
Awareness Requirements for Adaptive SystemsVítor E. Silva Souza1, Alexei Lapouhnian1, William N. Robinson2, and JohnMylopoulos1
1 Department of Inf. Engineering and Computer Siene, University of Trento, Italy{vitorsouza,lapouhnian,jm}�disi.unitn.it

2 Department of Computer Information Systems, Georgia State University, USAwrobinson�gsu.eduAbstrat. The funtional spei�ation of any software system opera-tionalizes stakeholder requirements. In this paper we fous on a lassof requirements that lead to feedbak loop operationalizations. TheseAwareness Requirements talk about the runtime suess/failure of otherrequirements and domain assumptions. Our proposal inludes a languagefor expressing awareness requirements, as well as tehniques for eliita-tion and implementation based on the EEAT requirements monitoringframework.1 IntrodutionThere is muh and growing interest in software systems that an adapt to hangesin their environment or their requirements in order to ontinue to ful�ll theirmandate. Suh adaptive systems usually onsist of a system proper that deliv-ers a required funtionality, along with a monitor-analyze-plan-exeute (MAPE[18℄) feedbak loop that operationalizes the system's adaptability mehanisms.Indiations for this growing interest an be found in reent workshops and on-ferenes on topis suh as adaptive, autonomi and autonomous software (e.g.,[7, 23, 14℄).We are interested in studying the requirements that lead to this feedbakloop funtionality. In other words, if feedbak loops onstitute an (arhitetural)solution, what is the requirements problem this solution is intended to solve?The nuleus of an answer to this question an be gleamed from any desriptionof feedbak loops: �... the objetive ... is to make some output, say y, behave ina desired way by manipulating some input, say u ...� [10℄. Suppose then that wehave a requirement r = �supply ustomer with goods upon request� and let s bea system operationalizing r. The �desired way� of the above quote for s is that italways ful�lls r, i.e., every time there is a ustomer request the system meets itsuessfully (here, the notion of �suess� depends on the type of system: for soft-ware systems, it means ompleting the transation without errors or exeptions,whereas for soio-tehnial systems �suess� ould involve the partiipation ofhuman ators, e.g., goods are properly delivered to the ustomer). This meansthat the system somehow manages to deliver its funtionality under all irum-stanes (e.g., even when one of the requested items is not available). Suh a



2requirement an be expressed, roughly, as r1 = �Every instane of requirementr sueeds�. And, of ourse, an obvious way to operationalize r1 is to add to thearhiteture of s a feedbak loop that monitors if system responses to requests arebeing met, and takes orretive ation if they are not. We an generalize on this:we ould require that s sueeds more than 95% of the time over any one-monthperiod, or that the average time it takes to supply a ustomer over any one weekperiod is no more than 2 days. The ommon thread in all these examples is thatthey de�ne requirements about the run-time suess/failure/quality-of-servie ofother requirements. We all these self-awareness requirements.A related lass of requirements is onerned with the truth / falsity of do-main assumptions. For our example, we may have designed our ustomer supplysystem on the domain assumption d = �suppliers for items we distribute arealways open�. Aordingly, if supplier availability is an issue for our system, wemay want to add yet another requirement r2 = �d will not fail more than 2%of the time during any 1-month period�. This is also an awareness requirement,but it is onerned with the truth/falsity of a domain assumption.The objetive of this paper is to study Awareness Requirements (hereafterreferred to as AwReqs), whih are haraterized syntatially as requirementsthat refer to other requirements or domain assumptions and their suess orfailure at runtime. AwReqs are represented in an existing language and anbe diretly monitored by a requirements monitoring framework. Although thetehnial ontribution of this paper is foused on the de�nition and study ofAwReqs and their monitoring at runtime, we do provide a disussion on how togo from AwReqs to adaptive systems, giving an overview of subsequent steps inthis proess.Awareness is a topi of great importane within both Computer and Cogni-tive Sienes. In Philosophy, awareness plays an important role in several theoriesof onsiousness. In fat, the distintion between self-awareness and ontextualrequirements seems to orrespond to the distintion some theorists draw betweenhigher-order awareness (the awareness we have of our own mental states) and�rst-order awareness (the awareness we have of the environment) [29℄. In Psy-hology, onsiousness has been studied as �self-referential behavior�. Closer tohome, awareness is a major design issue in Human-Computer Interation (HCI)and Computer-Supported Cooperative Work (CSCW). The onept in variousforms is also of interest in the design of software systems (seurity / proess /ontext / loation / ... awareness).As part of our proposal's evaluation, whih we detail in setion 5, we haveanalyzed, designed and developed a simulation of a real-world system: an Am-bulane Dispath System (ADS), whose requirements have been doumented bystudents of the University of Texas at Dallas [28℄. We will use this appliationas running example throughout this paper.The rest of the paper is strutured as follows. Setion 2 presents the researhbaseline; setion 3 introdues AwReqs and talks about their eliitation; setion4 disusses their spei�ation; setion 5 talks about AwReqs monitoring imple-mentation and presents evaluation results from experiments with our proposal;



3setion 6 summarizes related work; setion 7 disusses the role of AwReqs in asystemati proess for the development of adaptive systems based on feedbakloops; �nally, setion 8 onludes the paper.2 BaselineThis setion introdues bakground researh used in subsequent setions of thispaper: Goal-Oriented Requirements Engineering (�2.1), feedbak loops (�2.2)and requirements monitoring (�2.3).2.1 Goal-Oriented Requirements EngineeringOur proposal is based on Goal-oriented Requirements Engineering (GORE).GORE is founded on the premise that requirements are stakeholder goals tobe ful�lled by the system-to-be along with other ators. Goals are eliited fromstakeholders and are analyzed by asking �why� and �how� questions [8℄. Suhanalysis leads to goal models whih are partially ordered graphs with stakeholderrequirements as roots and more re�ned goals lower down. Our version of goalmodels is based loosely on i⋆ strategi rationale models [37℄. Figure 1 shows agoal model for an Ambulane Dispath System (ADS).

Fig. 1. Example goal model for an Ambulane Dispath System.In our example, the main goal of the system is to support ambulane dis-pathing. Goals an be AND/OR re�ned. An AND-re�nement means that inorder to aomplish the parent goal, all sub-goals must be satis�ed, while foran OR-re�nement, only one of the sub-goals has to be attained. For example,



4to reeive an emergeny all, one has to input its information, determine itsuniqueness (have there been other alls for the same emergeny?) and send itto dispathers, all on the assumption that �Communiation networks [are℄ work-ing�3. On the other hand, periodi update of an ambulane's status an beperformed either automatially or manually.Goals are re�ned until they reah a level of granularity where there are tasksan ator (human or system) an perform to ful�ll them. In the �gure, goals arerepresented as ovals and tasks as hexagons. Note that we represent AND/ORre�nement relations, avoiding the term deomposition as it usually arries a part-whole semanti whih would onstrain its use among elements of the same kind4(i.e., goal to goal, task to task, et.). A re�nement relation, on the other hand,an be applied between a goal and a task or a goal and a domain assumptionand indiate how to satisfy the parent element: the goal is satis�ed if all (AND)or any (OR) of its hildren are satis�ed. In their turns, tasks are satis�ed if theyare exeuted suessfully and domain assumptions are satis�ed if they hold (thea�rmation is true) while the user is pursuing its parent goal.Softgoals are speial types of goals that do not have lear-ut satisfationriteria. In our example, stakeholders would like ambulane dispathing to befast, dispathed alls to be unambiguous and prioritized, and seleted ambu-lanes to be as lose as possible to the emergeny site. Softgoal satisfation anbe estimated through qualitative ontribution links that propagate satisfationor denial and have four levels of ontribution: break (- -), hurt (-), help (+) andmake (++). E.g., seleting an ambulane using the software system ontributespositively to the proximity of the ambulane to the emergeny site, while usingmanual ambulane status update, instead of automati, ontributes negativelyto the same riterion. Contributions may exist between any two goals (inludinghard goals).Softgoals are obvious starting points for modeling non-funtional require-ments. To make use of them in design, however, they need to be re�ned to mea-surable onstraints on the system-to-be. These are quality onstraints (QCs),whih are pereivable and measurable entities that inhere in other entities [17℄.In our example, unambiguity is measured by the number of times two ambu-lanes are dispathed to the same loation, while fast assistane is re�ned intotwo QCs: ambulanes arriving within 10 or 15 minutes to the emergeny site.Finally, domain assumptions (DAs) indiate states of the world that we as-sume to be true in order for the system to work. For example, we assume thatommuniation networks (telephone, Internet, et.) are available and funtional.3 These requirements are for illustrative purposes and, thus, are quite simple. Real-world systems would probably have multiple domain assumptions, one for eah levelof ommuniation servie, or even have assumptions parameterized by ontrol vari-ables that an be tuned at runtime � see �7.1 for a disussion on ontrol variables.4 One ould argue that it makes no sense to onsider a task or a domain assumptiona part of a goal. In e�et, we have reeived suh ritiism in the past, in more thanone oasion.



5If this assumption were to be false, its parent goal (�Reeive emergeny all�)would not be satis�ed.2.2 Feedbak LoopsThe reent growth of software systems in size and omplexity made it inreas-ingly infeasible to maintain them manually. This led to the development of anew lass of self-adaptive systems, whih are apable of hanging their behaviorat runtime due to failures as well as in response to hanges in themselves, theirenvironment, or their requirements. While attempts at adaptive systems havebeen made in various areas of omputing, Brun et al. [6℄ argue for systematisoftware engineering approahes for developing self-adaptive systems based onthe ideas from ontrol engineering [15℄ with fous on expliitly spei�ed feed-bak loops. Feedbak loops provide a generi mehanism for self-adaptation. Torealize self-adaptive behavior, systems typially employ a number of feedbakontrollers, possibly organized into ontroller hierarhies.The main idea of feedbak ontrol is to use measurements of a system'soutputs to ahieve externally spei�ed goals [15℄. The objetive of a feedbakloop is usually to maintain properties of the system's output at or lose to itsreferene input. The measured output of the system is evaluated against thereferene input and the ontrol error is produed. Based on the ontrol error,the ontroller deides how to adjust the system's ontrol input (parameters thata�et the system) to bring its output to the desired value. To do that, theontroller needs to possess a model of the system. In addition, a disturbanemay in�uene the way ontrol input a�ets output. Sensor noise may be presentas well. This view of feedbak loops does not onentrate on the ativities withinthe ontroller itself. That is the emphasis of another model of a feedbak loop,often alled the autonomi ontrol loop [9℄. It fouses on the ativities that realizefeedbak: monitoring, analysis, plan, exeution � MAPE [18℄.The ommon ontrol objetives of feedbak loops are regulatory ontrol (mak-ing sure that the output is equal or near the referene input), disturbane re-jetion (ensuring that disturbanes do not signi�antly a�et the output), on-strained optimization (obtaining the �best� value for the measured output) [15℄.Control theory is onerned with developing ontrol systems with propertiessuh as stability (bounded input produes bounded output), auray (the out-put onverges to the referene input), et. While most of these guidelines are bestsuited for physial systems, many an be used for feedbak ontrol of softwaresystems.Using the ADS as an example, a feedbak loop would: (1) monitor partiularindiators of the system whih are of interest to the stakeholders � e.g., the timeit takes for ambulanes to arrive at the loation of the inidents; (2) omparethe monitored values of these indiators with referene values spei�ed in therequirements � e.g., QCs in the ADS goal model indiate ambulanes shouldarrive in 10 or 15 minutes; and (3) if the monitored values do not satisfy therequirements, do something to �x the problem � e.g., inrease the number ofambulanes, hange their loations around the ity, et. In this paper we propose



6Awareness Requirements as indiators to be monitored by the feedbak loop,whereas the other steps of the loop in the ontext of our researh are brie�ydisussed in setion 7. Our view of adaptive systems as ontrol systems has alsobeen featured in a reently published position paper [34℄.2.3 Requirements MonitoringMonitoring is the �rst step in MAPE feedbak loops and, as will be haraterizedin setion 3, sine AwReqs refer to the suess/failure of other requirements, wewill need to monitor requirements at runtime.Therefore, we have based the monitoring omponent of our implementationon the requirements monitoring framework EEAT5, formerly known as ReqMon[24℄. EEAT, an Event Engineering and Analysis Toolkit, provides a programminginterfae (API) that simpli�es temporal event reasoning. It de�nes a languageto speify goals and an be used to ompile monitors from the goal spei�ationand evaluate goal ful�llment at runtime.EEAT's arhiteture is presented in more detail along with our implementa-tion in setion 5. In it, requirements an be spei�ed in a variant of the ObjetConstraints Language (OCL), alled OCLTM � meaning OCL with TemporalMessage logi [25℄. OCLTM extends OCL 2.0 [2℄ with:� Flake's approah to messages [12℄: replaes the onfusing ˆ message(), ˆ̂message() syntax with sentMessage/s, reeivedMessage/s attributes inlass OlAny;� Standard temporal operators: ◦ (next), • (prior), ♦ (eventually), �(previously), � (always), � (onstantly), W (always ... unless), U(always ... until);� The sopes de�ned by Dwyer et al. [11℄: globally, before, after, betweenand after ... until. Using the sope operators simpli�es property spei�a-tion;� Patterns, also in Dwyer et al. [11℄: universal, absene, existene, boundedexistene, response, preedene, hained preedene and hainedresponse;� Timeouts assoiated with sopes: e.g. after(Q, P, `3h') indiates that Pshould be satis�ed within three hours of the satisfation of Q.Figure 2 shows an example of OCLTM onstraint on the ADS. The invariantgetsDispathed determines that if a all reeives the onfirmUnique message,eventually an ambulane should get the message dispath and both messagesshould refer to the same allID argument. Given an instrumented Java im-plementation of these objets and a program in whih they exhange messagesthrough method alls, EEAT is able to monitor and assert this invariant at run-time. In setion 5, we desribe in more detail how EEAT aomplishes this inthe ontext of AwReqs monitoring.5 http://eeat.is.gsu.edu:8080/



7
Fig. 2. An example of OCLTM onstraint.Although in our proposal AwReqs an be expressed in any language thatprovides temporal onstruts (e.g., LTL, CTL, et.), examples of AwReq spei�-ations in setion 4 will be given using OCLTM , whih is also the language usedfor our proposal's validation, presented in setion 5.3 Awareness RequirementsAs we have mentioned in setion 1, feedbak loops an provide adaptivity for agiven system by introduing ativities suh as monitoring, analysis (diagnosis),planning and exeution (of ompensations) to the system proper. We are inter-ested in modeling the requirements that lead to this feedbak loop funtionality.In ontrol system terms (see �2.2), the referene input in this ase is the systemful�lling its mandate (its requirements). Feedbak loops, then, need to measurethe atual output and ompare it to the referene input, in other words, verifyif requirements are being satis�ed or not.Furthermore, Berry et al. [4℄ de�ned the envelope of adaptability as the limitto whih a system an adapt itself: �sine for the foreseeable future, softwareis not able to think and be truly intelligent and reative, the extent to whiha [system℄ an adapt is limited by the extent to whih the adaptation analystan antiipate the domain hanges to be deteted and the adaptations to beperformed.�In this ontext, to ompletely speify a system with adaptive harateristis,requirements for adaptation have to be inluded in the spei�ations. We proposea new kind of requirement, whih we all Awareness Requirement, or AwReq, to�ll this need. AwReqs promote feedbak loops for adaptive systems to �rst-lassitizens in Requirements Engineering.In this setion, we haraterize AwReqs as requirements for feedbak loopsthat implement adaptivity (�3.1); propose patterns to failitate their eliitation,along with a way to represent them graphially in the goal model (�3.2); anddisuss the eliitation of this new type of requirements (�3.3). We illustrate allof our ideas using our running example, the ADS (�gure 1).3.1 CharaterizationAwReqs are requirements that talk about the run-time status of other require-ments. Spei�ally, AwReqs talk about the states requirements an assume dur-



8ing their exeution at runtime. Figure 3 shows these states whih, in the ontextof our modeling framework, an be assumed by goals, tasks, DAs, QCs andAwReqs themselves. When an ator starts to pursue a requirement, its resultis yet Undeided. Eventually, the requirement will either have Sueeded, orFailed. For goals and tasks, there is also a Caneled state.
Fig. 3. States assumed by a requirement at runtime.Table 1 shows some of the AwReqs that were eliited during the analysisof the ADS. These examples illustrate the di�erent types of AwReqs, whih aredisussed in the following paragraphs. Table 1 also indiates the pattern of eahAwReq and we further elaborate on this matter on setion 3.2.The examples illustrate a number of types of AwReq. AR1 shows the simplestform of AwReq : the requirement to whih it refers should never fail. Consideringa ontrol system, the referene input is to ful�ll the requirement. If the atualoutput is telling us the requirement has failed, the ontrol system must at(ompensate, reonile � out of the sope of this proposal and brie�y disussedin setion 7) in order to bring the system bak to an aeptable state. AR1onsiders every instane of the referred requirement. An instane of a task isreated every time it is exeuted and the �never fail� onstraint is to be hekedfor every suh instane. Similarly, instanes of a goal exist whenever the goalneeds to be ful�lled, while DA and QC instanes are reated whenever theirtruth/falsity needs to be heked in the ontext of a goal ful�llment.Inspired by the three modes of ontrol of the proportional-integral-di�erential(PID) ontroller, a widely used feedbak ontroller type [10℄, we propose threetypes of AwReqs : Aggregate AwReqs at like the integral omponent, whih on-siders not only the urrent di�erene between the output and the referene in-put (the ontrol error), but aggregates the errors of past measurements. DeltaAwReqs were inspired by how proportional ontrol sets its output proportionalto the ontrol error. Trend AwReqs follow the idea of the derivative ontrol,whih sets its output aording to the rate of hange of the ontrol error. Wede�ne and exemplify eah type of AwReq in the following.An aggregate AwReq refers to the instanes of another requirement andimposes onstraints on their suess/failure rate. E.g., AR2 is the simplest aggre-gate AwReq : it demands that the referred DA be true 99% of the time the goalReeive emergeny all is attempted. Aggregate AwReqs an also speify the pe-



9
Table 1. Examples of AwReqs, eliited in the ontext of the ADS.Id Desription Type PatternAR1 Input emergeny information shouldnever fail � NeverFail(T-InputInfo)AR2 Communiations networks workingshould have 99% suess rate Aggregate SuessRate(D-CommNetsWork, 99%)AR3 Searh all database should have a 95%suess rate over one week periods Aggregate SuessRate(G-SearhCallDB, 95%, 7d)AR4 Dispath ambulane should fail at mostone a week Aggregate MaxFailure(G-DispathAmb, 1, 7d)AR5 Ambulane arrives in 10 minutesshould sueed 60% of the time,while Ambulane arrives in 15 minutesshould sueed 80%, measured daily Aggregate �daily SuessRate(Q-Amb10min, 60%) andSuessRate(Q-Amb15min,80%)AR6 Update automatially should sueed100 times more than the task Updatemanually Aggregate ComparableSuess(T-UpdAuto, T-UpdManual,100)AR7 The suess rate of No unneessaryextra ambulanes for a month shouldnot derease, ompared to the previousmonth, two times onseutively Trend not TrendDerease(Q-NoExtraAmb, 30d, 2)AR8 Update arrival at site should be su-essfully exeuted within 10 minutesof the suessful exeution of Informdriver, for the same emergeny all Delta ComparableDelta(T-UpdArrSite,T-InformDriver, time,10m)AR9 Mark as unique or dupliate should bedeided within 5 minutes Delta StateDelta(T-MarkUnique,Undeided, *, 5m)AR10 AR3 should have 75% suess rate overone month periods Meta SuessRate(AR3, 75%,30d)AR11 AR5 should never fail Meta NeverFail(AR5)



10riod of time to onsider when aggregating requirement instanes (e.g., AR3). Thefrequeny with whih the requirement is to be veri�ed is an optional parameterfor AwReqs. If it is omitted, then the designer is to selet the frequeny (if theperiod of time to onsider has been spei�ed, it an be used as default valuefor the veri�ation frequeny). AR5 is an example of an AwReq with veri�ationinterval spei�ed.Another pattern for aggregate AwReq spei�es the min/max suess/failurea requirement is allowed to have (e.g., AR4). AwReqs an ombine di�erent re-quirements, like AR5, that integrates two QCs with di�erent target rates. Onean even ompare the suess ounts of two requirements (AR6). This aptures adesired property of the alternative seletion proedure when deiding at runtimehow to ful�ll a goal.AR7 is an example of a trend AwReq that ompare suess rates over anumber of periods. Trend AwReqs an be used to spot problems in how su-ess/failure rates evolve over time. Delta AwReqs , on the other hand, an beused to speify aeptable thresholds for the ful�llment of requirements, suh asahievement time. AR8 spei�es that task Update arrival at site should be satis-�ed (suessfully �nish exeution) within 10 minutes of ompleting task Informdriver. This means that one the dispather has informed the ambulane driverwhere the emergeny is, she should arrive there within 10 minutes.Another delta AwReq, AR9, shows how we an talk not only about suess andfailure of requirements, but about hanges of states, following the state mahinediagram of �gure 3. In e�et, when we say a requirement �should [not℄ sueed(fail)� we mean that it �should [not℄ transition from Undeided to Sueeded(Failed)�. AR9 illustrates yet another ase: the task Mark as unique or dupliateshould be deided � i.e., should leave the Undeided state � within 5 minutes.In other words, regardless if they sueeded or fail, operators should not spendmore than 5 minutes deiding if a all is a dupliate of another all or not.Finally, AR10 and AR11 are the examples of meta-AwReqs : AwReqs thattalk about other AwReqs. As we have previously disussed, AwReqs are based onthe premise that even though we eliited, designed and implemented a systemplanning for all requirements to be satis�ed, at runtime things might go wrongand requirements ould fail, so AwReqs are added to trigger system adaptationin these ases. In this sense, AwReqs themselves are also requirements and, there-fore, are also bound to fail at runtime. Thus, meta-AwReqs an provide furtherlayers of adaptation in some ases if needed be.One of the motivations for meta-AwReqs is the appliation of gradual re-oniliation/ompensations ations. This is the ase with AR10: if AR3 fails (i.e.,Searh all database has less than 95% suess rate in a week), tagging the allsas �possibly ambiguous� (reoniling AR3) might be enough, but if AR3's su-ess rate onsidering the whole month is below 75% (e.g., it fails at least twoout of four weeks), a deeper analysis of the database searh problems might bein order (reoniling AR10). Another useful ase for meta-AwReqs is to avoidexeuting spei� reoniliation/ompensation ations too many times. For ex-ample, AR5 states that 60% of the ambulanes should arrive in up to 10 minutes



11and 80% in up to 15 and to reonile we should trigger messages to all users ofthe ADS. To avoid sending repeated messages in ase it fails again, AR11 statesthat AR5 should never fail and, in ase it does, its reoniliation dereases AR5'sperentages by 10 points (to 50% and 70%, respetively), whih means that anew message will be sent only if the emergeny response performane atuallygets worse. If sending this message twie a month were to be avoided, AR11'sreoniliation ould be, for example, disabling AR5 for that month. As mentionedbefore, reoniliation is disussed in setion 7.With enough justi�ation to do so, one ould model an AwReq that refers to ameta-AwReq, whih we would all a meta-meta-AwReq � or third-level AwReq.There is no limit on how many levels an be reated, as long as meta-AwReqsfrom a given level refer stritly to AwReqs from lower levels, in order to avoidirular referenes. It is important to note that the name meta-AwReq is dueonly to the fat that it onsists of an AwReq over another AwReq. This does notmean, however, that multiple levels of adaptation loops are required to monitorthem. As will be presented in setion 5, monitoring is operationalized by EEAT,whih does so by mathing method alls to invariants desribed in OCLTM (anexample of this was presented in setion 2.3), regardless of the lass of the objetthat is reeiving the message (goal, task, AwReq, meta-AwReq, et.).3.2 Patterns and Graphial RepresentationSpeifying AwReqs is not a trivial task. For this reason we propose AwReq pat-terns to failitate their eliitation and analysis and a graphial representationthat allows us to inlude them in the goal model, improving ommuniationamong system analysts and designers.Many AwReqs have similar struture, suh as �something must sueed somany times�. By de�ning patterns for AwReqs we reate a ommon voabularyfor analysts. Furthermore, patterns are used in the graphial representation ofAwReqs in the goal model and ode generation tools ould be provided to au-tomatially write the AwReq in the language of hoie based on the pattern.In setion 5.1, we provide OCLTM idioms for this kind of ode generation. Weexpet that the majority (if not all) AwReqs fall into these patterns, so their usean relieve requirements engineers from most of the spei�ation e�ort.Table 2 ontains a list of patterns that we have identi�ed so far in our researhon this topi. This list is by no means exhaustive and eah organization is free tode�ne its own patterns (with their own names and meanings). We have alreadyshown the pattern representation of the AwReqs that were eliited for the ADS inthe last olumn of table 1. For suh representation, we have used the patterns oftable 2, mnemonis to refer to the requirements and abbreviated amounts of timelike in OCLTM timeouts [25℄. Furthermore, it is important to note that whenrequirements engineer reate patterns, they are responsible for their onsistenyand orretness and, unfortunately, our approah does not provide any tool tohelp in this task.Given that AwReqs an be shortened by a pattern we propose they be rep-resented graphially in the goal model along with other elements suh as goals,



12 Table 2. A non-exhaustive list of AwReq patterns.Pattern MeaningNeverFail(R) Requirement R should never fail. Analogous patternsAlwaysSueed, NeverCaneled, et.SuessRate(R, r, t) R should have at least suess rate r over time t.SuessRateExeutions(R, r, n) R should have at least suess rate r over the latest nexeutions.MaxFailure(R, x, t) R should fail at most x times over time t. Analogouspatterns MinFailure, MinSuess and MaxSuess.ComparableSuess(R, S,x, t) R should sueed at least x times more than S overtime t.TrendDerease(R, t, x) The suess rate of R should not derease x timesonseutively onsidering periods of time spei�ed byt. Analogous pattern TrendInrease.ComparableDelta(R, S, p,x) The di�erene between the value of attribute p inrequirements R and S should not be greater than x.StateDelta(R, s1, s2, t) R should transition from state s1 to state s2 in lesstime than what is spei�ed in t.
P1 and / or P2; not P Conjuntion, disjuntion and negation of patterns.tasks, softgoals, DAs and QCs. For that purpose, we introdue the notationshown in �gure 4, whih shows the goal model of the ADS with the addition ofAwReqs, represented graphially in the model. AwReqs are represented by thikirles with arrows pointing to the element to whih they refer and the AwReqpattern besides it. The �rst parameter of the pattern is omitted, as the AwReqis pointing to it. In ase an AwReq does not �t a pattern, the analyst shouldwrite its name and doument its spei�ation elsewhere.3.3 Soures of Awareness RequirementsLike other types of requirements, AwReqs must be systematially eliited. Sinethey refer to the suess/failure of other requirements, their eliitation takesplae after the basi requirements have been eliited and the goal model on-struted. There are several ommon soures of AwReqs and, in this setion, wedisuss some of these soures. We do not, however, propose a systemati proessfor AwReq eliitation and requirements engineers should use existing requirementeliitation tehniques to disover requirements that belong to this new lass.One obvious soure onsists of the goals that are ritial for the system-to-be to ful�ll its purpose. If the aim is to reate a robust and resilient system,then there have to be goals/tasks in the model that are to be ahieved/exeutedat a onsistently high level of suess. Suh a subset of ritial goals an beidenti�ed in the proess and AwReqs speifying the preise ahievement ratesthat are required for these goals will be attahed to them. This proess an



13

Fig. 4. Goal model of �gure 1 with AwReqs represented graphially.be viewed as the operationalization of high-level non-funtional requirements(NFRs) suh as Robustness, Dependability, et. For example, the task Inputemergeny information is ritial for this proess sine all subsequent ativitiesdepend on it. Also, government regulations and rules may require that ertaingoals annot fail or be ahieved at high rates. Similarly, AwReqs are applied toDAs that are ritial for the system (e.g., Communiations networks working).As shown in setion 3.1, AwReqs an be derived from softgoals. There, wepresented a QC Ambulane arrives in 10 minutes that metriizes a high-levelsoftgoal Fast assistane. Then, AwReq AR5 is attahed to it requiring the suessrate of 60%. This way the system is able to quantitatively evaluate at runtimewhether the quality requirements are met over large numbers of proess instanesand make appropriate adjustments if they are not.Qualitative softgoal ontribution labels in goal models apture how goals andtasks a�et NFRs, whih is helpful, e.g., for the seletion of the most appropriatealternatives. In the absene of ontribution links, AwReqs an be used to apturethe fat that partiular goals are important or even ritial to meet NFRs andthus those goals' high rate of ahievement is needed. This an be viewed asan operationalization of a ontribution link. For example, the task Prioritizealls in �gure 1 positively a�ets the softgoal Prioritized information and aneven be onsidered ritial with respet to that softgoal. So, an AwReq, say,SuessRate(Prioritize Calls, 90%), an be added to the model to apture thatfat. On the other hand, if a goal has a negative e�et on an NFR, then anAwReq ould demand a low suess rate for it.In Tropos [5℄ and other variations of goal modeling notation, alternativesintrodued by OR-deomposed goals are frequently evaluated with respet toertain softgoals. The goal Periodi updates in �gure 1 (or �gure �g-spei�ation-



14graphial) is suh an example. The evaluations are qualitative and show whetheralternatives ontribute positively or negatively to softgoals. In our approah,softgoals are re�ned into QCs and the qualitative ontribution links are removed.However, the links do apture valuable information on the relative �tness ofalternative ways to ahieve goals. AwReqs an be used as a tool to make surethat �good� alternatives are still preferred over bad ones. For instane, the AwReqAR6 states that automati updates must be exeuted more often than manualones, presumably beause this is better for proximity of ambulanes to targetloations and due to the osts of manual updates. This way the intuition behindsoftgoal ontribution links is preserved. If multiple on�iting softgoals play rolesin the seletion of alternatives, then a number of alternative AwReqs an bereated sine the seletion of the best alternative will be di�erent depending onthe relative priorities of the on�iting NFRs.One of the di�ulties with AwReqs eliitation is oming up with preisespei�ations for the desired suess rates over ertain number of instanes orduring a ertain time frame. To ease the eliitation and maintenane we re-ommend a gradual eliitation, �rst using high-level qualitative terms suh as�medium� or �high� suess rate, �large� or �medium� number of instanes, et.Thus, the AwReq may originate as �high suess rate of G over medium num-ber of instanes� before beoming SuessRate(G, 95%, 500). Of ourse, thequanti�ation of these high-level terms is dependent on the domain and on thepartiular AwReq. So, �high suess rate� may be mapped to 80% in one aseand to 99.99% in another. Additionally, using abstrat qualitative terms in themodel while providing the mapping separately helps with the maintenane ofthe models sine the model remains intat while only the mapping is hanging.4 Speifying Awareness RequirementsWe have just introdued AwReqs as requirements that refer to the suess or fail-ure of other requirements. This means that the language for expressing AwReqshas to treat requirements as �rst lass itizens that an be referred to. Moreover,the language has to be able to talk about the status of partiular requirementsinstanes at di�erent time points. We have hosen to use an existing language,namely OCLTM , over reating a new one, therefore inheriting its syntax andsemantis. The subset of OCLTM features available to requirements engineerswhen speifying AwReqs is the subset supported by the monitoring framework,EEAT, introdued in setion 2.3. A formal de�nition of the syntax and the se-mantis of AwReqs is out of the sope of this paper.Our general approah to using it is as follows: (i) design-time requirements� as shown in �gure 1, but also the AwReqs of table 1 � are represented asUML lasses, (ii) run-time instanes of requirements, suh as various ambulanedispath requests, are represented as instanes of these lasses. Representing sys-tem requirements (previously modeled as a goal model) in a UML lass diagramis a neessary step for the spei�ation of AwReqs in any OCL-based language,as OCL onstraints refer to lasses and their instanes, attributes and methods.



15Even though other UML diagrams (suh as the sequene diagram or the ativitydiagram) might seem like a better hoie for the representation of requirementsand AwReqs, having instanes of lasses that represent requirements at runtimeis mandatory for the OCL-based infrastruture that we have hosen.Hene, we present in �gure 5 a model that represents lasses that should beextended to speify requirements. In other words, eah requirement of our systemshould be represented by a UML lass, extending the appropriate lass fromthe diagram of �gure 5. These lasses have the same name as the mnemonisused in the pattern olumn of table 1. Moreover, the �rst letter of eah lassname indiates whih element of �gure 5 is being extended (T for Task, G forGoal and so forth). Note that the diagram of �gure 5 does not represent a meta-model for requirements due to the fat that the lasses that represent the systemrequirements are sublasses of the lasses in this diagram, not instanes of themas it is the ase with meta-models. This inheritane is neessary in order forAwReq spei�ations to be able to refer to the methods de�ned in these lasses,as they are inherited by the requirement lasses.Another important observation is that these lasses are only an abstratrepresentation of the elements of the goal model (�gure 1) and they are part ofthe monitoring framework that will be presented in setion 5. They are not partof the monitored system (i.e., the ADS). In other words, the atual requirementsof the system are not implemented by means of these lasses.

Fig. 5. Class model for requirements in GORE.Figure 6 shows the spei�ation of some AwReqs of table 1 using OCLTM .For example, onsider AR1, whih refers to a UML Task requirement. Figure 6



16presents AR1 as an OCL invariant on the lass T-InputInfo, whih should bea sublass of Task (from �gure 5) and represents requirement Input emergenyinformation. The invariant ditates that instanes of T-InputInfo should neverbe in the Failed state, i.e., Input emergeny information should never fail.

Fig. 6. Examples of AwReqs expressed in OCLTM .Aggregate AwReqs plae onstraints over a olletion of instanes. In AR3,for example, all instanes of G-SearhCallDB exeuted in the past 7 days areretrieved in a set named week (using date omparison as in [25℄), then we use theselet() operation again to separate the subset of the instanes that sueededand, �nally, we ompare the sizes of these two sets in order to assert that 95%of the instanes are suessful at all times (always).Trend AwReqs are similar, but a bit more ompliated as we must separatethe requirements instanes into di�erent time periods. For AR7, the selet()operation was used to reate sets with the instanes of Q-NoExtraAmb for thepast three months to ompare the rate of suess over time.Delta AwReqs speify invariants over single instanes of the requirements. AR8singles out the instanes of T-UpdAtSite that are related to T-InformDriver inthe related set by omparing the allID argument using OCLTM 's arguments()operation [25℄. Its invariant states that eventually the related set should haveexatly one element, whih should both be suessful and �nish its exeutionwithin 10 minutes of T-InformDriver's end time.



17AR9 shows how to speify the example in whih we do not talk spei�allyabout suess or failure of a requirement, but its hange of state: eventually tasksT-MarkUnique should not be in the Undeided state and the di�erene betweentheir start and end times should be at most 5 minutes.5 Implementation and EvaluationTo evaluate our proposal we have implemented a framework to monitor AwReqsat runtime. Suh evaluation onsiders three aspets of this framework:1. Can AwReqs be monitored? Spei�ally, an an automated monitor evaluaterequirements types enumerated in table 2 at runtime? Applying a onstru-tive experiment, we show this is true (�5.1);2. Can the AwReqs framework provide value for the analysis of a real system?With simulation experiments, we demonstrate this is true for senarios ofthe ADS (�5.2);3. What is the impat of AwReqs monitoring in the overall performane of themonitored system? We disuss this in �5.3.The �rst two items above represent the experimental and desriptive evalu-ation methods of Design Siene, as enumerated by [16℄. After this initial eval-uation, two other experiments were onduted, modeling the AwReqs of sys-tems that are lose to real-world appliations: an Adaptive Computer-aidedAmbulane Dispath system [31℄ that is somewhat similar to the ADS, but wasbased on the requirements for the London Ambulane System Computer-AidedDespath (LAS-CAD) [1℄; and an Automati Teller Mahine [35℄. Sine these ex-periments involved simulations of running systems based on their requirementsmodels, future evaluation e�orts inlude experiment with atual running systemsand onduting full-�edged ase studies with partners in industry.5.1 Monitoring Awareness Requirements PatternsAs mentioned in setion 2.3, we have used EEAT to monitor AwReqs expressedin OCLTM . In its urrent version, EEAT ompiles the OCLTM expression intoa rule �le that is triggered by messages exhanged by objets at runtime (i.e.,method alls). For this reason, we have to transform the initial spei�ationof the AwReqs to one based on methods reeived by the run-time instaneswhih represent the requirements. Figure 7 shows some of the AwReqs previouslypresented in �gure 6 in their �EEAT spei�ations�.For monitoring to work, then, the soure ode of the monitored system (inthis ase, the ADS) has to be instrumented in order to reate the instanes ofthe lasses that represent the requirements at runtime and all the methodsde�ned in lasses DefinableRequirement and PerformativeRequirement from�gure 5. Methods start() and end() should be alled when the system startsand ends the exeution of a goal or task (or the evaluation of a QC or DA),



18

Fig. 7. Spei�ation of AwReqs for EEAT.respetively. Together with the between lause (one of Dwyer et al. sopes, see�2.3), these methods allow us to de�ne the period in whih AwReqs should beevaluated, beause otherwise the rule system ould wait inde�nitely for a givenmessage to arrive.Given the right sope, the methods suess(), fail() and anel() arealled by the monitored system to indiate a hange of state in the requirementfrom Undeided to one of the orresponding �nal states (see �gure 3). Thesemethods are then used in the �EEAT spei�ation� of AwReqs. For example, wede�ne AR1 not as never being in the Failed state, but as never reeiving thefail()message in the sope of a single exeution (between start() and end()).An aggregate requirement, on the other hand, aggregates the alls duringthe period of time de�ned in the AwReq. For AR3, this is done by monitoring foralls of the newWeek()method, whih are alled automatially by the monitoringframework at the beginning of every week. Similar methods for di�erent timeperiods, suh as newDay(), newHour() and so forth, should also be implemented.The last example shows the delta AwReq AR8, whih uses OCLTM timeoutsto speify that the suess() method should be alled in the T-InformDriverinstane within 10 minutes after the same method is alled in T-UpdAtSite,given that both instanes refer to the same all ID, an argument that an bepassed along the method. This an be implemented by having a olletion ofkey-value pairs passed as parameters to the methods start(), suess(), et.An automati translator from theAwReqs ' initial spei�ation to their �EEATspei�ation� ould be built to aid the designer in this task. Another possibil-ity is to go diretly from the AwReq patterns presented in setion 3.2 to this�nal spei�ation. Table 3 illustrates how some of the patterns of table 1 anbe expressed in OCLTM . These formulations are onsistent with those shown in�gure 7. The de�nitions and invariants are plaed in the ontext of UML lassesthat represent requirements (see �4). For example, a reeiveMessage(`fail')for ontext R, denotes the alled operation R.fail() for lass R. Therefore, theinvariant pR in the �rst row of table 3 is true if R.fail() is never alled.



19Table 3. EEAT/OCLTM idioms for some patterns.Pattern OCLTM idiomNeverFail(R) def: rm: OlMessage = reeiveMessage(`fail')inv pR: never(rm)SuessRate(R, r, t) def: msgs: Sequene(OlMessage) = reeiveMessages()->selet(range().inludes(timestamp()))- - Note: these definitions are patterns that are assumed inthe following definitionsdef: sueed: Integer = msgs->selet(methodName = `sueed'))->size()def: fail: Integer = msgs->selet(methodName = `fail'))->size()inv pR: always(sueed / (sueed + fail) > r)ComparableSuess(R, S, x, t) - - 1 and 2 are fully speified lass namesinv pR: always(1.sueed > 2.sueed * x)MaxFailure(R, x, t) inv pR: always(fail < x)
P1 and/or P2; not P - - arbitrary temporal and real-time logial expressions areallowed over requirements definitions and run-time objetsOf ourse, the patterns of table 1 represent only ommon kinds of expres-sions. AwReqs ontain the range of expressions where a requirement R1 anexpress properties about requirement R2, whih inlude both design-time andrun-time requirements properties. OCLTM expliitly supports suh referenes,as the following expressions illustrate:def: p1: PropertyEvent = reeivedProperty(`p:pakage.lass.invariant')inv p2: never(p1.satisfied() = false)In OCLTM , all property evaluations are asserted into the run-time evaluationrepository as PropertyEvent objets. The de�nition expression of p1 refers toan invariant (on a UML lass, in a UML pakage). Properties about p1 inludeits run-time evaluation (satisfied()), as well as its design-time properties (e.g.,p1.name()). Therefore, in OCLTM , requirements an refer to their design-timeand run-time properties and, thus, AwReqs an be represented in OCLTM .To determine if the AwReq patterns an be evaluated at runtime, we on-struted senarios for eah row of table 3. Eah senario inludes three alterna-tives, whih should evaluate to true, false, and indeterminate (non-false) duringrequirements evaluation. We had EEAT ompile the patterns and onstrut amonitor. Then, we ran the senarios. In all ases, EEAT orretly evaluated therequirements.To illustrate how EEAT evaluates OCLTM requirements in general, the nextsubsetion desribes in detail a portion of the evaluation of the ADS' monitoringsystem, whih was generated from the requirements of table 1.5.2 Evaluating an Awareness Requirement SenarioThe requirements of the ADS provide a ontext to evaluate the AwReq frame-work. The ADS is implemented in Java. Its requirements (table 1) are repre-sented as OCLTM properties, using patterns like those presented in table 3 and



20�gure 7. Senarios were developed to exerise eah requirement so that eah ofthem should evaluate as failed or sueeded. When eah senario is run, EEATevaluates the requirements and returns the orret value. Thus, all the senariosthat test ADS requirements presented here evaluate orretly.Next, we desribe how this proess works for one requirement and one test.Consider a single vertial slie of the development surrounding requirement AR1,as shown in �gure 8:

Fig. 8. Overview of the AwReqs monitoring framework.1. Analysts speify the Emergeny input information task of �gure 1 (i.e.,T-InputInfo) as a task spei�ation (e.g., input, output, proessing algo-rithm) along with AwReqs suh as AR1;2. Developers produe an input form and a proessor ful�lling the spei�ation.In a work�ow system arhiteture, T-InputInfo is implemented as a XMLform whih is proessed by a work�ow engine. In our standard Java applia-tion, T-InputInfo is implemented as a form that is saved to a database. Inany ase, the point at whih the input form is proessed is the instrumenta-tion point;3. Validators (i.e., people performing requirements monitoring) instrument thesoftware. Five events are logged in this simple example: (a) T-InputInfo.start(), (b) T-InputInfo.end(), () T-InputInfo.suess(), (d) T-InputInfo.fail(), and (e) T-InputInfo.anel(). Of ourse, the develop-ers may have hosen a di�erent name for T-InputInfo or the �ve methods,in whih ase, the validator must introdue a mapping from the run-timeobjet and methods to the requirements lasses and operations. Given therise of domain-driven software development, in whih requirements lasses



21are implemented diretly in ode, the mapping funtion is often relativelysimple � even one-to-one;4. The EEAT monitor ontinually reeives the instrumented events and deter-mines the satisfation of requirements. In the ase of AR1, if the T-InputInfoform is proessed as sueed or anel, then AR1 is true.The arhiteture and proess of EEAT provides some ontext for the pre-eding desription. EEAT follows a model-driven arhiteture (MDA). It relieson the Elipse Modeling Framework (EMF) for its meta-model and the OSGiomponent spei�ations. This means that the OCLTM language and parser isde�ned as a variant of the Elipse OCL parser by providing EMF de�nitionsfor operations, suh as reeivedMessage. The ompiler generates Drools rules,whih ombined with the EEAT API, provide the proessing to inrementallyevaluate OCLTM properties at runtime.EEAT provides an Elipse-based UI. However, the run-time operates as aOSGi appliation, omprised as a dynami set of OSGi omponents. For theseexperiments, the EEAT run-time omponents onsist of the OCLTM propertyevaluator, ompiled into a Drools rule system, and the EEAT log4j feed, whihlistens for logging events and adds them to the EEAT repository. The Javaappliation was instrumented by Elipse TPTP to send CBE events via log4jto EEAT, where the event are evaluated by the ompiled OCLTM propertymonitors. For a more omplete desription of the language and proess of EEAT,see [26, 27℄.5.3 Monitor PerformaneMonitoring has little impat on the target system, mostly beause the target sys-tem and the monitor typially run on separate omputers. The TPTP Probekitprovides optimized byte-ode instrumentation, whih adds little overhead tosome (seleted) method alls in the target system. The logging of signi�antevents onsumes no more than 5%, and typially less than 1% overhead.For real-time monitoring, it is important to determine if the target events anoverwhelm the monitoring system. A performane analysis of EEAT was on-duted by omparing the total monitoring runtime vs. without monitoring using40 ombinations of the Dwyer et al. temporal patterns [11℄. For data, a simpletwo-event sequene was the basis of the test datum; for ontext, onsider theevents as an arriving email and its subsequent reply. These pairs were ontinu-ously sent to the server 10,000 times. In the experiment, the event generator andEEAT ran in the same multi-threaded proess. The test ran as a JUnit test asewithin Elipse on a Windows Server 2003 dual ore 2.8 GHz with 1G memory.The results suggest that, within the test on�guration, sequential properties (oflength 2) are proessed at 137 event-pairs per seond [26℄. This indiates thatEEAT is reasonably e�ient for many monitoring problems.



226 Related WorkIn the literature, there are many approahes for the design of adaptive systems.A great deal of them, however, fous on arhitetural solutions for this prob-lem, suh as the Rainbow framework [13℄, the proposal of Kramer & Magee [19℄,the work of Sousa et al. [30℄, the SASSY framework [22℄, among others. Theseapproahes usually express adaptation requirements in a quantitative manner(e.g., utility funtions) and fous on quality of servie (i.e., non-funtional re-quirements). In omparison, our researh is foused on early requirements (goal)models, allowing stakeholders and requirements engineers to reason about adap-tation on a higher level of abstration. Furthermore, AwReqs an be assoiatednot only to non-funtional harateristis of the system (represented by qualityonstraints), but also to funtional requirements (goals, tasks) and even domainassumptions. The rest of this setion fouses on reent approahes that share aommon fous with ours in early requirements models.A number of reent proposals o�er alternative ways of expressing and rea-soning about partial requirements satisfation. RELAX by Whittle, et al. [36℄ isone suh approah aimed at apturing unertainty (mainly due to environmentalfators) in the way requirements an be met. Unlike our goal-oriented approah,RELAX assumes that strutured natural language requirements spei�ations(ontaining the SHALL statements that speify what the system ought to do)are available before their onversion to RELAX spei�ations. The modal oper-ators available in RELAX, SHALL and MAY. . .OR, speify, respetively, thatrequirements must hold or that there exist requirements alternatives. We, on theother hand, apture alternative requirements re�nement using OR deomposi-tions of goals.In RELAX, points of �exibility/unertainty are spei�ed delaratively, thusallowing designs based on rules, planning, et. as well as to support unantiipatedadaptations. Some requirements are deemed invariant � they need to be satis�edno matter what. This orresponds to the NeverFail(R) AwReq pattern in ourapproah. Other requirements are made more �exible in order to maintain theirsatisfation by using �as possible�-type RELAX operators. Beause of these,RELAX needs a logi with built-in unertainty to apture its semantis. Theauthors hose fuzzy branhing temporal logi for this purpose. It is based on theidea of fuzzy sets, whih allows gradual membership funtions. E.g., the funtionfor fuzzy number 2 peaks at 1 given the value 2 and slopes sharply towards 0as we move away from 2, thus apturing �approximately 2�. Temporal operatorssuh as Eventually and Until allow for temporal omponent in requirementsspei�ations in RELAX.Our approah is muh simpler ompared to RELAX. The AwReqs onstrutsthat we provide just referene other requirements. Thus, we believe that it ismore suitable, e.g., for requirements eliitation ativities. Our spei�ations donot rely on fuzzy logi and do not require a omplete requirements spei�ationto be available prior to the introdution of AwReqs. Also, our language doesnot require omplex temporal onstruts. However, the underlying formalismused for AwReqs � OCLTM � provides temporal operators, as does EEAT,



23so temporal properties an be expressed and monitored. Most of the work ongenerating OCLTM spei�ations an be automated through the use of patterns.With eah relaxation RELAX assoiates �unertainty fators�: properties ofthe environment that an or annot be monitored, but whih a�et unertaintyin ahieving requirements. Our future work inludes suh integration of domainmodels in our approah.Using AwReqs we an express approximations of many of the RELAX-ed re-quirements. For instane, AR5 from table 1 an be used as a rough approximationof the requirement �ambulanes must arrive at the sene AS CLOSE AS POSSI-BLE to 10 minutes' time�. The general pattern for approximating fuzzy require-ments is to �rst identify a number of requirements that di�er in their stritness,depending on our interpretation of what �approximately� means. E.g., R1 = �am-bulane arrives in 10 min�, R2 = �ambulane arrives in 12 min�, R3 = �ambulanearrives in 15 min�. Then, we assign desired satisfation levels to these require-ments. For instane, we an set suess rate for R1 to 60% (as in AR5), R2 to80%, and R3 to 100%. This means that all ambulanes will have to arrive within10�15 min from the emergeny all. The AwReq will then look like AR12 = Su-essRate(R1, 60%) AND SuessRate(R2, 80%) AND SuessRate(R3, 100%).On the other hand, AR13 = SuessRate(R1, 80%) AND SuessRate(R2, 100%)provides a muh striter interpretation of the fuzzy duration with all ambulanesrequired to arrive within 12 minutes.Another related approah alled FLAGS is presented in [3℄. FLAGS require-ments models are based on the KAOS framework [20℄ and are targeted at adap-tive systems. It proposes risp (Boolean) goals (spei�ed in linear-time temporallogi, as in KAOS), whose satisfation an be easily evaluated, and fuzzy goalsthat are spei�ed using fuzzy onstraints. In FLAGS, fuzzy goals are mostly as-soiated with non-funtional requirements. The key di�erene between risp andfuzzy goals is that the former are �rm requirements, while the latter are more�exible. Compared to RELAX, FLAGS is a goal-oriented approah and thus isloser in spirit to our proposal.To provide semantis for fuzzy goals, FLAGS inludes fuzzy relational andtemporal operators. These allow expressing requirements suh as something bealmost always less than X, equal to X, within around t instants of time, lastshopefully t instants, et. As was the ase with the RELAX approah,AwReqs anapproximate some of the fuzzy goals of FLAGS while remaining quite simple. Theexample that we presented while disussing RELAX also applies here. Whenevera fuzzy membership funtion is introdued in FLAGS, its shape must be de�nedby onsidering the preferenes of stakeholders. This spei�es exatly what valuesare onsidered to be �around� the desired value. As we have shown above withAR12 and AR13, AwReqs an approximate this �tuning� of fuzzy funtions whilenot needing fuzzy logi and thus remaining more aessible to stakeholders.Additionally, in FLAGS, adaptive goals de�ne ountermeasures to be exe-uted when goals are not attained, using event-ondition-ation rules. Our pro-posal on a full-�edged ompensation language has been reently submitted forpubliation in a onferene and is urrently under review [33℄. Disussion in



24setion 3 illustrates how AwReqs and meta-AwReqs ould be used to enat therequired ompensation behavior, inluding relaxation of desired suess rates.We further omment on these aspets on setion 7.2.Letier and van Lamsweerde [21℄ present an approah that allows for speify-ing partial degrees of goal satisfation for quantifying the impat of alternativedesigns on high-level system goals. Their partial degree of satisfation an bethe result of, e.g., failures, limited resoures, et. Unlike FLAGS and RELAX,here, a partial goal satisfation is measured not in terms of its proximity to beingfully satis�ed, but in terms of the probability that it is satis�ed. The approahaugments KAOS with a probabilisti layer. Here, goal behavior spei�ation (inthe usual KAOS temporal logi way) is separate from the quantitative aspetsof goal satisfation (spei�ed by quality variables and objetive funtions). Ob-jetive funtions an be quite similar to AwReqs, exept they use probabilities.For instane, one suh funtion presented in [21℄ states that the probability ofambulane response time of less than 8 min should be 95%. Objetive funtionsare formally spei�ed using a probabilisti extension of temporal logi. An ap-proah for propagating partial degrees of satisfation through the model is alsopart of the method.Overall, the method an be used to estimate the level of satisfation of high-level goals given statistial data about the urrent or similar system (from ratherlow-level measurable parameters). Our approah, on the other hand, naturallyleads to high-level monitoring apabilities that an determine satisfation levelsfor AwReqs.There is a fundamental di�erene between the approahes desribed aboveand our proposal. There, by default, goals are treated as invariants that mustalways be ahieved. Non-ritial goals � those that an be violated from time totime � are relaxed. Then, the aim of those methods is to provide the mahineryto onlude at runtime that while the system may have failed to fully ahieveits relaxed goals, this is aeptable. So, while relaxed goals are monitored atruntime, invariant ones are analyzed at design time and must be guaranteed toalways be ahievable at runtime.In our approah, on the other hand, we aept the fat that a system mayfail in ahieving any of its initial (stratum 0) requirements. We then suggest thatritial requirements are supplemented by AwReqs that ultimately lead to theintrodution of feedbak loop funtionality into the system to ontrol the degreeof violation of ritial requirements. Thus, the feedbak infrastruture is there toreinfore ritial requirements and not to monitor the satisfation of expendable(i.e., relaxed) goals, as in RELAX/FLAGS. The introdution of feedbak loopsin our approah is ultimately justi�ed by ritiality onerns.7 From Awareness Requirements to Feedbak LoopsAs stated in setion 1, our intention in this proposal is to identify and explorerequirements that lead to the introdution of feedbak loop funtionality intoadaptive systems. In setion 3.3, we disussed the soures of AwReqs, while



25setion 5 explained how EEAT an be used to monitor AwReqs at runtime todetermine if they are attained or not. In this setion, we present the overview ofthe role of Awareness Requirements in our overall approah for feedbak loop-based requirements-driven adaptive systems design.Figure 9 shows a variant of a feedbak ontroller diagram adapted for require-ments-driven adaptive systems. Here, system requirements play the role of thereferene input, while indiations of requirements onvergene signaling if therequirements have been met replae the traditional monitored output of the on-troller. The ontroller itself is represented by a requirements-driven adaptationframework that ontrols the target system through exeuting adaptation ationsthat orrespond to the ontrol input in traditional feedbak ontrol shemes. Dy-namially hanging ontext orresponds to the disturbane input of the ontrolloop. Finally, the measure of requirements divergene is the ontrol error.

Fig. 9. A feedbak loop illustrating the steps of the proposed proess.Furthermore, the phases of our proposed approah are added to the feedbakloop diagram in �gure 9, labeled 1 through 5. Step 1 is to set the targets forsystem to ahieve/maintain at runtime. AwReqs, as disussed here, are used forthis purpose. For step 2, the EEAT monitoring framework presented in setion5 is used to monitor whether the AwReqs are attained at runtime. Given thevalues for the AwReq attainment at runtime, in step 3 we alulate requirementsdivergene. If the targets are not met, this warrants a system adaptation. Thesystem identi�ation proess (step 4) is aimed at linking system on�gurationparameters with indiators of requirements onvergene and an be used to de-termine possible system reon�gurations. This proess is further disussed inSetion 7.1. Finally, adaptation strategies/ations (step 5 in �gure 9) are used



26by the adaptation framework to atually adapt the target system. These arefurther disussed in setion 7.2.7.1 System Identi�ationAs we have shown throughout setions 3 to 5, AwReqs an be used to determinewhen requirements are not being satis�ed, muh the same way a ontrol systemalulates the ontrol error, i.e., the disrepany between the referene input (de-sired) and the measured output (outome). The next step, then, is to determinethe ontrol input based on this disrepany, i.e., determine what ould be doneto adapt the target system to ultimately satisfy the requirements.In Control Theory (e.g., [15℄), the �rst step towards aomplishing this isan ativity alled System Identi�ation, whih is the proess of determining theequations that govern the dynami behavior of a system. This ativity is on-erned with: (a) the identi�ation of system parameters that, when manipulated,have an e�et on the measured output; and (b) the understanding of the natureof this e�et. Afterwards, these equations an guide the hoie of the best wayto adapt to di�erent irumstanes. For example, in a ontrol system in whihthe room temperature is the measured output, turning on the air onditionerlowers the temperature, whereas using the furnae raises it. If the heating/ool-ing systems o�er di�erent levels of power, there is also a relation between suhpower level and the rate in whih the temperature in the room hanges.In [32℄ we propose a systemati proess for onduting System Identi�ationfor adaptive software systems, along with a language that an be used to rep-resent how hanges in system parameters a�et the indiators of requirementsonvergene. After AwReqs have been eliited as indiators, the System Identi-�ation proess onsists of three ativities:1. Identify parameters: determine points of variability in the system (OR-deompositions, parameters related to system goals or tasks) whose hangeof value a�ets any of the indiators. For instane, the set of required �elds(an enumerated parameter) a�ets AwReq AR1 (see table 1) � less required�elds makes inputting information easier; the number of ambulanes, as wellas operators and dispathers working, a�ets AwReq AR5 � the higher thenumber, the higher the hanes of fast assistane;2. Identify relations: for eah indiator�parameter pair (not only the onesidenti�ed in the previous step, but the full {indicators} × {parameters}Cartesian produt), verify if there is a relation between hanges in the param-eter and the value of the indiator. For eah existing relation, model quali-tative information about the nature of the e�et using di�erential equations.For example, ∆ (AR1/RequiredF ields) < 0 indiates that dereasing therequired �elds (assuming the enumerated values form a totally ordered set)inreases the suess of AR1; ∆ (AR5/NumberOfAmbulances) > 0 statesthat inreasing the number of ambulanes also inreases the suess of AR5;3. Re�ne relations: after identifying initial relations, the model an be re�nedby omparing and ombining those that refer to the same indiator. For ex-ample,∆ (AR5/NumberOfAmbulances) > ∆ (AR5/NumberOfOperators)



27tells us that buying more ambulanes is more e�etive than hiring more op-erators when onsidering how fast ambulanes get to emergeny sites.A more detailed explanation of the System Identi�ation proess and theproposed language for modeling relations between indiators and parametersan be found in [32℄. However, the basi examples above already give us theintuition that this kind of information is very important in order to determinethe best way to adapt the target system and, therefore, the models produed bySystem Identi�ation an be used by the adaptation framework for this purpose.Adaptation strategies are disussed next.7.2 Adaptation StrategiesThere are several ways a system an be hanged as a result of its failure to at-tain the requirements. We all one suh possibility adaptation. Here, the system'son�guration (the values of its parameters) is hanged in attempt to ahieve theindiator targets. This an be viewed as parameter tuning. There an be a num-ber of possible reon�guration strategies based on the amount of informationavailable in the system identi�ation model. The more information is availableand the more quantitative it is, the more preise and advaned the reon�gu-ration strategies an beome. The reon�gurations involve hanging the valuesof the system parameter(s), whih a�et indiator(s) that failed to ahieve theirtarget values. With the absene of a fully quantitative model relating parametersand indiators, an adaptation strategy may involve a number of suh reon�gu-rations that are performed in suession in attempt to bring the inditor value toits target. When more preise information is available, quantitative approahes,e.g., mimiking the PID ontroller [15℄ an be used. Detailed spei�ation andanalysis of these strategies is one of the subjets of our urrent researh.In addition to reon�guring a system, Evolution Requirements, whih desribeevolutions of other requirements, an be used to identify spei� hanges to thesystem requirements under partiular onditions (usually requirements failures,negative trends on ahieving requirements, or opportunities for improvement).Unlike reon�gurations disussed above, evolution requirements may hange thespae of alternatives available for the system. In our reent work [33℄, we haveidenti�ed a number of adaptation strategies, inluding abort, retry, delegate to anexternal agent, relax/strengthen the requirement, et., onstruted from the ba-si requirements evolution operations suh as initiate (a requirement instane),rollbak (hanges due to an attempt to ahieve a requirement), et. These adapta-tion strategies an be applied at the requirements instane level (thus, �xing/im-proving a partiular system instane) and/or type level (thereby hanging thebehavior of all subsequent system instanes). Reon�guration is onsidered asone possible adaptation strategy. It an be applied at both levels. Further, [33℄proposes an ECA-based proess for exeuting adaptation strategies in responseto failures. Triggered by AwReq failures, this proess attempts to exeute the pos-sibly many adaptation strategies assoiated with the AwReq in their prefereneorder, while defaulting to the abort strategy if others do not prove suessful.



28 We stress here that Awareness Requirements are absolutely ruial in ourvision for requirements-driven adaptive systems design. They serve both as themeans to speify targets to be met by the system (i.e., referene inputs for thefeedbak ontroller) and as the indiators of requirements onvergene (i.e., themonitored outputs), with their failures triggering the above-desribed adaptationstrategies.8 ConlusionsThe main ontribution of this paper is the de�nition of a new lass of require-ments that impose onstraints on the run-time suess rate of other require-ments. The tehnial details of the ontribution inlude linguisti onstrutsfor expressing suh requirements (referene to other requirements, requirementstates, temporal operators), expression of suh requirements in OCLTM , as wellas portions of a prototype implementation founded on an existing requirementsmonitoring framework. We have also disussed the role of AwReqs in a ompleteproess for the development of adaptive systems using a feedbak loop-basedadaptation framework that builds on top of this monitoring framework.Other than working towards the full feedbak loop implementation disussedin setion 7, future steps in our researh inlude the integration of domain modelsin the approah (as mentioned in setion 6) and improvements in the de�nitionand spei�ation of AwReqs. Other questions also present themselves as opportu-nities for future work in the ontext of this researh: what is the role of ontextualinformation in this approah? How ould we add preditive apabilities or prob-abilisti reasoning in order to avoid failures instead of adapting to them? Couldthis approah help ahieve requirements evolution? These and other questionsshow how muh work there is still to be done in this researh area.Referenes1. Report of the inquiry into the London Ambulane Servie. South West ThamesRegional Health Authority (1993)2. Objet Constraint Language, OMG Available Spei�ation, Version 2.0,http://www.omg.org/gi-bin/do?formal/2006-05-01 (2006)3. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-driven Adap-tation. In: Pro. of the 18th IEEE International Requirements Engineering Con-ferene. pp. 125�134. IEEE (2010)4. Berry, D.M., Cheng, B.H.C., Zhang, J.: The Four Levels of Requirements Engi-neering for and in Dynami Adaptive Systems. In: Pro. of the 11th InternationalWorkshop on Requirements Engineering: Foundation for Software Quality. pp. 95�100 (2005)5. Bresiani, P., Perini, A., Giorgini, P., Giunhiglia, F., Mylopoulos, J.: Tropos:An Agent-Oriented Software Development Methodology. Autonomous Agents andMulti-Agent Systems 8(3), 203�236 (2004)6. Brun, Y., et al.: Engineering Self-Adaptive Systems through Feedbak Loops. In:Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software



29Engineering for Self-Adaptive Systems, Leture Notes in Computer Siene, vol.5525, pp. 48�70. Springer (2009)7. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A ResearhRoadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.(eds.) Software Engineering for Self-Adaptive Systems, Leture Notes in ComputerSiene, vol. 5525, pp. 1�26. Springer (2009)8. Dardenne, A., van Lamsweerde, A., Fikas, S.: Goal-direted Requirements Aqui-sition. Siene of Computer Programming 20(1-2), 3�50 (1993)9. Dobson, S., et al.: A Survey of Autonomi Communiations. ACM Transationson Autonomous and Adaptive Systems 1(2), 223�259 (2006)10. Doyle, J.C., Franis, B.A., Tannenbaum, A.R.: Feedbak Control Theory. Mamil-lan Coll Div, 1992 edn. (1992)11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Spei�ations forFinite-State Veri�ation. In: Pro. of the 21st International Conferene on SoftwareEngineering. pp. 411�420. ACM (1999)12. Flake, S.: Enhaning the Message Conept of the Objet Constraint Language. In:Pro. of the 16th International Conferene on Software Engineering & KnowledgeEngineering. pp. 161�166 (2004)13. Garlan, D., Cheng, S.W., Huang, A.C., Shmerl, B., Steenkiste, P.: Rain-bow: Arhiteture-Based Self-Adaptation with Reusable Infrastruture. Computer37(10), 46�54 (2004)14. Giese, H., Cheng, B.H.C. (eds.): Proeedings of the 6th International Symposiumon Software Engineering for Adaptive and Self-Managing Systems. ACM (2011)15. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedbak Control of Com-puting Systems. Wiley, 1st edn. (2004)16. Hevner, A.R., Marh, S.T., Park, J., Ram, S.: Design Siene in Information Sys-tems Researh. MIS Quarterly 28(1), 75�105 (2004)17. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the Core Ontology and Problemin Requirements Engineering. In: Pro. of the 16th IEEE International Require-ments Engineering Conferene. pp. 71�80. IEEE (2008)18. Kephart, J.O., Chess, D.M.: The vision of autonomi omputing. Computer 36(1),41�50 (2003)19. Kramer, J., Magee, J.: A Rigorous Arhitetural Approah to Adaptive SoftwareEngineering. Journal of Computer Siene and Tehnology 24(2), 183�188 (2009)20. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-els to Software Spei�ations. Wiley, 1 edn. (2009)21. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfation forRequirements and Design Engineering. In: Pro. of the 12th ACM SIGSOFT In-ternational Symposium on Foundations of Software Engineering. vol. 29, pp. 53�62.ACM (2004)22. Menase, D.A., Gomaa, H., Malek, S., Sousa, J.a.P.: SASSY: A Framework forSelf-Arhiteting Servie-Oriented Systems. IEEE Software 28(6), 78�85 (2011)23. Parashar, M., Figueiredo, R., K��man, E.E. (eds.): Proeedings of the 7th Inter-national Conferene on Autonomi Computing. ACM (2010)24. Robinson, W.N.: A requirements monitoring framework for enterprise systems.Requirements Engineering 11(1), 17�41 (2006)25. Robinson, W.N.: Extended OCL for Goal Monitoring. Eletroni Communiationsof the EASST 9 (2008)26. Robinson, W.N., Fikas, S.: Designs Can Talk: A Case of Feedbak for DesignEvolution in Assistive Tehnology. In: Lyytinen, K., et al. (eds.) Design Require-



30 ments Engineering: A Ten-Year Perspetive, Leture Notes in Business InformationProessing, vol. 14, pp. 215�237. Springer (2009)27. Robinson, W.N., Purao, S.: Monitoring Servie Systems from a Language-AtionPerspetive. IEEE Transations on Servies Computing 4(1), 17�30 (2011)28. Rohleder, C., Smith, J., Dix, J.: Requirements Spei�ation - Ambulane DispathSystem. Teh. rep., Software Engineering (CS 3354) Course Projet, University ofTexas at Dallas, USA (available at: http://www.utdallas.edu/�jr041000/) (2006)29. Rosenthal, D.: Consiousness and Mind. Oxford University Press, 1st edn. (2005)30. Sousa, J.a.P., Balan, R.K., Poladian, V., Garlan, D., Satyanarayanan, M.: A Soft-ware Infrastruture for User�Guided Quality�of�Servie Tradeo�s. In: Cordeiro,J., Shishkov, B., Ranhordas, A., Helfert, M. (eds.) Software and Data Tehnolo-gies, Communiations in Computer and Information Siene, vol. 47, pp. 48�61.Springer (2009)31. Souza, V.E.S.: An Experiment on the Development of an Adaptive Sys-tem based on the LAS-CAD. Teh. rep., University of Trento (available at:http://disi.unitn.it/�vitorsouza/a-ad/) (2012)32. Souza, V.E.S., Lapouhnian, A., Mylopoulos, J.: System Identi�ation for Adap-tive Software Systems: a Requirements Engineering Perspetive. In: Jeusfeld, M.,Delambre, L., Ling, T.W. (eds.) Coneptual Modeling � ER 2011, Leture Notesin Computer Siene, vol. 6998, pp. 346�361. Springer (2011)33. Souza, V.E.S., Lapouhnian, A., Mylopoulos, J.: (Requirement) Evolution Require-ments for Adaptive Systems. In: Pro. of the 7th International Symposium onSoftware Engineering for Adaptive and Self-Managing Systems (to appear) (2012)34. Souza, V.E.S., Mylopoulos, J.: From Awareness Requirements to Adaptive Systems:a Control-Theoreti Approah. In: Pro. of the 2nd International Workshop onRequirements�Run.Time. pp. 9�15. IEEE (2011)35. Tallabai, G.: System Identi�ation for the ATM System. Master thesis, Universityof Trento (to be submitted) (2012)36. Whittle, J., Sawyer, P., Benomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: In-orporating Unertainty into the Spei�ation of Self-Adaptive Systems. In: Pro.of the 17th IEEE International Requirements Engineering Conferene. pp. 79�88.IEEE (2009)37. Yu, E.S.K., Giorgini, P., Maiden, N., Mylopoulos, J.: Soial Modeling for Require-ments Engineering. MIT Press, 1st edn. (2011)


