2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)

GO-FOR: A Goal-Oriented Framework for Ontology Reuse

Céssio C. Reginato, Jordana S. Salamon, Gabriel G. Nogueira, Monalessa P. Barcellos, Vitor E. S.
Souza, Maxwell E. Monteiro
Ontology & Conceptual Modeling Research Group (NEMO), Computer Science Department, Federal
University of Espirito Santo — Vitoria — ES — Brazil
{cassio.reginato, jssalamon, monalessa, vitorsouza}@inf.ufes.br, gabriel. g.nogueira@aluno.ufes.br,
maxmonte@ifes.edu.br

Abstract

Ontologies have been successfully used to assign seman-
tics in the Semantic Web context and to enable integra-
tion of data from different systems or different sources.
However, building ontologies is not a trivial task. Ontol-
ogy reuse can help in this matter. The search and selec-
tion of ontologies to be reused should consider the
alignment between their scope and the scope of the on-
tology being developed. In this paper, we discuss how
goal modeling can be helpful in this context and we pro-
pose GO-FOR, a framework in which goals are the cen-
tral elements to promote ontology reuse. We introduce
goal-oriented ontology patterns as a new type of pattern
to be applied to develop ontologies in a goal-oriented
approach. Results of the use of GO-FOR to build an on-
tology used to integrate water quality data are also
shown in this paper.

Keywords: Ontology, Reuse, Goal Modeling, Pattern

1. Introduction

An ontology is a formal, explicit specification of a
shared conceptualization [1]. Ontologies have been rec-
ognized as conceptual tools of great importance in Com-
puter Science since the end of the 1960s, mainly in areas
such as Data Modeling (conceptual modeling) and Arti-
ficial Intelligence [2] [3]. In the last fifteen years, there
has been an explosion of works related to ontologies in
various segments of Computer Science. This has been
motivated by the recognition of the importance of the
use of ontologies in semantic interoperability tasks (e.g.,
system integration and data integration), in general, and
by its role in the Semantic Web development, in particu-
lar. For instance, applications that process Linked Data
available on the Web are programmed to understand
well-known vocabularies (schemas, ontologies) at the
time of their writing. Defining new vocabularies for eve-
ry new data set we publish without properly linking to
existing vocabularies makes this data unintelligible to
existing applications. Reusing the appropriate vocabular-

978-1-7281-1337-1/19/$31.00 ©2019 IEEE
DOI 10.1109/IR1.2019.00028

99

ies reduces heterogeneity by relying on ontological
agreement [4].

Nowadays, ontology engineers are supported by a
wide range of ontology engineering methods and tools.
However, building ontologies is still a difficult task.
Moreover, the emergent scenario has required more
comprehensive and high-quality ontologies to solve
problems involving semantic issues. Ontology reuse al-
lows speeding up the ontology development process,
saving time and money, and promoting the application of
good practices [5]. However, reuse is a hard research
issue and one of the most challenging areas of Ontology
Engineering [6]. For example, ontology engineers still
face problems to select the right ontologies for reuse and
integrate ontology fragments into a new ontology [7].

One of the challenges of ontology reuse is the obscu-
rity of the design rationale of the available ontologies
[8]. Design rationale concerns the reasons for the deci-
sions made during a design process [9]. Unknown design
rationale makes it difficult to select the ontologies to be
reused as well as to understand them, which is crucial to
integrate them properly. We advocate the use of Goal-
Oriented Requirements Engineering (GORE) to make the
ontology design rationale explicit and promote ontology
reuse [10]. GORE has been used to provide design ra-
tionale in Software Engineering, explaining from where
a requirement came and which stakeholders’ goals it
meets [10]. In Ontology Engineering, we argue that
GORE helps explain the rationale behind the ontology
because motivational elements reveal the reasons for
developing the ontology and provide a notion of the kind
of knowledge is represented in the ontology.

In this paper, we introduce GO-FOR, a Goal-Oriented
Framework for Ontology Reuse, in which we apply
GORE in Ontology Engineering to express a design ra-
tionale to ontology model fragments. In GO-FOR, ontol-
ogy models are depicted in self-contained fragments
(i.e., domain ontology patterns) related to goals. These
model fragments are self-contained ontology structures
called goal-oriented ontology patterns (GOOP). Thus,
goals can be used as parameters to support ontology
shareability and reuse.



This paper is organized as follow: Section 2 provides
the background for the paper; Section 3 presents the
principles behind GO-FOR; Section 4 introduces GO-
FOR; Section 5 addresses GO-FOR use and reports the
application of GO-FOR to build an ontology to integrate
water quality data in an Environmental Quality Research
Project; Section 6 discusses related works; and Section 7
presents our final considerations.

2. Background

2.1 Ontology Reuse

Reusability has long been recognized as a key attrib-
ute of ontologies, yet the principles and practice of reuse
remain underdeveloped. The current lack of design
through reuse presents a serious problem for the ontolo-
gy community. Currently, there is not even a formal and
consensual definition of ontology reuse within the com-
munity [11]. In general, reuse can be defined as the pro-
cess in which available ontological knowledge is used as
input to generate new ontologies [12]. It is as a special
case of design; intuitively, it refers to the task of taking
some existing ontology and manipulating it in some way
in order to satisfy the design requirements. Some more
specific, related, and sometimes overlapping subtypes of
reuse have been defined, such as merging and alignment,
integration, modular or safe reuse, and the application of
ontology patterns [11].

Ontology Patterns (OPs) are an emerging approach
that favors reuse of encoded experiences and good prac-
tices [13]. Patterns are vehicles for encapsulating
knowledge. They are considered one of the most effec-
tive means for naming, organizing, and reasoning about
design knowledge. According to Buschmann et al. [14],
a pattern describes a particular recurring problem that
arises in specific contexts and presents a well-proven
solution for the problem. Thus, OPs are modeling solu-
tions to solve recurrent ontology development problems
[15]. Experiments, such as the ones conducted by
Blomgqvist et al. [16], show that ontology engineers per-
ceive OPs as useful, and that by using OPs, the quality
and usability of the resulting ontologies are improved.

Patterns are often considered and applied separately.
However, no pattern is an island. Contrariwise, patterns
are fond of company: sometimes with one pattern as an
alternative to another, sometimes with one pattern as an
adjunct to another, sometimes with a number of patterns
bound together as a tightly-knit group [14]. Thus, when
applying a pattern, it is important to understand and take
its relationships into account [17].

2.2 Goal-Oriented Requirement Engineering

In this work, we propose the use of Goal-Oriented

100

Requirement Engineering (GORE) to aid in ontology
reuse. GORE emerged to create and study methods that
approach requirements engineering from a goal-oriented
perspective. Usually, in GORE, goals are elicited and
represented in terms of some sort of model, using a nota-
tion provided by approaches such as iStar [18], KAOS
[19] and Techne [20], among others.

GORE has been successfully applied in Requirements
Engineering [10] and has also been used to enrich the
requirements analysis phase of the ontology engineering
process, as in [21] and [22]. The incorporation of explicit
goal representations in requirement models provides a
criterion for requirement completeness, i.e., the require-
ments can be judged as complete if they are sufficient to
achieve the goals they refine [23].

In Ontology Engineering, GORE can help understand
the domain of interest and the involved actors. For de-
veloping the goal models, the ontology engineer must
identify the actors in the domain of interest and develop
a goal model for each of them. Each goal model repre-
sents the actor goals and tasks to be addressed by the
ontology, providing a comprehensive view of the ontolo-
gy scope. Moreover, from goal models it is possible to
derive competency questions, which the ontology must
be able to answer and are used as a basis to develop the
ontology conceptual model, to detail the ontology scope
[21].

3. The GO-FOR Principles

Building an ontology through reuse depends on find-
ing suitable ontologies for being reused [7]. The search
and selection of ontologies to be reused should consider
the alignment between their scope and the scope of the
ontology to be developed. That is, for each ontology
model candidate to be reused, it should be verified which
part of it meets the requirements of the ontology to be
built. Therefore, ontology reuse should be based on on-
tology requirements.

Considering that GORE can be used to establish on-
tology requirements and ontology patterns favor reuse,
we propose GO-FOR, a goal-oriented and pattern-based
framework to aid in ontology reuse. GO-FOR is based on
four principles related to a subset of ontology design
recurrent issues pointed out in [24], namely: (I1) Which
pieces of information about terms are critical for sup-
porting shareability (e.g., name, textual definition, type,
etc.)? (I2) How to describe purposes of a particular on-
tology? (I3) How to capture and use design rationale? (I4)
How to identify correspondences between ontologies?
To address these issues, GO-FOR follows the principles
(P1-P4) described below.

(P1) Standardize Terminology and Semantic Search-
ing. This principle is related to issue Ii. It is difficult to
say which piece of information about terms used to name
ontology structures (e.g., models, patterns, concepts) is



most critical to support reuse, but it is easier to identify
factors that can negatively influence it. One, for certain,
is the use of arbitrary and inexpressive names for ontolo-
gy structures. For instance, if an ontology engineer
searches for an ontology about e-commerce and uses the
term “e-commerce” to find ontologies addressing this
subject, she may expect to find ontology models cover-
ing aspects like transactions, authentication, shopping
and so on. However, such search could return, among
others, the Good Relations ontology [25], whose descrip-
tion states that the ontology provides a vocabulary to e-
commerce, when, in fact, it provides a vocabulary to
specify offerings on the web, not addressing several as-
pects related to e-commerce [22]. The lack of a standard
to name ontology structures harms the search and re-
trieval of suitable ontologies and, consequently, can
compromise ontology reuse.

(P2) Apply Design Rationale. As discussed in Section
1, one of the difficulties to ontology reuse is the obscuri-
ty of the ontologies design rationale [26], which is di-
rectly related to issue Is. It is important to make explicit
the reasons for developing an ontology the way it was
developed (e.g., what led the ontology engineer to in-
clude certain concepts in the ontology). In our view, ad-
dressing this problem is a key factor to ontology reuse.
Moreover, making the design rationale explicit also con-
tributes to solve issue I, since a design rationale ap-
proach can support to define ontology purpose.

(P3) Solve Overlaps. When ontology models are de-
veloped from scratch, without any concern with reuse,
there is a high chance of overlaps with other ontology
models. Thus, identifying and solving overlaps between
ontologies is important to avoid redundancy and increase
reuse. This relates to I4, since overlap solving involves
the establishment of correspondences between ontolo-
gies.

(P4) Focus more on Patterns than Models. Ontology
models can cover a large scope, covering several re-
quirements. In such cases, it can be hard to identify a
model that meets a specific requirement desired for re-
use. Moreover, when finding the model, it is necessary to
identify its fragment that meets the desired requirement
for reuse. Patterns are a better approach in these cases.
They promote reuse since they modularize ontology
models in a way that is easier to find and reuse.

4. GO-FOR Overview

Figure 1 shows an overview of GO-FOR. The basic
elements of GO-FOR are goal-oriented ontology patterns
(GOOPs), which is aligned to principle P4. A GOOP
consists of an ontology fragment wrapped by a goal. In a
GOOP, the goal establishes the scope addressed by the
ontology fragment. Thus, GOOPs can be reused based on
the goal to which they relate. GOOPs are stored in a

101

goal-oriented ontology pattern repository (GOOPR). In-
side the GOOPR, GOOPs relate to each other according
to the relationships between their goals.

In order to reuse GOOPs for ontology development,
the ontology engineer must start by identifying the actors
in the domain of interest and developing the goal models
that describe the scope of the ontology to be developed
(as suggested in [21]). The use of goal models to define
the ontology scope contributes to principle P2, since the
design rationale is expressed by means of the goals that
guide the definition of what is to be addressed by the
ontology and why. Moreover, goal models help define
the ontology purpose, which is also addressed in P2.

For each goal represented in the goal model, the on-
tology engineer verifies if there is a GOOP in the
GOORPR related to it (i.e., if there is a GOOP containing
that goal). If this is the case, the ontology engineer can
reuse the GOOP by integrating it to the ontology model.
In this case, we have development with reuse. Otherwise,
the ontology engineer can create a new ontology model
fragment to achieve the goal. Thus, it can relate the
fragment to the goal (resulting in a GOOP) and store it in
the repository for future reuse. In this case, we have de-
velopment for reuse. Next, we discuss aspects of the
main elements of our framework, namely GOOPs and
GOOPR.

Goal Model
Ontology Model

builds
JO O 1, .= (11

goal

generates

matches :

h 4

N related to
( goal ‘H A
= [T T ]

e ontology model
fragment

Ontology

Engineer Goal-Oriented

Ontology
Patterns Repository
GOOPR

Figure 1 GO-FOR overview

4.1 Goal-Oriented Ontology Patterns (GOOP)

A GOOP consists of an ontology fragment wrapped
by a goal. In other words, it refers to an ontology model
fragment that can be used to achieve a goal. A GOOP
can be created whether using an ontology model frag-
ment already built (i.e., a fragment of an existing ontolo-
gy can be used to achieve a goal, giving rise to a GOOP)
or building the model fragment from scratch (i.e., a
model fragment is built aiming to achieve a goal).

A GOQRP is also related to the actor who has the goal
contained in the GOOP. Different actors may have the
same goal and need different fragment models to achieve



it. For example, a doctor and a researcher may have both
the goal “describe disease” and need different concepts
to do so (e.g., a researcher may need more technical de-
tails about the disease). Thus, when searching for a
GOOP to be reused, the ontology engineer should also
consider the actor related to the GOOP in order to reuse
the GOOP more suitable for the ontology being devel-
oped.

Ontology design patterns and ontology models usual-
ly have arbitrary names. Contrariwise, GOOPs are iden-
tified by their goals and following a standard terminolo-
gy structure to name them (principle P1). To make things
as simple as possible, we propose the use of a verb (bare
infinitive) and a noun (or a noun phrase) to define them
(e.g., define course program, describe product offering).

By analyzing several ontology model structures and
investigating goals that they are able to achieve, we have
noticed that goals are usually associated with verbs
which are somehow similar. Since ontology structures
are fragments of knowledge representation, they usually
classify, specify define or describe (among others) some-
thing. Hence, GO-FOR suggests a set of verbs to be used
to name goals. Although the use of a naming standard is
proposed, this does not prevent arbitrary names from
being given to goals. We propose this standard in order
to soften the problem of completely arbitrary nomencla-
ture discussed in P1 and, at the same time, simplify the
search for GOOPs. Moreover, in our implementation
(presented below) we apply semantic searching consider-
ing terms informed as parameters for the search and the
terms used to name the goals.

When considering the goals, GOOPs can relate to one
another by a part of relationship. A GOOP is part of an-
other GOOP when the goal of the former is a decomposi-
tion of the goal of the latter. For example, if g2 is a de-
composition (i.e., subgoal) of g/, goop! contains g/, and
goop?2 contains g2, then goop? is part of goopl. The part
of relation is transitive, and the parts are not exclusive
(i.e., a GOOP can be part of several GOOPs). If different
GOOPs have common parts, it means that their ontology
models overlap. The relationships between GOOPs pro-
mote principle P3, because once the relationships are
identified, they can structure the overlaps and avoid re-
dundancy.

4.2 Goal-Oriented Ontology Pattern Reposi-
tory (GOOPR)

GOOPs are stored in the GOOPR, which serves as an
abstraction layer for ontology development. This abstrac-
tion layer aims to support the reuse of ontology frag-
ments already built, i.e., the GOOPs.

When developing a new ontology, the ontology engi-
neer can search for GOOPs to be reused to address the
scope of the new ontology. She defines the goals to

102

which the ontology is committed by developing its goal
models and uses the goals as a basis to search for
GOOPs. This search involves comparing the goals of the
new ontology to the goals of GOOPs stored in the
GOOPR, aiming to identify matchings between them
(i.e., to find GOOPs that meet the goals).

Suppose that an ontology engineer has built the goal
model for an ontology about the Web Product Offering
domain. In the goal model a Provider (actor) wants to
“Describe Product Offering”. This goal is decomposed
into “Describe Product” and “Describe Offering Condi-
tions”. The latter, in turn, is decomposed into “Specify
Payment Methods”, “Specify Shipment Methods” and
“Specify Coverage”. In a bottom-up approach, the ontol-
ogy engineer can search for GOOPs to achieve the ulti-
mate goals (e.g., “Specify Payment Methods”) and the
achievement of the composed goals is obtained by inte-
grating GOOPs related to the goals that form them. The
ontology engineer can also adopt a top-down approach
and search for GOOPs to achieve goals composed by
others. She can explore goal decomposition to select the
GOOQOPs for reuse. For example, if the ontology engineer
searches for a GOOP related to “Describe Offering Con-
ditions”, she can compare the goal decomposition in the
GOOP returned in the search with the goal decomposi-
tion in the goal model to verify coverage. If the returned
GOOP is related to “Describe Offering Conditions”, but
it has only “Specify Payment Methods” and “Specify
Shipment Methods” as subgoals, the ontology engineer
can search for another GOOP with larger coverage, can
search for another GOOP to complement the previous
one by covering “Specify Coverage”, or can decide to
reuse the previous GOOP and develop the missing frag-
ment.

By exploring the goals structure, the ontology engi-
neer can also identify parts of the GOOPs that can be
discarded. For example, if the GOOP returned to achieve
“Describe Offering Conditions” also had “Describe Of-
fering Validity” as subgoal and the ontology engineer
was not interested in this goal, she would not reuse the
part of the GOOP (which is a GOOP itself) related to this
goal. Finally, when searching and selecting GOOPs, the
ontology engineer must also take the actor related to the
GOOP into account, because different actors can have
the same goal but need different ontology models to
achieve them.

4.3 GOOP-HUB: the GO-FOR Supporting Tool

Aiming to provide computational support to GO-FOR
and promote its use, we have developed the GOOP-HUB
(https://github.com/nemo-ufes/goophub), which enables
the creation of and searching for GOOPs. GOOP-HUB
consists of an interface that allows ontology engineers to
record and retrieve GOOPs and a repository that stores
GOOPs (i.e., a GOOPR).



Considering that most of the ontology fragments
available on the web use the Web Ontology Language
(OWL), we have implemented the GOOP-HUB meta-
model in this language. The main advantage of this
choice is that someone can make SPARQL queries using
the GOOP-HUB metamodel structure as part of the que-
ry. Moreover, since the metamodel uses OWL, a wide-
spread language used in the Semantic Web, it can be
referred even outside the GOOP-HUB infrastructure.
Figure 2 presents the core concepts of the GOOP-HUB
metamodel.

The model comprises elements of the OWL meta-
model plus goal modeling constructs. A GOOP is com-
posed of OWL classes, object properties and data proper-
ties. These three OWL constructs are the main elements
used to represent a model fragment in terms of its struc-
ture. The hierarchies must be represented by associating
classes with its subclasses and Domain and Range of
Object Properties can be used to describe to which clas-
ses an object property can associate. Since GOOPs are
thought to be generic structures to be reused, we have
just used the most basic OWL constructs of OWL LITE.
For this reason, OWL DL constructs often used for rea-
soning purposes are ignored (e.g., equivalence and logi-
cal operators). Besides the OWL structure, a GOOP also
involves a Goal that can be Atomic or Complex. A
Complex Goal is composed of other Goals either by
AND or OR decomposition. An AND decomposition is
used when all its subgoals must be satisfied for its
achievement. An OR decomposition occurs when only
one needs to be satisfied. Goals are related to the Actors
who want to achieve them. Actors are also related to
GOOPs, indicating which model fragment is necessary
for an actor to achieve a certain goal.

0.*
< Complex Goal |

| Atomic Goal |

0.*
OR decomposition P+

AND decormposition 2 ..*

owl : subClassOP>
BN ER

0.7] 0.+

owl : Class | | owl : Object Property | | owl : data Property |
I L] ¢ 0.*|0..*
ol : domain
owl : range

Figure 2 The GOOP-HUB metamodel

To add a GOOP into the repository the user informs
the goal(s) and actor(s) to which the GOOP relates and
uploads the ontology fragment in OWL format. The ap-
plication performs the conversion to the meta-model, so
that the relationships between GOOPs are established
according to the relationships between goals. To store
the GOOPs, we use Stardog (https.//www.stardog.com/),
a knowledge database that stores data in triple format.
We chose Stardog because its Java API is documented

103

with functional examples and also because it offers tools
for data comparison using Al (Similarity Search), as well
as textual search based on Apache Lucene
(http.//lucene.apache.org/).

The goal-based search for GOOPs in the GOOP-HUB
is made by using textual inputs referring to the ontology
goals (e.g., “specify event interval” or “describe offering
item”). In our implementation, we apply Apache Lucene,
which is a java full-text search engine in which, given a
search query, the API returns a set of documents (in our
case, goals) sorted using a score system such that the
documents (goals) most similar to query are displayed
first.

In addition to the textual searching, ontology engi-
neers count with a SPARQL Endpoint, where they can
perform complex queries involving all the elements of
the metamodel and their instances. For example, the on-
tology engineer can search for a GOOP with the goal
“describe location” filtering those that have the concept
“City”. As result of the search, the ontology engineer
receives a list of GOOPs that meet the parameters. The
GOOPs can be downloaded in OWL format.

5. Applying GO-FOR

GO-FOR has been applied in the context of a scien-
tific project concerning the biggest Brazilian natural dis-
aster, occurred on November 5th, 2015. The rupture of
the Funddo tailings dam, located in the city of Mariana,
in the state of Minas Gerais (MG) discharged 55-62 mil-
lion m® of iron ore tailings slurry directly into the Doce
River Basin, an important basin in the Southeast of Bra-
zil. In response to the disaster, autonomous groups of
researchers and government officials began to take ac-
tions to evaluate its consequences, producing a large
volume of data in different areas of knowledge (hydrolo-
gy, geochemistry, biology, among others). Thus, it be-
comes necessary to make an effort to make this data
available and allow its use together. For that, this project
has developed a water quality ontology to support data
interoperability.

As prescribed by GO-FOR, the ontology scope was
defined by means of goal models. An important actor of
the domain of interest is the Researcher, who is respon-
sible for collecting samples, describing information
about environment conditions, obtain and analyze data,
among others. Figure 3 shows a fragment of an iStar [18]
goal model related to the Researcher, focusing on the
goal “Describe Fish Specimen”. Achieving this goal is
necessary to describe the collection of a fish in the river
to verify the water quality by analyzing the fish proper-
ties. In the model depicted in Figure 3, such main goal is
AND-decomposed in three subgoals, namely: “Describe
Date”, “Classify Fish Specimen” and “Describe Locali-
ty”. It means that in order to “Describe Fish Specimen”,
these three goals must be achieved. “Describe Locality”,



in turn, has an OR decomposition with “Describe Geo-
graphic Point” and “Describe Place Name”, meaning that
the goal is achieved even if only one of its subgoals is
achieved.

Researcher

Describe
Locality

Classify Fish
Specimen
Describe Place
Name STy

-

Describe
Geographic
Point

,._._._._
————————

~

e S e e e e o i ol o0t

Figure 3 Fragment of the goal model for the wa-
ter quality ontology

Once the goal model is defined, the next step was to
search the GOOP-HUB looking for GOOPs to meet the
established goals. The GOOP illustrated in Figure 4 was
found as a candidate to meet the “Describe Date” goal.
That GOOP was extracted from the Time Ontology
(https://www.w3.org/TR/owl-time/) and it was stored in
GOOP-HUB during the development of another ontology
in which the fragment was used to achieve the goal “De-
scribe Data”. In other others, that GOOP was once pro-
duced for reuse and, here, it was reused in the context of
development with reuse. In the figure, Temporal Position
is the most generic concept that has properties to indicate
the temporal system used. Time Position has properties
to alternatively describe a temporal position using a
number (i.e., a temporal coordinate) or a nominal value
(e.g., geological time period, dynastic name, archeologi-
cal era). General Date Time Description has a set of
properties to specify the date and time using calendar
elements and clock. Finally, Date Time Description
transforms the temporal reference system to the Gregori-
an calendar. In Figure 4 and in the other models shown
in this section, the concepts’ attributes were omitted due

to space limitation.

JAY

| General Data Time Description | | Time Position |

Date Time Description

Figure 4 GOOP related to “Describe Date”

When looking for GOOPs to achieve the goals “De-
scribe Fish Specimen” and “Describe Locality”, no
GOOP was found. Therefore, a decision had to be made:
develop the fragments necessary to achieve these goals
from scratch or reuse other ontologies. The decision was
to reuse existing ontologies and extract new GOOPs
from them.

In order to achieve “Describe Locality”, a fragment
was extracted from the Place Names Ontology
(http://www.linked.data.gov.au/def/placenames/). ~ The
fragment is depicted in Figure 5. In the model, Geometry

104

provides data properties to specify the latitude and longi-
tude of a place. Place Name, in turn, describes a place
using its name. Different colors are used in the figure to
identify fragments related to each subgoal of “Describe
Locality”. The full fragment shown in the figure is nec-
essary to achieve the “Describe Locality” goal. Howev-
er, if the goal is “Describe Geographic Point”, only the
fragment containing concepts in dark blue color are nec-
essary. Similarly, if the goal is “Describe Place Name”,
the necessary fragment is the one containing concepts in
light blue color. This example illustrates the part of rela-
tion between GOOPs, resulting from the composition
relation between goals. In the figure, there are three
GOOPs. One related to “Describe Place Name”, one re-
lated to “Describe Geographic Point” and one related to
“Describe Locality”, which is composed of the other
two.

is managed by =|

R . 1
4

1

/N

| [ I .
| Place Name | 1_{ Place | | Line | | Area | | Point I
names

1

ASGS Administrative Boundaryl

1 identifies P>

[roven] [Eovaneeer]
Figure 5 GOOP related to “Describe Locality”

To achieve “Classify Fish Specimen”, a fragment
was extracted from the ontology NCBITaxon
(http://purl.obolibrary.org/obo/ncbitaxon.owl) and
turned into a GOOP. Figure 6 shows a fragment of the
final ontology. For the sake of simplification, we do not
present all the concepts related to the goal model pre-
sented in Figure 3. For example, the top classes represent
categories of NCBITaxon that must be instantiated to
describe a fish specimen.

| Familyl | Class | | Order | | Gender | | Specie |
L 1 1 1]

| Kingdoml | Phylum | | Taxon |

cate%nzeﬁ

ITempor:IFosition | P | is collected on B[y ocation ki
Ioceursin | W 1

located in

1
0.1

I
| General Date Time Description |

Date Time Description

Figure 6 — Fragment (simplified) of the Water

Quality Ontology — focus on Fish Specimen

In the model, we do not show the taxon instances and
we show only two types of fish. Further, the concept
color indicates the goal it relates to. Therefore, concepts
plus the goal in the same color illustrates fragments of
the GOOPs reused to build the ontology. The concept in
white was added to the model to meet the ontology re-
quirements. The GOOPs related to “Describe Fish Spec-
imen” and “Describe Locality”, which were created dur-
ing the development of the ontology, were added to the

1
| Time Position |




repository and made available for reuse. Finally, the on-
tology engineer can decide to incorporate the reused
concepts directly or to create new concepts in their own
schema and relate to the original ones through, e.g.,
owl:equivalentClass, rdfs:subClassOf, etc.

It is worth saying that the model shown in Figure 6 is
just a small fragment of the water quality ontology that
has been developed to support data interoperability in the
cited project. The ontology has been used as a reference
model to integrate data from different sources (spread-
sheets, information systems, web sites, PDF files, etc.) as
well as to support the development of a portal to enable
data searching for users in a transparent way.

6. Related Works

The use of goal modeling in Ontology Engineering is
recent. Therefore, we did not find any work exploring
the use of such approach to support reuse. There are
some works presenting proposals on the use and storage
of ontology patterns or ontologies to promote reuse in
ontology development. Here, we highlight three of them.
In [27], reuse is focused on foundational and domain
patterns. The former are patterns extracted from the
foundations and rules of a foundational ontology and,
when reused by analogy, their structure is reproduced in
the ontology being developed. The latter are patterns that
capture the core knowledge of a domain and, when re-
used by extension, the new ontology carries the concepts
and relations from the pattern. In [8], Gangemi et al. use
a Software Engineering approach to catalog content on-
tology design patterns. Each pattern is associated with a
catalog entry including information such as name, com-
petency questions and scenarios. The patterns are cata-
loged and stored within a repository. In [28], a frame-
work for ontology reuse is proposed, but the stored and
reused resources are ontologies, not ontology patterns.

There are some similarities and differences between
these works and ours. Regarding similarities, we can
highlight the fact that all proposals help define and store
ontology patterns or ontologies and provide a string-
based search mechanism to retrieve them. As for differ-
ences, we point out the way the design rationale is ex-
pressed and the basis for the searches.

n [27], the authors argue that when a foundational
pattern is reused, its design rationale is carried to the
domain pattern. Thus, when the domain pattern is reused,
the foundational and the domain design rationales are
carried to the new ontology. However, the design ra-
tionale is not made explicit in the patterns’ definition,
thus it is not clear how the design rationale is expressed
to the ontology engineer. In [26], the design rationale
comes from information associated with the patterns.
However, it is not clear how reuse can be conducted
based on this information. In [8], design rationale comes
from domain experts that help the ontology engineers to

105

understand the domain of interest. However, information
about design rationale is not recorded neither used as a
basis for the searches, which are made in repositories in
general.

In GO-FOR, design rationale is expressed by means
of goals that reveal the reasons why concepts, relations
and constraints are necessary. The use of goals can help
in the identification of suitable patterns, since the ontol-
ogy engineer can search based on the goals to be
achieved. Moreover, goals composition can be explored
to help in the search and selection of patterns for reuse.
Differently from GO-FOR, none of the aforementioned
approaches use goals or design rationale information to
aid the search for patterns or ontologies. Goal-based
search potentially brings better results because goals are
in a higher level than concepts. Hence, it is easier to talk
with ontology engineers about their goals than about
concepts in the domain of interest. In addition, none of
the approaches stores design rationale information along-
side the patters or ontologies. Thus, when the ontology
engineer follows these approaches, she must derive her-
self the rationale behind the patterns or ontologies found.

7. Final Considerations

In this work, we advocate the use of goals as the cen-
tral elements to define and search for ontology patterns.
We propose GO-FOR, a goal-oriented and pattern-based
framework for ontology reuse, aimed to aid in ontology
reuse by providing a mechanism for ontology engineers
to create and search for ontology patterns based on their
goals.

The main contributions of the work addressed in this
paper are: (i) the framework itself, which allows to con-
nect ontology fragments with the goals they meet, giving
rise to goal-oriented ontology patterns (GOOPs), store
the GOOPs in a repository and retrieve them for reuse;
and (i) the GOOP-HUB, the tool developed to support
GO-FOR use and promote ontology reuse. Once the
GOOP-HUB is properly populated, it will increase reuse,
generating a virtuous cycle of ontology development
with reuse and for reuse.

GO-FOR has been used to develop an ontology to in-
tegrate water quality data. The results have shown that
the use of GO-FOR is viable. The effort demanded to
create GOOPs was justified by the benefits of reusing
them, and goals have shown to be a good reference to
guide the searches. However, new applications and stud-
ies are necessary. As future work, we intend to populate
the repository with GOOPs and to carry out studies (case
studies and experiments) to evaluate the effects of using
GO-FOR in the ontology engineering process.

To evolve GO-FOR, we plan to extend it to use other
intentional elements in addition to goals (e.g., tasks),
allowing to define more detailed goal models and con-
tribute to refine the search for suitable GOOPs.



As for GOOP-HUB, we intend to assign properties to
GOOPs so that, when more than one GOOP is returned
in a search, they can be ranked not only by coverage
(how it currently works) but also by other attributes such
as reuse rate. We also plan to include functionalities in
the tool to aid in the integration of GOOPs, in order to
generate new GOOPs and to help ontology engineers in
the integration of GOOPs into their ontologies. Finally,
we intend to integrate an ontology editor to GOOP-HUB,
aiming to automatically generate code for ontology im-
plementation from ontology models.

Acknowledgment

This research is funded by the Brazilian Research Fund-
ing Agency CNPq (Processes 407235/2017-5,
433844/2018-3), FAPES (Process 69382549/2014 and
TO 616/2018), CAPES (Process 23038.028816/2016-41
and Finance Code 001).

References
[1] R. Bajcsy and R. McGeer, “Knowledge Engineering:
Principles and  Methods. Data  Knowledge
Engineering., 25: pp. 161-197, 1998”

E. Davis, “The Naive Physics Perplex,” Al Mag.,pp. :
51-51, 1998.

G. H. Mealy, “Another look at data,” in Proc. of the,
fall joint computer conference, AFIPS '67 (Fall), pp.:
14-16, 1967.

T. Heath and C. Bizer, “Linked Data: Evolving the
Web into a Global Data Space,” Synth. Lect. Semant.
Web Theory Technol.,pp. 1-136, 2011.

M. Poveda Villalon, M. C. Suarez-Figueroa, and A.
Gomez-Pérez, “Reusing ontology design patterns in a
context ontology network,”, Proc. of 2" WOP, pp. 35-
52,2010.

M. C. Suarez-Figueroa, A. Gomez-Pérez, E. Motta,
and A. Gangemi, Ontology engineering in a
networked world. Springer Science & Business Media,
2012.

J. Park, S. Oh, and J. Ahn, “Ontology selection
ranking model for knowledge reuse,” Expert Syst.
Appl., vol. 38, no. 5, pp. 51335144, 2011..

A. Gangemi and V. Presutti, “Ontology design
patterns,” in Handbook on ontologies, Springer, 2009:
221-243.

A. P. J. Jarczyk, P. Loffler, and F. M. Shipmann,
“Design rationale for software engineering: a survey,”
Proc. Twenty-Fifth Hawaii Int. Conf. Syst. Sci., 1992.

A. Van Lamsweerde, “Goal-oriented requirements
engineering: a guided tour,” Proc. Fifth IEEE Int.
Symp. Requir. Eng., pp. 249-262, 2001.

M. Katsumi and M. Griininger, “What is ontology
reuse?,” in Frontiers in Artificial Intelligence and
Applications, pp. 9-22, 2016.

E. P. Bontas, M. Mochol, and R. Tolksdorf, “Case
Studies on Ontology Reuse,” in Proceedings of the
IKNOWO5 International Conference on Knowledge

(2]
(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

106

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

Management (Vol. 74), 2005, pp. 345-353.

R. A. Falbo, G. Guizzardi, A. Gangemi, and V.
Presutti, “Ontology patterns: Clarifying concepts and
terminology,” in Proc. of the 4" WOP, pp. 14-26,
2013.

F. Buschmann, K. Henney, and D. C. Schmidt,
Pattern-Oriented Software Architecture: On Patterns
and Pattern Languages. Wiley, 2007.

V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist,
“eXtreme design with content ontology design
patterns,” in Proc. Workshop on Ontology Patterns,
pp- 83-97, Washington, DC, USA, 2009.

E. Blomgqvist, A. Gangemi, and V. Presutti,
“Experiments on pattern-based ontology design,”
Proc. 5th Int. Conf. Knowl. capture, pp. 41-48, 2009.
R. A. Falbo, M. P. Barcellos, J. C. Nardi, and G.
Guizzardi, “Organizing ontology design patterns as
ontology pattern languages,” vol. 7882 LNCS, pp.
61-75, 2013.

X. Franch, L. Lopez, C. Cares, and D. Colomer, “The
i* Framework for Goal-Oriented Modeling,” in
Domain-Specific Conceptual Modeling, Springer, pp.
485-506, 2016.

A. Van Lamsweerde, “Reasoning about alternative
requirements options,” LNCS, pp. 380-397, 2009.

1. J. Jureta, A. Borgida, N. A. Ernst, and J.
Mylopoulos, “Techne: Towards a new generation of
requirements modeling languages with goals,
preferences, and inconsistency handling,” in Proc. of
the 18th RE2010, pp. 115-124, 2010.

P. C. B. Fernandes, R. S. S. Guizzardi, and G.
Guizzardi, “Using goal modeling to capture
competency questions in ontology-based systems,” J.
Inf. Data Manag., vol. 2, no. 3, pp. 527, 2011.

J. S. Salamon, C. C. Reginato, M. P. Barcellos, and R.
S. S. Guizzardi, “Using goal modeling and ontoUML
for reengineering the good relations ontology,” in
Proceedings of IX Ontobras, pp. 91-102, 2017.

L. Liu and E. Yu, “Designing information systems in
social context: A goal and scenario modelling
approach,” in Information Systems, vol. 29, no. 2, pp.
187-203, 2004.

T. Gruber, “The role of common ontology in
achieving sharable, reusable knowledge bases,” Princ.
Knowl. Represent. Reason. Proc. Second Int. Conf.,
pp. 601-602, 1991.

M. Hepp, “Good Relations: An Ontology for
Describing Products and Services Offers on the Web”,
Proceedings EKAW '08, pp. 329-346, 2008

A. Gangemi and V. Presutti, “Ontology Design
Patterns,” Handb. Ontol., pp. 221-243, 2009.

F. B. Ruy, C. C. Reginato, V. A. Santos, R. A. Falbo,
and G. Guizzardi, “Ontology Engineering by
Combining Ontology Patterns,” in The 34rd
International Conference, ER2015, 173-186, 2015.

E. G. Caldarola, A. Picariello, and A. M. Rinaldi, “An
approach to ontology integration for ontology reuse in
knowledge based digital ecosystems,” in Proc. of the
7th MEDES, pp. 1-8, 2015.



