes different work that is related to the proposals

of this thesis (§ 2.2), in particular the proposals of Autonomic Computing (§ 2.2.1),

architecture-based approaches (§ 2.2.2), requirements-based approaches (§ 2.2.3) and work

on requirements evolution (§ 2.2.4).
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Chapter 3

Modeling adaptation requirements

Science is what we understand well enough to explain

to a computer. Art is everything else we do.

Donald Knuth

This chapter details the first contribution of our approach to the design of adaptive

systems: given a GORE-based requirements specification (cf. Section 2.1.3, p. 32), how

can we model the adaptation requirements for the system, harnessing the abstractions

provided by the feedback loop architecture which actually implements the adaptation?

In other words, in this chapter we attempt to answer research questions RQ1 and RQ2,

stated in Chapter 1: What are the requirements that lead to the adaptation capabilities

of a software system’s feedback loop? and How can we represent such requirements along

with the system’s “vanilla” requirements? 1

The answer to these questions are presented in the following sections. Section 3.1

proposes Awareness Requirements as indicators of what the feedback loop must monitor,

defining the criteria for what constitutes a requirements divergence (i.e., a control error).

Then, Section 3.2 presents Evolution Requirements as a way of representing how the

requirements model itself could be changed in order for the system to adapt.

Berry et al. [2005] defined the envelope of adaptability as the limit to which a system

can adapt itself: “since for the foreseeable future, software is not able to think and be

truly intelligent and creative, the extent to which a [system] can adapt is limited by the

extent to which the adaptation analyst can anticipate the domain changes to be detected

and the adaptations to be performed.” In this context, to completely specify a system

with adaptive characteristics, requirements for adaptation have to be included in the

1Part of these questions will also be answered in Chapter 4, where we present new model elements that

promote qualitative adaptation through reconfiguration, and Chapter 6, when we show how to represent the

requirements in a machine-readable format for their use in the run-time framework.
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specifications.

We propose the aforementioned new classes of requirements to fill this need, promoting

feedback loops for adaptive systems to first-class citizens in Requirements Engineering.

Considering the feedback loop, Awareness Requirements constitutes the requirements for

the monitoring component, whereas Evolution Requirements represents the requirements

for the adaptation component.

This chapter focuses on the modeling elements that represent the requirements for

system adaptation, whereas the process through which these requirements are elicited

and these models are built is covered in Chapter 5. We expect that the abstractions

provided by these new elements will help developers model and communicate adaptation

requirements. Furthermore, in Chapter 6 we discuss how these models can be used at

runtime by an adaptation framework.

3.1 Awareness Requirements2

As previously mentioned, our research started by applying a Requirements Engineering

perspective to the feedback loop architecture, studying the requirements that lead to the

functionality provided by feedback loops to adaptive systems. In other words, if feedback

loops constitute an (architectural) solution, what is the requirements problem this solution

is intended to solve?

The nucleus of an answer to this question can be gleamed from any description of

feedback loops: “. . . the objective . . . is to make some output, say y, behave in a desired

way by manipulating some input, say u . . . ” [Doyle et al., 1992]. Suppose then that

we have a requirement R = “produce meeting schedules upon request” and let S be a

system operationalizing R. The “desired way” of the above quote for S is that it always

fulfills R, i.e., every time there is a request for a meeting the system successfully produces

a schedule. Note that, here, the notion of “success” depends on the type of system:

for software systems, it means completing the transaction without errors or exceptions,

whereas for socio-technical systems “success” could involve the participation of human

actors, e.g., the secretary notifies all participants.

In any case, this means that the system somehow manages to deliver its functionality

under (almost) all circumstances (e.g., even when not enough participants have responded

about their timetables). Such a requirement can be expressed, roughly, as R′ = “Every

instance of requirement R succeeds”. And, of course, an obvious way to operationalize

R′ is to add to the architecture of S a feedback loop that monitors if system responses to

2Acknowledgment: an early version of the results presented in this section was included in the PhD thesis

of Alexei Lapouchnian [2010], who collaborated also in other parts of the research portrayed in this thesis.
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requests are being met, and takes corrective action if they are not.

We can generalize on this: we could require that S succeeds more than 95% of the time

over any one-month period, or that the average time it takes to schedule a meeting over

any one week period is no more than 1 day. The common thread in all these examples

is that they define requirements about the run-time success/failure/quality-of-service of

other requirements. We call these self-awareness requirements.

A related class of requirements is concerned with the truth/falsity of domain assump-

tions. For our example, we may have designed our Meeting Scheduler system on the

domain assumption D = “there is always at least one room available”. Accordingly, if

room availability is an issue for our system, we may want to add yet another requirement

R′′ = “D will not fail more than 2% of the time during any 1-month period”. We call

these contextual awareness requirement, as they are concerned with the truth/falsity of

domain assumptions.

To generalize the types of requirements, illustrated by R′ and R′′, we call them Aware-

ness Requirements (hereafter referred to as AwReqs). We characterize them syntactically

as requirements that refer to other requirements or domain assumptions and their suc-

cess or failure at runtime. AwReqs are represented in an existing language in the system

requirements specification and can be directly monitored by a requirements monitoring

framework at runtime (the latter is further discussed in Chapter 6).

The above definitions are in line with our view of adaptive systems as feedback control

systems, presented in Section 2.1.5 (p. 39). In Control Systems terms, the reference input

in this case is the system fulfilling its mandate, i.e., its requirements. Measuring the actual

output and comparing it to the reference input is the first step performed by a feedback

loop and, in the case of adaptive systems, this amounts to verifying if requirements are

being satisfied or not.

Awareness is a topic of great importance within both Computer and Cognitive Sci-

ences. In Philosophy, awareness plays an important role in several theories of conscious-

ness. In fact, the distinction between self-awareness and contextual awareness seems to

correspond to the distinction some theorists draw between higher-order awareness (the

awareness we have of our own mental states) and first-order awareness (the awareness

we have of the environment) [Rosenthal, 2005]. In Psychology, consciousness has been

studied as “self-referential behavior”. Closer to home, awareness is a major design is-

sue in Human-Computer Interaction (HCI) and Computer-Supported Cooperative Work

(CSCW) [Schmidt, 2002]. The concept in various forms is also of interest in the design of

software systems (security / process / context / location / ... awareness).

In the following sub-sections, we characterize AwReqs in more detail, discuss how

to specify them in a language with a higher degree of formality than natural language,
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Figure 3.1: States assumed by GORE elements at runtime.

propose the means to adding them to the system’s requirements specification through

the use of patterns and, if desired, a graphical representation. All of these aspects are

illustrated with examples from the Meeting Scheduler, which has been introduced back

in sections 2.1.2–2.1.4 (p. 27).

3.1.1 Characterizing AwReqs

AwReqs are requirements that talk about the run-time status of other requirements (here,

domain assumptions can be considered “requirements on the environment”, similar to

what is proposed by van Lamsweerde and Willemet [1998], to simplify the general char-

acterization of AwReqs). More precisely, AwReqs talk about the states requirements can

assume during their execution at runtime. We use the expression “requirement execution”

to denote the situation in which an actor is pursuing the satisfaction of a requirement

through the system. Figure 3.1 shows these states which, in the context of our modeling

framework, can be assumed by goals, tasks, domain assumptions, quality constraints (cf.

Section 2.1.3 in p. 32, also [Jureta et al., 2008]) and AwReqs themselves.

When an actor starts to pursue a requirement, its result is yet Undecided. Eventually,

the requirement will either have Succeeded, or Failed. For goals and tasks, which are

“long-running, performative requirements”, there is also a Canceled state. Our approach

currently considers only these four states, but could very easily be extended to consider

other, new states, increasing the expressiveness of AwReqs (however, this would also

increase the responsibilities of the target system in terms of indicating changes of states

in requirements, as will be explained in Chapter 6).

Table 3.1 shows some of the AwReqs that were elicited during our analysis of the

Meeting Scheduler. These examples are presented to illustrate the different types of

AwReqs, which are discussed in the following paragraphs. In other words, we do not

claim that this set of AwReqs is either necessary or sufficient for satisfying the adaptation

requirements of stakeholders of the average Meeting Scheduler.

The examples illustrate a number of types of AwReq. AR1, AR4, AR5 and AR7
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Table 3.1: Examples of AwReqs, elicited in the context of the Meeting Scheduler.

Id Description Type

AR1 Task Characterize meeting should never fail. –

AR2 Quality constraint Meetings cost less than e100 should be sat-

isfied 75% of the time.

Aggregate

AR3 The success rate of goal Collect timetables should not decrease

two weeks in a row.

Trend

AR4 Goal Find a suitable room should never fail. –

AR5 Goal Choose schedule should never fail. –

AR6 Quality constraint At least 90% of participants attend should

have a 75% success rate per month.

Aggregate

AR7 Domain assumption Participants use the system calendar should

always be true.

–

AR8 Domain assumption Local rooms available should be false no

more than once a week.

Aggregate

AR9 Task Let system schedule should successfully execute at least ten

times as much as task Schedule manually.

Aggregate

AR10 Quality constraint Schedules produced in less than a day should

have 90% success rate over the past ten days, checking daily.

Aggregate

AR11 Goal Manage meeting should be satisfied within one hour of the

time set by the meeting’s schedule.

Delta

AR12 Task Confirm occurrence should be decided within five minutes. Delta

AR13 AwReq AR7 should succeed 80% of the times. Aggregate (Meta)

AR14 The monthly success rate of AwReq AR6 should not decrease

twice in a row.

Trend (Meta)
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show the simplest form of AwReq : the requirement to which they refer should never fail.

Considering a control system, the reference input is to fulfill the requirement. If the actual

output is telling us the requirement has failed, the control system must act (adapt) in

order to bring the system back to an acceptable state.

AwReqs like these consider every instance of the referred requirement. An instance of

a task is created every time it is executed and the “never fail” constraint is to be checked

for every such instance. Similarly, instances of a goal exist whenever the goal needs to be

fulfilled, while domain assumptions and quality constraint instances are created whenever

their truth/falsity needs to be checked in the context of a goal fulfillment. Satisfaction of

the elements in a GORE-based specification were briefly discussed back in Section 2.1.3

(p. 32).

Inspired by the three modes of control of the proportional-integral-differential (PID)

controller (cf. Section 2.1.5, p. 39), we propose three types of AwReqs, briefly described

below and further illustrated in the following paragraphs:

• Aggregate AwReqs act like the integral component, which considers not only the

current difference between the output and the reference input (the control error),

but aggregates the errors of past measurements;

• Delta AwReqs were inspired by how proportional control sets its output proportional

to the control error;

• Trend AwReqs follow the idea of the derivative control, which sets its output accord-

ing to the rate of change of the control error.

An aggregate AwReq refers to the instances of another requirement and imposes con-

straints on their success/failure rate. For example, AR2 is the simplest aggregate AwReq :

it demands that the referred quality constraint be satisfied 75% of the time the goal

Schedule meeting is attempted.

Aggregate AwReqs can also specify the period of time to consider when aggregating

requirement instances, e.g., AR6 indicates a month as this period. The frequency with

which the requirement is to be verified is an optional parameter for AwReqs. If it is

omitted, then the designer is to select the frequency (if the period of time to consider has

been specified, it can be used as default value for the verification frequency). AR10 is an

example of an AwReq with period of time (past ten days) and verification interval (every

24 hours) specified.

Another pattern for aggregate AwReq specifies the min/max success/failure a require-

ment is allowed to have. For instance, AR8 indicates that a specific domain assumption

should be false at most once a week. AwReqs can combine different requirements, like
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AR9, which compares the success counts of two tasks, specifying that one should succeed

at least ten times more than the other. This captures a desired property of the alternative

selection procedure when deciding at runtime how to fulfill a goal.

AR3 is an example of a trend AwReq that compares success rates over a number of

periods. Trend AwReqs can be used to spot problems in how success/failure rates evolve

over time and could be used, for instance, to predict an upcoming undesirable situation,

given a negative trend on the success rate. In the example, AR3 specifies that the success

rate of a goal should not decrease twice in a row, considering week periods.

Delta AwReqs, on the other hand, can be used to specify acceptable thresholds for the

fulfillment of requirements, such as achievement time. AR11 specifies that goal Manage

meeting should be satisfied within one hour of the start of the meeting. Note how, in this

case, the AwReq refers to a property of an entity of the problem domain (a meeting).3

Another delta AwReq, AR12, shows how we can talk not only about success and

failure of requirements, but about changes of states, following the state machine diagram

of Figure 3.1. In effect, when we say a requirement “should [not] succeed (fail)” we mean

that it “should [not] transition from Undecided to Succeeded (Failed)”. AR12 illustrates

yet another case: the task Confirm occurrence should be decided — i.e., should leave the

Undecided state — within five minutes. In other words, regardless if they succeeded

or fail, secretaries should not spend more than five minutes confirming if a meeting has

occurred or not.

Finally, AR13 and AR14 are the examples of meta-AwReqs : AwReqs that talk about

other AwReqs. As we have previously discussed (cf. Section 1.2.2, p. 7), AwReqs are based

on the premise that even though we elicited, designed and implemented a system planning

for all requirements to be satisfied, at runtime things might go wrong and requirements

could fail, so AwReqs are added to trigger system adaptation in these cases. Using the

same rationale, given that AwReqs themselves are also requirements, it follows that they

are also bound to fail at runtime. Thus, meta-AwReqs can provide further layers of

adaptation in some cases if needed be.

Meta-AwReqs also belong to one of the previous categories of AwReqs. For instance,

AR13 is an aggregate meta-AwReq that specifies that AR7 should fail no more than 20%

of the time. In its turn, AR14 is a trend meta-AwReq, constraining the success rate of

AR6 to not decrease two months in a row.

With enough justification to do so, one could model an AwReq that refers to a meta-

AwReq, which we would call a meta-meta-AwReq — or third-level AwReq. There is no

3Although one can represent such an AwReq, it will be seen in Chapter 6 that a limitation of our approach is

that it does not currently integrate with domain models and, thus, cannot automatically operationalize AwReqs

like this. It can, however, operationalize AwReqs that compare properties of the requirement objects, e.g.,

“Requirement R1 should be satisfied within one hour of the satisfaction of Requirement R2.”
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limit on how many levels can be created, as long as meta-AwReqs from a given level refer

strictly to AwReqs from lower levels, in order to avoid circular references. It is important

to note that the name meta-AwReq is due only to the fact that it consists of an AwReq

over another AwReq. This does not mean, however, that multiple levels of adaptation

loops are required to monitor them. As will be presented in Chapter 6, monitoring is

operationalized by matching method calls to changes of states of requirements instances,

regardless of the class of the object that is receiving the message (goal, task, AwReq,

meta-AwReq, etc.).

3.1.2 AwReqs specification

We have just introduced AwReqs as requirements that refer to the success or failure of

other requirements. This means that the language for expressing AwReqs has to treat

requirements as first class citizens that can be referred to. Moreover, the language has

to be able to talk about the status of particular requirements instances at different time

points.

As mentioned in Section 2.1.6 (p. 43), we have chosen to use an existing language,

OCLTM , over creating a new one, therefore inheriting its syntax and semantics. The

subset of OCLTM features available to requirements engineers when specifying AwReqs is

the subset supported by the monitoring framework, EEAT, also previously introduced.

A formal definition of the syntax and the semantics of AwReqs is out of the scope of this

thesis.

Our general approach to using OCLTM is as follows: (i) design-time requirements,

such as the goal model for the Meeting Scheduler shown in Figure 2.6 (p. 37), but also

the AwReqs of Table 3.1, are represented as UML classes; (ii) run-time instances of re-

quirements, such as various meeting scheduling requests, are represented as instances of

these classes.

Representing system requirements (previously modeled in a goal model) in a UML class

diagram is a necessary step for the specification of AwReqs in any OCL-based language,

as OCL constraints refer to classes and their instances, attributes and methods. Even

though other UML diagrams (such as the sequence diagram or the activity diagram)

might seem like a better choice for the representation of requirements and AwReqs, having

instances of classes that represent requirements at runtime is mandatory for the OCL-

based infrastructure that we have chosen.

Hence, we present in Figure 3.2 a model that represents classes that should be extended

to specify requirements. This model is the result of an analysis of the core ontology

for requirements engineering proposed by Jureta et al. [2008] (cf. Section 2.1.3, p. 32),

reported in more detail in [Souza, 2010].
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Figure 3.2: Class model for requirements in GORE-based specifications.

Each requirement of the adaptive system should be represented by a UML class, ex-

tending the appropriate class from this diagram. Table 3.2 lists the requirements for the

Meeting Scheduler (depicted in Figure 2.6, p. 37) and their respective UML class name

and super-class from Figure 3.2. To make their identification easier, we use mnemonics

for the name of the classes, prepending them with the initial of the extended super-class.

Although not shown in the table, the AwReqs of Table 3.1 are also represented in UML,

using their IDs as class name and extending the AwReq class.

Note that the diagram of Figure 3.2 does not represent a meta-model for requirements

due to the fact that the classes that represent the system requirements are subclasses

of the classes in this diagram, not instances of them as it is the case with meta-models.

This inheritance is necessary in order for AwReq specifications to be able to refer to the

methods defined in these classes, which are inherited by the requirement classes.

Another important observation is that these classes are only an abstract representation

of the elements of the goal model, being part of the architecture of the monitoring frame-

work (that will be presented in Chapter 6) and not of the target system’s implementation

(i.e., the Meeting Scheduler itself). In other words, the actual requirements of the system

are not implemented by means of these classes.

Listing 3.1 shows the specification of the AwReqs of Table 3.1 using OCLTM . For

example, consider AR1, which refers to a task requirement. In the listing, AR1 is specified
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Table 3.2: Meeting scheduler requirements and their UML representations.

Requirement UML Class Name Super-class

Schedule meeting G SchedMeet Goal

Characterize meeting T CharactMeet Task

Collect timetables G CollectTime Goal

Call participants T CallPartic Task

Email participants T EmailPartic Task

Collect automatically G CollectAuto Goal

Participants use system calendar D ParticUseCal DomainAssumption

Collect from system calendar T CollectCal Task

Find a suitable room G FindRoom Goal

Use local room G UseLocal Goal

Find a local room G FindLocal Goal

Get room suggestions T GetSuggest Task

List available rooms T ListAvail Task

Local rooms available D LocalAvail DomainAssumption

Book room G BookRoom Goal

Use available room T UseAvail Task

Cancel less important meeting T CancelLess Task

Call partner institutions T CallPartner Task

Call hotels and convention centers T CallHotel Task

Choose schedule G ChooseSched Goal

Schedule manually T SchedManual Task

Let system schedule T SchedSystem Task

Manage meeting G ManageMeet Goal

Cancel meeting T CancelMeet Task

Confirm occurrence T ConfirmOcc Task

Low cost S LowCost Softgoal

Meetings cost less than e100 Q CostLess100 QualityConstraint

Good participation S GoodPartic Softgoal

A least 90% of participants attend Q Min90pctPart QualityConstraint

Fast scheduling S FastSched Softgoal

Schedules produced in less than a day Q Sched1Day QualityConstraint
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as an OCL invariant on the class T CharactMeet, which, according to Table 3.2, is a

subclass of Task (from Figure 3.2) and represents requirement Characterize meeting. The

invariant dictates that instances of T CharactMeet should never be in the Failed state,

i.e., Characterize meeting should never fail.

Listing 3.1: The AwReqs of the Meeting Scheduler, specified in OCLTM .� �
1 package meetingscheduler
2
3 -- AwReq AR1: task ‘Characterize meeting ’ should never fail.
4 context T_CharactMeet
5 inv AR1: never(self.oclInState(Failed))
6
7 -- AwReq AR2: QC ‘Meetings cost less than Euro 100’ should be satisfied 75% of

the time.
8 context Q_CostLess100
9 def: all : Set = Q_CostLess100.allInstances ()

10 def: success : Set = all ->select(x | x.oclInState(Succeeded))
11 inv AR2: always(success ->size() / all ->size() >= 0.75)
12
13 -- AwReq AR3: the success rate of goal ‘Collect timetables ’ should not decrease

two weeks in a row.
14 context G_CollectTime
15 def: all : Set = G_CollectTime.allInstances ()
16 def: w1 : Set = all ->select(x | new Date().difference(x.time , DAYS) <= 7)
17 def: w2 : Set = all ->select(x | (new Date().difference(x.time , DAYS) > 7) and

(new Date().difference(x.time , DAYS) <= 14))
18 def: w3 : Set = all ->select(x | (new Date().difference(x.time , DAYS) > 14) and

(new Date().difference(x.time , DAYS) <= 21))
19 def: success1 : Set = w1 ->select(x | x.oclInState(Succeeded))
20 def: success2 : Set = w2 ->select(x | x.oclInState(Succeeded))
21 def: success3 : Set = w3 ->select(x | x.oclInState(Succeeded))
22 def: rate1 : Real = success1 ->size() / w1 ->size()
23 def: rate2 : Real = success2 ->size() / w2 ->size()
24 def: rate3 : Real = success3 ->size() / w3 ->size()
25 inv AR3: never(( rate1 < rate2) and (rate2 < rate3))
26
27 -- AwReq AR4: goal ‘Find a suitable room ’ should never fail.
28 context G_FindRoom
29 inv AR4: never(self.oclInState(Failed))
30
31 -- AwReq AR5: goal ‘Choose schedule ’ should never fail.
32 context G_ChooseSched
33 inv AR5: never(self.oclInState(Failed))
34
35 -- AwReq AR6: QC ‘At least 90% of participants attend ’ should have a 75% success

rate per month.
36 context Q_Min90pctPart
37 def: all : Set = Q_Min90pctPart.allInstances ()
38 def: month : Set = all ->select(x | new Date().difference(x.time , MONTHS) == 1)
39 def: monthSuccess : Set = month ->select(x | x.oclInState(Succeeded))
40 inv AR6: always(monthSuccess ->size() / month ->size() >= 0.75)
41
42 -- AwReq AR7: DA ‘Participants use the system calendar ’ should always be true.
43 context D_ParticUseCal
44 inv AR7: never(self.oclInState(Failed))
45
46 -- AwReq AR8: DA ‘Local rooms available ’ should be false no more than once a

week.
47 context D_LocalAvail
48 def: all : Set = D_LocalAvail.allInstances ()
49 def: week : Set = all ->select(x | new Date().difference(x.time , DAYS) <= 7)
50 def: weekFail : Set = week ->select(x | x.oclInState(Failed))
51 inv AR8: always(weekFail.size() <= 1)
52
53 -- AwReq AR9: task ‘Let system schedule ’ should successfully execute at least

ten times as much as task ‘Schedule manually ’.
54 context T_SchedSystem
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55 def: allS : Set = T_SchedSystem.allInstances ()
56 def: allM : Set = T_SchedManual.allInstances ()
57 def: successS : Set = allS ->select(x | x.oclInState(Success))
58 def: successM : Set = allM ->select(x | x.oclInState(Success))
59 inv AR9: always(successS.size() >= 10 * successM.size())
60
61 -- AwReq AR10: QC ‘Schedules produced in less than a day ’ should have 90\%

success rate over the past ten days , checking daily.
62 context Q_Sched1Day
63 def: all : Set = Q_Sched1Day.allInstances ()
64 def: past10d : Set = all ->select(x | new Date().difference(x.time , DAYS) <=

10)
65 def: success10d : Set = past10d ->select(x | x.oclInState(Succeeded))
66 -- @daily
67 inv AR10: always(success10d ->size() / past10d ->size() >= 0.90)
68
69 -- AwReq AR11: goal ‘Manage meeting ’ should be satisfied within one hour of the

time set by the meeting ’s schedule.
70 context G_ManageMeet
71 def: meet : Meeting = self.argument (" meeting ")
72 inv AR11: eventually(self.oclInState(Succeeded) and (self.time.difference(meet

.startTime , MINUTES) <= 60))
73
74 -- AwReq AR12: task ‘Confirm occurrence ’ should be decided within five minutes.
75 context T_ConfirmOcc
76 inv AR12: eventually(not self.oclInState(Undecided) and (self.time.difference(

self.startTime , MINUTES) <= 5))
77
78 -- AwReq AR13: AwReq ‘AR7 ’ should succeed 80% of the times.
79 context AR7
80 def: all : Set = AR7.allInstances ()
81 def: success : Set = all ->select(x | x.oclInState(Succeeded))
82 inv AR13: always(success ->size() / all ->size() >= 0.8)
83
84 -- AwReq AR14: the monthly success rate of AwReq ‘AR6 ’ should not decrease twice

in a row.
85 context AR14
86 def: all : Set = AR6.allInstances ()
87 def: m1 : Set = all ->select(x | new Date().difference(x.time , MONTHS) == 1)
88 def: m2 : Set = all ->select(x | new Date().difference(x.time , MONTHS) == 2)
89 def: m3 : Set = all ->select(x | new Date().difference(x.time , MONTHS) == 3)
90 def: success1 : Set = m1 ->select(x | x.oclInState(Succeeded))
91 def: success2 : Set = m2 ->select(x | x.oclInState(Succeeded))
92 def: success3 : Set = m3 ->select(x | x.oclInState(Succeeded))
93 def: rate1 : Real = success1 ->size() / m1 ->size()
94 def: rate2 : Real = success2 ->size() / m2 ->size()
95 def: rate3 : Real = success3 ->size() / m3 ->size()
96 inv AR14: never(( rate1 > rate2) and (rate2 > rate3))� �

Aggregate AwReqs place constraints over a collection of instances. In AR2, for exam-

ple, all instances of Q CostLess100 are retrieved in a set named all, then we use the

select() operation to separate the subset of the instances that succeeded and, finally,

we compare the sizes of these two sets in order to assert that 75% of the instances are

successful at all times (always).

In some aggregate AwReqs, instances have to be aggregated in a specific period of

time. Since OCL does not provide a type and operations for dates, we follow the syntax

exemplified by Robinson [2008] in the paper in which he proposed OCLTM . This is

illustrated by AR6, which uses the select() operation to obtain the subset of all instances

of Q Min90pctPart whose time attribute is exactly one month different than the current

date (provided by new Date()), thus aggregating instances from last month. When the
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verification frequency of an AwReq is specified, we add an CRON4-style annotation as

a comment before the invariant. For example, AR10 ’s invariant was annotated with

@daily, specifying the AwReq should be checked every 24 hours.

Trend AwReqs are similar, but a bit more complicated as we must separate the require-

ments instances into different time periods. For AR3, the select() operation was used

to create sets with the instances of G CollectTime for the past three weeks to compare

the rate of success over time.

Delta AwReqs specify invariants over single instances of the requirements. AR11 sin-

gles out the instance of the Meeting domain class that is related to a specific G ManageMeet

instance and its invariant states that the instance that represents the goal should be even-

tually satisfied and, moreover, that should happen within one hour of the meeting’s start

time. As stated before, our framework does not yet support integration with domain

models and, for this reason, we do not prescribe any specific syntax for them.

Finally, AR12 shows how to specify the example in which we do not talk specifically

about success or failure of a requirement, but its change of state: eventually instances

of T ConfirmOcc should not be in the Undecided state and the difference between their

start and end times should be at most five minutes.

3.1.3 Patterns and graphical representation

It can be seen from the illustrations in the previous section that specifying AwReqs is not

a trivial task. For this reason we propose AwReq patterns to facilitate their elicitation

and analysis and a graphical representation that allows us to include them in the goal

model, improving communication among system analysts and designers.

Many AwReqs have similar structure, such as “something must succeed so many

times”. By defining patterns for AwReqs we create a common vocabulary for analysts.

Furthermore, patterns are used in the graphical representation of AwReqs in the goal

model and code generation tools could be provided to automatically write the AwReq

in the language of choice based on the pattern. In Chapter 6, we provide OCLTM id-

ioms for this kind of code generation. We expect that the majority (if not all) AwReqs

fall into these patterns, so their use can relieve requirements engineers from most of the

specification effort.

Table 3.3 contains a list of patterns that we have identified so far in our research on

this topic. This list is by no means exhaustive and each organization is free to define

their own patterns (with their own names and meanings). Furthermore, it is important

to note that when requirements engineers create patterns, they are responsible for their

4See http://en.wikipedia.org/wiki/CRON_expression.

http://en.wikipedia.org/wiki/CRON_expression
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Table 3.3: A non-exhaustive list of AwReq patterns.

Pattern Meaning

NeverFail(R) Requirement R should never fail. Analogous patterns

AlwaysSucceed, NeverCanceled, etc.

SuccessRate(R, r, t) R should have at least success rate r over time t. Analogous

patterns FailureRate, CancelationRate, etc.

SuccessRateExecutions

(R, r, n)

R should have at least success rate r over the latest n

executions. Analogous patterns FailureRateExecutions,

CancelationRateExecutions, etc.

MaxFailure(R, x, t) R should fail at most x times over time t. Analogous patterns

MinFailure, MinSuccess, etc.

ComparableSuccess(R,

S, x, t)

R should succeed at least x times more than S over

time t. Analogous patterns ComparableFailure,

ComparableCancelations, etc.

TrendDecrease(R, t, x) The success rate of R should not decrease x times consecutively

considering periods of time specified by t. Analogous pattern

TrendIncrease.

ComparableDelta(R, S,

p, x)

The difference between the value of attribute p in requirements

R and S should not be greater than x.

StateDelta(R, s1, s2,

t)

R should transition from state s1 to state s2 in less time than

what is specified in t.

P1 and / or P2; not P Conjunction, disjunction and negation of patterns.

consistency and correctness and, unfortunately, our approach does not provide any tool

to help in this task.

Given these patterns, the AwReqs of the Meeting Scheduler shown back in Table 3.1

can now be more concisely documented and communicated, as shown in the right-most

column of Table 3.4. For values representing periods of time, abbreviated amounts of

time like in OCLTM timeouts [Robinson, 2008] were used.

Given that AwReqs can be shortened by a pattern we propose to represent them

graphically in the goal model along with other elements such as goals, tasks, softgoals,

etc. When producing requirement specification documents, analysts can choose between

using this graphical representation or documenting AwReqs in tables, such as Table 3.4.

On one side, the graphical representation might overload the model, on the other side,

they provide everything in one place, which is more practical. Figure 3.3 shows the
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Table 3.4: Example AwReqs described in natural language and represented with AwReq patterns.

Id Description Pattern

AR1 Task Characterize meeting should never

fail.

NeverFail(T CharactMeet)

AR2 Quality constraint Meetings cost less than

e100 should be satisfied 75% of the time.

SuccessRate(Q CostLess100, 75%)

AR3 The success rate of goal Collect timetables

should not decrease two weeks in a row.

not TrendDecrease(G CollectTime,

7d, 2)

AR4 Goal Find a suitable room should never fail. NeverFail(G FindRoom)

AR5 Goal Choose schedule should never fail. NeverFail(G ChooseSched)

AR6 Quality constraint At least 90% of partici-

pants attend should have a 75% success rate

per month.

SuccessRate(Q Min90pctPart, 90%,

1M)

AR7 Domain assumption Participants use the

system calendar should always be true.

NeverFail(D ParticUseCal)

AR8 Domain assumption Local rooms available

should be false no more than once a week.

MaxFailure(D LocalAvail, 1, 7d)

AR9 Task Let system schedule should success-

fully execute at least ten times as much as

task Schedule manually.

ComparableSuccess(T SchedSystem,

T SchedManual, 10)

AR10 Quality constraint Schedules produced in

less than a day should have 90% success

rate over the past ten days, checking daily.

@daily SuccessRate(Q Sched1Day,

90%, 10d)

AR11 Goal Manage meeting should be satisfied

within one hour of the time set by the meet-

ing’s schedule.

–

AR12 Task Confirm occurrence should be decided

within five minutes.

StateDelta(T ConfirmOcc,

Undecided, *, 5m)

AR13 AwReq AR7 should succeed 80% of the

times.

SuccessRate(AR7, 80%)

AR14 The monthly success rate of AwReq AR6

should not decrease twice in a row.

not TrendDecrease(AR6, 30d, 2)
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Meeting Scheduler’s goal model with added AwReqs.

AwReqs are represented by thick circles with arrows pointing to the target to which

they refer and the AwReq pattern besides it. The first parameter of the pattern is omit-

ted, as the AwReq is pointing to it. In case an AwReq does not fit a pattern (e.g., AR11 ),

the analyst should write its identifier and document its specification elsewhere (e.g., List-

ing 3.1). In Figure 3.3, the AwReqs ’ identifiers are provided not only for AR11, but for

all AwReqs in order to to facilitate referencing the model.

An important remark here is that, in this thesis, we have not applied any methodology

for the construction of visual notations (e.g., [Moody, 2009]). Instead, we used simple

analogies to decide on basic geometric figures that could graphically represent the newly

proposed concepts. In the case of AwReqs, the circle was chosen for it has a similar

format to an eye, and AwReqs define the requirements that should be monitored — in

other words, “what to look for” — at runtime.

3.2 Evolution Requirements

It is often the case that the requirements elicited from stakeholders for a system-to-be are

not carved in stone, never to change during the system’s lifetime. Rather, stakeholders

will often hedge with statements such as “If requirement R fails more than N times in a

week, relax it to R-”, or “If we find that we are fulfilling our target (requirement S ), let’s

strengthen S by replacing it with S+”, or even “Requirement Q no longer applies after

January 1st, 2013”.

As explained back in Section 1.2.4 (p. 10), these are all requirements in the sense that

they come from stakeholders and describe desirable properties of the system-to-be. They

are special requirements, however, in the sense that their operationalization consists of

changing other requirements, as suggested by the examples above.

A requirements model defines a space of system behaviors, where each behavior fulfills

system objectives. When reconfiguration is performed, like in some of the approaches

summarized in Section 2.2.3 (cf. Reconfiguration approaches, in p. 55), a new behavior

is selected from this space of alternatives. In this chapter, however, we concentrate on

requirements that change that space, thereby defining a changed set of system behav-

iors (our proposals for adaptation through reconfiguration are presented in the following

chapter). Such evolutions allow the system to utilize new alternative behaviors.

We call such requirements Evolution Requirements (a.k.a. EvoReqs) since they pre-

scribe desired evolutions for other requirements. At runtime, EvoReqs have an effect on

the running components of the system with the purpose of meeting stakeholder directives.

EvoReqs allow us to not only specify what other requirements need to change, but also
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when other strategies — such as “retry after some time” or “relax the requirement” —

should be used.

Later, in Chapter 6, we will detail a framework that uses Event-Condition-Action

(ECA) rules to operationalize this kind of requirement. In this chapter, we will focus on

how to model EvoReqs in terms of the three ECA components: the event component is,

as before, an AwReq failure; the condition is elicited from stakeholders in terms of when

to use one or other particular strategy such as, for instance, “this is applicable only once”,

“apply this only between midnight and 6 AM”, and so forth.

Finally, the action component of the ECA rule consists of a sequence of primitive op-

erations on a goal model (that evolve it according to stakeholder wishes). Each operation

effects a primitive change on the model, e.g., removes/adds a goal at the class or instance

level, changes the state of a goal instance, or undoes the effects of all executed actions for

an aborted execution. Furthermore, such operations can be combined using patterns in

order to compose macro-level evolution strategies, such as Retry and Relax.

In the following sub-sections, we characterize EvoReqs and present some patterns that

can facilitate their elicitation and representation. Moreover, we show how reconfiguration

approaches could be integrated in our models by having primitive operations that execute

reconfiguration algorithms and apply the new configuration in the target system. Later,

in Chapter 4, we integrate our own reconfiguration algorithms and provide the complete

specification for the adaptation capabilities of the Meeting Scheduler, in order to illustrate

these new modeling concepts.

3.2.1 Characterization

Evolution requirements specify changes to other requirements when certain conditions

apply. For instance, suppose the stakeholders provide the following requirements:

• If the meeting organizer fails to Characterize meeting (AR1 ), she should retry after

a few seconds;

• If there is a negative trend on the success rate of Collect timetables for two consec-

utive weeks (AR3 ), we can tolerate this at most once per trimester, relaxing the

constraint to three weeks in a row;

• If local rooms are often unavailable (AR8), the meeting scheduler software cannot

autonomously create new rooms (i.e., increase RfM). This task should be delegated

to the management;

• If we realize that the domain assumption Participants use the system calendar is

not true (AR7), replace it with a task that will enforce the usage of the system
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calendar.

We propose to represent these requirements by means of sequence of operations over

goal model elements, in a way that can be exploited at runtime by an adaptation frame-

work (cf. Section 6) which, acting like a controller in a control system, sends adaptation

instructions to the target system. We call them Evolution Requirements (EvoReqs).

EvoReqs and AwReqs (cf. Section 3.1) complement one another, allowing analysts to

specify the requirements for a feedback loop that operationalizes adaptation at runtime:

AwReqs indicate the situations that require adaptation and EvoReqs prescribe what to

do in these situations. It is important to note, however, that EvoReqs are not the only

way to adapt to AwReq failures. Analogously, AwReq failures are not the only event that

can trigger EvoReqs (the framework proposed in this thesis could be adapted to respond

to, e.g., scheduled events).

EvoReqs, thus, are specified as a sequence of primitive operations which have an effect

on the target system (TS) and/or on the adaptation framework (AF) itself, effectively

telling them how to change (or, using a more evolutionary term, “mutate”) the require-

ments model in order to adapt. The existing operations and their respective effects are

shown in Table 3.5 and could also be extended if necessary.

As can be seen in the table, adaptation instructions have arguments which can refer to,

among other things, system actors (A), requirements classes (upper-case R) or instances

(lower-case r) and system parameters (p) and their values (v). Actors can be provided by

any diagram that models external entities that interact with the system, e.g., i? Strategic

Dependency models [Yu et al., 2011].

Requirements classes/instances are provided by the specification of AwReqs : as we

have seen in Section 3.1, each element of the goal model is represented as a UML class,

extending the super-classes shown in Figure 3.2 (p. 71). Run-time instances of these

elements (such as the various meetings being scheduled) are then represented as objects

that instantiate these classes.

Finally, parameters are elicited during system identification, as will be explained later,

in chapters 4 and 5. Instructions apply-config and find-config also refer to configura-

tions (C) and algorithms (algo) — we will come back to these concepts in Section 3.2.3.

Listing 3.2 shows the specification of one of the examples presented earlier in this

section: retry a requirement when it fails (in the example, the qualitative value few has

been replaced by a quantitative value of 5 seconds). Here, r represents an instance of

task Characterize meeting, referred to by the instance of AwReq AR1 that failed. The

framework then creates another instance of the task, tells the target system to copy the

data from the execution session of the failed task to the one of the new task, to terminate

the failing components and rollback any partial changes made by them. After 5s, the
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Table 3.5: Evolution requirements operations and their effect.

Instruction Effect

abort(ar) TS should “fail gracefully”, which could range from just showing an error

message to shutting the entire system down, depending on the system

and the AwReq ar that failed.

apply-config(C, L) TS should change from its current configuration to the specified config-

uration C. L indicates if the change should occur at the class level (for

future executions) and/or at the instance level (current execution).

change-param([R|r], p,

v)

TS should change the parameter p to the value v for either all future

executions of requirement R or the current requirement instance r.

copy-data(r, r’) TS should copy the data associated with performative requirement in-

stance r (e.g., data provided by the user) to instance r’.

disable(R), suspend(r) TS should stop trying to satisfy requirement instance r in the current

execution, or requirement R from now on. If r (or R) is an AwReq, AF

should stop evaluating it.

enable(R), resume(r) TS should resume trying to satisfy requirement instance r in the current

execution, or requirement R from now on. If r (or R) is an AwReq, AF

should resume evaluating it.

find-config(algo, ar) AF should execute algorithm algo to find a new configuration for the

target system with the purpose of reconfiguring it. Other than the AwReq

instance ar that failed, AF should provide to this algorithm the system’s

current configuration and the system’s requirements model.

initiate(r) TS should initialize the components related to r and start pursuing the

satisfaction of this requirement instance. If r is an AwReq instance, AF

should immediately evaluate it.

new-instance(R) AF should create a new instance of requirement R.

rollback(r) TS should undo any partial changes that might have been effected while

the satisfaction of performative requirement instance r was being pur-

sued and which would leave the system in an inconsistent state, as in,

e.g., Sagas [Garcia-Molina and Salem, 1987].

send-warning(A, ar) TS should warn actor A (human or system) about the failure of AwReq

instance ar

terminate(r) TS should terminate any component related to r and stop pursuing the

satisfaction of this requirement instance. If r is an AwReq instance, AF

should no longer consider its evaluation.

wait(t) AF should wait for the amount of time t before continuing with the next

operation. TS is also informed of the wait in case changes in the user

interface are in order during the waiting time.

wait-for-fix(ar) TS should wait for a certain condition that indicates that the problem

causing the failure of AwReq ar has been fixed.
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framework finally instructs the target system to initiate the new task, thus accomplishing

“retry after a few seconds”.

Listing 3.2: EvoReq “Retry Characterize meeting after 5 seconds”� �
1 r’ = new -instance(T_CaractMeet);
2 copy -data(r, r’);
3 terminate(r);
4 rollback(r);
5 wait(5s);
6 initiate(r’);� �

Although evolution operations are generic, their effects on the target system are

application-specific. For example, instructing the system to try a requirement again

could mean, depending on the system and the requirement, retrying some operations

autonomously or showing a message to the user explaining that she should repeat the ac-

tions she has just performed. Therefore, in order to be able to carry out these operations,

the target system is supposed to implement an Evolution API that receives all operations

of Table 3.5, for each requirement in the system’s model. Obviously, as with any other

requirement in a specification, each operation–requirement pair can be implemented on

an as-needed basis.

Revisiting the previous example, copy-data should tell the Meeting Scheduler to copy

the data related to the task that failed (e.g., information on the meeting that has already

been filled in the system) to a new user session, terminate closes the screen that was

being used by the meeting organizer to characterize the meeting, rollback deletes any

partial changes that might have been saved, wait shows a message asking the user to

wait for 5s and, finally, initiate should open a new screen associated with the new user

session so the meeting organizer can try again. All this behavior is specific to the Meeting

Scheduler and the task at hand and the way it will be implemented depends highly on

the technologies chosen during its architectural design.

3.2.2 Adaptation Strategies as Patterns

The operations of Table 3.5 allow us to describe different adaptation strategies in re-

sponse to AwReqs failures using EvoReqs. However, many EvoReqs might have similar

structures, such as “wait t seconds and try again, with or without copying data”. There-

fore, to facilitate their elicitation and modeling, we propose the definition of patterns

that represent common adaptation strategies. Table 3.6 shows the specification for some

EvoReq patterns.

A strategy is defined by a name, a list of arguments that it accepts (with optional

default values) and an algorithm (composed of JavaTM-style pseudo-code and evolution

operations) to be carried out when the strategy is selected. Strategies are usually as-

sociated to failures of AwReqs and, therefore, we can also refer to the instance of the
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Table 3.6: Some EvoReq patterns and their specifications based on EvoReq operations.

Abort() {
abort(awreq);

}

Delegate(a : Actor) {
send -warning(a, awreq);
wait -for -fix(awreq);

}

RelaxDisableChild(r : Requirement = awreq.target; level : Level = INSTANCE;
child : Requirement) {

if (( level == CLASS) || (level == BOTH)) disable(child.class);
if (( level == INSTANCE) || (level == BOTH)) {

suspend(r);
terminate(child);
if (child.class = PerformativeRequirement) rollback(child);
suspend(child);
resume(r);

}
}

Replace(r : Requirement = awreq.target; copy : boolean = true; level : Level =
INSTANCE; r’ : Requirement) {

R = r.class;
R’ = r’.class;
if ((level == CLASS) || (level == BOTH)) {

disable(R);
enable(R’);

}
if ((level == INSTANCE) || (level == BOTH)) {

if (R = PerformativeRequirement) && (R’ = PerformativeRequirement)
&& (copy) copy -data(r, r’);

terminate(r);
if (R = PerformativeRequirement) rollback(r);
suspend(r);
initiate(r’);

}
}

Retry(copy: boolean = true; time: long) {
r = awreq.target; R = r.class;
r’ = new -instance(R);
if (copy) copy -data(r, r’);
terminate(r); rollback(r);
wait(time);
initiate(r’);

}

StrengthenEnableChild(r : Requirement = awreq.target; level : Level = INSTANCE;
child : Requirement) {

if ((level == CLASS) || (level == BOTH)) enable(child.class);
if ((level == INSTANCE) || (level == BOTH)) {

suspend(r);
resume(child);
initiate(child);
resume(r);

}
}

Warning(a : Actor) {
send -warning(a, awreq);

}
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Figure 3.4: Graphical representation of an adaptation strategy in response to an AwReq failure.

AwReq that failed using the keyword awreq in the pseudo-code. Given the Retry strat-

egy in Table 3.6, and assuming that time is represented in milliseconds, the example from

Section 3.2.1 could be more concisely expressed as Retry(5000).

It is important to note, however, that the list in Table 3.6 is not intended to be exhaus-

tive and new strategies can be created as needed. For instance, one could take inspiration

from the design patterns for adaptation cataloged by Ramirez and Cheng [2010]. After

strategies have been elicited and represented as patterns, they can be associated with

AwReqs and added to the requirements specification.

The use of patterns also allow us to add adaptation strategies to the goal model, as

shown in Figure 3.4. This portion of the Meeting Scheduler’s model shows the Retry(5000)

pattern associated with failures of AwReq AR1. The analogy behind the choice of the

cross as graphical representation comes from the red cross symbol usually associated with

hospitals and emergency rooms, which can “fix ill people” the same way as adaptation

strategies may “fix the system”.

3.2.3 Reconfiguration as an adaptation strategy

As introduced back in Section 1.2.4 (p. 10), our approach proposes two modes of adap-

tation: evolution and reconfiguration. EvoReqs correspond to the former, whereas the

latter could be provided by any of the Reconfiguration approaches cited in page 55. Later,

in Chapter 4, we propose our own reconfiguration approach.

In any case, the decision to use reconfiguration (and which reconfiguration algorithm

to use) should belong to the stakeholders and domain experts. In other words, “If require-

ment R fails, reconfigure the system (using this or that algorithm) in order to improve its

success rate” is also a stakeholder requirement. Although not an evolution requirement,

as reconfiguration does not change the requirements themselves, we would like to provide

a unified framework to represent the requirements for system adaptation.

Therefore, in order to unify both specifications, we consider reconfiguration a type of

adaptation strategy. EvoReqs can, thus, be used to specify that stakeholders would like
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to use reconfiguration, in one of two ways:

1. If stakeholders wish to apply a specific reconfiguration for a given failure, instruc-

tions like change-param, enable/disable and initiate/terminate can be used

to describe the precise changes in requirements at class and/or instance level;

2. Instead, if there is no specific way to reconfigure, a reconfiguration algorithm that is

able to compare the different alternatives should be executed using the find-config

instruction, after which apply-config is called to inform the target system about

the new configuration.

Listing 3.3 shows the pattern that describes the adaptation strategy of option 2. The

strategy receives as arguments an algorithm to find the new configuration, the AwReq that

failed and thus triggered the strategy and the level at which the changes should be applied:

class (future executions), instance (current execution) or both. The adaptation framework

executes the given reconfiguration algorithm, which returns a new system configuration.

Then, this new configuration is applied to the target system at the specified level.

Listing 3.3: Reconfiguration as an adaptation strategy.� �
1 Reconfigure(algo: FindConfigAlgorithm , ar: AwReq , level: Level = INSTANCE) {
2 C’ = find -config(algo , ar)
3 apply -config(C’, level)
4 }� �

One important thing to note is that different reconfiguration algorithms may require

different information from the model, which should be provided accordingly. In the next

chapter, we discuss the kind of information required by our reconfiguration algorithms

and later in Chapter 5 we propose a systematic process to elicit such information.

After unifying reconfiguration and evolution into a single way of specifying adaptation

strategies, we can provide the final specification for the adaptation requirements of the

Meeting Scheduler scenario. The adaptation strategies associated with each AwReq failure

are shown in Table 3.7. Details pertaining our reconfiguration algorithms will be provided

at the end of Chapter 4.

Note that, in this table, adaptation strategies are enumerated to indicate the order

in which they should be applied. To complete this specification, one should associate

also applicability conditions to each strategy, but this will be explained later, in Chap-

ter 6. Moreover, we have conducted experiments with a larger system than the Meeting

Scheduler, the results of which will be presented in Chapter 7.
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Table 3.7: Adaptation strategies elicited for the Meeting Scheduler.

AwReq AwReq pattern Adaptation strategies

AR1 NeverFail(T CharactMeet) 1. Retry(5000)

2. Reconfigure()

AR2 SuccessRate(Q CostLess100, 75%) 1. Reconfigure()

AR3 not TrendDecrease(G CollectTime,

7d, 2)

1. Replace(AR3, CLASS, AR3 3weeks)

2. Warning(IT Staff)

3. Reconfigure()

AR4 NeverFail(G FindRoom) 1. Reconfigure()

AR5 NeverFail(G ChooseSched) 1. Reconfigure()

AR6 SuccessRate(Q Min90pctPart, 90%,

1M)

1. Reconfigure()

AR7 NeverFail(D ParticUseCal) 1. Reconfigure()

2. Replace(CLASS,

T EnforceUseOfCalendar)

AR8 MaxFailure(D LocalAvail, 1, 7d) 1. Delegate(Management)

2. Reconfigure()

AR9 ComparableSuccess(

T SchedSystem, T SchedManual,

10)

1. Reconfigure()

AR10 @daily SuccessRate(Q Sched1Day,

90%, 10d)

1. Reconfigure()

AR11 — 1. Warning(Secretary)

AR12 StateDelta(T ConfirmOcc,

Undecided, *, 5m)

1. Warning(Secretary)

AR13 SuccessRate(AR7, 80%) 1. Reconfigure()

AR14 not TrendDecrease(AR6, 30d, 2) 1. Reconfigure()
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3.3 Chapter summary

In this chapter, we have presented the first contribution of this thesis: new classes of

requirements — Awareness Requirements (AwReqs, § 3.1) and Evolution Requirements

(EvoReqs, § 3.2) — that represent, respectively, the requirements for the monitoring

and adaptation components of the feedback loop that operationalizes adaptation, thus

promoting this loop to a first-class citizen in requirement models.

More specifically, AwReqs are characterized as requirements that impose constraints on

the success or failures of other requirements, being divided in three categories: aggregate,

delta or trend AwReqs (§ 3.1.1). In our approach, they are specified using an extension

of the OCL language called OCLTM (OCL with Temporal Message logic), referring to

elements of the goal model represented as UML classes which extend superclasses from a

base model (§ 3.1.2). To make modeling easier, AwReqs can be represented as patterns

such as “never fail” or “x% success rate” and even added to the goal model using a

proposed graphical representation (§ 3.1.3).

In their turns, EvoReqs are characterized as requirements that prescribe desired evolu-

tions for other requirements, being represented by a sequence of basic evolution operations

over elements of the goal model, each of which representing a particular effect on the adap-

tation framework or the target system (§ 3.2.1). As with AwReqs, EvoReqs can also be

represented more concisely as patterns which are called adaptation strategies (§ 3.2.2).

One such strategy is reconfiguration: given a failure and a reconfiguration algorithm,

execute the algorithm to find a new system configuration in order to adapt (§ 3.2.3).

Later in this thesis, we propose a family of reconfiguration algorithms that can be used

in combination with this strategy.

The Meeting Scheduler, introduced in Chapter 2, was used throughout the chapter

to illustrate all the aforementioned new concepts. A goal model of this example system

with added AwReqs can be seen in Figure 3.3 (p. 79) and a partial specification of the

scheduler’s monitoring and adaptation requirements are listed in Table 3.7 (p. 87). This

table will be completed later, after our proposal for reconfiguration algorithms is properly

presented.



Chapter 4

Qualitative Adaptation Mechanisms

Adapt or perish, now as ever, is Nature’s inexorable imperative.

H. G. Wells

As the previous chapter has shown, AwReqs can be used to determine when require-

ments are not being satisfied (requirements divergence), much the same way a control

system calculates the control error (cf. Section 2.1.5, p. 39), i.e., the discrepancy between

the reference input (system requirements) and the measured output (indicators of require-

ments convergence, or simply indicators). The next step, then, is to determine the control

input based on this discrepancy, i.e., determine what could be done to adapt the target

system in order to ultimately satisfy the requirements.

In Control Theory (e.g., [Hellerstein et al., 2004; Doyle et al., 1992]), the first step

towards accomplishing this is an activity called System Identification, which is the process

of determining the equations that govern the dynamic behavior of a system. This activity

is concerned with: (a) the identification of system parameters that, when manipulated,

have an effect on the measured output; and (b) the understanding of the nature of this

effect. Afterwards, these equations can guide the choice of the best way to adapt to

different circumstances. For example, in a control system in which the room temperature

is the measured output, turning on the air conditioner lowers the temperature, whereas

using the furnace raises it. If the heating/cooling systems offer different levels of power,

there is also a relation between such power level and the rate in which the temperature

in the room changes.

White box models describe a system from first principles, e.g., a model for a physical

process that consists of Newton equations that describe the relations between parameters

and outputs. In most cases, however, such models are overly complicated or even im-

possible to obtain due to the complex nature of many systems and processes (natural or

artificial). A much more common approach is therefore to start from partial knowledge
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of the behavior of the system and its external influences (inputs), and try to determine

a mathematical relation between inputs and outputs without going into the details of

what is actually happening inside the system. Two types of models are built using this

approach:

• Gray box models : although the peculiarities of system internals are not entirely

known, a certain model based on both insight into the system and experimental

data is constructed. This model, however, comes with a number of free parame-

ters (control variables) which can be estimated using system identification. Thus,

parameter estimation is an important activity here;

• Black box models : no prior model is available here, so everything has to be con-

structed from scratch, through observation and experimentation. Most system iden-

tification algorithms are of this type.

Our proposal is to employ this control-theoretic framework for the design of adaptive

software systems, adopting a GORE perspective, which means to assume that a goal-based

requirements model is available for the system. At the requirements level, the system is

not yet implemented and its behavior is not completely known. With this incomplete

information, we are unable to fully identify how system configuration parameters affect

outputs. Thus, quantitative approaches cannot be applied.

Therefore, we base our approach on ideas from Qualitative Reasoning (cf. Section 2.1.7,

p. 45, also [Kuipers, 1989; Forbus, 2004]) and propose new modeling constructs that iden-

tify target indicators and system configuration parameters as well as qualitative relations

between these parameters and measured indicators. The proposed constructs are both

qualitative and flexible in the sense that they can accommodate multiple levels of precision

in specifications depending on available information.

According to our proposal, the output of system identification for a software system is

an extended and parametrized requirements model. Each assignment of parameter values

represents a different behavior (configuration) that the system might adapt to fulfill its

requirements. Some of the parameters — called variation points — come directly from

the model. Take, for instance, the requirements for the Meeting Scheduler with added

variability shown back in Figure 2.6 (p. 37). For this system to collect timetables from

from all participants when a meeting is scheduled, there is a choice of collecting these

directly from meeting participants (via telephone or email) or from a central repository

of timetables (the system calendar).

Additionally, system behaviors are also determined by a set of control variables that

influence system execution, its success rate, performance, or quality of service. For in-

stance, again in the Meeting Scheduler, the Collect timetables goal is influenced by a
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parameter From how Many (FhM) that determines from what percentage of the partic-

ipants we need to collect timetables before the goal is deemed to have been fulfilled. If

we need to collect from all, i.e., FhM = 100%, then the success rate for the goal may be

low and its completion time may be high, compared to a FhM = 80% setting.

In this chapter, we propose a language for modeling qualitative information on the

relation between system parameters and indicators. However, the process through which

these relations are elicited — i.e., System Identification — is covered later, in Chapter 5.

Below, Section 4.1 provides the means of representing system parameters and how they

affect the monitored indicators. Then, Section 4.2 complements this previous specification

with information that allows the feedback loop to perform qualitative adaptation through

system reconfiguration.

We continue to illustrate our modeling concepts with examples from the Meeting

Scheduler, building on the model presented back in Figure 3.3 (p. 79).

4.1 Indicator/parameter relations

As previously introduced, we propose a language to model qualitative relations between

configuration parameters and measured outputs of the system, in order to allow the sys-

tem to reconfigure itself at runtime. Before specifying these relations, however, we have

to identify the subjects of the relation: on one side, variation points and control vari-

ables (collectively called parameters), and on the other side, indicators (of requirements

convergence).

4.1.1 System parameters and indicators

According to Semmak et al. [2008], the concept of Variation points (VPs) comes from

the field of feature modeling [Griss et al., 1998]. In GORE-based specifications, they

are represented as OR-refinements, which might already be present in the goal model if

variability was a concern when the system’s requirements were elicited (cf. Section 2.1.4,

p. 36).

Therefore, our proposal simply adds labels to VPs in the goal model, in order to refer to

them when modeling qualitative relations, as we will see later in Section 4.1.3. Figure 4.1

shows five VPs identified in the Meeting Scheduler, labeled VP1 –VP5. Note that not all

OR-refinements are necessarily variation points: the refinement of goal Manage meeting

just shows two possible outcomes for a scheduled meeting: it is either canceled by the

organizer or confirmed by a secretary.

Moreover, we propose Control Variables (CVs), which represent another powerful

mechanism for system reconfiguration. CVs are part of the system input and can be
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Figure 4.2: Using a control variable as an abstraction over families of subgraphs.

applied to goals, tasks and domain assumptions to represent abstractions over goal/do-

main model fragments. In particular, CVs are derived from families of related, but slightly

different goal/task or domain assumption alternatives, as in Figure 4.2, where the goals

Collect timetables from 10% of participants, Collect timetables from 20% of participants,

etc. are shown as alternative ways to achieve the parent Collect timetables goal.

Here, we identify variations that differ in some value (usually, but not necessarily nu-

meric) and abstract that value as a parameter to be attached to the appropriate goal

model element as a CV (e.g., the FhM , From how Many variable in Figure 4.2). Fig-

ure 4.1 shows more examples of CVs, such as: RF (Required Fields when characterizing

a meeting), RfM (number of Rooms for Meeting available — note that this CV applies

to a domain assumption), etc.

As can be seen in both figures, a control variable is represented by a black lozenge (a

diamond), attached to the goal model element to which it relates. For instance, MCA

is attached to task Let system schedule (Figure 4.1) because it represents the Maximum

number of scheduling Conflicts Allowed when the system looks for a suitable date/time

to schedule the meeting. The analogy behind the choice of the diamond as graphical

representation comes from the JavaTM programming language, in which angle brackets

are used to delimit the parameter for a generic type. When put together — <> — they

are called the “diamond operator”.1

The benefits of having CVs include the ability to represent large number of model

variations in a compact way as well as the ability to concisely analyze how changes in

CV values affect the system’s success rate and/or quality of service when, e.g., scheduling

meetings. As any parameter in software design, a CV needs to be taken into consideration

(i.e., propagated) when refining the goal model element that it applies to and later when

designing and implementing the system. In our approach, we are interested in analyzing

1See http://docs.oracle.com/javase/tutorial/java/generics/gentypes.html.

http://docs.oracle.com/javase/tutorial/java/generics/gentypes.html
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the effect of values of CVs on system output and thus omit the details of CV refinement

and implementation.

Finally, indicators are essential to control systems as these are monitored system

output values that feedback loops need to compare to the output targets in order to

calculate the control error and to determine how the system’s control input needs to be

adjusted. Indicators are similar to gauge variables, proposed by van Lamsweerde [2009],

and need to be measurable quantities.

In goal models, quality constraints as well as the success rates for hard goals and

tasks can be used as indicators. Since the number of potential indicators is large, we

need to select as indicators the important values that the adaptive system should strive

to achieve. Therefore, we propose to use Awareness Requirements, introduced back in

Section 3.1 (p. 64), as the set of system indicators that should be monitored.

Given the above definitions for system parameters and indicators and taking the Find

local room goal of the Meeting Scheduler as an example, we would like to model infor-

mation such as: “upon increasing the value of RfM , the success rate of Find a suitable

room (referred to by AwReq AR4 ) also increases” and “at VP2, when choosing Call hotels

and convention centers over Call partner institutions, your cost will increase (i.e., AwReq

AR2 might fail)”. This kind of information is very important for a feedback controller

in its task of deciding how to adapt the system to fulfill its requirements. The following

sub-sections explain how to represent this information in the requirements specification.

4.1.2 Relations concerning numeric parameters

Numeric parameters can assume any integer or real value at runtime, but can have its

range constrained by the problem domain. Three of the five control variables of the

Meeting Scheduler, shown in Figure 4.1, are numeric, namely:

• FhM (attached to goal Collect timetables) indicates From how Many people the

scheduler should collect timetables before this goal is considered satisfied. FhM

accepts integer values in the range [0, 100], representing a percentage value;

• RfM (attached to domain assumption Local rooms available) indicates the number

of Rooms for Meetings available in the organization. Obviously, RfM is also integer

and accepts only positive values;

• MCA (attached to task Let system schedule) indicates the Maximum Conflicts Al-

lowed when the system is deciding the best date/time for the meeting. A conflict

consists of a participant already having another appointment at the same time as

the proposed date/time for the meeting. Therefore, like RfM , MCA should be a

positive integer.
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Changing the value of a numeric parameter affects many aspects of system perfor-

mance, which, as explained in the previous sub-section, are measured through indicators.

Taking the parameter RfM as an example, and assuming the success rate (the truth

value) of Local rooms available is affected by changes in RfM , we could define this indi-

cator as a function of the parameter (which is clearly a simplification):

success rate of Local rooms available = f(RfM) (4.1)

We could then say how changes in RfM affect the success rate of the domain assump-

tion by declaring if the derivative of f is positive or negative. Using Leibniz’s notation:

∆〈success rate of Local rooms available〉
∆RfM

> 0 (4.2)

Equation (4.2) tells us that if we increase the value of RfM , the success rate of Local

rooms available also increases. Of course, the analogous decrease-decrease relation is also

inferred. The ∆y/∆x notation is used instead of dy/dx because RfM , as previously

mentioned, assumes only discrete values.

In practice, however, we use a simplified linearized notation (which always uses the ∆

symbol) to improve writability, referring not to the success rates of requirements but to

particular AwReqs that talk about their success/failure. In the case of Find local room,

that AwReq is AR8 and, therefore, Equation (4.3) shows how this relation would be

actually specified in our approach:

∆ (AR8/RfM) > 0 (4.3)

Suppose now there is a limit to which this relation holds: after a given number, adding

more rooms will not help with the success rate of Local rooms available (there are so many

rooms that the organization could never occupy them all at the same time). For this case,

we use the concept of landmark values (cf. Section 2.1.7, p. 45) and specify an interval in

which the relation between the parameter and the indicator holds. Since we are dealing

with qualitative information, we might not know exactly how many rooms are enough, so

we define a landmark value called enoughRooms:

∆ (AR8/RfM) [0, enoughRooms] > 0 (4.4)

Although specifying this interval intuitively tells us that adding extra rooms after

there are already enough of them available does not change the success rate of the goal,

one could formalize this information, making it explicit:

∆ (AR8/RfM) [enoughRooms,∞] = 0 (4.5)
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This gives us the general form for differential relations in our proposal, shown in

Equation (4.6), where the interval [a, b] is optional, with default value [−∞,∞], 〈op〉
should be substituted by a comparison operator (>, ≥, <, ≤, = or 6=) and C is any

constant, not just zero as in previous examples:

∆ (indicator/parameter) [a, b] 〈op〉 C (4.6)

Non-zero values for C are useful for expressing different rates of change. When facing

a decision on how to improve an indicator I, given the information ∆ (I/P1) > 0 and

∆ (I/P2) > 0 the controller would arbitrarily choose to either increase P1 or P2; on the

other hand, ∆ (I/P1) > 2 and ∆ (I/P2) > 7 could help it choose P2 in case I needs to

be increased by a larger factor. Later, in Section 4.1.4, we also provide a different way of

comparing the effect of changes of parameters that relate to the same indicator.

If we replace the constant C by a function g(P ), where P is the related parameter,

we will be able to represent nonlinear relations between indicators and parameters, for

instance, ∆ (I/P ) = 2 × P (indicator I increases by the square of the increase of pa-

rameter P ). However, linear approximations greatly simplify the kind of modeling we

are proposing and are considered enough for our objectives. Moreover, it is very hard to

obtain such precise qualitative values before the system is in operation.

4.1.3 Relations concerning enumerated parameters

In addition to numeric parameters, parameters that constrain their possible values to

specific enumerated sets are also possible. Variation points are clear examples of this

type of parameter, as their possible values are constrained to the set of paths in the

OR-refinement. Control variables, however, can also be of enumerated type (in effect, as

discussed earlier in Section 4.1.1, control variables are abstractions over families of goal

models in an OR-refinement).

Figure 4.1 shows seven enumerated parameters elicited for the meeting scheduler, two

enumerated control variables and three variation points:

• RF (attached to task Characterize meeting) indicates the Required Fields when the

meeting is being characterized. It can assume the values: participants list only, short

description required or full description required ;

• V PA (attached to task Collect from system calendar) indicates if the meeting orga-

nizer is allowed to View Private Appointments of other employees when scheduling

a meeting. It can be either yes or no;

• At Collect timetables, VP1 can assume values Call participants, Email participants

or Collect automatically ;
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• At Find a suitable room, VP2 can assume values Find local rooms, Call partner

institution or Call hotels and convention centers ;

• At Choose schedule, VP3 can assume values Schedule manually or Let system sched-

ule;

• At Find a local room, VP4 can assume values Get room suggestions or List available

rooms ;

• Finally, at Book room, VP5 can assume value Use available room or Cancel less

important meeting.

Unlike numeric parameters, the meaning of “increase” and “decrease” is not defined for

enumerated types. However, we use a similar syntax to specify how changing parameter

P from one value (α) to another (β) affects a system indicator I:

∆ (I/P ) {α1 → β1, α2 → β2, . . . , αn → βn} 〈op〉 C (4.7)

By performing pair-wise comparisons of enumerated values, stakeholders can specify

how changes in an enumerated parameter affect the system. For example, the relations

below show how changes in VP2 affect, respectively, the indicators AR2 (related to

scheduling cost) and AR10 (related to scheduling speed). When performing the changes

represented between curly brackets, the success rate of AR2 decreases (i.e., cost increases)

whereas the success of AR10 increases (i.e., speed increases).

∆ (AR2/V P2) {local→ partner, local→ hotel, partner → hotel} < 0 (4.8)

∆ (AR10/V P2) {partner → local, hotel→ local, partner → hotel} > 0 (4.9)

Often, however, an order among enumerated values with respect to different indicators

can be established. For instance, analyzing the pair-wise comparisons shown in relations

(4.8) and (4.9), we conclude that for AR2, local ≺ partner ≺ hotel, whereas for AR10

partner ≺ hotel ≺ local. Depending on the size of the set of values for an enumerated

parameter, listing all pair-wise comparisons using the syntax specified in Equation (4.7)

may be tedious and verbose. If it is possible to specify a total order for the set, doing

so and using the general syntax presented for numeric parameters in Equation (4.6) can

simplify elicitation and modeling.

This ordering specification α1 ≺ α2 ≺ . . . ≺ αn can be either associated with a specific

relation or defined as the default order for a specific enumerated parameter, to be applied

to all of its relations unless specifically stated otherwise. For variation points, the default

order is considered to be their position in the goal model, ascending from left to right.

For instance, the default order of VP2 is local ≺ partner ≺ hotel.
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Figure 4.3: Combining the effects of different parameters on the same indicator.

4.1.4 Refinements and extrapolations

Differential relations always involve one indicator, but may involve more than one pa-

rameter. For example, “increasing” VP1 and VP3 (considering their default ordering)

contributes positively to indicator AR10 (which refers to Schedules produced in less than

a day) both separately — ∆ (AR10/V P1) > 0 and ∆ (AR10/V P3) > 0 — and in com-

bination — ∆ (AR10/ {V P1, V P3}) > 0.

When we are not given any equation that differentially relates two parameters P1 and

P2 to a single indicator I, we may still be able to extrapolate such a relation on the

basis of simple linearity assumptions. For example, if we know that ∆(I/P1) > 0 and

∆(I/P2) > 0, it would be reasonable to extrapolate the relation ∆(I/ {P1, P2}) > 0.

More generally, our extrapolation rule assumes that homogeneous impact is additive, as

in Figure 4.3. Note that in cases where P1 and P2 have opposite effects on I, nothing can

be extrapolated because of the qualitative nature of our relations.

Generalizing, given a set of parameters {P1, P2, . . . , Pn}, if ∀i ∈ {1, . . . , n} ,
∆ (I/Pi) [ai, bi] 〈op〉C, our extrapolation rule has as follows:

∆ (I/ {P1, P2, . . . , Pn})
n⋂

i=0

[ai, bi] 〈op〉C (4.10)

If it is known that two parameters cannot be assumed to have such a combined effect,

this should be explicitly stated, e.g., ∆ (I/ {P1, P2}) < 0. For instance, in the Meeting

Schedule we have the case in which both RfM and VP2 contribute positively to indicator

AR4 (which refers to goal Find a suitable room) when increased, but both of them should

not be increased at the same time. In other words, it does not make sense to increase the

number of local rooms and then choose to use a hotel or partner institution, as you will

only get the effect of the latter. The two relations and their combination are represented as

follows (absolute values are used in comparisons between ∆-relations in order to properly
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compare positive and negative effects, when applicable):

∆ (AR4/RfM) > 0 (4.11)

∆ (AR4/V P2) > 0 (4.12)

|∆ (AR4/ {RfM, V P2}) | = |∆ (AR4/V P2) | (4.13)

Although not explored in this thesis, other extrapolations are also possible. From

differential calculus we could extrapolate on the concept of the second derivative. If

y = f(x), we can say that y grows linearly if f ′(x) > 0 and f ′′(x) = 0 (it “has constant

speed”). However, if we have f ′′(x) > 0, then y’s rate of growth also increases with

the value of x (it “accelerates”). Qualitative information on second derivatives could

be modeled in our language using the following notation: ∆2 (I/P ) [a, b] 〈op〉C. Thus, if

we say that ∆2 (I/P1) > 0 and ∆2 (I/P2) = 0, the controller may conclude that P1 is

probably a better choice than P2 for large values. Other concepts, such as inflection and

saddle points, maxima and minima, etc. could also be borrowed, although we believe that

knowing information on such points in a I = f(P ) relation without knowing the exact

function f(P ) is very unlikely.

4.1.5 Differential relations for the Meeting Scheduler

The indicators, parameters and some of their relations for the Meeting Scheduler example

have been presented earlier, throughout this chapter. However, for completeness, Table 4.1

presents equations (4.14)–(4.49), which represent all of the differential relations elicited

for the example, except for those of meta-AwReqs AR13 and AR14, which are exactly

the same as the AwReqs to which they refer, respectively, AR7 and AR6.

Notice that there is no parameter that affects AwReqs AR11 and AR12 and, thus,

reconfiguration is not an option for a failure of these indicators. Not coincidentally, back

in Section 3.2 (p. 78) we have associated them to adaptation strategies that use evolution

instead of reconfiguration. In the next section, we associate the reconfiguration strategy

to other Meeting Scheduler AwReqs, to which it is possible to do so.

4.2 Qualitative adaptation specification

According to Wang and Mylopoulos [2009], a system configuration is “a set of tasks from

a goal model which, when executed successfully in some order, lead to the satisfaction

of the root goal”. We add to this definition the values assigned to each control variable

elicited during system identification (cf. Section 4.1). Reconfiguration, then, is the act of

replacing the current configuration of the system with a new one in order to adapt. Some

existing reconfiguration approaches were summarized back in Section 2.2.3 (p. 50).
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Table 4.1: Differential relations elicited for the Meeting Scheduler example.

order (RF ) : listonly ≺ short ≺ full (4.14)

order (V P2, AR10) : partner ≺ hotel ≺ local (4.15)

∆ (AR1/RF ) < 0 (4.16)

∆ (AR2/RfM) < 0 (4.17)

∆ (AR2/V P2) < 0 (4.18)

∆ (AR3/FhM) < 0 (4.19)

∆ (AR4/RfM) > 0 (4.20)

∆ (AR4/V P2) > 0 (4.21)

∆ (AR5/MCA) > 0 (4.22)

∆ (AR5/V P3) < 0 (4.23)

∆ (AR6/RF ) > 0 (4.24)

∆ (AR6/FhM) > 0 (4.25)

∆ (AR6/V PA) {false→ true} > 0 (4.26)

∆ (AR6/MCA) < 0 (4.27)

∆ (AR6/V P1) < 0 (4.28)

∆ (AR6/V P3) < 0 (4.29)

∆ (AR7/V PA) {false→ true} < 0 (4.30)

∆ (AR8/RfM) [0, enough] > 0 (4.31)

∆ (AR8/V P2) > 0 (4.32)

∆ (AR9/MCA) > 0 (4.33)

∆ (AR9/V P3) > 0 (4.34)

∆ (AR10/RF ) < 0 (4.35)

∆ (AR10/FhM) < 0 (4.36)

∆ (AR10/V P1) > 0 (4.37)

∆ (AR10/V P2) > 0 (4.38)

∆ (AR10/V P3) > 0 (4.39)

|∆ (AR2/RfM) | < |∆ (AR2/V P2) | (4.40)

|∆ (AR4/RfM) | = |∆ (AR4/V P2) | (4.41)

|∆ (AR4/ {RfM,V P2}) | = |∆ (AR4/V P2) | (4.42)

|∆ (AR6/V PA) | < |∆ (AR6/RF ) | < |∆ (AR6/V P3) | < |∆ (AR6/FhM) | < . . . (4.43)

. . . < |∆ (AR6/FhM) | < |∆ (AR6/V P1) | < |∆ (AR6/MCA) | (4.44)

|∆ (AR8/RfM) | = |∆ (AR8/V P2) | (4.45)

|∆ (AR8/ {RfM,V P2}) | = |∆ (AR8/V P2) | (4.46)

|∆ (AR9/MCA) | < |∆ (AR9/V P3) | (4.47)

|∆ (AR10/RF ) | < |∆ (AR10/V P2) | < |∆ (AR10/V P3) | < . . . (4.48)

. . . < |∆ (AR10/V P3) | < |∆ (AR10/FhM) | < |∆ (AR10/V P1) | (4.49)
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Awareness Requirements (cf. Section 3.1, p. 64), used as indicators, coupled with

parameters and differential relations, provide us enough information to reason over the

goal model to find out, when there is an AwReq failure, which (if any) parameters can be

changed (and to which direction, i.e., increase or decrease) in order to adapt, effectively

reconfiguring the system in response to failures.

Given what we have so far, then, a possible reconfiguration algorithm could be com-

posed of three steps: given an AwReq failure, (1) find all system parameters that affect

the AwReq positively; (2) calculate the one(s) with the least negative impact on other

indicators; and (3) return a new system configuration changing the value of this/these

parameter(s).

However, with the above algorithm, there are still a few information missing regarding

the requirements for this adaptation step. For instance, how many parameters should be

changed and by how much? When calculating negative impact to other indicators, should

priorities among them be considered? What if the AwReq fails again, should the previous

attempts to reconfiguration be taken into account when deciding a new one?

As discussed back in Section 2.1.7 (p. 45), in Qualitative Reasoning different represen-

tation languages provide different levels of precision. In the design of adaptive systems,

different information on indicators, parameters and their relations may also come in dif-

ferent precision levels. For example, Table 4.1 shows that, for the Meeting Scheduler, we

are able to establish an order of effectiveness for some indicators (e.g., Equation (4.40)

about AR2 ), whereas for others either we are not able to do so (e.g., AR5 ) or we explicitly

indicate that effects are equal (e.g., Equation (4.42) about AR4 ). The result is that an

adaptation algorithm can be more precise when dealing with indicators that do establish

this order, but for others the choice of parameter to change may have to be random or

arbitrary.

Given that the availability of more precise information can vary from one system to

another or even change in time for the same system, we propose to complement the

specification of qualitative relations among indicators and parameters with requirements

for the reconfiguration of the system, consisting of assigning possibly different adaptation

algorithms to different AwReq failures. These algorithms are composed of procedures

for eight different activities that form a framework for run-time qualitative adaptation.

Different procedures require different information from the requirements specification,

accommodating varying levels of precision. Furthermore, the framework is extensible,

allowing for the creation of new procedures for particular cases.

In this section, we describe this framework for qualitative adaptation, present some

procedures and algorithms that have already been defined for it and, finally, close the

loop on the reconfiguration capabilities of the adaptive Meeting Scheduler through the
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Figure 4.4: The adaptation process followed by the Qualia framework.

selection of adaptation algorithms for each AwReq failure.

4.2.1 A framework for qualitative adaptation

As seen in Section 4.1, system identification adds to a requirements model qualitative

information on how changes in system parameters affect indicators that are deemed im-

portant by the stakeholders. In this thesis, we propose a framework to operationalize

adaptation at runtime based on this qualitative information. We call this framework

Qualia (Qualitative adaptation) and detail it in Chapter 6. In this section, we provide

an overview of Qualia in order to understand the information that needs to be added to

the requirements models in order to specify how the system should reconfigure in response

to failures.

When made aware of a failure in an indicator, Qualia adapts the system by conducting

eight activities, as shown in Figure 4.4: one or more parameters modeled during system

identification are chosen (1), then, based on the relation of these parameters with the failed

indicator, Qualia decides by how much they should be changed (2). The parameters are

then incremented (consider decrements as negative increments for simplification) by this

value (3) and the framework waits for the change to produce any effect on the indicator

(4), evaluating it again after the waiting time (5). In each cycle, Qualia can learn from

the outcome of this change, possibly evolving the adaptation mechanism and updating

the model (6). Finally, it decides whether the current indicator evaluation is satisfactory

(7) and either concludes the process or reassesses the way it was conducted in the previous

cycles (8) and starts over.

To accommodate the different levels of precision, we propose an extensible framework

by defining an interface for each activity in the process of Figure 4.4, providing default

implementations that assume only the minimum amount of information is available and

allowing designers to create and plug-in new procedures into Qualia, possibly requiring

more information about the system in order to be applicable.
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We use the term adaptation algorithm to refer to the set of procedures chosen to

support the adaptation process. An important remark here is that we do not make

any claim on which adaptation algorithm is better suited for any particular context.

Instead, the different implementations presented in this section serve to illustrate how this

framework can be extended as needed. The choice of algorithm to use is the responsibility

of the analysts.

Therefore, the information that should be encoded in the requirements specification

is which adaptation strategy to use to adapt to every specific (AwReq) failure. When

adapting the system, Qualia selects for each activity of its process the procedure that

has been specified for the given situation according to stakeholder preferences. In the ab-

sence of such specification, however, the framework uses default procedures which require

minimum information from the requirements models, namely:

• Indicators: Qualia has to be notified of indicator failure, hence the model should

specify what are the relevant indicators in a way such that another component of

the feedback loop is able to monitor them. As already stated earlier, our approach

uses AwReqs as indicators;

• Parameters: to adapt to an indicator failure, there should be at least one related

parameter. Section 4.1 has described how this information is specified through

differential relations;

• Unit of increment: each numeric parameter must specify its unit of increment,

because Qualia will not be able to guess it.

The unit of increment is also important for the comparison among indicator/parameter

relations. For instance, the comparison |∆ (AR6/FhM) | < |∆ (AR6/MCA) | presented

in the context of the Meeting Scheduler earlier in Table 4.1, should be complemented with

UFhM = 10% and UMCA = 1, meaning that changing MCA (Maximum Conflicts Allowed

when scheduling) by 1 conflict improves AR6 more than changing FhM (From how

Many participants timetables should be collected) by 10 percent. Moreover, enumerated

parameters must be ordered (cf. Section 4.1.3) and their unit of increment defaults to

choosing the next value in the order.

Given this information, the Default Adaptation Algorithm starts by using a Random

Parameter Choice procedure that picks one parameter randomly from the set of param-

eters related to the failed indicator, considering those which can still be incremented by

at least one unit (i.e., are within their boundaries). Taking the Meeting Scheduler as an

example, imagine that in the past month, less than 75% of the meetings had Good partic-

ipation, breaking AwReq AR6. Available parameters to improve this indicator are V PA,
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RF , V P3, FhM , V P1 and MCA (assuming all within boundaries). For this running

example, consider the random procedure chose FhM .

Next, Qualia decides the increment value for the chosen parameter. In the default

algorithm, a Simple Value Calculation procedure multiplies the value of the parameter’s

unit of increment U by the indicator’s increment coefficient K, returning the increment

value V = K ×U . The increment coefficient is an optional parameter (with default value

K = 1) that can be associated to each indicator in the specification to determine how

critical it is to adapt to their failures. Higher values of K will produce more significant

changes, but the requirements engineer should be aware of the risks of overshooting when

defining them. Note also that parameters should never exceed their boundaries. In

the Meeting Scheduler example, say KAR6 = 2 and we know that UFhM = 10% and

∆ (AR6/FhM) > 0, so Qualia should increase FhM by V = 2× 10% = 20%.

Afterwards, the Simple Parameter Change procedure changes the chosen parameter

by the calculated value, at the class level, meaning that the changes will affect the system

“from this point on”. On the other hand, if the analyst specifies that the change should

be done at the instance level, these would only affect the current execution of the system.

This terminology is inherited from the specification of requirements as UML classes, as

detailed back in Section 3.1.2 (p. 70). In the example, FhM is increased by 20% for all

meeting schedules produced after the AR6 failure, until further notice.

Following parameter change, the framework waits for some time and evaluates the

indicator. The Simple Waiting procedure is to wait until the next time the indicator

is evaluated. For instance, AR6 is evaluated at every month. After the waiting time,

Qualia executes the Boolean Indicator Evaluation procedure, simply verifying if this time

the indicator succeeded, e.g., if after FhM was increased by 20%, in the next month at

least 75% of the meetings had Good participation.

In the default algorithm, the learning step is skipped (No Learning) and Qualia moves

on to the final two steps: deciding whether to stop or iterate and, in the latter case,

reassessing the strategies. The Simple Resolution Check procedure stops the process if

the outcome of the indicator evaluation was positive. Otherwise, it iterates, using the

No Algorithm Reassessment procedure which, as the name indicates, always keeps the

same algorithm for the following cycle of the process. Finalizing the Meeting Scheduler

example, if the 20% reduction was effective the process will stop; otherwise it will repeat

the same procedures, as above.

In the requirements specification, adaptation algorithms should be represented by a

set that specifies which non-default procedures should be used. Therefore, the Default

Adaptation Algorithm can be represented by the empty set ∅, meaning all the default

procedures described above will be used. The following sub-section presents alternative
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procedures that can compose more elaborate adaptation strategies, showing how Qualia

can be extended as needed.

4.2.2 Accommodating precision

As stated before, Qualia supports different levels of precision by allowing for new proce-

dures to be implemented and plugged in the framework for each of the eight activities

in its adaptation process. Here, we illustrate a few alternative procedures that can be

used to compose different adaptation algorithms, then two specific adaptation algorithms

that combine procedures in order to: (a) converge to optimal parameter values; and (b)

execute the PID algorithms described back in Section 2.1.5 (p. 39). For the alternative

procedures, we focus here on the Parameter Choice activity and describe new procedures

that execute it differently from the default one, especially in the presence of more precise

information in the specification.

The Random Parameter Choice procedure, which is part of the default algorithm,

selects a single parameter from the specification in a random fashion. With the same

amount of information from the model, we can implement a Shuffle Parameter Choice

procedure, which randomly puts the system parameters in order during the first cycle

and picks the next one using this predefined sequence when switching parameters is re-

quired (more on the repeat policy later). However, if differential relations regarding the

indicator in question have been refined to provide comparison of their effect (as explained

in Section 4.1.4), this procedure can be refined to an Ordered Effect Parameter Choice,

which orders the parameters according to their effect on the indicator, either in ascending

or descending order (depending if stakeholders would like to start with the parameters

that have the greatest or the smallest effect on the indicator). If comparison of effect is

not provided for all parameters, the analyst should specify if the remaining parameters

should be excluded from the sequence or shuffled at the end of it.

All of the procedures presented above can be further customized by some attributes,

one of which is the number of parameters to choose. This attribute, as can be seen from

the past descriptions, defaults to one, but can be set to any positive integer, or even

all parameters, mimicking the behavior of a multiple input, single output control system.

Another attribute is the repeat policy, whose default value — repeat when incrementable

— tells the procedure to repeat the parameter chosen in the previous cycle until it is has

reached the boundary set by its relation with the indicator. Other values can be repeat

M times, where M is configurable and repeat while oscillating, which will be explained in

the following subsection.

More precise information in the specification can also benefit the default Waiting

procedure presented earlier. Relations’ maturation times (optional) indicate how long it
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takes for the changes in the related parameter to take effect in the related indicator. For

instance, consider a different scenario of the Meeting Scheduler in which AR8, referring to

domain assumption Local rooms available, fails and parameter RfM (Rooms for Meetings)

is selected to reconfigure the system. Preparing a new room so it becomes available for

meetings might take a while and, therefore, the adaptation framework should wait for

this specified time before continuing.

Back to the Parameter Choice activity, such new attributes provide yet another way

of ordering parameters, so a new procedure could be proposed for choosing first the

parameters with lowest maturation time, i.e., the fastest acting parameters. As we can see,

our proposed framework can be extended as needed by requirements engineers, depending

on stakeholder requirements and the availability of information about the system and its

environment.

Overshoot avoiding algorithms

One of the desired characteristics of control systems is to avoid overshooting its control

inputs. For instance, if the success rate of Good participation for a given month is 70%

(breaking AR6 ), we decide to increase FhM from 60% to 80% and, in the following month,

the success rate becomes 85%, we have overshot the improvement on the indicator by 10%.

Granted, this overshoot could be corrected whenever some other indicator (e.g., AR10,

which controls if scheduling is done quickly) fails and FhM is chosen to be decremented.

Still, a good adaptation algorithm tries to avoid overshooting in the first place and, in

what follows, we present one such algorithm.

The Oscillation Algorithm works as depicted in Figure 4.5: back to the AR6 / FhM

scenario, imagine that given the current circumstances, the optimal2 value for FhM is

70%. The controller obviously does not know it, so when AR6 fails, it increases FhM

from the current value of 55% to 75%, which actually solves the problem.

However, instead of stopping here, the algorithm assumes to have overshot the

change, and thus starts changing the same parameter in the opposite direction, using

half of the previous increment value. When FhM is set back to 65%, AR6 fails

again, which makes the controller switch increment direction and halve the increment

value one more time. This process goes on until one of the following conditions:

• The parameter is incremented to a value that it has already assumed before, which

means that we should be very close to the optimal value. For example, if we continue

2Here, we consider “optimal” the smallest change that fixes the problem, because we assume every adaptation

brings negative side effects to other indicators. If this is not the case, one could just set the parameter to its

maximum (minimum) value from the start and no adaptation is necessary!
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Figure 4.5: A scenario of use of the Oscillation Algorithm in the Meeting Scheduler.

the oscillations shown in Figure 4.5, FhM will assume values 67%, 69%, 71%, 70%

and then stop;

• The algorithm has already performed the maximum number of oscillations, which is

an optional attribute that can be assigned to a specific AwReq or to the entire goal

model. Here, we consider each inversion of direction to be an oscillation (three, in

the figure);

• The increment value is halved to an amount that is lower than the minimum change

value of the parameter at hand (optional). For instance, Figure 4.5 represents the

case in which this value is 5%. Note that, for integer variables such as FhM , 1 is

the lowest possible value.

In order to tune this algorithm, the framework also allows for the specification of

parameters’ halving factors different from the default value of 0.5. When oscillating, the

increment value will be multiplied by the specified factor. Furthermore, the selection of

Parameter Choice procedure, as we saw in the previous subsection, defines how many

parameters will be tuned and in which order. One Oscillation Algorithm could then be

represented by the set {Ordered Effect Parameter Choice, Oscillation Value Calculation,

Oscillation Resolution Check}, tuning parameters in ascending (or descending) order of

effect. The important detail here is to set the Parameter Choice procedure’s repeat policy

to repeat while oscillating, which will tell the framework to choose the same parameter

until one of the above stop conditions. When working with multiple parameters, one

could aim for the least possible overshoot, in which all parameters but the last (in

descending order, the one with least effect) are tuned to the value that is closest to the

optimal, but still leaves the indicator in the failed state.
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A PID-based adaptation algorithm

In the above, we have proposed algorithms that were inspired by the PID controller.

The question that arises then is the following: considering single outputs, and sometimes

also single inputs, would it be possible to use the actual PID algorithm, as described in

Section 2.1.5 (p. 39), in our models? Since this algorithm requires a numeric value for the

control error and AwReqs are somewhat of a Boolean nature (success = true|false), this

question is then replaced by another one: can we extract a numeric control error from

AwReqs?

As explained back in Section 3.1 (p. 64), AwReqs can be divided in three categories:

Delta AwReqs impose constraints over properties of the domain (e.g., “Manage meeting

should execute within an hour of the meeting chosen time”), Aggregate AwReqs determine

requirements’ success rates (“75% of the meetings should cost less than e100”), and

Trend AwReqs impose constraints over aggregated success rates over time (“success rate

of Collect timetables should not decrease two weeks in a row”). Qualia will extract numeric

control errors from these types of AwReqs as follows:

• Delta AwReqs : if the property is numeric, calculate the difference between desired

and monitored values. In the above example, it is the difference (in seconds) of the

time Manage meeting was executed and the time it should have been executed (an

hour after the meeting started);

• Aggregate AwReqs : calculate the difference between the desired and actual success

rates. Note that AwReqs of the form “R should never fail” can be translated into

“R should have 100% success rate”;

• Trend AwReqs : calculate the difference between the last two measured success rates.

In the above example, if the rate decreases in 7% in the first week and then again

by 4% in the second, the control error is 4%.

If the AwReq in question follows one of these patterns, the PID Algorithm (i.e., {PID

Value Calculation, PID Indicator Evaluation, PID Resolution Check}) can be used, which

implements the algorithm described back in Section 2.1.5 (p. 39).

4.2.3 Specifying adaptation algorithms

Given the above algorithms, to close the loop on the reconfiguration capabilities of

an adaptive system-to-be after AwReqs, parameters and differential relations have been

elicited, requirements engineers should specify the adaptation algorithm to use for each

AwReq, plus provide any information used by the chosen algorithm. Table 4.2 shows the
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Table 4.2: New elements, w.r.t. the core requirements ontology [Jureta et al., 2008].

Element Used by

Awareness Requirements (AwReqs) as indicators Monitoring component

Control variables and variation points (parameters) Parameter Choice

Differential relations between parameters and indicators Parameter Choice, Pa-

rameter Change

Differential relations’ refinements (comparison, cummulative effect) Parameter Choice

AwReqs’ increment coefficients Value Calculation

Parameters’ units of increment Value Calculation

Relations’ maturation times Waiting

Global or AwReqs’ maximum number of oscillations Resolution Check

Parameters’ minimum change values Resolution Check

Parameters’ halving factors Parameter Change

complete list of new modeling elements that have been proposed so far in our research

and the component/procedure that makes uses of that information.

We can now complement the requirements specification for the adaptive Meeting

Scheduler with some of this information:

• Increment coefficients: KAR2 = 2, KAR6 = 2;

• Units of increment: UFhM = 10%, URfM = 1 room, UMCA = 1 conflict;

• Relations’ maturation times: T∆(∗/RfM) = 2 days, T∆(AR7/V PA) = 15 days.

Finally, an adaptation algorithm can be specified for each possible AwReq failure

of the Meeting Scheduler, as shown in Table 4.3. As explained back in Section 3.2.3

(p. 85), reconfiguration and evolution are unified into a single framework and specified

as adaptation strategies. Therefore, Table 4.3 represents the final specification for the

adaptation requirements of the Meeting Scheduler.

As mentioned before, ∅ represents the default algorithm and {P1, . . . , Pn} represents

an algorithm that uses the specified procedures P1, . . . , Pn instead of their respective

default ones, keeping the ones that were not replaced. Furthermore, algorithm properties

such as the order to consider when choosing parameters and the number of parameters n

to change are given between square brackets when applicable.
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Table 4.3: Final specification for the Meeting Scheduler, including reconfiguration algorithms.

AwReq AwReq pattern Adaptation strategies

AR1 NeverFail(T CharactMeet) 1. Retry(5000)

2. Reconfigure(∅)

AR2 SuccessRate(Q CostLess100, 75%) 1. Reconfigure({Ordered Effect Parameter

Choice})

AR3 not TrendDecrease(G CollectTime,

7d, 2)

1. Replace(AR3, CLASS, AR3 3weeks)

2. Warning(IT Staff)

3. Reconfigure(∅)

AR4 NeverFail(G FindRoom) 1. Reconfigure(∅)

AR5 NeverFail(G ChooseSched) 1. Reconfigure({Oscillation Value Calcu-

lation, Oscillation Resolution Check})

AR6 SuccessRate(Q Min90pctPart, 90%,

1M)

1. Reconfigure({Ordered Effect Parameter

Choice}[order = descending, n = 2])

AR7 NeverFail(D ParticUseCal) 1. Reconfigure(∅)

2. Replace(CLASS,

T EnforceUseOfCalendar)

AR8 MaxFailure(D LocalAvail, 1, 7d) 1. Delegate(Management)

2. Reconfigure(∅)

AR9 ComparableSuccess(

T SchedSystem, T SchedManual,

10)

1. Reconfigure({Ordered Effect Parameter

Choice}[order = descending])

AR10 @daily SuccessRate(Q Sched1Day,

90%, 10d)

1. Reconfigure({Ordered Effect Parameter

Choice}[order = ascending])

AR11 — 1. Warning(Secretary)

AR12 StateDelta(T ConfirmOcc,

Undecided, *, 5m)

1. Warning(Secretary)

AR13 SuccessRate(AR7, 80%) 1. Reconfigure(∅)

AR14 not TrendDecrease(AR6, 30d, 2) 1. Reconfigure({Ordered Effect Parameter

Choice}[order = descending, n = 2])
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4.3 Chapter summary

In this chapter, we present the second contribution of this thesis, namely, mechanisms for

qualitative adaptation through reconfiguration. There are two aspects of this contribution:

a language for modeling qualitative information about the behavior of the system (§ 4.1)

and the means for specifying, given a family of reconfiguration algorithms, which one

should be used at each particular situation (§ 4.2).

The language that models system behavior is based on System Identification ap-

proaches from Control Theory and, thus, requires the identification of system parameters

and indicators of requirements convergence (§ 4.1.1). Once these are identified, differen-

tial (∆) relations can be used to represent how changes in parameters affect indicators,

independently if such parameters are numeric (§ 4.1.2) or enumerated (§ 4.1.3). Moreover,

refinements indicating if one parameter has greater effect than another with respect to an

indicator and extrapolations on their combined use are also possible (§ 4.1.4).

Given the model of system behavior that has been just described, a family of reconfigu-

ration algorithms is proposed by defining a process composed of eight steps, implemented

by a default algorithm comprising default implementations for each of the steps of the

process (§ 4.2.1). Being a qualitative approach, the default procedures requires very lit-

tle information from the requirements model (basically the information provided by the

aforementioned ∆-equations), but other procedures requiring higher levels of precision are

provided and the framework can be extended as needed (§ 4.2.2).

As with the previous chapter, the concepts presented herein were also illustrated using

the running example of the Meeting Scheduler, whose differential equations were presented

in Section 4.1.5 and the list of adaptation algorithms to be used in Section 4.2.3. Table 4.3

(p. 110) complements the previously presented specification of monitoring and adaptation

requirements for the Meeting Scheduler (cf. Table 3.7 in p. 87), representing its final

specification.
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Chapter 5

Designing adaptive systems

Simple things should be simple, complex things should be possible.

Alan Kay

The previous chapters presented new modeling elements that augment the state-of-

the-art in Goal-Oriented Requirements Engineering in order to represent the requirements

specification for adaptive systems based on a feedback loop architecture. The next re-

search question, proposed in Chapter 1 as RQ3, is: How can we help architectural de-

signers and programmers implement this requirements-based feedback loop?

The answer to this question is twofold: first, we need to aid requirements engineering

in the process of going from “vanilla”1 requirements to the specifications for adaptive sys-

tems illustrated in Chapter 3. Then, a run-time framework could implement the generic

functionalities of the feedback loop based on the system’s adaptation requirements, reliev-

ing the developers of this task and promoting reuse based on models that have a high-level

of abstraction.

Such run-time framework will be the focus of Chapter 6, whereas in this chapter we

detail our proposed systematic process for the design of adaptive systems. An overview

of this process is presented next.

5.1 Overview

Figure 5.1 gives an overview of our proposed process for the design of adaptive systems,

which we call the Zanshin approach. Zanshin (残心) is a Japanese term used in martial

arts to represent a state of total awareness,2 a reference to the first modeling element

1As before in this thesis, by “vanilla” we mean the requirements of the system-to-be that are not related to

its desired adaptation capabilities.
2See http://en.wikipedia.org/wiki/Zanshin.

http://en.wikipedia.org/wiki/Zanshin
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Figure 5.1: Overview of the Zanshin approach for the design of adaptive systems.

produced by the approach, Awareness Requirements (cf. Section 3.1, p. 64).

The approach divides the software development process in two tracks: “Vanilla” Re-

quirements Engineering, Design and Coding is at the top, while Requirements Engineering

for Adaptive Systems can be found at the bottom. This separation of concerns is merely

conceptual, not processual, i.e., the adaptive part of RE is, of course, highly dependent

on the (partial or final) results of the “vanilla” RE activity and they are not parallel,

independent subprocesses, as the diagram might suggest.

The “vanilla” software development process is concerned with modeling the require-

ments, designing the architecture and coding the target system in the usual way, i.e., inde-

pendently of aspects related to adaptation capabilities that the target system is supposed

to have. For these activities, we do not prescribe any specific process or methodology.

However, we do impose a few constraints on this process, some of which have already

been mentioned before. These constraints are:

• Our framework is goal-oriented and expects as output of the “vanilla” RE phase a

goal model of the system’s requirements. This was discussed in Section 2.1.3 (p. 32);

• In order for the feedback loop implemented in the Adaptation Framework to perform

run-time reasoning over the requirements model, the Target System should log (in

a medium accessible by the framework) information about the execution of system
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requirements. This will be discussed in more depth in Chapter 6, next;

• Finally, to adapt the Target System, the Adaptation Framework will send adaptation

instructions that, as explained in Section 3.2 (p. 78), take the form of Evolution

Requirements operations (e.g., abort(), initiate(), rollback(), etc.). The Target

System has to be able to receive these instructions and operationalize them.

It is important to note that the process described in this chapter does not support

legacy systems. Adding adaptation capabilities to existing systems for which models

and/or source code are not available is considered future work in the context of this

research.

Given that the “vanilla” software development process has provided the required ar-

tifacts described above, we propose a systematic process for the inclusion of adaptation

features in the system-to-be. This process is composed of two main activities: System

Identification and Adaptation Strategy Specification.

5.2 System Identification

As mentioned in the previous chapter, cf. Section 4.1 (p. 91), System Identification is

the process of determining the equations that govern the dynamic behavior of a control

system and is concerned with the identification of system parameters and the nature of

their effect on the monitored output of the system. We propose to model the output

to be monitored through Awareness Requirements (AwReqs), system parameters using

variation points and control variables, and the effect of parameters on the output via

differential relations.

In this section, we describe a systematic process for system identification of adaptive

software systems. The input for this process is a requirements model G, such as the one

depicted in Figure 2.6 (p. 37) for the Meeting Scheduler, containing elements such as

goals, tasks, domain assumptions and quality constraints (cf. Section 2.1.3 in p. 32, also

[Jureta et al., 2008]).

After the four steps of the process, namely indicator identification, parameter iden-

tification, relation identification and relation refinement, the output of this process is a

parametrized specification of the system behavior S = {G, I, P,R (I, P )}, where:

• G is the initial goal model, provided as input;

• I is the set of indicators, identified in the model by AwReqs, which were characterized

earlier in Section 3.1 (p. 64);
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• P is the set of parameters, comprising both variation points and control variables,

which were described back in Section 4.2 (p. 99);

• Finally, R (I, P ) is the set of relations between indicators and parameters, as also

explained in Section 4.2.

Each step of the system identification process augments the specification S, adding or

refining the information contained therein. In the following sub-sections, we provide more

detail on each step of this process, which does not necessarily have to be conducted in

a sequential fashion, but could also be applied iteratively, gradually enriching the model

with each iteration.

5.2.1 Indicator identification

Input: the initial goal model G;

Output: partial specification of system behavior S = {G, I}.

As already mentioned, we propose to use Awareness Requirements (AwReqs) as indi-

cators. Like other types of requirements, AwReqs must be systematically elicited. Since

they refer to the success/failure of other requirements, their elicitation takes place after

the basic requirements have been elicited and the goal model constructed (but could also

be done iteratively).

There are several common sources of AwReqs and, in this section, we discuss some

of these sources. We do not, however, propose any particular technique for the identifi-

cation of AwReqs and requirements engineers should use existing requirement elicitation

techniques to discover requirements that belong to this new class.

Critical requirements

One obvious source consists of the goals that are critical for the system-to-be to fulfill

its purpose. If the aim is to create a robust and resilient system, then there have to be

goals/tasks in the model that are to be achieved/executed at a consistently high level

of success. Such a subset of critical goals can be identified in the process and AwReqs

specifying the precise achievement rates that are required for these goals will be attached

to them. Requirements that are controlled by regulations or Service Level Agreements

(SLAs) are good candidates for AwReq targets.

This process can also be viewed as the operationalization of high-level non-functional

requirements (NFRs) such as robustness, dependability, etc. For example, the task Char-

acterize meeting is critical for the process of meeting scheduling since all subsequent
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activities depend on it. Also, government regulations and rules may require that certain

goals cannot fail or be achieved at high rates. Similarly, AwReqs are applied to domain

assumptions that are critical for the system (e.g., Participants use the system calendar).

Non-functional requirements

The NFRs that are directly present in the goal model, in the form of softgoals, can

also be sources of AwReqs. In the previous chapter, we presented a quality constraint

Meetings cost less than e100 that metricizes a high-level softgoal Low cost. Then, AwReq

AR2 is attached to it requiring the success rate of 75%. This way the system is able to

quantitatively evaluate at runtime whether the quality requirements are met over large

numbers of process instances and make appropriate adjustments if they are not.

In early requirements (cf. Section 2.1, p. 25), qualitative softgoal contribution labels

in goal models capture how goals and tasks affect NFRs, which is helpful, e.g., for the

selection of the most appropriate alternatives. In the absence of contribution links, as it

is our case, AwReqs can be used to capture the fact that particular goals are important or

even critical to meet NFRs and thus those goals’ high rate of achievement is needed. This

can be viewed as an operationalization of a contribution link, as we have just illustrated

with AR2.

Preferable solutions

Alternatives introduced by OR-refinements are also frequently used to evaluate different

means of satisfying a goal with respect to certain softgoals. In our approach, softgoals are

refined into quality constraints and the qualitative contribution links are removed (and

for our illustrations, we have not shown them at all).3 However, the links do capture

valuable information on the relative fitness of alternative ways to achieve goals. AwReqs

can be used as a tool to make sure that “good” alternatives are still preferred over “bad”

ones.

For instance, AwReq AR9 states that schedules should be produced automatically

by the system at least ten times more often than manually by the meeting organizer,

presumably because this is faster or cheaper. This way the intuition behind softgoal

contribution links is preserved. If multiple conflicting softgoals play roles in the selection

of alternatives, then a number of alternative AwReqs can be created since the selection of

the best alternative will be different depending on the relative priorities of the conflicting

non-functional requirements.

3The rationale here is that softgoals do not have a clear-cut criteria for satisfaction and, therefore, cannot be

referred to by AwReqs, i.e., their success or failure cannot be precisely determined.
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Trade-offs

Conflicting NFRs (softgoals) usually impose some kind of trade-off in the system. For

instance, when an AwReq targeting a quality constraint that refers to the system’s per-

formance fails, the system might switch to a more efficient solution, which in turn might

result in a failure of another AwReq, concerned with the system’s overall cost.

This kind of trade-off could be embodied in a single AwReq, if preferred, stating, e.g.,

that a given solution should fail between 5 and 10 times a month or that the success rate

should be between 80% and 90%. The definition of both lower and upper bounds in these

examples implicitly takes care of existing NFR trade-offs related to the requirement in

question.

Preemptive adaptation

It is clear from our characterization of AwReqs that they are of reactive nature, i.e., once

the system detects a situation that is not conformant with the specified requirements, it

adapts. However, in many cases it could be better, or even necessary, to avoid the failure

altogether, preemptively switching the system behavior.

A possible way of accomplishing this result using our approach is to have multiple

AwReqs referring to the same requirement, but with different levels of criticality. For

instance, in the Meeting Scheduler, AR6 triggers adaptation actions when less than 75%

of the meetings have Good participation. The value of 75% is the limit of tolerance given

to failures of the quality constraint that operationalizes this softgoal. To prevent it from

ever reaching this limit, other AwReqs establishing higher rates such as 80%, 90%, etc.

could be modeled. Alternatively, we could use Trend AwReqs to detect when the success

rate is decreasing, such as AR14.

Meta-AwReqs

A possible motivation for meta-AwReqs is the application of gradual reconciliation/com-

pensations actions. This is the case with AR13 : if AR7 fails (i.e., Participants use the

system calendar turns out to be false in a given occasion), one could think of a mild adap-

tation action, but if AR3 ’s success rate is actually less than 80% (i.e., the assumption is

false at least two out of ten times), stronger action might be advised.

Another useful case for meta-AwReqs is to avoid executing specific reconciliation/com-

pensation actions too many times. AR13 can also illustrate this case: if the adaptation

action associated with AR7 is too costly, AR13 ’s adaptation could consist of disabling

AR7 (or changing its adaptation strategy) for a period of time.
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Qualitative elicitation

One of the difficulties with AwReqs elicitation is coming up with precise specifications for

the desired success rates over certain number of instances or during a certain time frame.

To ease the elicitation and maintenance we recommend a gradual elicitation, first using

high-level qualitative terms such as “medium” or “high” success rate, “large” or “medium”

number of instances, etc. Thus, the AwReq may originate as “high success rate of R over

medium number of instances” before becoming SuccessRate(R, 95%, 500).

Of course, the quantification of these high-level terms is dependent on the domain and

on the particular AwReq. So, “high success rate” may be mapped to 80% in one case

and to 99.99% in another. Additionally, using abstract qualitative terms in the model

while providing the mapping separately helps with the maintenance of the models since

the model remains intact while only the mapping is changing.

5.2.2 Parameter identification

Input: partial specification of system behavior S = {G, I};

Output: partial specification of system behavior S = {G, I, P}.

In this step, the requirements engineer should identify possible variations in the goal

model affecting the indicators, which, therefore, can be manipulated to adjust the per-

formance of the system. As described back in Section 4.1 (p. 91), these are captured by

control variables and variation points.

For each indicator, the analyst should try to identify, again using existing elicitation

techniques, if the model already shows variation points that could be exploited for the

improvement of that indicator or if it is possible to create new variation points for this

purpose. Existing works on requirements variability (cf. Section 2.1.4, p. 36) could be

applied here.

In Section 4.1, we have also explained how control variables are abstractions over large

or repetitive variation points. When identifying variability in requirements that could be

exploited for adaptation, the analysts should decide between representing them using

variation points or control variables, depending on the size and complexity of the model.

Requirement engineers should try to elicit at least one parameter for each indicator, if

possible, in order to be able to use reconfiguration. Therefore, after at least one indicator

has been analyzed, for each subsequent indicator one should check if the parameters that

have already been identified may also be used to reconfigure to failures of the indicator

at hand. The precise effect the parameter has on the indicator is, however, identified in

the next step.
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5.2.3 Relation identification

Input: partial specification of system behavior S = {G, I, P};

Output: partial specification of system behavior S = {G, I, P,R′(I, P )}, where

R′ represents an unrefined set of relations.

In the third step of the process, the requirements engineer should identify the nature

of the relations among the parameters identified in the previous step and the indicators

(AwReqs) elicited in the first step. As seen in Section 4.1.2 (p. 94), such information is

modeled in a qualitative way using differential relations.

There are two ways to perform a thorough identification of relations:

1. For each indicator from the set I the requirements engineer asks: which parameters

from P does this indicator depend on?

2. Alternatively, iterate through set P and ask, for each parameter, which indicator in

I is affected by it.

Either way, one should analyze all pairs (i, p) ∈ {I × P} and end up with a many-to-

many association R′(I, P ) between these two sets. This set of relations R′ is not yet final,

as it needs to be refined in the final step of system identification.

To help analysts answer the questions proposed in the above enumeration, we provide

some heuristics that may guide them in their analysis of the model and elicitation from

stakeholders and domain experts:

• Heuristic 1: if provided in earlier steps of the Requirements Engineering process,

softgoal contribution links capture these dependencies for variation points. The final

specification for the Meeting Scheduler (cf. Figure 2.6, p. 37) had no such links, as

they are not used at runtime in our approach, but earlier models could feature such

links as, e.g., illustrated in Figure 5.2. The choices in VP2 contribute to the softgoal

Low cost and thus VP2 affects the success rate of Meetings cost less than e100, a

quality constraint (QC) derived from that softgoal. Any AwReq-derived indicator

involving that QC is therefore also affected.

• Heuristic 2: another heuristic for deriving potential parameter-indicator relations

is to link indicators to parameters that appear in the subtrees of the nodes the

indicators are associated with. The rationale for this is the fact that parameters in a

subtree rooted at some goal G, which models how G is achieved, change the subtree,

thus potentially affecting the indicators associated with the goal. For instance, the

parameter RfM is below the goal Find a suitable room in the tree and thus can
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Figure 5.2: Contribution links may help identifying differential relations in variation points.

be (and actually is) affecting its success rate, an indicator (precisely, AR4 — see

Equation (4.20), p. 100).

• Heuristic 3: yet another way to identify potential parameter-indicator relations

is to look at the non-functional concerns that these parameters/indicators address

and to match the ones with the same concern. Earlier in Section 5.2.1 we described

how non-functional requirements (NFRs) such as robustness, criticality, etc. lead

to the introduction of AwReqs into goal models. The already-mentioned softgoal

contributions explicitly link variation points with NFRs. Similar analysis should be

done for control variables.

Further heuristics could be devised from more experiments in applying our approach

to the design of adaptive systems.

5.2.4 Relation refinement

Input: partial specification of system behavior S = {G, I, P,R′(I, P )};

Output: final specification of system behavior S = {G, I, P,R(I, P )}.

As briefly mentioned back in Section 4.2.2 (p. 105), the initial set of parameter-

indicator relations produced in the previous step should be refined by comparing and

combining those that refer to the same indicator. The process of refining the initial set

of relations R′ produces the final set of relations R, which is part of the final output of

the system identification process.

The refinement step consists of separating the differential relations in R′ in subsets

Ri1 , Ri2 , . . . , Rin , where i1, . . . , in ∈ I and Rik contains the relations that affect indicator
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ik. Then, for each subset Rik with at least two elements, determine if the parameters

related to indicator ik can be (a) placed in order (total or partial); and (b) combined for

cummulative effect.

In the Meeting Scheduler, for example (cf. Table 4.1, p. 100), when comparing two

relations, say ∆ (AR2/RfM) < 0 and ∆ (AR2/V P2) < 0 (where AR2 refers to the

success of quality constraint Meetings cost less than e100 ), the modeler can investigate

whether either of these adaptation strategies is more effective than the other and by

how much. This may result in the model being refined into, e.g., |∆ (AR2/RfM) | <
|∆ (AR2/V P2) |, which would help the adaptation framework facing the choice between

these alternatives. The analysis of whether selecting an alternative makes the value of an

indicator match its reference input is to be addressed in future work.

The identification of cummulative effect, as also mentioned in Section 4.2.2, concerns

the assumption that homogeneous impact is additive, i.e., if both p1 and p2 have a positive

effect towards indicator i when increased, should we assume the default behavior in which

changing both of them also produces a (possibly greater) positive effect — in other words,

∆ (i/ {p1, p2}) > 0? An analogous question can be formulated for cummulative negative

effect.

If this assumption is incorrect, a differential relation stating otherwise should be pro-

vided, as it is the case ofRfM and V P2 with respect toAR8: |∆ (AR8/ {RfM, V P2}) | =
|∆ (AR8/V P2) | (cf. Equation (4.46), p. 100). In that case, changing both RfM and V P2

has the same effect as changing only V P2.

This example illustrates that when combining relations to analyze alternatives, care

must be taken to only look at the parameters/indicators relevant in the current system

configuration. Another example of this from the Meeting Scheduler is the parameter View

Private Appointments (V PA), which cannot affect any indicator if the value of V P1 is

not Collect automatically.

5.3 Adaptation Strategy Specification

Given the final specification of system behavior S = {G, I, P,R(I, P )}, developers would

already have enough knowledge of the system in order to devise adaptation mechanisms

using reconfiguration. Back in Section 4.2 (p. 99), we briefly mentioned one possible such

mechanism:

1. Monitor all indicators i ∈ I. When an indicator ik failure is detected, move to the

next step;

2. Separate the relations subset Rik ⊂ R(I, P ), containing the relations that model the
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effect of a parameter change on the indicator ik that failed;

3. Considering all relations rik ∈ Rik use some criteria to select one of them. Possible

criteria could be:

• Select the one with the greatest positive effect on ik, if the subset Rik is ordered;

• Select the one with the least side-effects on other indicators. Given a relation,

e.g., ∆ (ik/pj) > 0, its list of side-effects are all relations that contain pj with

opposite direction, e.g., ∆ (ix/pj) < 0;

• If none of the above criteria can be applied or there is a tie, randomly select a

relation.

4. Having selected a relation rik , increase or decrease its associated parameter, depend-

ing on the nature of the relation. Use the smallest possible increment of the chosen

parameter.

Although the above procedure might work in many cases, it is not given that it will

always be the best course of action for any system failure. Section 4.2 provided a high-

level description of many different algorithms that could be applied for reconfiguration

(e.g., randomly picking the parameter, considering their effect on the indicator, oscillating

the value of the parameter, applying a PID-like algorithm, etc.). Each different failure

could benefit from a different kind of adaptation, that could even be using a procedure

that is not described in this thesis, as our models are extensible.

Moreover, Section 3.2 (p. 78) shows that adaptation could consist not only of re-

configuration algorithms but also Evolution Requirements (EvoReqs), which change the

requirements model itself in order to adapt. As previously mentioned, EvoReqs change

the problem space, whereas reconfiguration algorithms work in the solution space only.

Both types of adaptation, however, are unified into a single concept of adaptation

strategy (cf. sections 3.2.2 and 3.2.3, p. 83) that is associated with AwReq failures and

specify what the system should do to adapt, closing the feedback loop. Such informa-

tion can be used by developers in subsequent stages of the software development process

(architectural design, coding) to implement the system, but also by a framework that

implements the general behavior of the feedback loop, presented in Chapter 6.

Independently if they consist of reconfiguration or evolution, adaptation strategies are

domain/application-dependent and, thus, have to be elicited from stakeholders and do-

main experts in order to best reflect their needs, associating the best adaptation to each

failure. Therefore, after identifying information on the behavior of the system during

system identification, requirements engineers should conduct a more targeted elicitation
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process with the purpose of associating specific adaptation strategies to each of the pos-

sible AwReq failures of the system.

Later in Chapter 7 it will be seen that the experiments using our approach consisted

of simulations of real-world failures with the purpose of verifying the response of our

proposed framework to a few undesired situations at runtime. Unfortunately, we have not

conducted any experiments with practitioners to evaluate the models and the proposed

systematic process at design-time (a task which nonetheless remains in the list of future

work).

For this reason, as with AwReq elicitation, we do not propose any particular technique

for discovering which adaptation strategies to associate with each AwReq. Requirements

engineers should consider this a process of elicitation of requirements for the adaptive

capabilities of the system and use existing RE techniques for this purpose.

5.4 Chapter summary

In this chapter, we presented an overview of the Zanshin approach for the design of

adaptive systems (§ 5.1), detailing its two main activities: System Identification (§ 5.2)

and Adaptation Strategy Specification (§ 5.3). These activities are conducted in parallel,

possibly in an iterative fashion, with “vanilla” Requirements Engineering activities in

order to engineer the requirements for adaptation of the system-to-be.

During System Identification, requirements engineers should identify the important in-

dicators that should be monitored (§ 5.2.1), the parameters that can have an effect on such

indicators when changed (§ 5.2.2) and the relations between each indicator/parameter

pair (§ 5.2.3). Finally, such relations can be refined if further information about them is

available (§ 5.2.4).

The second step, Adaptation Strategy Selection, consists simply in assigning to each

of the identified indicators a list of adaptation strategies that represent the requirements

for adaptation elicited from the stakeholders. Chapters 3 and 4 described how these

requirements can be modeled and we do not propose any particular technique for their

elicitation.
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Architectural considerations: the

Zanshin framework

Talk is cheap. Show me the code.

Linus Torvalds

In the previous chapter, we described the steps to produce models that represent the

requirements for system adaptation. This process partially addresses research question

RQ3 (cf. Chapter 1), which stated: How can we help architectural designers and pro-

grammers implement this requirements-based feedback loop? The models described in

chapters 3 and 4 produced by the process presented in Chapter 5 can guide developers in

their task of designing the system architecture and implementing it in code.

However, if our premise is that adaptation will be operationalized through a feedback

loop architecture (cf. Figure 2.8, p. 41), the generic features of monitoring for require-

ments divergence, parsing the requirements specification, deciding the most appropriate

adaptation strategy to apply to a given failure and informing the target system of the

selected strategy at runtime can be implemented into a generic framework that can be

reused by developers, reducing the amount of work in architectural design and coding.

We have, therefore, implemented a prototype for such a framework which, as the

systematic process presented earlier, is called Zanshin. Its source code is available in a

public version control repository located at http://github.com/vitorsouza/Zanshin

and, in this chapter, we provide an overall description of the framework and detail each

one of its components.

http://github.com/vitorsouza/Zanshin
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Figure 6.1: Overview of the Zanshin framework.

6.1 Overview

Figure 6.1 gives an overview of the Zanshin framework. First of all, the Target system

(the system to which the framework will add adaptation capabilities) is instrumented in

order to provide a log that indicates when instances of requirements (i.e., elements of the

goal model as explained back in Section 2.1.3, p. 32) have changed state (considering the

states presented back in Figure 3.1, p. 66).

Given this log and the requirements specification — a goal model, as before, but

with Awareness Requirements (AwReqs) added (cf. Section 3.1, p. 64) —, the Monitor

component is able to conclude if and when certain AwReqs have themselves changed state

(which includes not only AwReq failures, but also AwReqs being satisfied).

These state changes should then trigger an Adapt component that decides which re-

quirement evolution operations the target system should execute (cf. Section 3.2, p. 78).

This component can be divided in two main parts:

• An Event-Condition-Action (ECA) based adaptation component that chooses an

adaptation strategy based on the list of strategies associated with the AwReq failure

and their respective applicability conditions;

• A qualitative reconfiguration component (called Qualia), which is activated by the

ECA-based process when reconfiguration is selected as the appropriate strategy to

apply, that executes the reconfiguration algorithm (cf. Section 4.2, p. 99) that has

been specified in the adaptation strategy.
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In either case, the output of the Adapt component is a list of Evolution Requirement

(EvoReq) operations, as the ones shown back in Table 3.5 (p. 82) that are sent to the

Target system. The latter, in its turn, should carry on application and domain-specific

actions based on the instructions given by the EvoReq operations. In Figure 6.1, this

is represented by the Evolution API component, which should be implemented by the

Target system.

6.1.1 Implementation

The Zanshin framework was implemented as six OSGi1 bundles (components): Core,

Logging, Monitoring, Adaptation, Qualia and Simulation. The Core bundle exposes five

service interfaces, based on the framework’s architecture shown in Figure 6.1, each of

which implemented by a different bundle:

• Monitoring Service: monitors the log provided by the target system and detects

changes of state in AwReq instances, submitting these to the Adaptation Service;

• Adaptation Service: implements the aforementioned ECA-based adaptation process,

analyzing the requirements specification and deciding which adaptation strategy to

execute next;

• Reconfiguration Service: implemented by Qualia, executes the aforementioned re-

configuration algorithm that has been specified in the adaptation strategy;

• Target System Controller Service: implemented by the Simulation bundle, serves as

a bridge between the adaptation framework and the target system, by implementing

the EvoReq operations that are called by the executed adaptation strategies;

• Repository Service: implemented by the Core bundle itself, stores the instances of

the requirements models that are used by the other services.

Requirements models are specified using Eclipse Modeling Framework (EMF)2 meta-

models: the Core component provides the basic GORE classes (cf. Figure 3.2, p. 71) and

the classes involved in the ECA-based process (presented later in Section 6.3). These

1The Open Services Gateway initiative framework is a module system and service platform for the JavaTM

programming language. It allows components to be implemented as bundles which can be remotely installed,

started, stopped, updated, and uninstalled without requiring the component container itself to be restarted. See

http://www.osgi.org/.
2EMF is a modeling framework an code generation facility for the Eclipse platform. From a model described

in an XML-based language, EMF can produce a set of Java classes representing the model, as well as adapters

and editors. See http://www.eclipse.org/modeling/emf/.

http://www.osgi.org/
http://www.eclipse.org/modeling/emf/
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meta-models are extended by the Simulation bundle to provide classes representing the

requirements of the target system.

For example, for the Meeting Scheduler there would be one EMF class for each re-

quirement of its goal model, shown a few times in previous chapters (e.g., Figure 4.1,

p. 92), extending the appropriate GORE/ECA classes (see also the list of their UML

representation in Table 3.2, p. 72).

Finally, the target system’ requirements specification can be written as an EMF model,

to be read by the framework, represented in memory as JavaTM objects (using EMF’s API)

and stored in the Repository Service when the target system is executed. This way, the

EMF model represents the requirements at the class level, whereas the objects stored

in the Repository Service for each execution represent the requirements at the instance

level. Listing 6.1 shows parts of the specification of the Meeting Scheduler requirements

in EMF.

Listing 6.1: A section of the Meeting Scheduler requirements specification in EMF.� �
1 <?xml version="1.0" encoding="UTF -8"?>
2 <scheduler:SchedulerModel ...>
3 <!-- The "vanilla" goal graph. -->
4 <rootGoal xsi:type="scheduler:G_SchedMeet">
5 <children xsi:type="scheduler:T_CharactMeet"/>
6 <children xsi:type="scheduler:G_CollectTime">
7 <children xsi:type="scheduler:T_CallPartic"/>
8 <children xsi:type="scheduler:T_EnaukOartuc"/>
9 <children xsi:type="scheduler:G_CollectAuto">

10 <children xsi:type="scheduler:D_ParticUseCal"/>
11 <children xsi:type="scheduler:T_CollectCal"/>
12 </children >
13 ...
14 </children >
15 ...
16
17 <!-- Awareness Requirements. Starting at // @rootGoal/@children .6. -->
18 <children xsi:type="scheduler:AR1" target="// @rootGoal/@children .0"/>
19 ...
20 </rootGoal >
21
22 <!-- System parameters. -->
23 <configuration >
24 <parameters xsi:type="scheduler:CV_RF" type="ecv"/>
25 ...
26 </configuration >
27
28 <!-- Indicator / parameter differential relations. -->
29 <relations indicator="// @rootGoal/@children .6" parameter="// @configuration/

@parameters .0" operator="ft" />
30 ...
31 </scheduler:SchedulerModel >� �

The first part of the specification (lines 3–14) shows the elements of the Meeting

Scheduler’s goal model organized in the same tree-like structure used to present them

graphically in a goal model diagram. Further down, in line 18, AwReq AR1 is included,

specifying as its target the element of index 0 in the children set of the element spec-

ified by the tag <rootGoal />, i.e., T CharactMeet, which represents task Characterize

meeting.



The monitor component 129

Figure 6.2: Overview of Zanshin’s Monitor component.

The <configuration> tag encloses the parameters elicited during system identifi-

cation and Listing 6.1 shows parameter RF (Required Fields) as an example (line 24).

Finally, the goal model contains a set of relations, such as the one in line 29: the

indicator is AR1 (//@rootGoal/@children.6), the parameter isRF (//@configuration

/@parameters.0) and the relation is “fewer than” (ft). Thus, the example illustrates

differential relation ∆ (AR2/RfM) < 0, shown earlier in Equation (4.16) (p. 100).

The next sections explain in more detail how the main components of the Zanshin

framework work, namely, the Monitor component, the ECA-based adaptation component

and Qualia, the Qualitative reconfiguration component.

6.2 The monitor component

Figure 6.2 shows an overview of Zanshin’s Monitor component. On the left-hand side,

the target system is represented, exemplified by the Meeting Scheduler application (imple-

mented in whatever platform was chosen during the architectural design of the system).

For monitoring to work, the source code of the monitored system (in this case, the Meet-

ing Scheduler) has to be instrumented in order to create the instances of the classes that

represent the requirements at runtime (cf. Table 3.2, p. 72) and call methods defined in

classes DefinableRequirement and PerformativeRequirement (cf. Figure 3.2, p. 71),

namely:

//@rootGoal/@children.6
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• start(): when the user starts executing a task, this method is called in the instance

that represents that task. Then, Zanshin propagates it up the goal tree, calling

the same method in instances representing ancestor goals that have not yet been

started. For quality constraints and domain assumptions, this method should be

called immediately before their satisfaction is to be evaluated;

• success(): this method is called when a requirement has been satisfied. As before,

Zanshin will propagate up the goal tree the satisfaction of ancestor goals, according

to the Boolean semantics specified in their refinements (cf. Section 2.1.3, p. 32);

• fail(): this method is called when a requirement has not been satisfied. Like the

success() method, Zanshin also propagates failure up the goal tree;

• cancel(): for long-running, performative requirements (such as goals and tasks),

this method is called when the requirement has been canceled by the user. Cancel-

lation is also propagated up the tree, like success() and fail() calls;

• end(): this method is called automatically by Zanshin after one of the three possible

final outcomes for a requirement: success, fail or cancel.

As previously mentioned, the classes that represent the requirements at runtime belong

to the Zanshin framework, depicted in the right-hand side of the figure. As explained back

in Section 2.1.6 (p. 43), we have used EEAT to monitor AwReqs and, thus, instrumentation

is also used in the framework itself in order to send log events in the Common Base Event

(CBE)3 format to EEAT’s log feed, which transforms the log entries into property events

before sending them to the Drools rule engine.4

In order to detect AwReq failures (or any other change of state), the rule engine needs

to receive as input the definition of each AwReq, compiled to its rule specification lan-

guage. EEAT provides a compiler that can derive such rules from AwReqs expressed in

OCLTM . However, EEAT cannot generate proper rules from the human-friendly OCLTM

specifications illustrated in Chapter 3, such as the ones illustrated for the meeting sched-

uler in Listing 3.1 (p. 73). To explain why, let us recall one simple AwReq definition,

shown in Listing 6.2, below.

Listing 6.2: A simple AwReq, represented in human-friendly OCLTM .� �
1 -- AwReq AR1: task ‘Characterize meeting ’ should never fail (human -friendly

version).
2 context T_CharactMeet
3 inv AR1: never(self.oclInState(Failed))� �

3See http://www.ibm.com/developerworks/library/specification/ws-cbe/.
4Drools is a production rule system that provides a forward chaining inference based rules engine. See

http://www.jboss.org/drools.

http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.jboss.org/drools
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AR1 indicates that no instance of task Characterize meeting should ever be in the

Failed state. However, this specification is unbounded in time: the rule engine will never

conclude that this invariant has been satisfied because there is always the possibility that

one instance will be in the Failed state sometime in the future. On the other hand, if

an instance actually switches to the Failed state, the invariant is violated and will stay

that way forever for this same reason.

Therefore, in order to be able to verify this constraint for every instance and to de-

termine its satisfiability in any case, we have to transform the initial, human-friendly

specification of the AwReqs to one, EEAT-ready specification, which is based on the afore-

mentioned methods received by the run-time instances that represent the requirements.

The EEAT-ready version of AR1 is shown in Listing 6.3.

Listing 6.3: Same AwReq from Listing 6.2, represented in EEAT-ready OCLTM .� �
1 -- AwReq AR1: task ‘Characterize meeting ’ should never fail (EEAT -ready version)

.
2 context T_CharactMeet
3 inv AR1: between(receivedMessage(‘start’) <> null , receivedMessage(‘end’) <>

null , never(receivedMessage(‘fail’) <> null))� �
Together with the between clause (one of Dwyer et al. [1999] scopes, cf. Section 2.1.6,

p. 43), these methods allow us to define the period in which AwReqs should be evaluated,

because otherwise the rule system could wait indefinitely for a given message to arrive.

Given the right scope, the methods success(), fail() and cancel() are called by

the monitored system to indicate a change of state in the requirement from Undecided

to one of the corresponding final states (cf. Figure 3.1, p. 66). These methods are then

used in the EEAT-ready specification of AwReqs. Therefore, in practice, we define AR1

not as never being in the Failed state, but as never receiving the fail() message in the

scope of a single execution (between start() and end()).

An aggregate requirement, on the other hand, aggregates the calls during the period of

time defined in the AwReq, as shown in Listing 6.4. For AR6, this is done by monitoring

for calls of the newMonth() method, which are called automatically by the monitoring

framework at the beginning of every month. Similar methods for different time periods,

such as newDay(), newHour() and so forth, should also be implemented.

Listing 6.4: The EEAT-ready version of an aggregate AwReq.� �
1 -- AwReq AR6: QC ‘At least 90% of participants attend ’ should have a 75% success

rate per month (EEAT -ready version).
2 context Q_Min90pctPart
3 def: beg : LTL:: OclMessage = receivedMessage(‘newMonth ’)
4 def: end : LTL:: OclMessage = receivedMessage(‘newMonth ’)
5 def: wS : Integer = receivedMessages(‘success ’)->select(x | new Date().

difference(x.time , MONTH) == 1)->size()
6 def: wF : Integer = receivedMessages(‘fail’)->select(x | new Date().difference

(x.time , MONTH) == 1)->size()
7 inv AR6: between(weekA <> null , weekB <> null and weekA.date().difference(

weekB.date(), MONTH) == 1, always(wS / (wS + wF) >= 0.75)� �
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Table 6.1: EEAT/OCLTM idioms for some AwReq patterns.

Pattern OCLTM idiom

NeverFail(R) def: rm: OclMessage = receiveMessage(‘fail’)

inv pR: never(rm)

SuccessRate(R, r,

t)

def: msgs: Sequence(OclMessage) = receiveMessages()->

select(range().includes(timestamp()))

- - Note: these definitions are patterns that are assumed in

the following definitions

def: succeed: Integer = msgs->select(methodName = ‘succeed’))->size()

def: fail: Integer = msgs->select(methodName = ‘fail’))->size()

inv pR: always(succeed / (succeed + fail) > r)

ComparableSuccess

(R, S, x, t)

- - c1 and c2 are fully specified class names

inv pR: always(c1.succeed > c2.succeed * x)

MaxFailure(R, x, t) inv pR: always(fail < x)

P1 and/or P2; not

P

- - arbitrary temporal and real-time logical expressions are

allowed over requirements definitions and run-time objects

An automatic translator from the AwReqs ’ initial specification to their EEAT-ready

specification could be built to aid the designer in this task. Another possibility is to

go directly from the AwReq patterns (cf. Section 3.1.3, p. 75) to this final specification.

Table 6.1 illustrates how some of the patterns of Table 3.3 (p. 76) can be expressed in

OCLTM .

These formulations are consistent with those shown in listings 6.3 and 6.4. The defini-

tions and invariants are placed in the context of the UML classes that represent require-

ments at runtime. For example, a receiveMessage(‘fail’) for context R, denotes the

called operation R.fail() for class R. Therefore, the invariant pR in the first row of table

6.1 is true if R.fail() is never called.

Of course, the patterns of Table 3.3 represent only common kinds of expressions.

AwReqs contain the range of expressions where a requirement R1 can express proper-

ties about requirement R2, which include both design-time and run-time requirements

properties. OCLTM explicitly supports such references, as the expressions in Listing 6.5

illustrate:

Listing 6.5: Generic property evaluation in OCLTM , supported by EEAT.� �
1 def: p1: PropertyEvent = receivedProperty(‘p:package.class.invariant ’)
2 inv p2: never(p1.satisfied () = false)� �

In OCLTM , all property evaluations are asserted into the run-time evaluation repos-

itory as PropertyEvent objects. The definition expression of p1 refers to an invariant
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(on a UML class, in a UML package). Properties about p1 include its run-time evalua-

tion (satisfied()), as well as its design-time properties (e.g., p1.name()). Therefore, in

OCLTM , requirements can refer to their design-time and run-time properties and, thus,

AwReqs can be represented in OCLTM .

To help developers experiment with EEAT-ready specifications of AwReqs in OCLTM ,

in order to verify if they are correct, we have developed a front-end graphical tool that

shows the information being received by EEAT, the methods being called in the run-

time instances of the requirements and, finally, the PropertyEvent objects generated by

EEAT. A screen shot of this tool is shown in Figure 6.3.

6.3 The ECA-based adaptation component

Referring back to Figure 6.2, once the monitoring component detects a change in the state

of an AwReq (i.e., that an AwReq has been satisfied or failed), it sends a notification to

the Adapt component. This component uses an ECA-based process to execute adaptation

strategies in response to system failures. This process goes through the list of strategies

associated with the failed AwReq, selecting and executing the most appropriate one based

on some conditions. See, for instance, Table 3.7 (p. 87) for the strategies associated with

AwReqs of the Meeting Scheduler.

This process is summarized in the algorithm shown in Listing 6.6, which manipulates

instances of the classes represented in the class model of Figure 6.4.

Listing 6.6: ECA-based algorithm for responding to AwReq failures.� �
1 processEvent(ar : AwReq) {
2 session = findOrCreateSession(ar.class);
3 session.addEvent(ar);
4 solved = ar.condition.evaluate(session);
5 if (solved) break;
6
7 ar.selectedStrategy = null;
8 for each s in ar.strategies {
9 appl = s.condition.evaluate(session);

10 if (appl) {
11 ar.selectedStrategy = s;
12 break;
13 }
14 }
15
16 if (ar.selectedStrategy == null)
17 ar.selectedStrategy = ABORT;
18
19 ar.selectedStrategy.execute(session);
20 ar.condition.evaluate(session);
21 }� �

The process is triggered by AwReq evaluations, independent of the AwReq instance’s

final state (Success, Failed or Canceled). For instance, let us recall one of the AwReqs

of the Meeting Scheduler (cf. Table 3.7): say the weekly success rate of Collect timetables
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Figure 6.4: Entities involved in the ECA-based adaptation process.

has decreased twice in a row, causing the failure of AR3 and starting the ECA process.

The algorithm begins by obtaining the adaptation session that corresponds to the

class of said AwReq, creating a new one if needed (line 2). As shown in Figure 6.4, an

adaptation session consists on a series of events, referring to AwReq evaluations. This

time-line of events can be later used to check if a strategy is applicable or if the problem

has been solved (i.e., if the adaptation has been successful). Active sessions are stored in

a repository (e.g., a hash table indexed by AwReq classes attached to the user session)

which is managed by the findOrCreateSession() procedure. In the example, assuming

it is the first time AR3 fails, a new session will be created for it.

Then, the process adds the current AwReq ’s evaluation as an event to the active session,

immediately evaluates if the problem has been solved — this is done by considering the

AwReq ’s resolution condition, which analyzes the session’s event time-line — and stops

the process if the answer is affirmative (3–5). For example, the trivial case is considering

the problem solved if the (next) AwReq evaluates to success, but this abstract class can

be extended to provide different kinds of resolution conditions, including, e.g., involving a

human-in-the-loop to confirm if the problem has indeed been solved, organizing conditions

into AND/OR-refinement trees (like in a goal model), etc. For the running example, let

us say that AR3 has been associated with the aforementioned simple resolution condition.

Since the AwReq ’s state is Failed, the session is not considered solved and the algorithm

continues.

If the current AwReq evaluation does not solve the issue, the process continues to search

for an applicable adaptation strategy to execute in order to try and solve it (7–14). It does
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so by going through the list of strategies associated with the AwReq that failed in their

predefined order (e.g., preference order established by the stakeholders) and evaluating

their applicability conditions, breaking from the loop once an applicable strategy has been

found. As with ResolutionCondition, ApplicabilityCondition is also abstract and

should be extended to provide specific kinds of evaluations. For instance, apply a strategy

“at most N times per session/time period”, “at most in X% of the failures/executions”,

“only during specified periods of the day”, AND/OR-refinements, etc. (patterns can be

useful here). Some conditions might even need to refer to some domain-specific properties

or contextual information. If no applicable strategy is found, the process falls back to the

Abort strategy (16–17).

Back to the running example, imagine now that the Meeting Scheduler designers have

associated two strategies to AR3. First, relax it by replacing AR3 with AR3 3weeks,

which verifies if the success rate has decreased not in two, but in three consecutive weeks

(i.e., not TrendDecrease(G CollectTime, 7d, 3)). This strategy is associated with

a condition that constraints its applicability to at most once a trimester. Second, the

Warning strategy is also associated with AR3, sending a message to the IT support staff

so they can take corrective action. To this strategy a simple applicability condition is

associated, which always returns true. Therefore, if this is the first time AR3 fails in the

past three months, it will be relaxed to AR3 3weeks, otherwise the Warning strategy will

be selected.

After the strategy is selected, it is executed and the session is given another chance to

evaluate its resolution (sometimes we would like to consider the issue solved after applying

a specific strategy, independent of future AwReq evaluations, e.g. when we use Abort).

When an adaptation session is considered resolved, it should be terminated, which marks

it as no longer being active. At this point, future AwReq evaluations would compose

new adaptation sessions. Instead, if the algorithm ends without solving the problem, the

framework will continue to work on it when it receives another AwReq evaluation and

retrieves the same adaptation session, which is still active. Some adaptation strategies

can force a re-evaluation of the AwReq when executed, which guarantees the continuity

of the adaptation process.

For the AR3 example, the session would remain active until another month has been

passed and AR3 3weeks is checked. If the success rate increases then, AR3 3weeks will

be satisfied, triggering another call to processEvent(), which would find AR3 ’s session

and, according to the resolution condition, consider it solved and terminate it. If the rate

decreases one more time, though, the Warning strategy is used and the session remains

active until the following week.

As this example illustrated, information on resolution and applicability conditions
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should be present in the requirements specification in order for the adaptation framework

to use this process. We do not propose any particular syntax for the inclusion of this

information in the specification. Listing 6.7 demonstrates how AwReqs ’ resolution con-

ditions, adaptation strategies and their applicability conditions are specified in the EMF

file that encodes the requirements specification, extending the section that was illustrated

in the beginning of the chapter, in Listing 6.1.

Listing 6.7: EMF specification of AR3 ’s strategies and conditions.� �
1 <?xml version="1.0" encoding="UTF -8"?>
2 <scheduler:SchedulerModel ...>
3 <!-- The "vanilla" goal graph. -->
4 <rootGoal xsi:type="scheduler:G_SchedMeet">
5 ...
6
7 <!-- Awareness Requirements. -->
8 ...
9 <children xsi:type="scheduler:AR3" target="// @rootGoal/@children .1">

10 <condition xsi:type="model:SimpleResolutionCondition"/>
11 <strategies xsi:type="model:RelaxReplaceStrategy" newRequirement="// @rootGoal

/@children .9">
12 <condition xsi:type="model:MaxExecApplicabilityCondition" maxExecutions="1"/

>
13 </strategies >
14 <strategies xsi:type="model:WarningStrategy" actor="// @actors .3" />
15 </children >
16 <children xsi:type="scheduler:AR3_3weeks" target="// @rootGoal/@children .1">
17 ...
18 </children >
19 ...
20 </rootGoal >
21 ...
22 </scheduler:SchedulerModel >� �

Finally, it is important to note that the ECA-based process is only one possible solution

for the coordination and execution of adaptation strategies in response to AwReq failures

at runtime. It can be replaced or combined with other processes that use EvoReqs and any

extra specification necessary (e.g. applicability and resolution conditions) to: (a) select

the best strategy to apply; (b) execute it; (c) check if the problem has been solved; (d)

loop back to the start if it has not. Being developed in OSGi bundles implementing well-

defined services, Zanshin offers an extensible architecture that allows other adaptation

services to be plugged-in and used.

6.4 The qualitative reconfiguration component

In Section 4.2 (p. 99), we have introduced the Qualia framework, which allowed us to

specify reconfiguration algorithms with different levels of precision and associate them

with AwReq failures.

As mentioned earlier, we have implemented Qualia as a Zanshin component (i.e.,

bundle) to take advantage of its infrastructure. A new adaptation strategy called Recon-

figuration Strategy (with customized applicability and resolution conditions) was added
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to the framework, as well as the capability of recognizing OSGi bundles that provide Re-

configuration Services, allowing for new reconfiguration algorithms to be plugged in the

framework dynamically.

Qualia’s bundle registers one such service, which executes the steps of its adaptation

process intertwined with Zanshin’s ECA-based process, detailed in the previous sub-

section. The framework’s EMF meta-models were also extended to allow the specification

of the information required by Qualia’s adaptation procedures. Listing 6.8 shows an

example from the Meeting Scheduler specification.

Listing 6.8: EMF specification of a reconfiguration strategy using Qualia.� �
1 <?xml version="1.0" encoding="UTF -8"?>
2 <scheduler:SchedulerModel ...>
3 <!-- The "vanilla" goal graph. -->
4 <rootGoal xsi:type="scheduler:G_SchedMeet">
5 ...
6
7 <!-- Awareness Requirements. -->
8 ...
9 <children xsi:type="scheduler:AR6" target="// @rootGoal/@children .20/ @children

.0">
10 <condition xsi:type="model:ReconfigurationResolutionCondition"/>
11 <strategies xsi:type="model:ReconfigurationStrategy" algorithmId="qualia">
12 <condition xsi:type="model:ReconfigurationApplicabilityCondition"/>
13 <procedureIds xsi:type="ecore:EString">ordered -effect -parameter -choice </

procedureIds >
14 <properties xsi:type="model:AlgorithmProperty" key="order" value="desc"/>
15 <properties xsi:type="model:AlgorithmProperty" key="n" value="2"/>
16 </strategies >
17 </children >
18 ...
19 </children >
20 ...
21 </rootGoal >
22 ...
23 </scheduler:SchedulerModel >� �

The ReconfigurationStrategy is associated with AR6 ’s specification, defining qualia

as its algorithm (line 11). The Reconfiguration Strategy will then ask a factory class to pro-

vide the service associated with the qualia identifier, obtaining a reference to Qualia’s Re-

configuration Service. Special resolution and applicability conditions — namely, Reconfi-

gurationResolutionCondition (10) and ReconfigurationApplicabilityCondition (12)

— need to be used in order to intertwine Zanshin’s ECA-based process with Qualia’s

algorithm. Both these classes can wrap other resolution or applicability conditions, re-

spectively, allowing the developer to specify in Qualia any condition that is available in

Zanshin.

Inside the strategy definition, the tag <procedureIds /> can be used to determine

procedures that will replace the default ones in order to form the desired reconfiguration

algorithm. In the example (line 13), the default parameter choice procedure is replaced

with {Ordered Effect Parameter Choice} procedure, as per the Meeting Scheduler’s spec-

ification (cf. Table 3.7, p. 87).
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Finally, the properties [order = descending, n = 2], also associated with this adap-

tation strategy in the specifications, are represented in EMF using the <properties />

tag (lines 14 and 15). Qualia reads these values and execute the specified reconfiguration

algorithm when a failure of AR6 is detected.

In the next chapter, we provide more examples of use of the Zanshin and Qualia

frameworks in the context of our experiments with the design of an Adaptive Computer-

aided Ambulance Dispatch system.

6.5 Performance evaluation

Other than the experiments to be presented next in Chapter 7, which focus on showing

that Zanshin produces sensible responses to failures at runtime based on the augmented

requirements specification, we have also conducted performance experiments to evaluate

the scalability of the framework. The performances of the Monitor and Adapt framework

were evaluated separately and the results are reported below.

6.5.1 Performance of the Monitor component

Monitoring has little impact on the target system, mostly because the target system and

the monitor typically run on separate computers. The TPTP Probekit5, used by EEAT

to instrument the source code of the target system in order to provide the required log

entries, provides optimized byte-code instrumentation, which adds little overhead to some

(selected) method calls. The logging of significant events consumes no more than 5%, and

typically less than 1% overhead.

For real-time monitoring, it is important to determine if the target events can over-

whelm the monitoring system. A performance analysis of EEAT was conducted by com-

paring the total monitoring runtime vs. without monitoring using 40 combinations of

the Dwyer et al. [1999] temporal patterns (cf. Section 2.1.6, p. 43). For data, a simple

two-event sequence was the basis of the test datum; for context, consider the events as an

arriving email and its subsequent reply. These pairs were continuously sent to the server

10 thousand times. In the experiment, the event generator and EEAT ran in the same

multi-threaded process. The test ran as a JUnit6 test case within Eclipse7 on a Windows

Server 2003 dual core 2.8 GHz with 1GB memory. The results suggest that, within the

test configuration, sequential properties (of length 2) are processed at 137 event-pairs per

5See http://www.eclipse.org/tptp/.
6See http://www.junit.org/.
7See http://www.eclipse.org/.

http://www.eclipse.org/tptp/
http://www.junit.org/
http://www.eclipse.org/
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Figure 6.5: Results of the scalability tests of Zanshin.

second [Robinson and Fickas, 2009]. This indicates that EEAT is reasonably efficient for

many monitoring problems.

6.5.2 Performance of the Adapt component

To evaluate the performance of Zanshin’s ECA-based adaptation process, we have devel-

oped a simulation in which goal models of different sizes (100–1000 elements) are built and

have an AwReq failing at runtime. The framework applies the adaptation strategy that is

also included in the specification and the target system (i.e., the simulation) acknowledges

it. The simulation was ran ten times for each goal model size and the running time of

the framework was calculated. Average times in milliseconds for each goal model size are

shown in Figure 6.5 (the running time of the target system was irrelevant in comparison

and, therefore, not included in the graph).

As the graph shows, the adaptation framework scales linearly with the size of the goal

model. The interested reader can experiment the simulations for themselves by download-

ing the source code of the framework. Furthermore, as with the Monitor component, the

target system and adaptation framework can be ran in a separate computers, reducing

the impact of the adaptation process even further.

Another, similar, simulation uses a randomly generated goal model with different

number of parameters (again, from 100 until 1000, scaling up by 100 elements each time),

all of them related to a failing AwReq. Zanshin and Qualia were timed in ten sequential
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executions of this simulation and average times for each number of parameters show the

framework also scales linearly when Qualia is chosen as the reconfiguration service.

In effect, by analyzing Qualia’s default algorithm (cf. Section 4.2.1, p. 102), one can

conclude that its complexity is O(N × R), where N is the number of parameters to

choose and R is the number of differential relations in the model. With the proper data

structures, however, this complexity can be further reduced.

6.6 Chapter summary

In this chapter, we described a prototype framework that has been created as part of our

research in order to help developers with the implementation of adaptive systems, as the

framework already contains the generic features of a feedback loop that operationalizes

adaptation based on the models presented earlier, in chapters 3 and 4.

The framework, which as the process described in Chapter 5 is also called Zanshin,

is composed of five different services: monitoring, adaptation, reconfiguration, controller

and repository (§ 6.1). The monitor component is based on EEAT, a toolkit described

back in Section 2.1.6, and works by compiling AwReqs described in OCLTM into a set

of rules which allow a rule-based engine to determine when an indicator has failed or

succeeded (§ 6.2).

The adaptation component implements an Event-Condition-Action process that re-

spond to evaluation of AwReq ’s satisfiability as events, checks applicability conditions of

associated adaptation strategies and executes them as actions. Each indicator can also be

associated with resolution conditions, which are also considered by the component (§ 6.3).

When the selected strategy is reconfiguration, the homonymous component is activated,

executing the process described for the Qualia framework back in Section 4.2 (p. 99) and

submitting the new system configuration to the target system as the adaptation instruc-

tion (§ 6.4).

Finally, the performance of the framework is also evaluated in terms of randomly-

generated requirements models with scalable number of goals and parameters (§ 6.5).
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Chapter 7

Empirical evaluation

Don’t worry if it doesn’t work right.

If everything did, you’d be out of a job.

Unknown author

In the previous chapters, we have proposed a modeling language to represent require-

ments for system adaptation based on a feedback loop architecture, showed how to repre-

sent these new requirements elements in GORE-based requirements specifications, intro-

duced a systematic process to augment “vanilla”1 specifications with these new elements

and, finally, described a framework that can use such specifications to implement the

generic functionalities of feedback loops, adding adaptation capabilities to target systems.

At this point, we have covered most of the research questions proposed in Chapter 1 for

this thesis.

In this chapter, we cover the last, remaining question, RQ4: How well does the ap-

proach perform when applied to realistic settings? As introduced in Section 1.3 (p. 12), we

have applied descriptive and experimental methods from Design Science [Hevner et al.,

2004]:

• Scenarios and informed arguments were used throughout the thesis, applying our

proposals to a running example, the Meeting Scheduler;

• Simulations in a experiment were applied to a larger system, based on a case study

adopted from the literature.

This system is called the Adaptive Computer-aided Ambulance Dispatch System (here-

after, A-CAD). Its analysis and design are presented in full in a technical report [Souza,

1As before in this thesis, by “vanilla” we mean the requirements of the system-to-be that are not related to

its desired adaptation capabilities.
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2012] and will be summarized in this chapter. Moreover, this chapter presents the re-

sults of simulations of failures in the A-CAD, which tested the response of the Zanshin

framework to situations that require run-time adaptation.

7.1 The Computer-aided Ambulance Dispatch System

The failure of the London Ambulance Service Computer-Aided Despatch (LAS-CAD)

system in the fall of 1992 became a well known case study in the area of Software En-

gineering. Following the report on the inquiry published by the South West Thames

Regional Health Authority [Finkelstein, 1993], papers on the subject were published in

different communications, such as the proceedings of the 8th International Workshop on

Software Specification and Design (IWSSD) [Finkelstein and Dowell, 1996], the Euro-

pean Journal of Information Systems [Beynon-Davies, 1995], the Journal of the Brazilian

Computer Society [Breitman et al., 1999], ACM SIGSOFT Software Engineering Notes

[Kramer and Wolf, 1996], amongst others.

Being a real system and having so much available information — due to its failure

and subsequent inquiry — makes the LAS-CAD a good choice for validation of new

research proposals. In effect, the focus of the discussions in the 8th IWSSD was on

which methods/techniques/tools should be applied in dealing with systems such as the

LAS-CAD, and what research should be conducted to help in the development of such

applications in the future [Kramer and Wolf, 1996]. Other examples of this use can be

seen, for instance, in Letier’s PhD thesis [2001] and You’s masters dissertation [2004].

In particular, the LAS-CAD failure report [Finkelstein, 1993] states the following in

paragraph 3024:

It should be said that in an ideal world it would be difficult to fault the concept of

the design. It was ambitious but, if it could be achieved, there is little doubt that

major efficiency gains could be made. However, its success would depend on the

near 100% accuracy and reliability of the technology in its totality. Anything

less could result in serious disruption to LAS operations.

Thus, the high criticality of many of the components of the LAS-CAD make it a good

case for adaptive systems, because self-adapting to failures — which invariably occur in a

system that depends on near 100% reliability — is one way to avoid the aforementioned

serious disruption to LAS operations. Take, for instance, the requirement of getting an

ambulance to the scene of the incident as quickly as possible. In the case of the LAS,

a set of standards (called ORCON) had been devised to indicate what percentage of

ambulances should arrive in 3 minutes, 10 minutes and so on. There is no way to simply
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put that table into the system and guarantee that the standards will be followed [Kramer

and Wolf, 1996]. Instead, adaptation actions can be taken whenever the system does not

satisfy such requirements.

Note, however, that is not our intention to prove that the LAS would not have failed

if it had been built as an adaptive system using our proposal. Many of the analyses

conducted over the failure indicate that the procurement and the development processes

were flawed, producing a bad quality system in general. Hence, if adaptation mechanisms

had been developed to work with the LAS, there is no guarantee these would have been

properly developed and have good quality and would therefore also be prone to failure.

Our objectives here are to learn from the problems detected in the LAS in order to identify

critical requirements and use those to develop a new system which would, in theory, be

designed properly and have good quality in general.

In the remainder of this section, we present the “vanilla” requirements for the A-CAD,

based on previous publications about the LAS-CAD. As previously mentioned, a more

detailed account of this requirements engineering process can be found in [Souza, 2012].

Moreover, an i? [Yu et al., 2011] analysis of the LAS-CAD presented in the technical

report “Experiences with applying the i? framework to a real-life system”, by Jane You

[2001] served as early requirements analysis for the A-CAD.

7.1.1 Scope

A real CAD system is very large and complex. In our experiments, we focused on the core

functions of a CAD software. We assume, therefore, that there are other systems which

produce a series of events related to the ambulances managed by the CAD and which

are monitored by the core CAD software to know which are available and where they are

located (the dependencies between the CAD software and these other systems is shown

in [You, 2001]).

Figure 7.1 shows the states an ambulance can assume during its life-cycle and the

events that trigger the transitions. Below we describe these events, which are adapted

from [Kramer and Wolf, 1996]. The CAD software is supposed to be aware of all such

events.

• Creation: ambulance has been registered within the system;

• Commissioning: ambulance has been assigned to a station. This assignment can

change over time in case of need;

• Activation and deactivation: ambulances can be deactivated during certain pe-

riods of time (e.g., when they need to be repaired, refueled, etc.). Deactivated

ambulances cannot be dispatched;
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Figure 7.1: State-machine diagram for Ambulances.

• Arrival and departure: ambulance has arrived or has left a given location. This

location can belong to a station, a hospital or an incident;

• En-route location: periodical reporting of location during the mobilization of

ambulances to a target location. This event is monitored only for ambulances that

are active and outside their stations. Each ambulance in this condition is supposed

to send location updates every 13 seconds;

• Dispatch, timeout, confirmation and release: when an ambulance is dispatched

to an incident (by the core CAD software), it should be confirmed (by its crew) so it

is considered engaged to resolving the incident. This has to occur in a timely fashion,

otherwise the CAD will search for another ambulance to dispatch and the first one

will go back to being idle. When the incident is resolved (e.g., injured people are

dropped off at the hospital) the ambulance is released and becomes idle. Only idle

ambulances can be dispatched.

Furthermore, events of commissioning and deactivation should also be monitored

for crew members and equipment in order to know, at any given time, what is the config-

uration of each ambulance. For example, a crash kit could break and be sent to repair,

leaving an ambulance without it; or an EMT could take a lunch break for one hour leaving

his ambulance with one less crew member for a while.

Finally, some entities and situations are considered out of the scope of the CAD system.
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The following is a list of domain assumptions with respect to the requirements of the CAD

software:

• Caller information: information about the caller and the phone used to report an

emergency is added to the incident’s report by the telephone operator for logging

purposes only. The CAD software will not consider this information when dispatch-

ing resources and there will be no support for identifying a thread of calls from the

same person;

• Incident category: in real CAD systems, incidents are categorized by importance.

For instance, the LAS has three main categories — A (red), B (amber) and C (green)

— divided in two or three subcategories each.2 Different categories can have different

standards regarding levels of service, for example. We assume, however, that all calls

are of the same category;

• Treatment: it is not the responsibility of the CAD to follow the treatment of

injured parties. In fact, the people affected by an incident are not monitored at all

by the CAD, which expects only to receive a release event when ambulances are

done with an incident. It is the responsibility of the dispatched crew to conclude

when an incident is resolved and inform the CAD;

• Dispatching to emergencies only: ambulances only get allocated in the CAD

in response to incidents. In case the service is provided by the public authorities, a

separate system should manage these situations and deactivate ambulances whenever

they get dispatched to non-emergencies;

• Initial data is given: the information required by the CAD to dispatch resources

is assumed to be given: the limits of the serviced region, its division in sectors,

location of hospitals and stations, list of preferred hospitals/stations for each sector,

ambulances per station, ambulance crews and equipments, etc. In a real system,

such information is presumably calculated and periodically modified after analyzing

statistics on the amount and nature of incidents in each sector of the serviced region

in the past.

7.1.2 Stakeholder Requirements

Given the above description of entities and the scope of the problem, the following is a

list of requirements for the CAD software:

2See “Categorised”, posted at the blog “Random Acts of Reality”, http://randomreality.blogware.com/

blog/_archives/2004/2/18/21077.html (last access: July 21st, 2011).

http://randomreality.blogware.com/blog/_archives/2004/2/18/21077.html
http://randomreality.blogware.com/blog/_archives/2004/2/18/21077.html
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Incident Response

REQ-1. The system shall allow staff to register calls they receive from citizens;

REQ-2. The system shall, whenever possible, detect the location of the caller and associate

it with the call registry (public phones have associated locations, cell phones might

be triangulated, etc.);

REQ-3. The system shall allow staff to dismiss calls as non-emergencies;

REQ-4. The system shall assist staff in identifying, through the information from the call, if

it refers to an open incident in the system;

REQ-5. The system shall allow staff to assign calls to open incidents as duplicates or create

new incidents for calls;

REQ-6. The system shall allow staff to indicate the number of ambulances needed and their

respective configurations (e.g., ambulance with paramedics, fire truck and firemen,

motorcycle response unit, etc.);

REQ-7. The system shall allow staff to confirm the information related to new incidents,

clearing them for dispatch by the system;

REQ-8. The system shall, upon confirmation of an incident, determine the best ambulance

to be dispatched to the incident’s location, given the required configuration;

REQ-9. The system shall inform stations of dispatched ambulances about the dispatching

instructions, if the ambulance is in the station, or inform the ambulance itself, if it

is not in the station;

REQ-10. The system shall close incidents when all resources related to it are released (see

REQ-13);

REQ-11. The system shall, in case of deactivation of an ambulance that is busy, determine the

best ambulance to be dispatched in replacement of the one that has been deactivated,

given the required configuration. REQ-9 should follow accordingly;

REQ-12. The system shall perform in such a way that at least 75% of the ambulances arrive

within 8 minutes to the location of the incident once dispatching instructions have

been sent (see REQ-9). This constraint is based in the LAS-CAD standard for

Category A calls.3

3See “ORCON!”, posted at the blog “Random Acts of Reality”, http://randomreality.blogware.com/blog/

_archives/2004/3/15/21076.html (last access: July 21st, 2011).

http://randomreality.blogware.com/blog/_archives/2004/3/15/21076.html
http://randomreality.blogware.com/blog/_archives/2004/3/15/21076.html
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Resource Monitoring

REQ-13. The system shall monitor for ambulance-related events (cf. Section 7.1.1) and keep

the status of each ambulance up-to-date, including ambulance configuration;

REQ-14. The system shall show accurate and up-to-date information about on-going incidents,

including status, configuration and position of engaged ambulances;

REQ-15. The system shall generate messages whenever ambulances arrive at the location of

incidents, leave the location of incidents (to go to the hospital) and when they are

released (incident resolved).

Exception Messages

REQ-16. The system shall generate exception messages if the dispatching process does not

conclude within 3 minutes. The process is considered concluded after the number

of ambulances and their configurations have been assigned (see REQ-6), the system

has dispatched ambulances that fit the configuration (see REQ-8 and REQ-9) and

all ambulances have confirmed the dispatch (see REQ-13);

REQ-17. The system shall generate exception messages if ambulances engaged to incidents

are not released from incidents within 15 minutes of their confirmation (confirmation

of the ambulance, not the incident, see REQ-13) – in other words, incidents should

be resolved within 15 minutes of dispatch;

REQ-18. The system shall generate exception messages if ambulances seem to be going to the

wrong direction with respect to the location they are supposed to go (see REQ-13).

7.1.3 GORE-based specification of the A-CAD

Based on the requirements elicited earlier and the i? analysis of the LAS-CAD provided

by You [2001], this sub-section finally presents the goal model that will be used as basis for

the development of the A-CAD system. Figure 7.2 shows the GORE-based requirements

specification (cf. Section 2.1.3, p. 32) for the A-CAD.

In the following paragraphs, we describe this model, associating its elements with the

requirements that were described earlier in Section 7.1.2. The requirements IDs are shown

between square brackets (e.g., [REQ-1]). Not by chance, these requirements are associated

with the tasks in the model, as they represent a sequence of steps an actor (human or

system) can perform to fulfill them. Moreover, all tasks in the model are associated with

a requirement, showing that there are no tasks without purpose here.
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Call taking, an activity performed mostly by staff members, consists on responding

calls to the emergency service (task performed outside the system and, thus, not shown

in the model), registering them in the CAD system, confirming that they are indeed

emergency calls [REQ-3] and assigning them to an incident. During registration, the

system should try to detect the caller’s location [REQ-2] to help staff expedite the activity

of inputting emergency information [REQ-1]. Analogously, the system should search for

duplicates [REQ-4] to help staff decide if they should create new incident or assign as

duplicate to an existing one [REQ-5].

Once a call has been taken and the incident registered, resource identification and

mobilization are conducted for each incident. The former, performed by staff, consists on

specifying the configuration of ambulances [REQ-6] — i.e., indicate how many ambulances

should be dispatched to the incident’s location and what kinds of resources (human and

equipment) are needed — and confirming the incident [REQ-7] for dispatch by the sys-

tem. Resource mobilization is then conducted by the system itself, determining the best

ambulance [REQ-8] from those available and based on the provided configuration and

informing stations / ambulances about dispatch instructions [REQ-9].

While call taking should be achieved for each call and resource identification and

mobilization achieved for each incident, incident update is a goal that should be constantly

maintained by the system. Categorization of goals into achieve and maintain goals have

been proposed in previous works in the area of agents and multi-agent systems [Dastani

et al., 2006; Morandini et al., 2009]. This means that the CAD system should attempt

to satisfy this goal sub-tree periodically, at every t units of time (t to be specified during

design).

To satisfy incident update, then, the CAD system should monitor resources, close

incidents [REQ-10] when the ambulances are released and replace ambulances [REQ-11]

that break down during service. Monitoring resources consists on monitoring the status of

ambulances [REQ-13] — including all events described in section 7.1.1 — and displaying

the status of ambulances [REQ-14], departure/arrival messages [REQ-15] and eventual

exception messages [REQ-16, REQ-17, REQ-18].

For resource monitoring to work, the CAD system depends on a couple of assumptions

being true. First, MDTs [should] communicate position of busy (engaged) ambulances at

regular intervals of time (at every 13 seconds, as specified in section 7.1.1). Second, it

is assumed that crew members use MDTs properly to notify about events in the ambu-

lance state-chart (also see section 7.1.1) that cannot be triggered automatically by the

ambulance’s position, namely: commissioning, activation, deactivation, confirmation and

release. Position and status of ambulances are needed in order to calculate the best

ambulance to be assigned at any given time.
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Finally, Figure 7.2 also shows three softgoals and their respective quality constraints

that refer to time-related requirements that have been elicited from the different publica-

tions about the LAS-CAD case study:

• Dispatching, the process that starts when a call is responded and ends when ambu-

lances acknowledge the dispatching instructions, should be done in up to 3 minutes

[REQ-16];

• Once ambulances have acknowledged dispatching instructions, they should arrive at

the incident’s location in up to 8 minutes [REQ-12];

• The total time of assistance, which starts when an ambulance acknowledges dis-

patching instructions and ends when they are released from the incident, should not

take more than 15 minutes [REQ-17].

It is important to note that we have modeled the system requirements so far with no

variability (cf. Section 2.1.4, p. 36) whatsoever: there are no OR-refinements in Figure 7.2.

This has been done on purpose to keep the model simpler at this stage and variability

will be added to the requirements later during our approach.

In the next sections, we present the result of applying our systematic process for

the design of adaptive systems (cf. Chapter 5) to the A-CAD. Then, at the end of the

chapter, we report on the results of running simulations on the A-CAD using the Zanshin

framework (cf. Chapter 6).

7.2 System Identification for the A-CAD

In the previous section, we have presented “vanilla” requirements for a Computer-aided

Ambulance Dispatch (CAD) system. In other words, so far we have modeled the require-

ments of a CAD system that cannot adapt to any failures. In this chapter, we start

applying our approach for the development of adaptive systems to the CAD with the

objective of developing the A-CAD. We start with System Identification.

7.2.1 AwReqs for the A-CAD

In this particular experiment, we started from a requirements model for the CAD system

with no variability (Figure 7.2) and proceeded to the identification of requirements and

assumptions that are critical to the success of the system in order to, in a later step,

attach to them certain adaptation actions that would be taken whenever the system does

not satisfy such requirements (which included adding variability to the initial model).
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Again using the available publications on the LAS-CAD case as source [Finkelstein,

1993; Beynon-Davies, 1995; Breitman et al., 1999; Finkelstein and Dowell, 1996; Kramer

and Wolf, 1996], we analyzed what are some possible situations to which a CAD software

might have to adapt in order to specify AwReqs to some of these situations as part of our

experiment. The following list contains some CAD-related failures which were considered

as possible causes for the LAS-CAD demise:

• Misusage: lack of cooperation from staff and crew, ranging from willful misusage

to direct sabotage of the system; staff/crew members unfamiliar with the system

or improperly trained to use it. This could cause crew members to use different

ambulances or equipment than those specified in the dispatching instructions, crew

members not pressing the appropriate buttons to confirm/release the dispatch, etc.;

• Transmission problems: delays or corruption of data during transmission from

ambulances to the central CAD software caused by excess load on the communication

infrastructure, interference with other equipment, bad coverage by the communica-

tion network in some areas (black spots), etc.;

• Unreliable software: errors or incorrect information produced by any of the soft-

wares associated with the CAD system;

• Unfamiliar territory: dispatching of crews to parts of the serviced region they

were not familiar with, which also made them drive longer to go back to the station

at the end of the shift. Can cause discontentment, which triggers misusage; and

longer times to resolve the incident, which could trigger exception messages;

• Stale ambulance information: caused by transmission problems and/or system

misusage can cause the system to generate dispatching instructions which are not

optimal, causing other problems such as sending crews to unfamiliar territory;

• MDT problems: mobile data terminals that lock up, are not readable or mal-

function due to poor installation or maintenance can cause transmission problems,

misusage or stale information;

• Slow response speed: ambulances take too long to arrive due to other problems

that were already cited. This could cause citizens to call the emergency service

again, increasing the number of calls. This could also cause a flood of exception

messages;

• Flood of calls: an average amount of calls is expected everyday, but for some

reason this number can significantly increase at any given day (e.g., the LAS worked
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with an average of 1300-1600 emergency calls and received more than 1900 calls at

the day of the failure);

• Flood of exception messages: exception messages should be generated when

dispatching does not finish in 3 minutes [REQ-16], ambulances are not released in

15 minutes [REQ-17] or go the wrong way to the incident’s location [REQ-18]. Other

errors, such as transmission problems, misusage and MDT problems could cause a

flood of exceptions which hinder the work of the staff.

We have thus identified 12 AwReqs for the A-CAD, covering most of the problems

listed above. It is important to note, however, that the list of AwReqs is not meant to

be exhaustive. The purpose of this experiment is to demonstrate that AwReqs can help

avoiding a complete system failure by adapting to some of the situations that contributed

to the LAS-CAD demise. To develop an Adaptive CAD that would be used in practice

in a big city like London would most certainly require a lot more effort and elicit many

other AwReqs in the process.

Figure 7.3 shows the goal model for the CAD previously presented in Figure 7.2

(p. 150), with added AwReqs. Moreover, a new task — Get feedback, under goal Re-

source mobilization — was also added to cope with the unfamiliar territory problem, as

will be discussed next. Table 7.1 summarizes the elicited AwReqs and shows, for each of

them, a short description, the CAD problem from which they originated and the pattern

that represents them (cf. Section 3.1.3, p. 75).

In the following paragraphs, we justify the elicitation of each AwReq, explaining the

rationale for its elicitation based on the CAD problems listed in the previous section.

Flood of calls: the proposed solution for the CAD represented earlier assumed that

up to 1500 calls are received per day. If much more calls than that are received in any

given day, something must be done so this flood of calls does not hinder the whole system,

hence AwReqs AR1 and AR2 were elicited. The former indicates the domain assumption

Up to 1500 calls received per day should not fail at any given day and could trigger

adaptation actions to deal with a flood of calls in a particular day. The latter, by its

turn, says that AwReq AR1 should succeed 90% of the time considering month periods.

This meta-AwReq raises awareness to the possibility that the average number of calls per

day is raising and the system should evolve to normally support a bigger number of daily

calls.

It is interesting to note that an aggregate AwReq MaxFailure(D MaxCalls, 0, 1d)

was used instead of a simple NeverFail(D MaxCalls). The reason for this is the following:

failure of the former is registered once for the given period (1 day), whereas the latter is

checked for every instance of the domain assumption verification, which would most likely
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be implemented at every call. Having the meta-AwReq applied to the aggregate AwReq

conveys the intended meaning of AR2 : in 90% of the days in a month, the number of

calls did not overcome the 1500 threshold. If AR1 were not aggregate, AR2 ’s percentage

would be applied to the number of calls, not the number of days!

ORCON standard: this is not one of the problems listed earlier, but a standard the

LAS is supposed to follow, which we have mentioned in the beginning of section 7.1. This

standard has motivated the elicitation of requirement REQ-12, which says that 75% of

the ambulances should arrive within 8 minutes to the location of the incident. That is

precisely what AwReq AR3 imposes over the quality constraint Ambulances arrive in 8

min. Furthermore, AwReq AR4 alerts staff about a decreasing trend in the success rate

of the quality constraint, which could allow management to fix the causes of this problem

before it goes lower the threshold imposed by ORCON.

Unreliable software: the CAD system depends on other software to work properly

and if these are not reliable, problems are bound to arise. The standard CAD goal

model thus assumes that the support system that provides data about resources and the

gazetteer that provides maps of the serviced region are working properly. An AwReq was

modeled for each of these systems: AR5 imposes a never fail constraint on Resource data

is up-to-date, whereas AR6 tolerates one failure per week for the gazetteer.

Slow response: we divide the response of the ambulance service in two parts: dis-

patching, done by the staff at the central, and resolution, done by the crews in their

ambulances. A constraint on the first part is depicted in the CAD model by quality

constraint Dispatching occurs in 3 min and to indicate the criticality of this constraint,

AwReq AR11 indicates the constraint should never fail. For the second part, delta AwReq

AR7 was added to the A-CAD goal model. This AwReq does not have a pattern, as its

definition is too specific to fit into one. It prescribes that, for each incident, the time

between the ambulance or station being informed about the incident and the ambulance

being released from the same incident should be no longer than 12 minutes. Counting

the 3 minutes of dispatching, that gives a total of 15 minutes for incident response, as

prescribed by quality constraint Incidents resolved in 15 min.

Transmission problems: the CAD goal model of Figure 7.3 includes the domain

assumption MDTs communicate position, because current position of each ambulance

is essential to a proper ambulance dispatch. AwReq AR8 establishes, then, that this

assumption can fail at most once per minute.

Misusage: for the CAD to work properly, it is also assumed that Crew members use

MDTs properly. The criticality of this domain assumption is the reason for AwReq AR9,

which prescribes a 99% success rate for it.

Flood of messages: task Display exception messages adds to the CAD the capability
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of alerting the staff in case of different problems in the ambulance service. To cope with a

possible flood of such alerts that hinders staff work, an AwReq was added to the amount

of time this tasks succeeds in its execution. AR10 indicates that the task should succeed

at most 10 times per minute.

Unfamiliar territory: to be aware if ambulance crews are operating outside of their

usual sector, a new task was added to the goal model of the CAD. Get good feedback,

under goal Resource mobilization, succeeds if the crew indicates that the incident was

correctly dispatched to them. Then, AwReq AR12 establishes a 90% success rate for this

task, which would alert management if more than 10% of the incidents were judged to be

badly dispatched.

We can see in Table 7.1 that almost half of the AwReqs elicited for the A-CAD impose

constraints on domain assumptions being true, which denotes the importance of adapting

to changes in the environment in which the A-CAD operates. Checking if a domain

assumption is true, however, may not be a trivial thing. Therefore, the following lists

specifies how each of the domain assumptions should be checked:

• Up to 1500 calls received per day: this is the simplest assumption to be checked,

as it refers to calls, which is one of the domain entities of the CAD. There are many

ways of keeping the count of how many calls there have been during each 24 hour

period (e.g., a query on a database of calls);

• Resource data is up-to-date: this assumption is deemed false if any crew or staff

member reports inconsistencies between the information shown by the system and

reality;

• Gazetteer working and up-to-date: this is checked in the same fashion as the

previous assumption (data is up-to-date), plus it should be verified that the gazetteer

system responds whenever it is queried;

• MDTs communicate position: the CAD should check that all busy (engaged)

ambulances report their position at every 13 seconds;

• Crew members use MDTs properly: the MDT should detect and warn the

CAD when things are done in violation of the proper protocol. For instance, an

ambulance should not leave the station without confirmation (an incident has been

assigned to it) or deactivation (for repair, etc.).

Finally, in order to avoid possible ambiguity from reading the AwReqs ’ descriptions in

Table 7.1, each AwReq has been specified in OCLTM (cf. Section 3.1.2, p. 70). Listing 7.1

shows the specification of all AwReqs of Table 7.1.
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Listing 7.1: The AwReqs of the A-CAD, specified in OCLTM .� �
1 package acad
2
3 -- AwReq AR1: domain assumption ‘Up to 1500 calls received per day ’ should

always be true.
4 context D_MaxCalls
5 inv AR1: never(self.oclInState(Failed))
6
7 -- AwReq AR2: AwReq ‘AR1 ’ should succeed 95% of the time considering month

periods.
8 context AR1
9 def: all : Set = AR1.allInstances ()

10 def: month : Set = all ->select(x | new Date().difference(x.time , DAYS) <= 30)
11 def: monthSuccess : Set = month ->select(x | x.oclInState(Succeeded))
12 inv AR2: always(monthSuccess ->size() / month ->size() >= 0.95)
13
14 -- AwReq AR3: quality constraint ‘Ambulances arrive in 8 min ’ should have 75%

success rate.
15 context Q_AmbArriv
16 def: all : Set = Q_AmbArriv.allInstances ()
17 def: success : Set = all ->select(x | x.oclInState(Succeeded))
18 inv AR3: always(success ->size() / all ->size() >= 0.75)
19
20 -- AwReq AR4: the success rate of quality constraint ‘Ambulances arrive in 8 min

’ should not decrease 2 months in a row.
21 context Q_AmbArriv
22 def: all : Set = Q_AmbArriv.allInstances ()
23 def: m1 : Set = all ->select(x | new Date().difference(x.time , MONTHS) == 1)
24 def: m2 : Set = all ->select(x | new Date().difference(x.time , MONTHS) == 2)
25 def: m3 : Set = all ->select(x | new Date().difference(x.time , MONTHS) == 3)
26 def: success1 : Set = m1 ->select(x | x.oclInState(Succeeded))
27 def: success2 : Set = m2 ->select(x | x.oclInState(Succeeded))
28 def: success3 : Set = m3 ->select(x | x.oclInState(Succeeded))
29 def: rate1 : Double = success1 ->size() / m1 ->size()
30 def: rate2 : Double = success2 ->size() / m2 ->size()
31 def: rate3 : Double = success3 ->size() / m3 ->size()
32 inv AR4: never(( rate1 < rate2) and (rate2 < rate3))
33
34 -- AwReq AR5: domain assumption ‘Resource data is up-to-date ’ should always be

true.
35 context D_DataUpd
36 inv AR5: never(self.oclInState(Failed))
37
38 -- AwReq AR6: domain assumption ‘Gazetteer working and up-to-date ’ should not be

false more than once per week.
39 context D_GazetUpd
40 def: all : Set = D_GazetUpd.allInstances ()
41 def: week : Set = all ->select(x | new Date().difference(x.time , DAYS) <= 7)
42 def: weekFail : Set = week ->select(x | x.oclInState(Failed))
43 inv AR6: always(weekFail.size() <= 1)
44
45 -- AwReq AR7: task ‘Monitor status of ambulances ’ should be successfully

executed with status ‘released ’ within 12 minutes of the successful
execution of task ‘Inform stations/ambulances ’, for the same incident.

46 context T_MonitorStatus
47 def: related : Set = T-InformAmbs.allInstances ()->select(x | x.argument ("

incident ") = self.argument (" incident "))
48 inv AR7: eventually(self.argument (" status ") = "released ") and never(related ->

exists(x | x.time.difference(self.time , MINUTES) > 12))
49
50 -- AwReq AR8: domain assumption ‘MDTs communicate position ’ should not be false

more than once per minute.
51 context D_MDTPos
52 def: all : Set = D_MDTPos.allInstances ()
53 def: minute : Set = all ->select(x | new Date().difference(x.time , SECONDS) <=

60)
54 def: minuteFail : Set = minute ->select(x | x.oclInState(Failed))
55 inv AR8: always(minuteFail.size() <= 1)
56
57 -- AwReq AR9: domain assumption ‘Crew members use MDTs properly ’ should be true

99% of the time.
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58 context D_MDTUse
59 def: all : Set = D_MDTUse.allInstances ()
60 def: success : Set = all ->select(x | x.oclInState(Succeeded))
61 inv AR9: always(success ->size() / all ->size() >= 0.99)
62
63 -- AwReq AR10: task ‘Display exception messages ’ should successfully execute no

more than 10 times per minute.
64 context T_Except
65 def: all : Set = T_Except.allInstances ()
66 def: minute : Set = all ->select(x | new Date().difference(x.time , SECONDS) <=

60)
67 def: minuteSuccess : Set = minute ->select(x | x.oclInState(Succeeded))
68 inv AR10: always(minuteSuccess.size() <= 10)
69
70 -- AwReq AR11: quality constraint ‘Dispatching occurs in 3 min ’ should never

fail.
71 context Q_Dispatch
72 inv AR11: never(self.oclInState(Failed))
73
74 -- AwReq AR12: task ‘Get good feedback ’ should succeed 90% of the time.
75 context T_Feedback
76 def: all : Set = T_Feedback.allInstances ()
77 def: success : Set = all ->select(x | x.oclInState(Succeeded))
78 inv AR12: always(success ->size() / all ->size() >= 0.9)
79 endpackage� �

7.2.2 Differential relations for the A-CAD

After AwReqs were identified as indicators in the A-CAD, the next step in system iden-

tification was the elicitation of parameters and, then, relations between these parameters

and the indicators. Differently from the Meeting Scheduler example that we have been

using throughout the thesis, the A-CAD was not elicited with variability from the start

and, thus, at this point in the experiment contained no variation points.

We have, thus, analyzed the AwReqs elicited in the previous sub-section and tried to

come up with possible variability scenarios that could help in case of AwReq failure. Dur-

ing this process, the goal model has been changed to accommodate eight new parameters:

control variables NoC, NoSM and LoA and variation points VP1 through VP5, adding

some new goals and tasks to the goal model as well. Figure 7.4 shows the resulting goal

model from system identification, including all identified parameters. This new model

also shows the name of the AwReqs next to their graphical representation for an easier

reference in the explanations that follow.

Parameters

Control variables NoC — maximum Number of Calls that can be handled daily — and

NoSM — Number of Staff Members working on the present day are associated with

domain assumption Up to 1500 calls per day, which has also been changed and now reads

Up to 〈NoC〉 calls per day, meaning the assumption is checked against the NoC parameter

and is no longer fixed at 1500 calls.
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However, parameter NoC is a special kind of parameter that cannot be set directly.

Instead, it is declared as a direct function of another parameter, namely NoSM. The

maximum number of calls the service can take in a day is then calculated based on the

number of staff members working on that specific day. Hence, by changing the number

of staff members on duty one can affect positively or negatively the success rate of the

domain assumption, affecting, thus, indicators (AwReqs) AR1 and AR2.

Control variable LoA — Level of Automation of the dispatch procedure — is an enu-

merated parameter that is associated with tasks Specify configuration of ambulances and

inform stations / ambulances and can assume one of three values: manual (dispatch will

be done completely manually by staff members, communicating with ambulances and

stations via radio), automatic with confirmation (dispatch orders are suggested by the

A-CAD but are sent only if a staff member confirms that is indeed the best choice) or

automatic (the A-CAD autonomously generates dispatch orders and send them to ambu-

lances/stations).

Changing the value of this parameter can affect indicators AR3, AR4, AR9 and AR12.

The rationale behind this effect is that switching to a more manual process helps solve

problems that are too complicated for the A-CAD’s reasoning capabilities. The interaction

between the staff member in charge of the dispatch and crew members in ambulances and

stations can make sure the crew agrees with the dispatching instructions (increasing the

success rate of Get good feedback), allows for the staff member to assist the crew about the

use of the MDT (increasing the success rate of Crew members use MDTs properly) and

ultimately aid in achieving the ORCON standards (higher success rates for Ambulances

arrive in 8 min). Obviously the benefits do not come for free: the more manual the

process is, the more time each staff member spends on each incident, which allows them

to take less calls a day and makes dispatching more time-consuming.

The parameter VP1, in its turn, was elicited to provide alternatives for improving

indicator AR7, which talks about the time crews take to resolve an incident once the

dispatching information has been received by them. One way the A-CAD can help in this

matter is to provide route assistance to ambulance drivers, so they can reach the incident’s

location and, whenever needed, take injured people to the hospital as fast as possible.

Therefore the goal Provide route assistance has been added to Resource mobilization’s

AND-refinement. This new sub-goal can be satisfied in three different ways: (a) assuming

that the Driver knows the way and, thus, doing nothing; (b) having the A-CAD assist

via navigator ; or (c) having the Staff member assist via radio. Again, here there is a

trade-off between how personalized this assistance is and how much time it takes from

staff members.

Indicator AR7 could also be affected by changes in LoA. Once again, having a more
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direct communication between staff member and ambulance crew can help determine the

best way to reach the incident’s location and resolve it.

Variation points VP2 and VP3 have been elicited along with a new subtree of the main

goal of the system in order to include an alternative to the gazetteer for map provision,

therefore affecting indicator AR6. The goal Obtain map information was added to the

model where the domain assumption Gazetteer working and up-to-date used to be, making

the assumption one of its children in OR-refinement VP2.

The other child — goal Obtain map info manually — is, in effect, the alternative

to using the gazetteer automatically. When this alternative is selected, a staff member

is supposed to check the map to determine the exact location of the incident and the

best ambulances to be dispatched. This goal is further refined into two tasks in VP3 :

the staff member can either Check the gazetteer itself or, in extreme cases, Check paper

map. Like in previous parameters, the alternatives range from highly automated to highly

manual, providing a trade-off between avoiding software mistakes and the time taken by

staff members for each dispatch.

Finally, there are variation points VP4 and VP5. In the former, a new goal — Update

position of engaged ambulances — has replaced domain assumption MDTs communicate

position, making it one of its children in an OR-refinement. The other child is task Crew

updates position via radio, which consists on a manual fall-back for when MDTs are not

working properly, thus affecting indicator AR8. Radio contact between crew and staff also

allows crew members to avoid using the MDT altogether, passing all information directly

via voice. Therefore, this parameter also affects indicator AR9.

Parameter VP5 provides a simple solution to the flood of exception messages, mon-

itored by indicator AR10 : add messages to a message queue instead of showing them

directly. To this end, the task Display exception messages has been replaced by a homony-

mous goal, which is now its parent, having on the other side of the OR-refinement the

task Add to message queue.

Differential Relations

After we identified parameters that could provide the necessary variability for the A-CAD

to adapt to the previously elicited possible failures at runtime, we specified the effect that

changes in these parameters have on the modeled AwReqs using differential relations,

as prescribed in our approach. Table 7.2 shows the initial set of indicator/parameter

relations for the A-CAD.

For the relations that refer to enumerated control variable LoA to make any sense, it is

required that a total order of the parameter’s enumerated values be provided. This order

shall be as follows: 〈manual〉 ≺ 〈auto with confirmation〉 ≺ 〈automatic〉. Variation



164 Empirical evaluation

Table 7.2: Initial set of differential relations of the A-CAD.

∆ (AR1/NoSM) [0,maxSM ] > 0 (7.1)

∆ (AR2/NoSM) [0,maxSM ] > 0 (7.2)

∆ (AR3/LoA) < 0 (7.3)

∆ (AR4/LoA) < 0 (7.4)

∆ (AR9/LoA) < 0 (7.5)

∆ (AR11/LoA) > 0 (7.6)

∆ (AR12/LoA) < 0 (7.7)

∆ (AR3/V P1) > 0 (7.8)

∆ (AR4/V P1) > 0 (7.9)

∆ (AR7/V P1) > 0∆ (AR11/V P1) < 0 (7.10)

∆ (AR6/V P2) > 0 (7.11)

∆ (AR11/V P2) < 0 (7.12)

∆ (AR12/V P2) > 0 (7.13)

∆ (AR6/V P3) > 0 (7.14)

∆ (AR11/V P3) < 0 (7.15)

∆ (AR12/V P3) > 0 (7.16)

∆ (AR8/V P4) > 0 (7.17)

∆ (AR9/V P4) > 0 (7.18)

∆ (AR11/V P4) < 0 (7.19)

∆ (AR10/V P5) > 0 (7.20)

points assume their default order, i.e., ascending from left to right according to their

position in the model.

Most of the effects formalized by the relations were discussed in the previous step

because they motivated the very elicitation of the parameters. However, at this step of

the process each of the elicited parameters were again analyzed and compared to each

system indicator to make sure all effects were identified and modeled. This analysis

resulted in the identification of the following new relations:

• All parameters, with the exception of VP5 and NoSM, have an effect on indicator

AR11, which says that quality constraint Dispatching occurs in 3 min should never

fail. A higher level of automation (LoA) improves it — Equation (7.6) —, whereas

choosing to do tasks manually with the involvement of a staff member (LoA and

VP1 through VP4 ) has a negative effect on it — equations (7.6), (7.10), (7.12),

(7.15) and (7.19);

• Variation points VP2 and VP3 also have an effect on indicator AR12, which states

that task Get good feedback (for the dispatch choice) should succeed 90% of the time

— equations (7.13) and (7.16). The rationale is that obtaining map information

manually may help in the process of choosing the best ambulance to dispatch;

• Parameter VP1, which indicates the kind of route assistance to give ambulance

drivers, also affects indicators AR3 and AR4, which refer to quality constraint Am-

bulances arrive in 8 min — equations (7.8) and (7.9). Providing route assistance

may help satisfy ORCON standards.
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Another activity of this step is the identification of landmark values for numeric control

variables, that establish intervals in which the identified relations can be applied. The

only applicable numeric parameter is NoSM and all of its relations — equations (7.1)

and (7.2) — are valid in the interval [0,maxSM ], maxSM being a qualitative value that

represents the maximum number of staff members the ambulance service infrastructure

can hold. NoC is also numeric, but it is not applicable as cannot be directly modified (it

is a function of NoSM ). Hence, no differential relation or landmark value were identified

for it.

Given the relations in Table 7.2 and assuming each of the parameters has been assigned

an initial value it is possible to use the information of how parameters affect indicators at

runtime to change their values whenever there is a system failure. This change, however,

may require some kind of trade-off analysis at runtime. For instance, as stated before,

choosing to do dispatching tasks manually (LoA and VP1 through VP4 ) might improve

several different indicators, but at the cost of having a negative impact over AR11.

Trade-offs

A careful analysis of these relations, however, will indicate that there are some indicators

missing in our model of the A-CAD. After all, AR11 is the only indicator that receives

a negative impact from some of the parameter changes and this impact can be remedied

by increasing NoSM. Therefore, why not setting everything to manual and increasing the

number of staff members to the maximum? Also, if switching VP5 to Add to message

queue solves the flood of messages problem, why not use it exclusively?

The answer to these questions relies on some implicit quality indicators, i.e., non-

functional requirements that have not been explicitly elicited. Clearly, increasing the

number of staff members also increases the cost of the overall system, whereas the use of

a message queue might be avoided unless strictly necessary because of user friendliness

concerns. For the purposes of this experiment, we assume the existence of the following

stakeholder requirements (which have already been depicted earlier in Figure 7.4):

• We should aim for Low cost (softgoal). In particular, stakeholders would like Monthly

cost below e〈MaxCost〉 (quality constraint), where MaxCost is a qualitative vari-

able representing the maximum amount of money that should be spent for the am-

bulance service at any given month. This requirement should never fail;

• The A-CAD should have User friendly GUIs (softgoal). In particular, it should

be the case that Staff members see messages in 〈S〉 secs, where S is a qualitative

variable representing the maximum amount of seconds between message generation

and message display. For this requirement, stakeholders would like it to fail no more
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Table 7.3: Differential relations for the newly elicited indicators AR13 and AR14.

∆ (AR13/NoSM) < 0 (7.21)

∆ (AR14/V P5) < 0 (7.22)

Table 7.4: Refinements for the differential relations of the A-CAD

|∆ (AR3/V P1) | > |∆ (AR3/LoA) | (7.23)

|∆ (AR4/V P1) | > |∆ (AR4/LoA) | (7.24)

V P2 6= 〈Obtain map info manually〉 → |∆ (AR6/V P3) | = 0 (7.25)

|∆ (AR9/V P4) | > |∆ (AR9/LoA) | (7.26)

|∆ (AR11/V P2) | > |∆ (AR11/LoA) | > |∆ (AR11/V P3) | > |∆ (AR11/V P1) | > |∆ (AR11/V P4) | (7.27)

|∆ (AR12/V P2) | ≈ |∆ (AR12/V P3) | ≈ |∆ (AR12/LoA) | (7.28)

than NoSM per week, meaning that at most there should be, in average, one failure

per staff member working on the ambulance service.

Given the new indicators (AR13 and AR14 ), new differential relations were also iden-

tified and are displayed in Table 7.5.

Relation refinement

After the initial differential relations were identified, we proceeded to the last step of

system identification: relation refinement. By comparing relations associated with the

same indicator, we have identified six new relations, shown in Table 7.4. When reading

these comparisons, consider that the unit for NoSM is one staff member — specified

UNoSM = 1 —, so when other parameters are compared with NoSM, they are comparing

to “hiring or laying off one staff member”. Enumerated control variables and variation

points (which are themselves enumerated) have a default unit of increment of choosing

the next value in their given order.

Of the fourteen indicators, six had more than one parameter associated with them:

AR3, AR4, AR6, AR9, AR11 and AR12. All of them follow the default combination

rules (homogeneous impact is additive) and no relation was added for AR6 because VP3

is only relevant if VP2 is “increased” to pursue Obtain map info manually instead of

assuming Gazetteer working and up-to-date.

Finally, it is important to note that the resulting model is much simplified if com-

pared with a real ambulance dispatch system. Taking the London Ambulance System

as an example, there were probably many other softgoals and quality constraints to be

elicited from the stakeholders, leading to more indicators (AwReqs), parameters and, as a

consequence, more differential relations between indicators and parameters. The A-CAD
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was intentionally simplified for the purposes of this experiment (which is, after all, a

laboratory demonstration and not a full-fledged case study with an industrial partner).

7.2.3 Final additions to the A-CAD model

To better illustrate some adaptation strategies in the next section, we have included a few

new elements in the goal model of the A-CAD, resulting in the model shown in Figure 7.5,

which is the final goal model for the A-CAD. The new elements are:

• Numeric control variable MST (Minimum Search Time), representing the minimum

amount of time (in seconds) staff members must dedicate to the task of searching

for duplicates;

• Softgoal Unambiguity, operationalized by quality constraint No unnecessary extra

ambulances dispatched ;

• AwReq AR15, which specifies that the goal Register call should never fail (NeverFail

(G RegCall));

• AwReq AR16, imposing a comparable delta constraint that verifies that, in fact, the

number of ambulances at the scene is the same number of ambulances in the con-

figuration of the dispatch (ComparableDelta(T SpecConfig, Q NoExtra, numAmb,

0);

MST is directly related to the new softgoal, Unambiguity : if staff members are forced

to spend some time searching for duplicate calls, this will lower the probability of missing

a duplicate and registering a call as a new incident, which would in turn result in duplicate

(ambiguous) dispatch. On the other hand, the trade-off here is that higher values for MST

may imply harming softgoals such as Fast arrival and Fast dispatching.

In its turn, AR15 requirement represents the fact that the goal Register call is critical

to the dispatch process, for the very simple reason that the A-CAD cannot process an

incident that has not been registered into the system and, thus, the entire process will

have to be conducted manually if this goal is not satisfied.

Table 7.5 shows the new differential relations and new and changed refinements added

to the A-CAD model after the addition of the new elements. The following list describes

the new/modified relations:

• Increasing the Minimum Search Time will affect negatively the success of quality

constraint Dispatching occurs in 3 min (AR11 ) for an obvious reason: the time

spent searching for duplicates could be spent with other tasks related to dispatching

and incident resolution in order to finish them faster — Equation (7.30);
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Table 7.5: New differential relations and refinements, after the final additions to the specification.

∆ (AR12/MST ) [0, 180] > 0 (7.29)

∆ (AR11/MST ) [0, 180] < 0 (7.30)

∆ (AR13/MST ) [0, 180] > 0 (7.31)

∆ (AR16/MST ) [0, 180] > 0 (7.32)

∆ (AR16/LoA) < 0 (7.33)

. . . > |∆ (AR11/V P4) | > |∆ (AR11/MST ) | (7.34)

|∆ (AR12/V P2) | ≈ |∆ (AR12/V P3) | ≈ |∆ (AR12/LoA) | ≈ |∆ (AR12/MST ) | (7.35)

|∆ (AR13/NoSM) | > |∆ (AR13/MST ) | (7.36)

|∆ (AR16/MST ) | > |∆ (AR16/LoA) | (7.37)

• On the other hand, increasing MST affects positively AR16 — the more time spent

searching for duplicates, the less chance of an ambiguous dispatch, Equation (7.32)

—, AR12 — duplicate dispatches will most likely get bad feedback from crew mem-

bers who will be sent to assist an incident unnecessarily — Equation (7.29) — and

AR13 — duplicate dispatches represent waste of resources, and therefore money,

Equation (7.31);

• The Level of Automation also affects AR16 (i.e., quality constraint No unnecessary

extra ambulances dispatched): on a more manual setting staff members can check

amongst themselves if the dispatch they are currently doing is ambiguous and cancel

one of the dispatches before ambulances are mobilized — Equation (7.33);

• Regarding AwReqs AR11 and AR13, parameter MST is the one with the lowest

effect — equations (7.34) and (7.36). On the other hand, when dealing with Unam-

biguity (i.e., AwReq AR16 ), MST is better than LoA — Equation (7.37). For AR12,

all parameters have roughly the same effect, including the new parameter MST —

Equation (7.35).

7.3 Adaptation Strategy Specification for the A-CAD

Given the final goal model for the A-CAD, a complete specification of the adaptation

strategies for the system can be provided. Table 7.6 presents the list of strategies associ-

ated to each AwReq failure.

AwReqs AR1 and AR2 monitor if the domain assumption Up to 〈NoC〉 calls per day

is true and the only way to improve the success rate of this assumption is by increasing
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Table 7.6: Final specification of adaptation strategies for the A-CAD experiment.

AwReq AwReq pattern Adaptation strategies

AR1 NeverFail(T InputInfo) 1. Warning(“AS Management”)

2. Reconfigure(∅)

AR2 SuccessRate(AR1, 90%) 1. Warning(“AS Management”)

2. Reconfigure(∅)

AR3 SuccessRate(Q AmbArriv, 75%) 1. Reconfigure({Ordered Effect Parameter

Choice} [order = descending])

AR4 not TrendDecrease(Q AmbArriv,

30d, 2)

1. RelaxReplace(AR4, AR4 60Days) + Strength-

enReplace(AR3, AR3 80Pct)

2. Reconfigure({Ordered Effect Parameter

Choice} [order = ascending])

AR5 NeverFail(D DataUpd) 1. Delegate(“Staff Member”)

AR6 MaxFailure(D GazetUpd, 1, 7d) 1. Reconfigure(∅ [n = 2])

AR7 1. Reconfigure(∅)

AR8 MaxFailure(D MDTPos, 1, 1min) 1. RelaxReplace(D MDTPos 20Secs)

2. RelaxReplace(AR8, AR8 45Secs)

3. RelaxReplace(AR8 45Secs, AR8 30Secs)

4. Retry(60000)

5. Reconfigure(∅ [Immediate Resolution])

AR9 SuccessRate(D MDTPos, 1, 1min) 1. Reconfigure({Ordered Effect Parameter

Choice} [order = descending])

AR10 MaxSuccess(T Except, 10, 1min) 1. Reconfigure(∅ [Immediate Resolution])

AR11 NeverFail(Q Dispatch) 1. Reconfigure({Oscillation Value Calculation,

Oscillation Resolution Check})
2. Reconfigure({Ordered Effect Parameter

Choice} [order = descending])

AR12 SuccessRate(T Feedback, 90%) 1. Reconfigure(∅)

AR13 NeverFail(Q MaxCost) 1. Reconfigure({Ordered Effect Parameter

Choice} [order = ascending, repeat policy

= max 2 times])

AR14 MaxFailure(Q MsgTime, <NoSM>,

1w)

1. Reconfigure(∅ [Immediate Resolution])

AR15 NeverFail(G RegCall) 1. Retry(5000)

2. RelaxDisableChild(T DetectCaller)

AR16 ComparableDelta(T SpecConfig,

Q NoExtra, numAmb, 0)

1. Reconfigure({Ordered Effect Parameter

Choice} [order = ascending])
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the number of staff members (NoSM ), which in turn automatically increases the number

of calls (NoC ) the service can take per day. Since hiring and firing staff members does

not seem something that should be done automatically by a software system, the first

associated strategy with these AwReqs is to warn the ambulance service managers.

Then, reconfiguration is provided as a second strategy to try. Given that only one

parameter is related to these AwReqs the default procedure (represented by ∅) will be

used to deal with their failures. However, it is important to note that the maturation time

of parameter NoSM is five days, meaning it takes that amount of time to see the results

of hiring new staff (hiring and training takes time). The adaptation algorithm will wait

for this amount of time before considering new failures of AR1 or AR2.

AR3 and AR4 also refer both to the same element, namely, the quality constraint

Ambulances arrive in 8 min. To increase its success rate, the framework can choose

between variation point VP1 or control variable LoA, the former having a higher effect

than the latter. Since AR3 sets the threshold for the success rate of the quality constraint,

it is set to use descending order, choosing to change first the element with greater effect.

On the other hand, AR4 just indicates a trend of decline, but the current rate could still

be well over the threshold and the choice here is to use the parameters with lowest effect

first, i.e., ascending order.

AR5 does not have any parameters associated with it and, thus, reconfiguration is

not applicable. Since it refers to failures of the domain assumption Resource data is up-

to-date, we delegate the solution to the staff member whose session of use triggered the

AwReq, waiting for her to check the system responsible for registration of resources and

fix the problem manually.

AwReq AR6 imposes a maximum failure constraint on the domain assumption Gazetteer

working and up-to-date and the related parameters are variation points VP2 and VP3

and, as specified earlier in Table 7.4, VP2 has to be changed first, otherwise changing

VP3 has no effect. However, we have specified the number of parameters to choose to be

N = 2 and, thus, both parameters will be changed at the same time. This will make the

A-CAD switch always from assuming proper functioning of the gazetteer to using paper

maps.

The reconfiguration strategy is also applied to AR7, AR8, AR10 and AR14. Because

there is just one parameter that has an effect on each of these indicators, they will all

use the default algorithm. With the exception of AR7, however, these AwReqs have been

marked as immediate resolution, which means that the adaptation algorithm will consider

the problem solved immediately after making the parameter change. This makes sense

for AR8 and AR10 because changes on their associated parameters, respectively VP4

and VP5, switch the system to a branch that does not contain the elements to which
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the AwReq refers. Changing VP5 back to Display exception messages also makes AR14

irrelevant because messages would be shown immediately to staff members. The default

algorithm is also the choice for AR12, because all of the parameters that can affect it have

roughly the same effect, so one of them will be chosen randomly.

AR8, however, also has other adaptation strategies associated to it. The original

specification for the transmission of ambulance positions is very strict, therefore we apply

three relax strategies (one on the domain assumption itself, two on the AwReq) and a

retry strategy to make sure it is not a temporal glitch before reconfiguring.

For AR9, AR13 and AR16 the ordered parameter choice was also selected, being

used in an ascending order for the latter two AwReqs. Furthermore, for AR13 the repeat

policy was set to max 2 times so we try to reduce costs by avoiding ambiguous dispatches

(increase MST ) a few times first before firing staff members (reducing NoSM ).

AR11 indicates that Dispatching occurs in 3 min should never fail. In case it does,

however, two different algorithms were chosen. The first one is the Oscillation Algorithm,

which applies only to MST, as it is the only numeric variable associated with AR11. If

this algorithm is not applicable (e.g., MST is not incrementable), use descending order

and change other related parameters.

Finally, AR15, like AR5, is also not affected by reconfiguration and is associated with

two adaptation strategies: retrying goal Register call after 5 seconds (in case the failure is

due to a temporary error in the input form) and relaxing the goal by disabling task Detect

caller location (in case caller detection is not working), as it is not essential to ambulance

dispatch (the staff member can ask the caller for her location).

7.4 Simulations of the A-CAD using the Zanshin framework

In the previous sections, the A-CAD’s adaptation requirements were elicited using the

process described in Chapter 5 and modeled using the language presented in Chapter 3,

providing initial validation for our approach for the design of adaptive systems through

informed arguments over the elicited scenarios of adaptation.

In this final section, we describe the last step in the validation of the approach: an

experiment, consisting of the development and execution of simulation of failure scenarios

of the A-CAD at runtime, using the Zanshin framework. The objective was to evaluate the

response of the Zanshin framework to the simulated failures and, thus, the effectiveness

of our proposals.

As explained back in Section 6.1.1 (p. 127), for Zanshin to be able to read the specifica-

tion of the system’s (“vanilla” and adaptation) requirements, they have to be represented

in EMF. Listing 7.2 shows the EMF encoding of the A-CAD for two simulations that were
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developed.

Listing 7.2: EMF specification of the A-CAD requirements.� �
1 <?xml version="1.0" encoding="UTF -8"?>
2 <acad:AcadGoalModel xmi:version="2.0" xmlns:xmi="http: //www.omg.org/XMI"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance" xmlns:ecore="http://
www.eclipse.org/emf /2002/ Ecore" xmlns:acad="http://acad /1.0" xmlns:it.unitn.
disi.zanshin.model="http: // zanshin.disi.unitn.it/1.0/ eca">

3 <rootGoal xsi:type="acad:G_GenDispatch">
4 <children xsi:type="acad:G_CallTaking"> <!-- 0 -->
5 <children xsi:type="acad:D_MaxCalls"/>
6 <children xsi:type="acad:G_RegCall">
7 <children xsi:type="acad:T_InputInfo"/>
8 <children xsi:type="acad:T_DetectLoc"/>
9 </children >

10 <children xsi:type="acad:T_ConfirmCall"/>
11 <children xsi:type="acad:G_AssignIncident">
12 <children xsi:type="acad:T_SearchDuplic"/>
13 <children xsi:type="acad:T_CreateOrAssign"/>
14 </children >
15 </children >
16 <children xsi:type="acad:D_DataUpd"/> <!-- 1 -->
17 <children xsi:type="acad:G_ResourceId"> <!-- 2 -->
18 <children xsi:type="acad:T_SpecConfig"/>
19 <children xsi:type="acad:T_ConfIncident"/>
20 </children >
21 <children xsi:type="acad:G_ResourceMob"> <!-- 3 -->
22 <children xsi:type="acad:T_DetBestAmb"/>
23 <children xsi:type="acad:T_InformStat"/>
24 <children xsi:type="acad:G_RouteAssist" refinementType="or">
25 <children xsi:type="acad:D_DriverKnows"/>
26 <children xsi:type="acad:T_AcadAssists"/>
27 <children xsi:type="acad:T_StaffAssists"/>
28 </children >
29 <children xsi:type="acad:T_Feedback"/>
30 </children >
31 <children xsi:type="acad:G_ObtainMap" refinementType="or"> <!-- 4 -->
32 <children xsi:type="acad:D_GazetUpd"/>
33 <children xsi:type="acad:G_ManualMap" refinementType="or">
34 <children xsi:type="acad:T_CheckGazet"/>
35 <children xsi:type="acad:T_CheckPaper"/>
36 </children >
37 </children >
38 <children xsi:type="acad:G_IncidentUpd"> <!-- 5 -->
39 <children xsi:type="acad:G_MonitorRes">
40 <children xsi:type="acad:G_UpdPosition" refinementType="or">
41 <children xsi:type="acad:D_MDTPos"/>
42 <children xsi:type="acad:T_RadioPos"/>
43 </children >
44 <children xsi:type="acad:D_MDTUse"/>
45 <children xsi:type="acad:T_MonitorStatus"/>
46 <children xsi:type="acad:T_DispStatus"/>
47 <children xsi:type="acad:T_DispDepArriv"/>
48 <children xsi:type="acad:G_DispExcept" refinementType="or">
49 <children xsi:type="acad:T_Except"/>
50 <children xsi:type="acad:T_ExceptQueue"/>
51 </children >
52 </children >
53 <children xsi:type="acad:T_CloseIncident"/>
54 <children xsi:type="acad:T_ReplAmb"/>
55 </children >
56
57 <!-- Softgoals. -->
58 <children xsi:type="acad:S_FastArriv"/> <!-- 6 -->
59 <children xsi:type="acad:S_FastDispatch"/> <!-- 7 -->
60 <children xsi:type="acad:S_FastAssist"/> <!-- 8 -->
61 <children xsi:type="acad:S_LowCost"/> <!-- 9 -->
62 <children xsi:type="acad:S_UserFriendly"/> <!-- 10 -->
63
64 <!-- Quality Constraints. -->
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65 <children xsi:type="acad:Q_AmbArriv" softgoal="// @rootGoal/@children .6"/>
<!-- 11 -->

66 <children xsi:type="acad:Q_Dispatch" softgoal="// @rootGoal/@children .7"/>
<!-- 12 -->

67 <children xsi:type="acad:Q_IncidResolv" softgoal="// @rootGoal/@children .8"/>
<!-- 13 -->

68 <children xsi:type="acad:Q_MaxCost" softgoal="// @rootGoal/@children .9"/>
<!-- 14 -->

69 <children xsi:type="acad:Q_MaxTimeMsg" softgoal="// @rootGoal/@children .10"/>
<!-- 15 -->

70
71 <!-- AwReqs. -->
72 <children xsi:type="acad:AR1" target="// @rootGoal/@children .0/ @children .0"/>

<!-- 16 -->
73 <children xsi:type="acad:AR2"/> <!-- 17 -->
74 <children xsi:type="acad:AR3"/> <!-- 18 -->
75 <children xsi:type="acad:AR4"/> <!-- 19 -->
76 <children xsi:type="acad:AR5"/> <!-- 20 -->
77 <children xsi:type="acad:AR6"/> <!-- 21 -->
78 <children xsi:type="acad:AR7"/> <!-- 22 -->
79 <children xsi:type="acad:AR8"/> <!-- 23 -->
80 <children xsi:type="acad:AR9"/> <!-- 24 -->
81 <children xsi:type="acad:AR10"/> <!-- 25 -->
82 <children xsi:type="acad:AR11" target="// @rootGoal/@children .12"

incrementCoefficient="2"> <!-- 26 -->
83 <condition xsi:type="it.unitn.disi.zanshin.

model:ReconfigurationResolutionCondition"/>
84 <strategies xsi:type="it.unitn.disi.zanshin.model:ReconfigurationStrategy"

algorithmId="qualia">
85 <condition xsi:type="it.unitn.disi.zanshin.

model:ReconfigurationApplicabilityCondition"/>
86 </strategies >
87 </children >
88 <children xsi:type="acad:AR12"/> <!-- 27 -->
89 <children xsi:type="acad:AR13"/> <!-- 28 -->
90 <children xsi:type="acad:AR14"/> <!-- 29 -->
91 <children xsi:type="acad:AR15" target="// @rootGoal/@children .0/ @children .1">

<!-- 30 -->
92 <condition xsi:type="it.unitn.disi.zanshin.model:SimpleResolutionCondition

"/>
93 <strategies xsi:type="it.unitn.disi.zanshin.model:RetryStrategy" time="

5000">
94 <condition xsi:type="it.unitn.disi.zanshin.

model:MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="
1"/>

95 </strategies >
96 <strategies xsi:type="it.unitn.disi.zanshin.

model:RelaxDisableChildStrategy" child="// @rootGoal/@children .0/
@children .1/ @children .1">

97 <condition xsi:type="it.unitn.disi.zanshin.
model:MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="
1"/>

98 </strategies >
99 </children >

100 </rootGoal >
101
102 <!-- System parameters. -->
103 <configuration >
104 <parameters xsi:type="acad:CV_MST" type="ncv" unit="10" value="60" metric="

integer"/>
105 </configuration >
106
107 <!-- Indicator / parameter differential relations. -->
108 <relations indicator="26" parameter="// @configuration/@parameters .0"

lowerBound="0" upperBound="180" operator="ft" />
109 </acad:AcadGoalModel >� �

The entire goal tree of Figure 7.5 (p. 168) is represented in the above EMF model

(lines 3–55), along with the A-CAD’s softgoals (lines 58–62), quality constraints (lines 65–
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69), AwReqs (lines 72–99). Lines 104 and 108 show, respectively, one of the parameters

and differential relations of the A-CAD, used in simulation 2.

7.4.1 Simulation 1: adaptation through evolution

The first simulation involves a failure of AwReq AR15 which, as can be seen in line 91 of

Listing 7.2, refers to Register call as its target using EMF’s syntax for references within a

model, i.e., starting at the root goal, navigate to the child with index 0 (G CallTaking),

then in that element navigate to the child of index 1 (G RegCall). The numbers in the

comments next to some elements of the listing show the index of the children of the root

goal, facilitating their location.

In line 92, AR15 is specified to have a simple resolution condition — i.e., if the AwReq

evaluation succeeded, the problem is solved — and two associated adaptation strategies,

as specified earlier in Table 7.6: Retry(5000) (lines 93–95) and RelaxDisableChild

(T DetectLoc) (lines 96–98). Both strategies are applicable at most once during an

adaptation session, as can be seen in their specification.

After the A-CAD specification has been represented in EMF, an implementation of

the Target System Controller Service (cf. Section 6.1.1, p. 127) specifically for the A-CAD

simulation has to be provided. In a real setting, this controller would be the connection be-

tween the running A-CAD and Zanshin, effecting the application-specific changes related

to each EvoReq operation (cf. Table 3.5, p. 82). In our experiments, however, we have

instead implemented simulations of the A-CAD system, which call the life-cycle methods

expected by the monitoring infrastructure (cf. Section 6.2, p. 129) and acknowledge the

reception of EvoReq operations, changing the requirements model as instructed.

When this simulation is ran, the A-CAD specification is read and stored in the repos-

itory and life-cycle methods referring to tasks Input emergency information and Detect

caller location are sent by the simulated system. The monitoring infrastructure detects

AR15 has changed its state, and Zanshin conducts the ECA-based coordination process

(cf. Section 6.3, p. 133), producing a log similar to the one shown in Listing 7.3. In the

listing, messages are prefixed with TS and AF to indicate if they originate from the target

system or the adaptation framework, respectively, which run in separate threads. This is

done to resemble more closely a real life situation, in which the target system is a separate

component from the adaptation framework.

Listing 7.3: Zanshin execution log for the AR15 simulation.� �
1 AF: Processing state change: AR15 -> Failed
2 AF: (S1) Created new session for AR15
3 AF: (S1) The problem has not yet been solved ...
4 AF: (S1) RetryStrategy is applicable.
5 AF: (S1) Selected: RetryStrategy
6 AF: (S1) Applying strategy RetryStrategy(true; 5000)
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7 TS: Received: new -instance(G_RegCall)
8 TS: Received: copy -data(iG_RegCall , iG_RegCall)
9 TS: Received: terminate(iG_RegCall)

10 TS: Received: rollback(iG_RegCall)
11 TS: Received: wait (5000)
12 TS: Received: initiate(iG_RegCall)
13 AF: (S1) The problem has not yet been solved ...
14
15 AF: Processing state change: AR15 -> Failed
16 AF: (S1) Retrieved existing session for AR15
17 AF: (S1) The problem has not yet been solved ...
18 AF: (S1) RetryStrategy is not applicable
19 AF: (S1) RelaxDisableChildStrategy is applicable.
20 AF: (S1) Selected: RelaxDisableChildStrategy
21 AF: (S1) Applying strategy RelaxDisableChildStrategy(G_RegCall; Instance level

only; T_DetectLoc)
22 TS: Received: suspend(iG_RegCall)
23 TS: Received: terminate(iT_DetectLoc)
24 TS: Received: rollback(iT_DetectLoc)
25 TS: Received: resume(iG_RegCall)
26 AF: (S1) The problem has not yet been solved ...
27
28 AF: Processing state change: AR15 -> Succeeded
29 AF: (S1) Retrieved existing session for AR15
30 AF: (S1) The problem has been solved. Terminate S1.� �

The log shows the adaptation framework receiving notification of AR15 ’s failure

(line 1), creating a new adaptation session S1 for it (2) and searching for a suitable

adaptation strategy to be applied, executing the Retry(5000) strategy (4–6). Then the

simulated target system acknowledges the reception of the commands included in that

pattern’s definition (7–12), and the adaptation framework verifies that the problem has

not yet been solved (13).

After a while, the monitoring component notifies one more failure of AR15 (line 15),

prompting the adaptation framework to retrieve the same adaptation session S1 as be-

fore, realizing that it has not yet been solved (16–17). Zanshin then proceeds to search-

ing for a suitable adaptation strategy, but Retry(5000) cannot be used again in the

same session due to its applicability condition (18). The framework ends up selecting

RelaxDisableChild(T DetectCaller) and executing it (19–21), which again is recog-

nized by the target system controller (22–26).

Finally, the monitoring infrastructure indicates that AR15 has been satisfied (line 28),

so the adaptation process can retrieve session S1, mark the problem as solved and ter-

minate it. From this point on, further failures of AR15 from the same user will create a

new adaptation session.

As this simulation demonstrates, the framework is able to execute the specified adap-

tation strategies, sending EvoReq operations to the target system, which should then

adapt according to the instructions.
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7.4.2 Simulation 2: adaptation through reconfiguration

The second simulation involves the failure of AwReq AR11 which, as specified in its

target attribute (line 82 of Listing 7.2), refers to quality constraint Dispatching occurs

in 3 min (look for the <!-- 12 --> comment to locate the 12th child of the root goal,

line 66).

AR11 uses Qualia as reconfiguration strategy (line 84), with default algorithm. As ex-

plained back in Section 6.4 (p. 137), the reconfiguration strategy has to be associated with

special resolution and applicability conditions (respectively, lines 83 and 85). Moreover,

AR11 also defines its increment coefficient KAR11 = 2.

In lines 103–105, the initial system configuration specifies the existing parameters

and their values. Line 104 defines numeric control variable (ncv) MST, with unit of

increment UMST = 10, initial value 60 and integer metric, which tells Qualia how to

perform increments. Finally, the specification includes a differential relation between

AwReq AR11 and MST, with lower bound set to 0, upper bound set to 180 and ft (fewer

than) as operator, i.e., ∆ (AR11/MST ) [0, 180] < 0 (line 108).

When ran, the simulation produces a log similar to the one shown in figure 7.4. Here,

S represents the target system (simulation), Z refers to Zanshin and Q is for Qualia.

Listing 7.4: Zanshin execution log for the AR11 simulation.� �
1 S: A dispatch took more than 3 minutes!
2 Z: State change: AR11 (ref. Q_Dispatch) -> failed
3 Z: (S1) Created new session for AR11
4 Z: (S1) Selected strategy: ReconfigurationStrategy
5 Z: (S1) Exec. ReconfigurationStrategy(qualia; class)
6 Q: Parameters chosen: [CV_MST]
7 Q: To inc/decrement in the chosen parameters: [20]
8 S: Instruction received: apply -config ()
9 S: Parameter CV_MST should be set to 40

10 Z: (S1) The problem has not yet been solved ...
11
12 S: A dispatch took more than 3 minutes!
13 Z: State change: AR11 (ref. Q_Dispatch) -> failed
14 Z: (S1) ...
15 Q: Parameters chosen: [CV_MST]
16 Q: To inc/decrement in the chosen parameters: [20]
17 S: Instruction received: apply -config ()
18 S: Parameter CV_MST should be set to 20
19
20 S: A dispatch took less than 3 minutes.
21 Z: State change: AR11 (ref. Q_Dispatch) -> succeeded
22 Z: (S1) Problem solved. Session will be terminated.� �

It can be seen from the figure that when Zanshin is made aware of the failure in

AR11 (line 2), it executes the strategy associated to this indicator in the specification

(line 5), delegating the adaptation to Qualia. The latter, in its turn, chooses randomly

the parameter MST (line 6), decreasing it by V = KAR11 × UMST = 20 two consecutive

times (to 40 in lines 7–9, and then to 20 in lines 16–18), until the problem is deemed

solved by the simulation (lines 21-22).
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As this simulation demonstrates, Zanshin and Qualia are able to determine a new

configuration for the target system using the information encoded in the requirements

specification, instructing the system on how to reconfigure itself in order to adapt.

7.5 Chapter summary

In this chapter, we described the steps taken during an empirical evaluation of the Zan-

shin approach for the design of adaptive systems presented throughout this thesis. The

evaluation consisted in modeling the adaptation requirements for an Adaptive Computer-

aided Ambulance Dispatch (A-CAD) system based on a well-known case study from the

literature (the LAS-CAD) and simulating run-time failures of this system to validate that

our prototype framework responds accordingly.

First, we provide an overview of the problem of ambulance dispatch (§ 7.1), establishing

its scope (§ 7.1.1), basic requirements in terms of “SHALL” statements (§ 7.1.2) and finally

producing a GORE-based specification in terms of a goal model, as done before with the

Meeting Scheduler (§ 7.1.3).

Next, we conduct our proposed System Identification process based on the system’s

“vanilla” requirements (§ 7.2), identifying AwReqs as indicators based on the problems

that were related with the LAS-CAD (§ 7.2.1) and then modeling parameters of the system

and their effect on the identified indicators using our proposed qualitative language based

on differential relations (§ 7.2.2).

After System Identification, the Adaptation Strategy Selection activity was conducted

for the A-CAD associating to each AwReq a list of adaptation strategies to be executed

at runtime once failure of these indicators are detected (§ 7.3). Finally, simulations of

failures of the A-CAD were created and executed along with our proposed framework

(§ 7.4) showing that both evolution (§ 7.4.1) and reconfiguration (§ 7.4.2) are possible

using our approach.

7.5.1 Evaluation conclusions

From the results summarized above, we have concluded that the Zanshin approach can

be applied for the design of adaptive systems and that the Zanshin framework can be

used to operationalize adaptation in target systems at runtime.

However, these conclusions are made under many assumptions, representing threats

to the validity of our evaluation, the most important of which are:

• We assume that practitioners other than the author can be trained and successfully

apply the Zanshin approach to design adaptive systems. Further development of
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the approach itself (CASE tools, patterns, etc.) and surveys with practitioners are

necessary to evaluate this assumption;

• We assume that target systems can be implemented or modified in order to provide

our framework with the required logging information for monitoring and to perform

the application-specific adaptation actions when instructions are received at runtime.

Experiments with running systems instead of simulations are necessary to evaluate

this assumption.

Later, in Section 8.2, we discuss in more depth the limitations of the proposals pre-

sented in this thesis.
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Chapter 8

Conclusions and future work

Simplicity does not precede complexity, but follows it.

Alan Perlis

This thesis presented a requirements-based approach for the design of adaptive systems

centered on the concept of feedback loops. Throughout its chapters, we have presented

new modeling elements to represent requirements for adaptation (Awareness Require-

ments, differential relations, Evolution Requirements, etc.), a systematic process for re-

quirements engineering of adaptive systems (System Identification, Adaptation Strategy

Specification) and architectural considerations on how to use the produced requirements

models at runtime to operationalize the feedback loop that provides adaptation capabil-

ities to the target system. Moreover, we have applied our approach in an experiment

based on a well-known case study in the Software Engineering literature.

In this chapter, we conclude the thesis summarizing what we consider to be its con-

tributions and limitations and listing ideas for future work, some of which are already

underway in our research group.

8.1 Contributions to the state-of-the-art

The contributions of this thesis can be grasped from the research questions proposed in

Chapter 1 (see also Section 1.4.4 — Contributions — in page 20):

RQ1: What are the requirements that lead to the adaptation capabilities of a software

system’s feedback loop?

RQ2: How can we represent such requirements along with the system’s “vanilla” require-

ments?
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RQ3: How can we help software engineers and developers implement this requirements-

based feedback loop?

RQ4: How well does the approach perform when applied to realistic settings?

As mentioned above, this thesis answers these questions by proposing new modeling

concepts inspired by feedback control loops, a process for modeling of requirements for

adaptation using these new concepts, a framework that implements the generic function-

ality of the feedback loop based on requirements models and preliminary validation results

of the entire proposal (models and run-time framework) through simulated experiments.

It is important, however, to compare our proposals with other approaches that have

been published in the literature, such as the ones cited back in Section 2.2 (p. 46), showing

in more detail how our approach contributes to the state-of-the-art on adaptive systems

design and development. This is done in the following paragraphs.

Compared to architecture-based approaches for adaptive systems (Section 2.2.2, p. 48),

including the proposals on Autonomic Computing (Section 2.2.1, p. 47), our work differs

from those by focusing on the requirements for adaptation. In other words, we propose

that adaptation capabilities be considered early in the software development process,

during Requirements Engineering.

Some of these approaches do provide the means to represent system requirements:

Sykes et al. [2007, 2008] use finite state machines, the SASSY Framework [Menasce et al.,

2011] uses a language based on BPMN, Hebig et al. [2010] use UML diagrams, etc. Our

approach, however, is based on Goal-Oriented Requirements Engineering (GORE), the

advantages of which were discussed back in Section 2.1.1 (p. 25).

On the other hand, our only contribution towards the architecture of the adaptive sys-

tem is the assumption that adaptation will be operationalized by a feedback control loop,

whose generic functionalities were implemented in the framework presented in Chapter 6.

In this sense, architecture-based approaches and ours can be complimentary, provided

the necessary transitions between processes and translations between models. In fact, in

our research group we have already started investigating this possibility considering the

Rainbow framework [Garlan et al., 2004].

As shown back in Section 2.2.3 (p. 50), however, there are many proposals for the

design of adaptive systems that, like ours, focus on Requirements Engineering and, in

particular, GORE. However, as also noted by Brun et al. [2009], most of these proposals

do not make the feedback loop that implements the adaptation explicit. We consider

feedback loops to be, in one form or another, at the core of the adaptation mechanism

and, thus, our proposal differs from current works by making feedback loops first class

citizen in a requirements language for self-adaptive systems.
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In practice, this represents a fundamental difference between the approaches in the

literature and our proposal. In the former, by default, requirements are treated as invari-

ants that must always be achieved. Some approaches — e.g., [Baresi et al., 2010; Whittle

et al., 2010] — allow you to relax non-critical goals, i.e., those that can be violated from

time to time. Then, the aim of those methods is to provide the machinery to conclude at

runtime that while the system may have failed to fully achieve its relaxed goals, this is

acceptable. So, while relaxed goals are monitored at runtime, invariant ones are analyzed

at design time and must be guaranteed to always be achievable at runtime.

In our approach, on the other hand, we accept the fact that a system may fail in

achieving any of its initial (level 0) requirements. We then suggest that critical require-

ments are supplemented by Awareness Requirements (AwReqs) that ultimately lead to the

introduction of feedback loop functionality into the system to execute compensation/rec-

onciliation actions (in the form of Evolution Requirements, a.k.a. EvoReqs) when their

failure is detected.

Another contribution of our work is related to the usability of the approach. It is

known that more formal specifications yield more powerful reasoning schemes at the price

of higher specification effort and lower usability by non-experts [van Lamsweerde, 2001].

We have, thus, proposed modeling concepts and chosen a specification language that are

only “formal enough” to represent the requirements for a feedback loop-based adaptation

and, thus, do not become a burden for requirements engineers and other developers.

Compared with approaches that advocate the use of Linear Temporal Logic (e.g.,

[Zhang and Cheng, 2006; Nakagawa et al., 2011; Heaven and Letier, 2011]), Fuzzy Branch-

ing Temporal Logic (e.g., [Baresi et al., 2010; Whittle et al., 2010]) or Discrete Time

Markov Chains [Filieri et al., 2011], our approach is less heavy-handed in the formalism

that is used, improving, thus, its usability by the average developer.

Taking, for instance, RELAX and LoREM (p. 51) or FLAGS (p. 52), it results that

our approach is much simpler in comparison. The AwReqs constructs that we provide just

reference other requirements and, thus, we believe that it is more suitable, for instance,

for requirements elicitation activities. Also, our specifications do not rely on fuzzy logic

and do not require a complete requirements specification to be available prior to the

introduction of AwReqs, parameters, differential equations and EvoReqs.

Moreover, the language for specifying AwReqs does not require complex temporal con-

structs, even though its underlying formalism (OCLTM and EEAT) provides temporal

operators, so temporal properties can be expressed and monitored. In their turns, our

∆ equations are abstractions based on simple concepts from Calculus and EvoReqs are

specified using a small set of operations that are reflected into application-specific behav-

ior in the target system. Finally, most of the work on generating specifications can be
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simplified, and could even be automated, through the use of patterns.

Another interesting characteristic of our proposal, which also contributes to its usabil-

ity and applicability, is that it is based on ideas from Qualitative Reasoning, as briefly

discussed in Section 2.1.7 (p. 45). After all, given the usual high levels of uncertainty

of problem domains (cf. Section 1.1, p. 1), which lead to incomplete knowledge about

the behavior of the system-to-be, quantitative estimates at requirements time are usually

unreliable [Elahi and Yu, 2011].

Therefore, we propose that qualitative information be used instead. Our approach

allows the modeler to start with minimum information available and add more as fur-

ther details about the system become available, either by elicitation or through run-time

analysis once the system is executing. The Qualia framework (cf. Section 4.2, p. 99), for

instance, provides a family of algorithms that require different levels of precision in terms

of the relations between system parameters and indicators.

As described in Chapter 1, our work proposes two means of adaptation: reconfiguration

and evolution. The latter consists of EvoReqs that prescribe changes on the requirements

models at runtime, which are propagated to the target system through the proper means

of communication. Proposals such as FLAGS [Baresi et al., 2010] or the work of Fu et al.

[2010] also provide commands such as retry, add/remove/modify a goal, relax, etc. Our

approach, however, is more flexible in the sense that EvoReqs are specified using a set

of operations that can be used to compose different strategies and could be extended,

provided support to the new operations is added to the target system.

In its turn, reconfiguration relates to many approaches in the literature, as shown in

section Reconfiguration approaches, on page 55. As discussed in Chapter 6, Qualia was

built as a component, offering a Reconfiguration Service implementation based on the

interface defined by the Zanshin framework. Other reconfiguration approaches could also

be plugged into Zanshin, provided that the requirements models contain the information

required by them.

As we can see, another interesting feature of our approach is being extensible: new

AwReq patterns can be written in OCLTM , new EvoReq patterns can be specified using

the set of operations, which are also extensible, new Qualia procedures and algorithms

can be proposed, new components can be plugged into the Zanshin framework, providing

new implementation to services, etc.

Furthermore, our approach is generic and can be applied to any kind of system, as op-

posed to other approaches in the literature, that focus on particular types of applications,

such as, for instance, service-oriented applications [Pasquale, 2010; Qureshi and Perini,

2010; Peng et al., 2010], agent-oriented architectures [Morandini, 2011], etc. (this, of

course, leads to one of the main limitations of our approach, discussed in the next section,
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related to the degree of responsibility left in the hands of the developers of the target

system). Finally, our proposals are not based on any particular RE methodology, but

on concepts from the ontology of Jureta et al. [2008], which can be mapped to different

GORE methods such as KAOS, i? or Tropos.

In summary, by combining GORE, concepts from Feedback Control Theory and Qual-

itative Reasoning into a comprehensive approach for the design of adaptive systems, we

believe this thesis provides a sound contribution towards the state-of-the-art in the field.

Our work, however, is not without limitations and can be further improved or built upon

in the future. We discuss these issues in the following sections.

8.2 Limitations of the approach

While our approach provides modeling elements, a systematic process and a framework

which can aid developers in designing and implementing adaptive systems, this assistance

is also limited in several aspects. The following list provides a summary of limitations

that we have identified for the approach:

• Target systems: earlier we have mentioned that our approach is generic and can

be applied to any kind of system. The down side of this feature is that developers are

responsible for implementing all the application-specific logic, including logging (for

monitoring) and the effect of EvoReq operations (for adaptation). On the other hand,

approaches that are specific for some kinds of architectures can harness what the

architecture has to offer. For instance, service-oriented approaches can use existing

tools for service lookup, composition and orchestration.

Consider, in particular, the case of socio-technical systems, which have high par-

ticipation of human and organizational actors in the satisfaction of the system’s

requirements (cf. Section 1.2.1, p. 5). Whereas software-based functionalities can be

instrumented to provide Zanshin with the required monitoring information, human-

based features of the system require some kind of sensor to be installed to inform

the framework when human-performed tasks have been initiated and completed,

satisfiably or not. An analogous problem poses itself for the adaptation part of the

feedback loop, if a human is to perform the adaptation action. Our framework,

although applicable also in these situations given this required infrastructure, does

not provide any help in designing it, which places a certain amount of burden on

architectural designers and implementors.

• Centralization: an analogous issue comes from the fact that the Zanshin frame-

work centralizes the control of the feedback loop, whereas some systems (again, this is
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often the case in socio-technical systems) are composed of independent self-organized

agents which collaborate towards a resulting adaptive system. Self-organization is

the focus of conferences such as the International Conference on Self-Adaptive and

Self-Organizing Systems (see [Brueckner and Geihs, 2011] for its most recent edition).

Our feedback-loop based approach could be used to design independent software-

based agents who would adapt themselves in response to failures, but we do not

provide any insight on their interrelation if a centralized feedback loop cannot be

enforced. Further investigation is required to analyze the relation of our work with

proposals on self-organized adaptive systems.

• Domain models: existing approaches, such as FLAGS [Baresi et al., 2010], CARE

[Qureshi and Perini, 2010] or Tropos4AS [Morandini et al., 2009], propose that the

entities of the problem domain be represented in domain models that can be referred

to by requirements. So far, we have not proposed any particular way of doing this,

therefore analysts are responsible for this integration.

Take, for instance, AwReq AR11 from the Meeting Scheduler example (cf. Table 3.4,

p. 77), which refers to the time the meeting has been scheduled to occur. Its spec-

ification (cf. Listing 3.1, p. 73) refers to an argument meeting from class Meeting

with an attribute startTime, but the approach dos not provide any particular way

of providing this argument to the method call monitored by EEAT.

• Consistency and correctness: moreover, our approach does not provide any

process of technique to help analysts guarantee the consistency and correctness of

the requirements models, leaving this responsibility at their hands. The use of ECA

rules in EvoReqs constitutes a significant limitation, as large rule sets are hard to

evolve, as it becomes increasingly difficult to understand what does a change entail.

Moreover, attention needs to be paid to the case where conflicting rules fire at the

same time.

Requirements engineers should, in any case, guarantee that the produced specifica-

tion correctly represents stakeholder requirements, but tools to assist in this task

could be developed, such as, for instance, a knowledge base that can answer queries

about the requirements, as in [Ernst et al., 2011].

• Modeling notation: as mentioned in Chapter 3, the visual notations proposed

for modeling the new concepts included in our approach have been created using

simple analogies with concepts such as an observing eye, a diamond operator in a

programming language and the red cross. However, a more systematic methodology

for the construction of visual notations (e.g., [Moody, 2009]) could be applied in
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order to review the quality of the proposed notation.

• CASE tool: to help developers build the augmented GORE-based specifications

required by the Zanshin framework, a CASE tool could be provided. We have

started an Eclipse-based tool for this purpose, called Unagi,1 which at the time of

the publication of this thesis is still at very early stages of development.

• Framework prototype: the Zanshin framework (including Qualia as reconfigura-

tion service) has been developed with the purpose of experimenting with require-

ments specifications produced by our approach for the design of adaptive systems

at runtime, in order to verify if, based on the requirements models, a feedback loop

could provide sensible results in terms of adaptation actions in response to run-time

failures. Its implementations is, however, a prototype of a full feedback loop frame-

work that can be applied to systems in real settings. Further development is needed

in order to consider its use in industrial settings.

• Legacy systems: our approach requires a GORE-based specification of the system

requirements, plus a way to monitor the system’s log to detect AwReq failures and

send it EvoReq operations to adapt it to these failures. These prerequisites might

be difficult to attain in the case of legacy systems and techniques for assisting the

developers in this case (e.g., reverse engineering as used in [Wang and Mylopoulos,

2009]) have not been studied.

• Experiments: this thesis reports on experiments with exemplars based on simula-

tions of specific scenarios of run-time adaptation to evaluate if the proposed models

and framework can, indeed, provide adaptivity to a target system. However, many

other kinds of experiments are needed in order to provide a more complete validation

of the approach.

Surveys with developers can evaluate the proposed systematic approach and mod-

eling language, whereas the use of real applications instead of simulations would

make for a stronger case for the framework’s effectiveness. Moreover, full-fledged

case studies with industrial partners would be advised before taking the results of

this research to industrial settings.

• Implementation of goal models: it has already been mentioned that our ap-

proach concentrates on Requirements Engineering and not on architectural design

1The name is a reference to episode 17 of the 7th season of American sitcom Friends, in which the character

Ross Geller confuses the word’s meaning (freshwater eels) with that of Zanshin (a state of total awareness). See

https://github.com/vitorsouza/Unagi.

https://github.com/vitorsouza/Unagi
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or implementation. Nonetheless, some assistance towards mapping goal model ele-

ments (tasks) to implemented components could help developers read GORE-based

specifications when providing logging information that is used by the framework at

runtime.

Consider, for example, the final specification for the A-CAD system-to-be in Fig-

ure 7.5 (p. 168). For this system, most tasks can be associated with specific compo-

nents in the implemented CAD system and their instances would correspond to every

dispatch that has to be done using the system. However, for any given dispatch,

tasks under the goal Monitor resources may be executed several times, whereas a

task such as Replace ambulance may be needed only under certain conditions (if the

dispatched ambulance breaks). Currently, this mapping is also under the responsi-

bility of developers.

• Independence of variables: as presented in Chapter 4, we propose a language

that relates changes in single parameters to single indicators of requirements conver-

gence in a qualitative way using differential relations. Such relations can, later, be

combined to compare the effect of different parameters towards the same indicator

or to establish if they could be combined for an increased effect. However, this repre-

sentation greatly simplifies the actual behavior of complex, adaptive systems, whose

variables (be them parameters or indicators) cannot be assumed to be independent

of one another.

Nonetheless, this simplification is not accidental. State-of-the-art methods for mod-

eling and controlling MIMO systems — such as state/output feedback and Linear

Quadratic Regulator (see [Zhu et al., 2009], § 3.4) — can be very complex and many

software projects may not dispose of the necessary (human/time) resources to pro-

duce models with such degree of formality. As mentioned in the previous section,

our approach is intended to be less heavy-handed in the formalism, while at the

same time allowing analysts to model the requirements for the system’s adaptation

based on a feedback loop architecture.

8.3 Future work

The previous section highlighted several limitations of our proposal, all of which could

be considered an opportunity for future work. Moreover, some questions have presented

themselves along the development of this research, some of which are: what is the role

of contextual information in this approach? How could we add predictive capabilities or

probabilistic reasoning in order to avoid failures instead of adapting to them? Could this
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approach help achieve software evolution (in the sense of software maintenance)? These

and other questions show how much work there is still to be done in this research area.

We are currently investigating two directions in particular: the case of multiple con-

current indicator (AwReq) failures and, as mentioned earlier, the adoption of ideas from

architecture-based adaptation frameworks, such as the Rainbow project [Garlan et al.,

2004], so that proposed adaptations take into account what is a feasible change at the

architectural level and what is not. In the following paragraphs, we sketch some early

ideas on the former.

8.3.1 Considering concurrent indicators (AwReqs) failures

The single indicator scenario implemented by Qualia (cf. Section 4.2, p. 99), where a

system either has just one indicator or each of its parameters only affects a single indicator,

may be insufficient for some systems depending on their internal complexity or the level of

environmental uncertainty. The complexity in this situation is due to parameters possibly

influencing many indicators, which gives rise to trade-offs.

Trade-off aversion is natural [Zeleny, 2010] and there are ways to avoid them. One

possibility is to come up with a single objective function to evaluate alternatives, which

is built given the information about priorities of indicators (e.g., using the appropriate

weights). However, due to the incompleteness of information about how parameters affect

indicators, such function is not an option for us. There are two ways we could deal with

multiple indicators:

• Create new procedures for the existing process of Qualia, depicted in Figure 4.4

(p. 102), which consider the negative side effects on other indicators, but does not

support handling multiple indicators concurrently;

• Extend the current process of Qualia with a new activity capable of dealing with

multiple concurrent indicator failures.

In either case, Qualia requires an additional piece of information in the specification:

the priorities of the indicators (e.g., [Liaskos et al., 2011, Section 3.3]). Thus, in the context

of multiple indicators, the aim of the process is to maintain indicators satisfied according to

their priority: while it prefers to keep most indicators satisfied, if a satisfaction of a higher-

priority indicator implies a failure of a lower-priority one, this is generally acceptable.

We are also studying the applicability of two-phase locking from databases/transaction

processing to the scenario of multiple concurrent failures. The idea here is to place locks

on indicators that have failed and are currently being worked on, preventing other failures

to change parameters that would affect the locked indicator in a certain way.
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