
The FrameWeb Approach to Web Engineering:
Past, Present and Future

V�́tor E. Silva Souza[0000� 0003� 1869� 5704]

Ontology & Conceptual Modeling Research Group (NEMO)
Department of Computer Science

Federal University of Esp�́rito Santo (UFES) - Vit́oria, ES, Brazil
vitor.souza@ufes.br

http://www.inf.ufes.br/� vitorsouza/

Abstract. The use of software frameworks is a popular method of reuse, espe-
cially in the context of Web-based Information Systems (WISs) development, as
they share a very similar basic infrastructure that is generalized and implemented
in many different state-of-the-practice frameworks available. Moreover, there has
been a growing interest in publishing data on the Web in a machine-processable
format known aslinked datain order to enable automatic processing of the huge
amount of data available today on the Internet. The goal of theFrameWebproject
is to provide methods, languages and tools to aid developers in the construc-
tion of WISs that take advantage of the architectural foundation offered by such
frameworks and facilitate the publication of linked data from such WISs. In this
paper, we review the history of theFrameWebproject, describe the approach in
its current (end of 2019) form and devise plans for its near future.
This paper has been written to honor Ricardo de Almeida Falbo on the occasion
of his formal retirement as a professor of the Department of Computer Science at
the Federal University of Esp�́rito Santo (UFES). The research project described
herein would not have existed without him. Hence, this paper shows the fruits
that came from a seed planted by Ricardo more than a decade ago.

Keywords: Reuse� frameworks� Web Engineering� method� language� tools�
FrameWeb

1 Introduction

Software reuse has been practiced since programming began, using, e.g., libraries, do-
main engineering, design patterns, componentry, etc. [15]. A popular method of reuse
is the use of software frameworks (e.g., Hibernate [6]) or platform architectures (e.g.,
JavaTM Enterprise Edition [11]), which are middleware on/with which applications can
be developed [15]. The use of such frameworks1 helps to avoid the continual rediscov-
ery and reinvention of basic architectural patterns and components, reducing cost and
improving the quality of software by using proven architectures and designs [25].

1 In this paper, the termframeworkis used both in its traditional sense—a reusable set of libraries
or classes for a software system—and in the sense ofplatform architecturesmentioned above.

http://www.inf.ufes.br/�vitorsouza/

This is particularly evident in the context of Web-based Information Systems (WISs)
development, which is the focus of this paper. WISs are data-centric applications de-
ployed on the Internet or an intranet, in which functionality and data have greater im-
portance than content presentation. Such systems are usually developed on top of a solid
Web infrastructure which commonly includes a Front Controller [5], a Dependency In-
jection mechanism [14], an Object/Relational Mapping [6] solution to communicate
with the database, and so on.

Despite their popularity, until recently, and to the best of our knowledge, none of the
Web Engineering [22] methods and modeling languages proposed in the literature con-
sidered the existence of such frameworks before the coding phase of the software pro-
cess. Given how these frameworks affect the architecture of a WIS, this fact motivated
us to proposeFrameWeb, a Framework-based Design Method for Web Engineering [27,
28]. FrameWebincorporates concepts from well established categories of frameworks
(such as the ones above) into a set of architectural design models, improving developer
communication and project documentation.

On a different, but related front, an increasing number of people and organizations
are choosing to share their data on the Web, contributing to adata deluge. This phe-
nomenon creates problems such as how to provide access to data so it can be most
easily reused; how to enable discovery of relevant data; or how to integrate data from
different and formerly unknown data sources [18]. A solution that has been gaining mo-
mentum in recent years is the publication oflinked data[7], a set of technologies that
lay the foundation for what researchers have been callingThe Semantic Web[8] for the
past two decades.

According to the Semantic Web vision, making data available on the Web in such
a machine-processable format, would allow the creation of software agents that could
help us through the data deluge, executing tasks that are repetitive, impractical or even
impossible to accomplish nowadays. One of the main issues with this vision is that the
current level of adoption by data publishers and application developers is not enough
for us to harness all the advertised bene�ts of this newWeb of Data.

In this context,FrameWebprovides a systematic method based on well-founded
conceptual models, coupled with tools that automate certain parts of the process, fa-
cilitating the task of integrating a WIS into the Web of Data and, thus, promoting the
adoption of linked data. Although a small contribution regarding the broader problem
of realizing the Semantic Web vision, we can nevertheless harness the bene�ts of linked
data, even if such vision has not been (or will never be) reached.

Since its initial proposal [27, 28], theFrameWebapproach has evolved in a num-
ber of ways [21, 10, 9, 4, 24], involving many undergraduate and graduate students in a
research project.2 The goal of theFrameWebproject is to provide methods, languages
and tools to aid developers in the construction of WISs that take advantage of the archi-
tectural foundation offered by such frameworks and facilitate the publication of linked
data from such WISs.

In this paper, we review the history of theFrameWebproject in Section 2 — what
was its initial proposal and how it evolved —, describe the approach in its current (end
of 2019) form in Section 3 — what can the approach help me accomplish now — and

2 Seehttps://nemo.inf.ufes.br/projects/frameweb/.

101

https://nemo.inf.ufes.br/projects/frameweb/

devise plans for its near future in Section 4 — what can we expect as future work in the
project. Finally, Section 5 concludes the paper with some personal notes.

2 Past: the FrameWeb Story

FrameWeb's initial proposal [27, 28], developed between 2005 and 2007, focused on
three speci�c frameworks based on my previous experiences in developing Web-based
Information Systems (WISs) in practice: Struts,3 Spring4 and Hibernate.5 These frame-
works established, later, the initial set offramework categoriesthat FrameWebwould
support:

– Front Controller frameworks (e.g., Struts): frameworks of this kind implement a
slightly modi�ed version of the Model-View-Controller pattern [16], adapted to the
Web and are, thus, also known asMVC frameworks. When using such a framework,
a WIS manages all requests from clients using an object known as Front Controller.
Based on its con�guration,6 this object decides which class (called acontroller
class) will respond to the current request. Then, it instantiates an object of that
class, calls one of its methods and, based on the method's return value, the Front
Controller decides the appropriate view to present as result, such as a Web page,
a PDF report, a �le download, etc. For instance, in the Java EE set of standards,
JavaServer Faces7 is a Front Controller framework;

– Dependency Injection frameworks(e.g., Spring): frameworks of this kind allow
the developer to program to interfaces, i.e., when classes depend on objects of other
classes to perform a certain task, have the dependent class relate only to the inter-
face of its dependencies, and not to a speci�c implementation of that service [14].
Such dependencies are speci�ed in the framework's con�guration and, when a cer-
tain object is created (which is also performed by the framework), all of its depen-
dencies are automatically injected and satis�ed. For instance, in Java EE, Contexts
and Dependency Injection for Java8 is the standard Dependency Injection frame-
work;

– Object/Relational Mapping frameworks (e.g., Hibernate): frameworks of this
kind offer automatic and transparent persistence of objects to tables of a relational
database management system (RDBMS) using meta-data that describe the map-
ping between both worlds [6]. Such frameworks became very popular (and not

3 https://struts.apache.org
4 https://spring.io/projects/spring-framework
5 https://hibernate.org/orm/
6 Frameworks are usually con�gured using speci�c �les or annotations in the classes themselves.

Often, sensible defaults help keep such con�guration to a minimum.
7 JSF,http://jcp.org/en/jsr/detail?id=344. Strictly speaking, however, JSF (and the other Java EE

standards) arespeci�cationsthat can be implemented by many frameworks (e.g., Mojarra and
MyFaces implement JSF). When using a Java EE certi�ed application server, however, this is
not explicit to the developer. As such, we will refer to these standard speci�cations as being
frameworks themselves.

8 CDI, http://jcp.org/en/jsr/detail?id=346

102

https://struts.apache.org
https://spring.io/projects/spring-framework
https://hibernate.org/orm/
http://jcp.org/en/jsr/detail?id=344
http://jcp.org/en/jsr/detail?id=346

only on WISs) due to what has been called theobject-relational impedance mis-
match[19], i.e., a set of problems that arise due to the combination of the object-
oriented paradigm (popular choice for software development) and the relational
paradigm (popular choice for data storage). For instance, the Java EE standard for
Object/Relational Mapping is the Java Persistence API.9

FrameWeb, thus, incorporates the concepts from these frameworks into design mod-
els. Initially, it started with two main contributions to the architectural design phase of
the software process: (i) the de�nition of a basic architecture (detailed in Section 3) for
better integration with these kinds of frameworks; and (ii) a UML pro�le (lightweight
extension) for the construction of four different design models that bring the concepts
used by the frameworks to the models.

Figure 1 illustrates some of the proposed extensions in aNavigation Model, which
is theFrameWebmodel that incorporates concepts from Front Controller frameworks.
UML stereotypes are used to differentiate Web pages (hhpageii), templates (hhtemplateii ,
used to render Web pages), forms (hhformii) and controller classes (no stereotype). De-
pendency associations with constraints indicate how the different components interact
and, thus, guide the con�guration of the Front Controller framework.

Fig. 1.Navigation Model for log in, log out and remind password features of a WIS [28].

This Navigation Model indicates that theindexpage of the WIS should have a form
frmLogin with login andpassword�elds, whose respective types (text andpassword)

9 JPA,http://jcp.org/en/jsr/detail?id=338

103

http://jcp.org/en/jsr/detail?id=338

refer to visual components from thetag library used by the framework. Once the user
�lls in and submits this form, the framework should respond with theAuthenticateUser-
Action controller, in particular itsexecuteLogin()method (Struts suggested a standard
executepre�x to all controller methods). If this method returnedinput (presumably due
to some issue with the user input), theform template should render an error message
related to the login attempt and the user may try again. Instead, if it returnssuccess, the
user should be directed to thehometemplate.Log outandremind passwordfeatures
work analogously. Note that when components have attributes with the same name (e.g.,
frmLogin.loginandAuthetnicateUserAction.login) it means that the framework should
take care of this binding (e.g., have the contents of thelogin �eld in the form copied to
theloginattribute of the controller).

FrameWebalso prescribed three other models, all of them based on the UML Class
Diagram: theDomain Model (later renamedEntity Model), the Persistence Model
and theApplication Model . It also offered an extension of the method, calledS-Fra-
meWeb, that prescribed the use of the Object Management Group's (OMG) Ontology
De�nition Metamodel (ODM) [1] in order to guide the creation of a vocabulary in OWL
(W3C's Web Ontology Language)10 representing the classes from the domain model of
the WIS. Further, a component compatible with the Struts framework was implemented
in order to output instances of this vocabulary based on the data from the WIS.

The original proposal ofFrameWebprovided software engineers with interesting
tools to organize and document the architecture of a WIS, giving precise instructions to
developers on how they should write the code and con�gure the frameworks. However,
it suffered from a few drawbacks:

(i) Its proposed models were based on speci�c instances of the supported framework
categories (namely, Struts, Spring and Hibernate), with no guarantees they would
�t appropriately if another set of frameworks (although from the same categories,
say JSF, CDI and JPA) were used;

(ii) Although using UML lightweight extensions provides the advantage of allowing
designers to use their UML case tool of choice, it does not prevent them from
including UML constructs in the models that were not intended by theFrameWeb
approach, or to use the ones that were intended, but in an inappropriate way;

(iii) Further, general-purpose UML tools will not validate the speci�c rules proposed by
theFrameWebapproach for its models, nor provide code generation support for the
kind of application that these models represent (e.g.,web::indexin Figure 1 would
be generated as a class, not a Web page).

(iv) Finally, the method is focused on a particular architecture for WISs and the state-of-
practice on Web development has evolved, producing different architectures (which
use different kinds of frameworks), e.g., Progressive WebApps, Single-Page Appli-
cations, the use of microservices and front-end frameworks, etc.

Using Model-Driven Development (MDD) [23] techniques, we thus formalized a
domain-speci�c language forFrameWebmodels, whose abstract syntax is the meta-
model illustrated (at a high-level of abstraction) in Figure 2. We decided to keep the
concrete syntax the same as before, as the UML is a language that is familiar to most

10 https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

104

https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

software developers. Hence, our meta-model depends on aPartial UML Meta-model,
which contains the parts of UML that are used byFrameWeb. The meta-model is then
divided in �ve components, one for each of the proposedFrameWebmodels and a
Framework Meta-modelcomponent, which allows us to specify rules and modeling
constructs that are speci�c to the set of frameworks with which a given WIS will be
built [21].11

Fig. 2.Overview of the meta-model that de�nes theFrameWeblanguage [20].

Next, we proposed to replace theS-FrameWebextension with a new one we called
FrameWeb-LD. The new extension suggested the use of the higher-level, well-founded
language OntoUML [17] for ontology capture and formalization and replaced the prim-
itive linked data support that had been speci�cally built for the Struts framework with
the Ontology-Based Data Access (ODBA) tool D2RQ,12 which serves as a linked data
adapter layer over the relational database already in use by the WIS.FrameWeb-LD
extended theFrameWebmeta-model, providing new constructs that allow designers to
link concepts of the WIS's domain with external linked data vocabularies, an important
step to connect one's data to the Web of Data (or Semantic Web). Further, it provided a
tool to help developers generate the operational ontology schema and the ODBA con-
�guration [10].13

Once theFrameWeblanguage was de�ned, it became possible to build tools based
on it. Using the infrastructure provided by the Eclipse Modeling Framework (EMF) [29]
and the Sirius project [30], a �rst version of theFrameWeb Editorwas developed. Fig-
ure 3 shows the top-level view of aFrameWebmodel open in the editor. At the right-
hand side a palette provides designers only with the constructs that are allowed in the
model being edited; at the bottom, a list of properties allows one to set the attributes

11 This is the result of the work of Masters student Beatriz Franco Martins Souza.
12 http://d2rq.org/.
13 This is the result of the work of Masters student Danillo Ricardo Celino.

105

http://d2rq.org/

Fig. 3.The �rst version of theFrameWeb Editor[9].

of different model components; at the left-hand side, an overview of the project; in the
center, the model being edited, in this case the project overview. Double-clicking one
of the model components opens it for edition. Note how two platform-speci�c settings
(JavaandJSF) have been imported in the project, showing how the editor supports the
extensibility of the method [9].14

Another tool built on top of theFrameWebmeta-model is theFrameWeb Code Gen-
erator. This tool reads the model created with theFrameWeb Editorand, for each ele-
ment that represents an artifact of code (e.g., controller classes and Web pages in Navi-
gation Models such as the one in Figure 1), it uses a template for that particular artifact
in the speci�c framework/platform of choice (e.g., a controller class in JSF), �lling in
the blanks with data extracted from the model (e.g., the controller's name, attributes,
methods, etc.) [4, 32]. After the �rst version of theFrameWeb Code Generatorwas im-
plemented and integrated with theFrameWeb Editor, both tools were converted into
Eclipse plug-ins with the purpose of integrating them with Web development projects
in this IDE. A developer can now turn on theFrameWebfacet in their regular Eclipse

14 This is the result of the work of undergraduate student Silas Louzada Campos.

106

project, design the models and have the code generated directly into the project struc-
ture.15

FrameWebhas also evolved in the direction of supporting new categories of frame-
works. A feature that is very commonly implemented in WISs using frameworks is that
of authentication & authorization, or role-based access control. To add support for Se-
curity Frameworks toFrameWeb, its meta-model was modi�ed in order to extend its
language syntax, with modi�cations also implemented in the graphical editor and the
code generator. This now allows developers to specify authentication & authorization
features in architectural design models using a generic language, generating code to
their framework of choice, thanks toFrameWeb's extensibility characteristics [24].16

The evolution ofFrameWebso far has scratched the surface regarding the aforemen-
tioned drawbacks of the method. With respect to not being generic enough (drawback
(i)), the de�nition of theFrameWeblanguage using MDD techniques has improved the
method in this sense, but further studies (discussed in Section 4) are necessary to assure
that the proposed language is, in fact, generic considering the supported categories of
frameworks. On the other hand, such language de�nition solves drawback (ii), as de-
velopers now have a clear speci�cation of how to write aFrameWebmodel. Related to
that, tool support (drawback (iii)) has also improved, but is an ongoing work that needs
further development and polishing (part of which probably should take place outside
Academia to guarantee a minimum level of quality required by the Industry). Finally,
FrameWebis still very much focused on a particular architecture (drawback (iv)). The
inclusion of a new category of framework paves the way for further modi�cation of the
method's modeling language in order to support further kinds of frameworks and, as a
later step, different WIS architectures.

3 Present: Developing WISs with FrameWeb

In this section, we describe what can be accomplished withFrameWebat the moment
(December 2019). Both the method and its tools are constantly being developed, thus
some of the contributions described in the previous section have yet to be incorporated
into the IDE (Integrated Development Environment).

In what follows, we �rst present what can already be done with the aid ofFra-
meWebtools (Subsection 3.1), then we talk about two features that have not yet been
integrated: support for security frameworks (Subsection 3.2) and linked data publication
(Subsection 3.3).

3.1 Tool-supported WIS Development

With FrameWeb, one can design Web-based Information Systems (WISs) that �t into
the architecture shown in Figure 4. Based on the Service Layer pattern [13], this archi-
tecture divides the system in three layers: presentation, business and data access.

15 This is the result of the work of Masters student Nilber Vittorazzi de Almeida and undergrad-
uate students Breno Leite Zupeli and Lucas Ribeiro Mendes Silva.

16 This is the result of the work of Masters student Rodolfo Costa do Prado.

107

Fig. 4.FrameWeb's supported architecture.

In thePresentation Tier, theViewpackage holds the Web pages, stylesheets, client-
side scripts and other user interface artifacts. At theControlpackage, controller classes
handle the requests made by components of theView package, using the infrastructure
of the Front Controller framework, and call services offered by theApplicationpackage.

In theBusiness Tier, theApplicationpackage contains the classes that are respon-
sible for implementing the system's functionalities, whose dependencies (withCon-
trol andPersistence) are wired by the Dependency Injection framework.Application
classes manipulate objects from theDomainpackage and persist them via thePersis-
tencepackage. TheDomain package contains the classes that represent the problem
domain, plus annotations that guide the Object/Relational Mapping framework in per-
sisting their data.

Finally, theData Access Tierconsists solely of thePersistencepackage, which
contains the DAO (Data Access Object [5]) classes, responsible for the persistence, i.e.,
using the Object/Relational Mapping framework services for storing/retrieving objects
in/from the relational database. This last tier/package is optional and its responsibilities
could be merged into theApplication package if desired. However, concentrating all
data access operations regarding a given domain class into a single DAO class (which
is the essence of the DAO pattern) helps with the maintainability of the code.

To develop a WIS withFrameWeb,17 we should begin by installing its tools, as
follows: �rst, install Java and the Eclipse IDE for Java EE Developers; then, install
Sirius through theEclipse Marketplacethat can be accessed inside the IDE; �nally,
using theInstall New Softwarefeature of Eclipse and pointing it to theFrameWebplug-
in update site, install the Code Generator and the Graphical EditorFrameWebtools.

Once the tools are installed, we can create a regular Web project in Eclipse, using
the frameworks of our preference. In this section, we will illustrate the use ofFrameWeb

17 More detailed instructions can be found in a tutorial that can be accessed through the project's
website:https://nemo.inf.ufes.br/projects/frameweb/.

108

https://nemo.inf.ufes.br/projects/frameweb/

Fig. 5.A project in the Eclipse IDE with theFrameWeb Editorfacet activated.

with a simpli�ed conference management system,18 focusing on a single functionality,
namely: author registration. Once the project is created, we need to activate theFrame-
Web Editorfacet for that project, which will result in the inclusion of a blankFrame-
Webmodel and con�guration in that project. Switching to the Sirius perspective, those
models can be opened in theFrameWeb Editor, as demonstrated in Figure 5.

At the top-right corner of the �gure we can see that the Sirius perspective is active.
At the left-hand side, theModel Explorerview shows our project's �les. The �lesCon-
�guration.framewebandModel.framewebwere created when theFrameWebfacet was
activated. By expanding the latter and double-clicking theProject item in theModel
Explorer, we open theFrameWeb Editorin the center of the IDE, as shown. At the
right-hand side, the palette allows us to create the four kinds of model the method sup-
ports.

The boxes that are already in the model representArchitecture De�nition Files(di-
vided inLanguageandFramework De�nition Files) that were imported to the project
before the screenshot of Figure 5 was taken. As previously shown in Figure 2, theFra-
meWeblanguage de�nes aFramework Meta-modelcomponent, which allows us to use,

18 We envisioned a WIS that could be used by professors of Research Methodology classes to
simulate a conference-like setting in which students could peer-review each others' papers, like
a simpli�ed EasyChair (https://easychair.org). We called itOldenburg, in honor of the philoso-
pher who is seen as the `father' of modern scienti�c peer review, according to Wikipedia.

109

https://easychair.org

in our models, elements that are speci�c to the chosen platform/frameworks. At the
project's source code repository,19 we can copy aLanguage De�nition Filefrom the
languagesfolder and a set ofFramework De�nition Filesfrom theframeworksfolder
into our Eclipse project and theFrameWebtools will automatically include them in the
model.

In practice,Language De�nition Filesinclude a list of primitive types and classes
from the API of the programming language of choice (e.g., Java hasint, double, String,
etc.) to be used as types of attributes and parameters in different models. In turn,Frame-
work De�nition Files include tags from the visual component library of choice (e.g.,
JSF component library PrimeFaces20 hasdataTable, inputText, password, etc.) to be
used in Navigation Models and templates for code generation. For every combination of
frameworks we want to use, a set of �les should be created and imported. For instance,
the frameworks/jbutler folder at the source code repository offers de�nition �les for
projects that use the JButler21 utility classes together with the Java EE standards JSF,
CDI, JPA and visual component library PrimeFaces.

We now demonstrate the design of the author registration feature of our running
example. Figure 6 shows the Entity Model with theAuthor class and its object/relational
mappings. Most of the mapping relies on sensible default values (e.g., table names
are the same as class names, column names are the same as attribute names, column
types are inferred, etc.), but string size and date precision are explicitly speci�ed. The
diagram does not show any ID or versioning (optimistic locking) attribute because they
are inherited from a JButler utility class.

Fig. 6.FrameWebEntity Model for our running example.

The persistence of objects of theAuthor class is handled by theAuthorDAO, shown
in Figure 7. Most of the basic persistence operations (e.g., retrieve all, retrieve by id,
save, delete, etc.) are inherited from a JButler utility class, therefore are not shown. The
DAO is divided into interface and implementation, and the semantics of theFrameWeb
language states that the former should declare the signatures of all public methods of the

19 https://github.com/nemo-ufes/FrameWeb
20 http://primefaces.org
21 https://github.com/dwws-ufes/jbutler

110

https://github.com/nemo-ufes/FrameWeb
http://primefaces.org
https://github.com/dwws-ufes/jbutler

latter, allowing us to use a simpli�ed notation for the interface. By relying on JButler
for the basic operations, the DAO only shows a method that is speci�c to our WIS:
retrieving an author given her e-mail, required to check if someone is registering with
an e-mail that has already been used.

Fig. 7.FrameWebPersistence Model for our running example.

The author registration feature is represented in the Navigation Model of Figure 8.
Web pages in thecore/registration/ path are used in this scenario, starting with the
indexpage, which contains theregistrationFormwith inputText andpassword�elds
(from PrimeFaces). Once the form is submitted, the Front Controller copies the contents
of the �elds to attributes ofRegistrationController(note that the �elds withauthor.
pre�x are copied to internal attributes of theauthor object in the controller) and the
register()method is called. Depending on the outcome, the user may be presented the
successor theemailinusepages, which require that the Front Controller bring some data
(author.nameandauthor.emailrespectively) back to the view.

Finally, the Application Model shown in Figure 9 completes the architecture with
the RegistrationServicewhich, like the DAO before, is divided in interface and im-
plementation. TheRegistrationControllerfrom the Navigation model depends on this
service which, in turn, depends on theAuthorDAO to properly perform itsregister()
method. The Dependency Injection framework will satisfy both dependencies when
needed.

Once the models have been created, we can generate code for it. When doing it
for the �rst time, we should click on theFrameWeb Con�gurationitem of our project
in the editor (as shown in Figure 5) and set a few properties, such the asClassand
Page Extensions(e.g.,.java and.xhtml), theFramework De�nition Path— where the
code generation templates are located — and theSrc andView Paths, which is where
classes and Web pages, respectively, will be generated. After that, right-clicking any
blank space in theFrameWeb Editorand selectingGenerate Source Codewill create
all the classes and Web pages from our models right into the structure of our project in
Eclipse itself.

111

Fig. 8.FrameWebNavigation Model for our running example.

Fig. 9.FrameWebApplication Model for our running example.

112

Listing 1 shows one of the templates used in our running example. Code between
{{ and}} are replaced by elements extracted from the Navigation Model. Further,{%
and %} can be used to insert control �ow directives like loops and conditionals in
the template. The rest of it is standard Java code that de�nes a class that extendsJS-
FController from JButler, is annotated with@Modelto be referred to in Web pages,
has association with service classes annotated with@EJB(dependency injection anno-
tation), attributes de�ned with their respective accessor/mutator (get/set) methods and
the skeletons (stubs) for other methods the controller might have. The result of applying
such template to the Navigation Model of Figure 8 (plus runningOrganize Importsand
Formatfeatures from Eclipse) is shown in Listing 2.

We can see that, apart from comments, we only need to implement theregister()
method to complete this particular artifact of code. Although further experiments are in
order, recent tests with a different set of frameworks showed that theFrameWeb Code
Generatorgenerated between 68% and 94% of the lines of code of a simple WIS when
compared with the �nal solution, after manual editing [26]. We consider this a good
result in terms of cost (of modeling) vs. bene�t (of less code to write).

3.2 Role-based Access Control

One recentFrameWebextension that has not yet made its way to the Eclipse plug-
in is the support for security frameworks that implement Role-based Access Control
(RBAC). This extension of theFrameWeblanguage (i.e., meta-model) allows develop-
ers to specify authentication & authorization features in Entity, Application and Navi-
gation models using a generic language and generating code to a security framework of
choice.

Role-Based Access Control (RBAC) [12] is a basic model for authorization inside
an application that is founded on the separation betweenactorsand theactionsavailable
to them in the system. This separation is made by adding the concept ofroles. In RBAC,
anypermissionto run an action inside the application can only be associated with a role.
Actors do not acquire permissions directly, instead they are given roles that aggregate a
collection of permissions. With this con�guration, the assignment of permitted actions
to users inside a system is made with both simplicity and �exibility [24].

A Security Framework provides as reusable infrastructure a set of features con-
cerned with the security of an application, such as authentication, authorization, cryp-
tography, session management, etc. The proposedFrameWebextension focuses onau-
thentication, i.e., certifying that a user is who she says she is; andauthorization, i.e.,
verify if the user has the right to perform an action, given her authenticated credentials.
FrameWebmodels can now de�ne: (a) the domain classes that represent users, roles
and permissions; (b) aspects of the Web pages and forms that will trigger the authenti-
cation; (c) which permissions are required by each service method or entire classes, to
implement authorization.

Figure 10 shows an Entity Model that de�nes users (hhAuthUserii stereotype), roles
(hhAuthRoleii) and permissions (hhAuthPermissionii) in a generic way, i.e., they could
be used in or adapted to any WISs. For instance, to use them inOldenburg, we could
connectUserto Author or have the latter annotated withhhAuthUserii instead, use the
author'semailas thehhAuthUserNameii , and so on.

113

Listing 1. Template for a controller class.
package {{ package .Name }};

import javax .ejb .EJB ;
import javax . enterpr ise . inject .*;
import br . ufes . inf . nemo . jbut ler . ejb . control ler . JSFCo ntrol ler ;

/* * TODO : generated by FrameWeb . Should be documented . */
@Model
publ ic class {{ class .Name }} extends JSFControl ler {

/* * Ser ia l izat ion id (using defaul t value , change if necess ary) . */
pr ivate stat ic f inal long ser ia lVersionUID = 1L;

{% for associat ion in associat ions %}
/* * TODO : generated by FrameWeb . Should be documented . */
@EJB
private {{ associat ion . TargetMember . Type .Name }} {{ asso ciat ion .

TargetMember .Type .Name | lower_f i rst }};
{% endfor %}

{% for attr ibute in attr ibutes %}
/* * TODO : generated by FrameWeb . Should be documented . */
pr ivate {{ attr ibute .Type .Name }} {{ attr ibute .Name }};
{% endfor %}

{% for method in methods %}
/* * TODO : generated by FrameWeb . Should be documented . */
{{ method . Visibi l i ty .Name }} {% if method . MethodType is nu ll %} void {% else

%}{{ method . MethodType .Name }}{% endif %} {{ method .Name } }({% for
parameter in method . OwnedParameters %}{{ parameter .Type .Name }} {{
parameter . Name }}{% if loop . last == false %} , {% endif %}{% e ndfor %})
{

// FIXME : auto - generated method stub
return {% if method . MethodType is not null %} null {% endif %} ;

}
{% endfor %}

{% for attr ibute in attr ibutes %}
/* * Getter for {{ at t r ibute . Name }}. */
publ ic {{ attr ibute .Type .Name }} get {{ attr ibute .Name | ca pital ize }}() {

return {{ attr ibute .Name }};
}

/* * Setter for {{ at t r ibute . Name }}. */
publ ic void set {{ attr ibute .Name | capital ize }}({{ attr ib ute . Type .Name }}

{{ attr ibute .Name }}) {
this .{{ at tr ibute .Name }} = {{ attr ibute . Name }};

}
{% endfor %}

}

114

Listing 2. Generated code for a controller class.
package br . ufes . informatica . oldenburg . core . control le r ;

import javax .ejb .EJB ;
import javax . enterpr ise . inject . Model ;

import br . ufes . inf . nemo . jbut ler . ejb . control ler . JSFCo ntrol ler ;
import br . ufes . informat ica . oldenburg . core . appl icat io n . Registrat ionService ;
import br . ufes . informat ica . oldenburg . core . domain . Aut hor ;

/* * TODO : generated by FrameWeb . Should be documented . */
@Model
publ ic class Registrat ionControl ler extends JSFControl l er {

/* * Ser ia l izat ion id (using defaul t value , change if necess ary) . */
pr ivate stat ic f inal long ser ia lVersionUID = 1L;

/* * TODO : generated by FrameWeb . Should be documented . */
@EJB
private Registrat ionService registrat ionService ;

/* * TODO : generated by FrameWeb . Should be documented . */
pr ivate Author author ;

/* * TODO : generated by FrameWeb . Should be documented . */
pr ivate Str ing repeatPassword ;

/* * TODO : generated by FrameWeb . Should be documented . */
publ ic Str ing register () {

// FIXME : auto - generated method stub
return null ;

}

/* * Getter for author . */
publ ic Author getAuthor () {

return author ;
}

/* * Setter for author . */
publ ic void setAuthor (Author author) {

this . author = author ;
}

/* * Getter for repeatPassword . */
publ ic Str ing getRepeatPassword () {

return repeatPassword ;
}

/* * Setter for repeatPassword . */
publ ic void setRepeatPassword (Str ing repeatPassword) {

this . repeatPassword = repeatPassword ;
}

}

115

Fig. 10.FrameWebEntity Model with RBAC features [24].

116

Figure 11 shows a Navigation Model that speci�es how authentication will be im-
plemented. The model represents the login page (hhauthPageii stereotype), the form
with �elds for user credentials (hhauthFormii), as well as processing (hhAuthMeth-
odii), success (hhAuthSuccessUrlii) and failure (hhAuthFailureUrlii) URLs. This in-
formation will guide the security framework in performing authentication. Note that
the processing URL actually refers to a method of the controller class so the security
framework will use the URL that activates this method as the processing URL.

Fig. 11.FrameWebNavigation Model with RBAC features [24].

Finally, Figure 12 shows an Application Model with authorization settings. Permis-
sions are expressed using UML constraints as concrete syntax. Service classPerson-
ServiceImprequires a permission namedPERM PERSONto be accessed. Service meth-
odsdelete() andupdate() further require permissions namedPERM PERSONDEL
andPERM PERSONUP, respectively.

The RBAC extension for theFrameWebmethod has been implemented, not only
regarding the modi�cations in the meta-model but also with respect to tool support.
Therefore, we can produce the models with security features using theFrameWeb Ed-
itor, as demonstrated by �gures 10–12, and generate code with theFrameWeb Code
Generator, as shown in [24]. However, this has been implemented on a separate code
base,22 and, thus, needs to be carefully merged into the code of theFrameWebEclipse
plug-ins.

22 https://github.com/Rodolfocostapr/Experimento-Frameweb-Sec

117

Fig. 12.FrameWebApplication Model with RBAC features [24].

3.3 Linked Data Support

Another extension of theFrameWeblanguage/meta-model that has not yet been incor-
porated into theFrameWebtools isFrameWeb-LD[10]. Such extension allows devel-
opers to specify how the data from the WIS relates to well-known vocabularies from
the Semantic Web, with the purpose of integrating them into the Web of Data [18].
Figure 13 shows an example of Entity Model with linked data mappings added to the
domain classes.

The �gure illustrates a system that manages researchers from a postgraduate pro-
gram and their publications in order to produce reports on their research productiv-
ity. Although not shown in the diagram, vocabulary identi�ers (IDs) are associated to
their respective URIs, e.g.,foaf is associated withhttp://xmlns.com/foaf/0.1/(Friend of
a Friend vocabulary) anddblp with http://dblp.rkbexplorer.com/id/(DBLP Computer
Science Bibliography dataset).

Then, concepts from external vocabularies are shown using their vocabulary IDs as
UML namespace (e.g.,foaf::Person). They can be related to classes from the WIS via
UML associations, navigable towards the external class, representing an RDF triple: the
class from the WIS is the subject, the external one is the object and the predicate is spec-
i�ed as a constraint. In the example,Researcheris owl:equivalentClassto dblp:Person.
As a syntactic sugar, therdfs:subClassOfrelation between a class from the WIS and
one from an external vocabulary can be represented by a UML inheritance association.
In the example,Researcheris rdfs:subClassOf foaf:Person.

Triples concerning attributes of classes are represented using constraints in the
form predicate=object. In the example,Researcher.nameis owl:equivalentProperty
to dblp:primaryFullPersonName. Constraints in associations between classes from our
WIS establish relations among object properties (in the same way constraints in at-
tributes establish relations among data type properties). In the example, the association
betweenPublicationandVenueis rdfs:subPropertyOf dblp:publicationType. Last, but

118

Fig. 13.FrameWeb-LDEntity Model with linked data mappings [10].

not least, data from all classes are to be published as linked data, unless thehhld-ignoreii
stereotype is used (either to exclude speci�c attributes or entire classes). In the example,
theUserclass is excluded from the linked data set to be published.

Once all the mappings have been included in the Entity Model, tool support23 can
aid developers in producing code for an Ontology-based Data Access (ODBA) solution
such as D2RQ, which creates a layer on top of the relational database and offers triple-
store features (derreferenceable URIs for navigation, a SPARQL endpoint for querying,
etc.) based on a semi-automatic conversion from the database schema to RDF. List-
ings 3 and 4 show excerpts from the OWL operational ontology and D2RQ mapping
generated byFrameWeb-LD's tool support. Some of the mappings of Figure 13 can be
identi�ed in these generated artifacts.

23 The tool is called ReMaT and is available in a stale branch inFrameWeb's source code repos-
itory: https://github.com/nemo-ufes/FrameWeb/tree/breno/

119

Listing 3. Excerpt from operational ontology in OWL generated byFrameWeb-LD's tool sup-
port [10].
<owl:Class rdf:about =" http: // dev .nemo . inf . ufes .br /ow l / c2d .owl# Publ icat ion ">

< rdfs: label rdf :datatype =" http: // www.w3.org /2001/ XML Schema # str ing ">
Publ icat ion </ rdfs: label >

< rdfs:subClassOf rdf : resource =" http: // dblp .uni - tr ier .de / rdf / schema
-2015 -01 -26# Publ icat ion " />

</ owl:Class >
<owl:Class rdf:about =" http: // dev .nemo . inf . ufes .br /ow l / c2d .owl# Venue ">

<rdfs: label rdf :datatype =" http: // www.w3.org /2001/ XML Schema # str ing ">Venue </
rdfs: label >

< rdfs:subClassOf rdf : resource =" http: // xmlns . com/ foaf /0.1/ Organizat ion " />
< rdfs:subClassOf rdf : resource =" http: // dblp .uni - tr ier .de / rdf / schema

-2015 -01 -26# Publ icat ionType "/>
</ owl:Class >
<owl:ObjectProperty rdf:about =" http: // dev .nemo . inf . u fes .br /owl / c2d .owl#

isPubl ishedIn ">
< rdfs: label rdf :datatype =" http: // www.w3.org /2001/ XML Schema # str ing ">

isPubl ishedIn </ rdfs: label >
< rdfs:domain rdf:resource =" http: // dev .nemo . inf . ufes . br /owl / c2d .owl#

Publ icat ion " />
< rdfs:range rdf:resource =" http: // dev .nemo . inf . ufes .b r /owl / c2d .owl# Venue "/>
< rdfs:subPropertyOf rdf :resource =" http: // dblp .uni - tr ier .de / rdf / schema

-2015 -01 -26# publ icat ionType "/>
</ owl:ObjectProperty >

Listing 4. Excerpt from the relational-to-RDF mapping �le generated by D2RQ andFrameWeb-
LD's tool support [10].
@prefix c2d : <http :// dev .nemo . inf . ufes .br /owl / c2d .owl #>

Table Researcher
map : Researcher a d2rq : ClassMap ;

d2rq : dataStorage map : database ;
d2rq : class c2d : Researcher ;
d2rq : c lassDef in i t ionLabel " Researcher ";
rdfs : subClassOf foaf : Person ;
owl : equivalentClass dblp : Person ;
.

map : Researcher_name a d2rq : PropertyBridge ;
d2rq : belongsToClassMap map : Researcher ;
d2rq : property vocab : Researcher_name ;
d2rq : propertyDef in i t ionLabel " Researcher name ";
owl : equivalentProperty dblp : pr imaryFul lPersonName ;
d2rq : column " Researcher . name ";
.

4 Future: where is FrameWeb Going?

FrameWebis an ongoing research project with undergraduate and graduate students
working on different aspects of the proposal. In the previous sections of this paper, we
have already mentioned limitations of the approach that need to be addressed in future
work. Section 3, for instance, mentioned the support for security frameworks and linked
data not being incorporated into theFrameWebEclipse plug-in, which is on our short-
term plans for the future.

Section 2 discussed drawbacks that have motivated recent proposals for the evolu-
tion of FrameWeb: (i) the language not being generic enough; (ii) not having a precise
language speci�cation; (iii) lack of tool support; and (iv) being tailored to a speci�c

120

architecture and particular framework categories. As discussed, the evolution ofFrame-
Webonly partially addresses these challenges and, thus, there are many opportunities
for future work to be taken from these limitations.

Regarding theFrameWeblanguage generalityand itsprecise speci�cation, the
de�nition of the meta-model and the application of the method in other platforms and
with different frameworks have contributed towards these aspects. However, to properly
understand each category of framework supported by the method, a more systematic
study of the different frameworks of each category is required.

As such, we intend to build ontologies for each supported category, using an ontol-
ogy engineering approach to try and make sure such reference model properly repre-
sents a consensus among the mostly used frameworks. Then, theFrameWebmeta-model
can be reviewed and adjusted based on the ontology, possibly leading to changes in the
FrameWeblanguage.

This is an ongoing effort, conducted under a separate research project that aims
at building aSoftware Frameworks Ontology Network(SFWON).24 The network al-
ready includes theObject/Relational Mapping Ontology(ORM-O) [31], which was
built based on theRelational Database System Ontology(RDBS-O) [2] and theObject-
Oriented Code Ontology(OOC-O) [3], both part of SFWON.

Regarding thelack of tool support, the development of theFrameWeb Editorand
theFrameWeb Code Generatoris an ongoing effort, with many ideas for new develop-
ments, for instance:

– The use of theFrameWebtools in the context of Web Development and Semantic
Web courses offered in our university have identi�ed bugs and improvements in
the tools' usability, reliability, etc.25 that need to be �xed so the tools can be put to
further use and test;

– The editor currently has no support for the creation of Architecture De�nition Files,
making it harder for organizations/developers to include support for their platfor-
m/frameworks of choice inFrameWeb;

– Being based on the Eclipse IDE, the tools integrate best with projects for program-
ming languages and platforms that are supported by this IDE and its plug-ins. Sup-
port for different development environments could be offered;

– Modern Rapid Application Development tools (e.g., JHipster26) automatically gen-
erate considerably more code, especially regarding basic Create, Retrieve, Update
and Delete (CRUD) functionalities. These tools, however, are not as extensible (i.e.,
able to support different frameworks) asFrameWeb, but our tools need support for
easier generation of CRUD features and other artifacts that are common to WISs;

– Currently, code generation works only in one direction, thus generating code again
overwrites any changes that might have been manually performed in previously
generated �les. Support for preserving manual changes or even more advanced
reverse engineering features could be added.

24 https://nemo.inf.ufes.br/projects/sfwon/
25 https://github.com/nemo-ufes/FrameWeb/issues
26 https://www.jhipster.tech

121

RegardingFrameWeb's supported architecture and framework categoriesfur-
ther efforts similar to the one presented in Section 3.2 to include support for new cat-
egories of frameworks are in order. Such efforts could include the de�nition of an on-
tology for the new category of frameworks or postpone the creation of the ontology as
a later step (e.g., the support for security frameworks was proposed based on the most
used frameworks in the Java platform [24]). As new types of frameworks are included
in the method, new architectures can also be proposed.

Finally, we need to perform more extensive and systematic experiments in order to
evaluateFrameWebin all of its aspects. Although each proposal conducted their own
validation through proofs of concept and small experiments, we do not yet have properly
evaluated the entireFrameWebproposal in terms of its usefulness, ease of use, ef�cacy,
etc.

With the FrameWebproject, I intend to continue to honor professor Ricardo de
Almeida Falbo by carrying on a research agenda that he helped create — more ac-
curately put, would not exist without him — for many years to come. Hopefully, this
project will continue to contribute to the quali�cation of students involved in it, a legacy
that Falbo should be proud of.

5 Personal Notes

I met Ricardo as my professor of Requirements Engineering during an undergraduate
course in Computer Science at UFES in 2002, the year in which he also became my
advisor on a “Scienti�c Initiation” (undergraduate research scholarship) project. He
also supervised my (research-oriented) undergraduate �nal project in 2004 and accepted
me as a Masters student in 2005, continuing to supervise me until 2007. After my
PhD abroad, I came back to Brazil and became a professor at the Computer Science
Department of UFES in 2013, thus Falbo became my colleague until his retirement in
2019. I am proud to say that during this entire time Ricardo has been, and continues to
be, a great friend.

The topic of this paper, theFrameWebmethod, was born during my Masters course,
under the supervision of Falbo [27]. However, the topic of Web Engineering was not
connected to my previous undergraduate research projects under his supervision, nor
was it one of the particular areas that Ricardo was focusing his research. Instead, it was
motivated by my previous experiences in software development projects for the Web
and Falbo decided to accept it as the research topic of one of his supervised Masters
students. As a professor now myself, I see how altruistic this gesture was at the time
and it is fair to say that this contributed to the researcher I came to be, which I think
was Ricardo's intention all along (but we will have to ask him).

Professor Ricardo, thank you for all that you have done for me. You are in great
part responsible for (as modest as they may be) my academic accomplishments. You
are de�nitely one of my role models and I hope (and work hard) to be to my supervised
students as good an advisor as you were to me. Congratulations on a successful career
of inspiring people like me.

122

References

1. OMG: Ontology De�nition Metamodel (ODM) Speci�cation, v. 1.1 (formal/14-09-02),http:
//www.omg.org/spec/ODM/1.1/(2014)

2. de Aguiar, C.Z., Falbo, R.A., Souza, V.E.S.: Ontological Representation of Relational
Databases. In: Proc. of the 11th Seminar on Ontology Research in Brazil (ONTOBRAS
2018). pp. 140–151. CEUR, São Paulo, SP, Brazil (2018)

3. de Aguiar, C.Z., Falbo, R.d.A., Souza, V.E.S.: OOC-O: A Reference Ontology on Object-
Oriented Code. In: Proc. of the 38th International Conference on Conceptual Modeling (ER
2019). pp. 13–27. Springer, Salvador, BA, Brazil (2019)

4. de Almeida, N.V., Campos, S.L., Souza, V.E.S.: A Model-Driven Approach for Code Gen-
eration forWeb-based Information Systems Built with Frameworks. In: Proc. of the 23rd
Brazilian Symposium on Multimedia and the Web (WebMedia 2017). pp. 245–252. ACM,
Gramado, RS, Brazil (oct 2017)

5. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall / Sun Microsystems Press, 2nd edn. (2003)

6. Bauer, C., King, G.: Hibernate in Action. Manning, 1 edn. (2004)
7. Berners-Lee, T.: Linked Data - Design Issues,http://www.w3.org/DesignIssues/LinkedData.

html (last access: May 7th, 2015) (2006)
8. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scienti�c American284(5),

34–43 (2001)
9. Campos, S.L., Souza, V.E.S.: FrameWeb Editor: Uma Ferramenta CASE para suporte ao

Método FrameWeb. In: Anais do 16o Workshop de Ferramentas e Aplicações, 23o Simpósio
Brasileiro de Sistemas Multimedia e Web (WFA/WebMedia 2017). pp. 199–203. SBC, Gra-
mado, RS, Brazil (oct 2017)

10. Celino, D.R., Reis, L.V., Martins, B.F., Souza, V.E.S.: A Framework-based Approach for the
Integration of Web-based Information Systems on the Semantic Web. In: Proc. of the 22nd

Brazilian Symposium on Multimedia and the Web. pp. 231–238. ACM (nov 2016)
11. DeMichiel, L., Shannon, B.: JSR 342: Java(TM) Platform, Enterprise Edition 7 (Java EE 7)

Speci�cation,https://jcp.org/en/jsr/detail?id=342(last access: April 29th, 2015) (2013)
12. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): Features and mo-

tivations. In: Proc. of 11th Annual Computer Security Application Conference. pp. 241–248
(1995)

13. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, 1 edn. (2002)
14. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern,

http://www.martinfowler.com/articles/injection.html (last access: September 29th, 2016)
(2004)

15. Frakes, W.B., Kang, K.: Software reuse research: Status and future. IEEE Transactions on
Software Engineering31(7), 529–536 (2005)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: No TitleDesign Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1 edn. (1994)

17. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Phd thesis, Uni-
versity of Twente, The Netherlands (2005)

18. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis
Lectures on the Semantic Web: Theory and Technology, Morgan & Claypool Publishers, 1
edn. (2011)

19. Ireland, C., Bowers, D., Newton, M., Waugh, K.: A classi�cation of object-relational
impedance mismatch. In: 2009 First International Conference on Advances in Databases,
Knowledge, and Data Applications. pp. 36–43. IEEE (2009)

123

20. Martins, B.F.: Uma abordagem dirigida a modelos para o projeto de Sistemas de Informação
Web com base no ḿetodo FrameWeb. Ph.D. thesis, Dissertação de Mestrado, Universidade
Federal do Esṕ�rito Santo (2016)

21. Martins, B.F., Souza, V.E.S.: A Model-Driven Approach for the Design of Web Information
Systems based on Frameworks. In: Proc. of the 21st Brazilian Symposium on Multimedia
and the Web. pp. 41–48. ACM (2015)

22. Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: a New Discipline
for Development of Web-Based Systems. In: Murugesan, S., Deshpande, Y. (eds.) Web En-
gineering - Managing Diversity and Complexity of Web Application Development, chap. 1,
pp. 3–13. Springer (2001)

23. Pastor, O., España, S., Panach, J.I., Aquino, N.: Model-driven development. Informatik-
Spektrum31(5), 394–407 (2008)

24. do Prado, R.C., Souza, V.E.S.: Securing FrameWeb: Supporting Role-based Access Control
in a Framework-based Design Method for Web Engineering. In: Proc. of the 24th Brazilian
Symposium on Multimedia and the Web (WebMedia '18). pp. 213–220. ACM, Salvador,
BA, Brazil (2018)

25. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architecture,
Patterns for Concurrent and Networked Objects. Wiley (2013)

26. Silva, L.R.M.: Integraç̃ao do Editor de Modelos de FrameWeb�a IDE Eclipse. Tech. rep.,
Relat́orio Final de Pesquisa, Programa Institucional de Iniciação Cient́��ca, Universidade
Federal do Esṕ�rito Santo (2019)

27. Souza, V.E.S.: FrameWeb: um Método baseado em Frameworks para o Projeto de Sistemas
de Informaç̃ao Web. Tech. rep., Universidade Federal do Esp�́rito Santo (2007)

28. Souza, V.E.S., Falbo, R.A., Guizzardi, G.: Designing Web Information Systems for a
Framework-based Construction. In: Halpin, T., Proper, E., Krogstie, J. (eds.) Innovations
in Information Systems Modeling: Methods and Best Practices, chap. 11, pp. 203–237. IGI
Global, 1 edn. (2009)

29. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF - Eclipse Modeling Framework.
Addison-Wesley, 2nd editio edn. (2008)

30. Viyovic, V., Maksimovic, M., Perisic, B.: Sirius: A rapid development of DSM graphical
editor. In: Intelligent Engineering Systems (INES), 2014 18th International Conference on.
pp. 233–238. IEEE (2014)

31. Zanetti, F.L., de Aguiar, C.Z., Souza, V.E.S.: Representação Ontoĺogica de Frameworks de
Mapeamento Objeto/Relacional. In: Proc. of the 12th Seminar on Ontology Research in
Brazil (ONTOBRAS 2019). CEUR, Porto Alegre, RS, Brasil (2019)

32. Zupeli, B.L., Souza, V.E.S.: Integração de um Gerador de Código ao FrameWeb Editor. In:
Anais Estendidos do 24o Simpósio Brasileiro de Sistemas Multimedia e Web - Workshop de
Ferramentas e Aplicações (WFA/WebMedia 2018). pp. 109–113. SBC, Salvador, BA, Brazil
(2018)

124

