
Securing FrameWeb: Supporting Role-based Access Control in a
Framework-based Design Method for Web Engineering

Rodolfo Costa do Prado
Ontology and Conceptual Modeling Research Group
(NEMO), Departament of Computer Science, Federal

University of Espírito Santo (UFES), Brazil
rodolfocostapr@gmail.com

Vítor E. Silva Souza
Ontology and Conceptual Modeling Research Group
(NEMO), Departament of Computer Science, Federal

University of Espírito Santo (UFES), Brazil
vitor.souza@ufes.br

ABSTRACT
FrameWeb is a method for the development of Web-based Infor-
mation Systems whose architectures are based on popular types
of frameworks, such as Front Controller, Dependency Injection
and Object/Relational Mapping frameworks. Also commonly used,
Security Frameworks provide role-based access control through
authentication and authorization features that can be reused if
properly configured. In this paper, we extend FrameWeb to support
Security Frameworks, allowing developers to model the aforemen-
tioned features in architectural design models using a graphical
editor and generating code for the configuration of the framework
and related artifacts. The proposal is validated using the code gen-
erator and comparing with artifacts from real projects.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Object oriented frameworks; • Information systems → Web
applications;

KEYWORDS
Web Engineering, Frameworks, FrameWeb, Authentication, Autho-
rization, Role-based Access Control, Code Generation
ACM Reference format:
Rodolfo Costa do Prado and Vítor E. Silva Souza. 2018. Securing Frame-
Web: Supporting Role-based Access Control in a Framework-based Design
Method for Web Engineering. In Proceedings of Brazilian Symposium on
Multimedia and the Web, Salvador-BA, Brazil, October 16–19, 2018 (WebMedia
’18), 8 pages.
https://doi.org/10.1145/3243082.3243092

1 INTRODUCTION
A few decades ago, the pressing need for disciplined approaches
and new methods and tools for the construction of Web-based
systems spawned the new research & development field of Web En-
gineering [12]. Many researchers responded to this call, proposing
systematic approaches for the design of Web applications.

One such method is FrameWeb, the Framework-based Design
Method for Web Engineering [15]. FrameWeb is based on the premise

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
WebMedia ’18, October 16–19, 2018, Salvador-BA, Brazil
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5867-5/18/10. . . $15.00
https://doi.org/10.1145/3243082.3243092

that most Web-based Information Systems (WISs) are usually de-
veloped on top of a solid Web infrastructure which commonly
includes frameworks such as a Front Controller [1] to mediate com-
munication betweenWeb pages (front-end) and services (back-end),
a Dependency Injection mechanism [7] to resolve dependencies
among back-end components and an Object/Relational Mapping [2]
solution to communicate with the database.

FrameWeb incorporates concepts from the aforementioned cat-
egories of frameworks into a set of architectural design models,
improving developer communication and project documentation.
It follows a model-driven approach [10], in order to allow devel-
opers to extend support to other framework instances within the
supported categories, providing a graphical editor [3] that guides
developers in the use of the method’s modeling language, and a
code generator [4] that relieves programmers from much of the
coding effort, allowing them to concentrate more on business logic
and less on infrastructure.

Currently, the method supports only Front Controller, Depen-
dency Injection and Object/Relational Mapping frameworks. A fea-
ture that is very commonly implemented inWISs using frameworks
is that of authentication & authorization, or role-based access con-
trol. Security Frameworks such as Spring Security (https://projects.
spring.io/spring-security/), Apache Shiro (https://shiro.apache.org)
and the standard JAAS (Java Authentication and Authorization Ser-
vices) all for the Java platform, implement access control features in
a generic way, allowing developers to fill in the gaps with respect
to the particular WIS being built, increasing developer performance
(less code to write) and system reliability (the frameworks have
been extensively tested).

In this paper, we propose to add support for Security Frame-
works to FrameWeb, allowing developers to specify authentication
& authorization features in architectural design models using a
generic language, generating code to their framework of choice,
thanks to FrameWeb’s extensibility characteristics. Such support is
added to the method’s meta-models in order to extend its language
syntax, then also implemented into the graphical editor and the
code generator. The proposal is validated through the automatic
generation of security-related code for real projects and comparing
the results.

This paper is organized as follows: Section 2 introduces research
used as baseline in the work; Section 3 presents the proposed
changes to FrameWeb in order to support security frameworks;
Section 4 reports on the evaluation of this extension; Section 5
discusses related work; finally, Section 6 presents the conclusions.

https://doi.org/10.1145/3243082.3243092
https://doi.org/10.1145/3243082.3243092
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://shiro.apache.org

WebMedia ’18, October 16–19, 2018, Salvador-BA, Brazil
R. C. Prado & V. E. S. Souza

2 BASELINE
This section summarizes the FrameWeb method and the basic con-
cepts of Role-based Access Control and Security Frameworks, on
top of which we built our proposals in this paper.

2.1 The FrameWeb Method
FrameWeb [15] is a design method for the development of Web-
based Information Systems (WISs) that assumes the usage of frame-
works in the implementation of the WIS. Such frameworks are also
taken in consideration when designing higher level artifacts with
the goal of better guiding the implementation efforts.

The approach proposes a basic architecture which divides the
system into three main tiers (Presentation, Business Logic, and
Data Access) for better integration with three types of frameworks:
Front Controller (e.g., JavaServer Faces/JSF), dependency Injection
(e.g., Contexts and Dependency Injection for Java/CDI) and Objec-
t/Relational Mapping frameworks (e.g., Java Persistence API/JPA).
These three tiers are then divided in five packages, namely:

• View (Presentation): contains Web pages, stylesheets,
client-side scripts and other user interface artifacts;

• Control (Presentation): contains controller classes that
handle the requests made in the View package, using the
infrastructure of the Front Controller framework, and call
services offered by the Application package;

• Application (Business Logic): contains the classes that
are responsible for implementing the system’s functionali-
ties, whose dependencies (with Control and Persistence)
are wired by the Dependency Injection framework.Applica-
tion classes manipulate objects from the Domain package
and persist them via the Persistence package;

• Domain (Business Logic): contains the classes that rep-
resent the domain of the application and annotations that
guide the Object/Relational Mapping framework in persist-
ing their data;

• Persistence (Data Access): contains the DAO (Data Ac-
cess Object [1]) classes, responsible for the persistence, i.e.,
using the Object/Relational Mapping framework services
for storing objects in the relational database.

Artifacts of the packages mentioned above are represented in
four diagrams that can guide (and generate code for) the imple-
mentation of the system and the configuration of the different
frameworks being used:

• Persistence Model: represents the classes from the Per-
sistence package, showing which data access methods exist
for each domain class;

• Entity Model: represents classes from the Domain pack-
age and their object/relational mapping meta-data;

• Application Model: represents classes from the Applica-
tion package and their dependency network, i.e., which
classes from Persistence they depend on and which classes
from Control depend on them;

• Navigation Model: represents the components that form
the presentation layer (View and Control packages) and
how they interact.

Figure 1: Navigation Model built with FrameWeb Editor [4].

Following a model-driven approach [13], FrameWeb provides
a meta-model [10] that defines the abstract syntax for the above
models, reusing the concrete syntax from UML. Figure 1 shows the
Navigation Model for an example login application implemented
with JSF, extracted from an on-line tutorial1 and built using the
FrameWeb Editor [3], a CASE tool that is based on the FrameWeb
meta-model and guides developers in the syntax of the language.

The model represents two web pages (<<page>> stereotype),
each of them with a form (<<form>> stereotype) and both interact
with a single controller class (no stereotype). The loginForm in the
page index.xhtml contains a few JSF components, among which
the login.user inputText and the login.pwd inputSecret. Once
submitted, their values are bound to the user and pwd attributes
of the login attribute in the LoginController object, followed
by the execution of the validate() method in that object. Depen-
dency relations between the controller and the Web pages show
that two outcomes can follow: result=failure will take the user
back to index.xhtml, whereas result=success will direct her to
success.xhtml. A logout feature is also depicted.

The FrameWeb Editor [3], implemented using Eclipse Sirius,2
allows developers to import framework definitions in order to use
specific constructs and rules from different frameworks. For in-
stance, to build the model in Figure 1 the framework definition for
JSF (that contains, among other things, the different visual com-
ponents offered by the framework) is imported. Developers can
further extend the editor in order for it to support other framework
instances, while maintaining the same basic syntax for the mod-
els (given these framework instances belong to the categories of
frameworks supported by the method).

Finally, the FrameWeb Code Generator [4] can generate skeletons
of code artifacts (such as Web pages and classes) using the models
built in the FrameWeb Editor as input. Extensibility is also featured
here, as templates of code are also provided in the framework def-
initions, allowing the generator to be extended to support other

1http://www.thejavageek.com/2013/12/18/login-application-jsf/.
2https://www.eclipse.org/sirius/.

http://www.thejavageek.com/2013/12/18/login-application-jsf/
https://www.eclipse.org/sirius/

Securing FrameWeb: Supporting Role-based Access Control in a
Framework-based Design Method for Web Engineering WebMedia ’18, October 16–19, 2018, Salvador-BA, Brazil

Figure 2: Simple role to user relationship [6].

framework instances. Framework definitions are guided by the
Framework Meta-model, part of the FrameWeb meta-model [10].

Currently, the method supports only the three aforementioned
types of framework categories: Front Controller, Dependency Injec-
tion and Object/Relational Mapping. In what follows, we present
concepts from role-based access control and describe Security Frame-
works that are widely used to implement such control in WISs.
Section 3 then describes our proposal of extending the FrameWeb
method to support this new framework category.

2.2 Role-Based Access Control
Role-Based Access Control (RBAC) [6] is a basic model for autho-
rization inside an application that is founded on the separation
between actors and the actions available to them in the system.
This separation is made by adding the concept of roles. In RBAC,
any permission to run an action inside the application can only be
associated with a role. Actors do not acquire permissions directly,
instead they are given roles that aggregate a collection of permis-
sions. With this configuration, the assignment of permitted actions
to users inside a system is made with both simplicity and flexibility.

Figure 2 shows an example of such a configuration. Users 4, 5
and 6 belong to Role 1, which has the permissions trans_a and
trans_b, which allow access to objects 1 and 2 respectively.

The model for RBAC has evolved since its first proposal and
added concepts such as groups, sessions and role hierarchy. However,
these concepts were not approached in this paper, as they are not
universally adopted by Security Frameworks, described next.

2.3 Security Frameworks
A Security Framework provides as reusable infrastructure a set
of features concerned with the security of an application, such as
authentication, authorization, cryptography, session management,
etc. Here, we focus on authentication, i.e., certifying that a user is
who she says she is; and authorization, i.e., verify if the user has
the right to perform an action, given her authenticated credentials.

Our research on Security Frameworks focused on the Java plat-
form, concentrating on three framework instances in particular:
Spring Security, Apache Shiro and the Java standard JAAS (Java
Authentication and Authorization Services), as they appear as the
most searched Java Security Frameworks on Google in 2018 by a
large margin, indicating higher developer adoption.

The most basic form of authentication provided in these frame-
works relies on the comparison between credentials given by the
user at the time of authentication and the ones previously stored in
the system, e.g., a login form in which the user enters her username

Listing 1: Fragment of a login form example taken from the
Spring Security reference documentation.
<form name="f" th:action="@{/login}" method="post">
<label for="username">Username</label>
<input type="text" id="username" name="username"/>
<label for="password">Password</label>
<input type="password" id="password" name="password"/>
<div class="form-actions">
<button type="submit" class="btn">Log in</button>

</div>
</form>

Listing 2: Fragment of Spring Security configuration file.
<http auto-config="true" use-expressions="true">
<intercept-url pattern="/loginForm" access="permitAll" />
<intercept-url pattern="/user/login" access="permitAll" />
<intercept-url pattern="/**" access="hasAuthority('PERM_USER')" />
<form-login login-page="/loginForm" login-processing-url="/

↪→ performLogin" username-parameter="username" password-
↪→ parameter="password" default-target-url="/"/>

<logout logout-url="/logout" logout-success-url="/index"/>
</http>

Listing 3: Class method with authorization annotation for
Spring Security.
@PreAuthorize("hasAuthority('PERM_PERSON_DELETE')")
public void deletePerson(Person person);

and password and those are checked in a database. In the config-
uration of these frameworks, the field names for the credentials
are defined and must be used in the login form. The form’s action
property has to point to a specific URL, so when the login request is
made, the Security Framework intercepts the request and performs
the authentication.

Listing 1 shows a simple login form for Spring Security, which
is configured with the contents of Listing 2. The configuration file
specifies the URLs for login and login processing, as well as the
names of the form fields to be used. This allows the framework to
intercept the request sent by the login form, extract the values of
the username and password fields and perform the authentication.

The credentials informed are compared with the ones provided
by the application, which can also be defined in the framework’s
configuration files, but for large-scale WISs it is more common to
have some form of user database or LDAP integration in which a
username and password can be persisted and accessed. That concept
is named User Store and Security Frameworks interact with it in
different ways, but the basis of verifying credentials is the same.

Beyond authentication, we need to provide the framework in-
structions for authorization. In some examples found in the docu-
mentation of the aforementioned Security Frameworks, authoriza-
tion is made by simply associating user to roles and roles to classes
and methods. However, that goes against the RBAC model, which
prescribes the association of each user to a list of roles, and each
role to a list of permissions.

Once the User Store is defined, we need to inform what actions
need security in the application and which permissions are required
for each action. This can be done in the Presentation layer by

WebMedia ’18, October 16–19, 2018, Salvador-BA, Brazil
R. C. Prado & V. E. S. Souza

Figure 3: Fragments of the Entity, Navigation and Application meta-models, modified to support Security Frameworks.

restricting the access of given URLs to certain permissions, but
good practice dictates one should secure the services in the Business
Logic layer. This is done by associating permissions to classes or
methods in the Application package directly, using a configuration
file or annotations, the latter being more common as the developer
can understand more easily the structure of system permissions by
looking at the source code of the class alone.

Listing 3 shows an annotation that secures a method: only users
who have the PERM_PERSON_DELETE permission can execute this
method. An unauthorized access generates an exception, which can
then be dealt with by the Presentation layer.

As with other kinds of frameworks, unless we somehow docu-
ment security configurations as the ones illustrated above in the
WIS’ architectural design, the burden to come up with this configu-
ration and manually code it lies with the programmer. In the next
section, we propose an extension of the FrameWeb method that
allows software architects to specify authentication and authoriza-
tion features in design models and have FrameWeb generate most
of the code related to the Security Framework usage.

3 PROPOSAL
In this section, we present an extension to the FrameWeb meta-
model, as well as the FrameWeb Editor and its code generator, so the
method also contemplates concepts of Role-Based Access Control
(RBAC) and Security Frameworks.

3.1 New Language Constructs
We extend the FrameWeb language in order to specify the configu-
ration of authentication and authorization features from Security
Frameworks, using RBAC concepts, in its models. As illustrated in
Section 2.3, such configuration involves defining:

(1) The domain classes that represent users, roles and permis-
sions for authentication (e.g., Listing 1);

(2) Aspects of the Web pages and forms that will trigger the
authentication (e.g., Listing 2);

(3) Which permissions are required by each service method
or entire classes (e.g., Listing 3).

The above definitions involve, respectively, the Entity Model,
the Navigation Model and the Application Model. Given its model-
driven characteristics [10], to extend the FrameWeb language we
modified the respective meta-models of the three involved models.
Figure 3 shows fragments of these three meta-models, focused on
the changes performed in order to support authentication and au-
thorization. The original meta-classes are depicted in green, pink
and cyan for the Entity, Navigation and Application models respec-
tively. Light-gray meta-classes are a product of this work.

RBAC concepts are represented in the Entity Model. Basically,
applications adopting RBAC need to implement at least three enti-
ties: User, Role and Permission, with many-to-many associations
between Users and Roles and between Roles and Permissions. In
the FrameWeb meta-model (Figure 3) the meta-class DomainClass
was extended in order to add constructs for these concepts as entity
classes: AuthUser, AuthRole and AuthPermission. An AuthAttribute
meta-class derives from DomainAttribute so authentication and
authorization-specific attributes can be added to these new classes,
such as: AuthUserName, AuthPassword, AuthRoleName and Auth-
PermName (permission name). These last two are also extensions
from the IdAttribute meta-class. This is because, to perform the
authorization, Security Frameworks check a permission name from
the database against another written in the annotation or config-
uration file, so it is very important that the names for roles and
permissions are unique and refer to a single role or permission.

Securing FrameWeb: Supporting Role-based Access Control in a
Framework-based Design Method for Web Engineering WebMedia ’18, October 16–19, 2018, Salvador-BA, Brazil

Figure 4: Entity model with authentication constructs.

Figure 4 shows an Entity Model using the new meta-classes.
We can see that the choice of concrete syntax was to add stereo-
types «AuthUser», «AuthRole» and «AuthPermission» to the entity
classes that represent, respectively, Users, Roles and Permissions.
To ease visualization, the editor further displays these classes in a
different color than “regular” entity classes. Note that these classes
may have any name the designer wants to use, as their function in
the authentication process is defined by the stereotypes.

While the structural part of authentication is represented in
Entity Models, its behavior is defined in Navigation Models, such
as the one in Figure 5. The model represents the login page («auth-
Page» stereotype), the form with fields for user credentials («auth-
Form»), as well as processing («AuthMethod»), success («AuthSuc-
cessUrl») and failure («AuthFailureUrl») URLs. In the meta-model
(Figure 3), authentication page and form are derived from Page and
UIComponent meta-classes, respectively. Success and failure URLs
are represented by subclasses of ResultDependency, because of
their dependency from the result of the login process method. The
processing URL is actually represented by AuthProcessingMethod
(a FrontControllerMethod), i.e., the URL that activates this method
will be the processing URL. This way, the model is still relevant
with an implementation of security using a custom service class to
provide credentials and permissions, as some developers may need
to further customize the security of their Web applications.

Finally, as explained in Section 2.3, authentication is configured
in service methods, hence, in FrameWeb Application Models. Fig-
ure 6 shows an Application Model with permissions expressed
using UML constraints as concrete syntax. Service class Person-
ServiceImp requires a permission named PERM_PERSON to be
accessed. Service methods delete() and update() further require per-
missions named PERM_PERSON_DEL and PERM_PERSON_UP,
respectively. This is accomplished by extending the meta-classes
ServiceClass and ServiceMethod into AuthServiceClass and Auth-
ServiceMethod respectively (Figure 3). These subclasses both have
an attribute called PermissionName, which holds the name of the
permission required for access.

Figure 5: Navigation model with authentication constructs.

Figure 6: Application model with permission constructs.

3.2 Tool Support
As shown by the figures in this section, which were built with the
FrameWeb Editor [3], the changes in the meta-model were also
incorporated into the editor. Extending the FrameWeb Editor meant
creating container nodes, nodes and edges to visually instantiate the
new meta-classes added to the FrameWeb meta-model. In Figure 7
we can see a portion of the Sirius tool in which these elements are
defined. With these additions, we have superclasses and subclasses
being instantiated in the samemodel, which causes the tool to create
two nodes when depicting subclasses, one representing an instance
of the subclass, another an instance of the superclass. To avoid that,
the Acceleo Query Language3 was used in these nodes instead of a
regular expression for deciding what elements to show, as depicted
in Figure 8 (see Semantic Candidates Expression property). This
guarantees that the node is only shown when exactly the superclass
is created.

The models with authentication and authorization constructs,
made in the architectural design phase, can be used by developers
in the configuration of Security Frameworks, as the concepts repre-
sented in them are adopted by the main Security Frameworks (at
least in the Java platform) and can provide the basis for the usage
of these tools in a Web system. Better yet, developers can have the
artifacts that contain such configurations automatically generated
from the models, as described next.

3AQL, http://www.eclipse.org/acceleo/documentation/.

http://www.eclipse.org/acceleo/documentation/

WebMedia ’18, October 16–19, 2018, Salvador-BA, Brazil
R. C. Prado & V. E. S. Souza

Figure 7: Node definition in the Sirius editor.

Figure 8: AQL query used to filter DomainClass nodes.

3.3 Code Generation
The FrameWeb Code Generator [4] translates FrameWebmodels into
code, producing artifacts that a developer can use in the construc-
tion of a WIS. The code generator navigates the .frameweb models
and extracts the information required for creating project classes,
pages and other files. With the extensions described in Section 3.1,
the tool was also extended to understand the authentication and
authorization concepts required for minimal usage of the Security
Frameworks considered in this paper.

Listing 4 shows an excerpt of a .frameweb file depicting the
Navigation Model presented at Figure 5 in XML format. Taking
the processing URL as example, to get that information from the
model the tool searches for the packagedElements tags with the
type FrontControllerClass inside the packagedElement of type
ControllerPackage, which results in a list of controllers. Inside
each FrontControllerClass, the type AuthProcessingMethod is
searched. When found, the name property of the AuthProcessing-
Method is used to build the login processing URL. The same ap-
proach is used to get the login page URL, searching the AuthPage

Listing 4: Excerpt of .frameweb file for a Navigation Model.
<compose xsi:type="frameweb:NavigationModel" name="Navigation Model">

↪→
<packagedElement xsi:type="frameweb:ControllerPackage" name="

↪→ Controller Package">
<packagedElement xsi:type="frameweb:FrontControllerClass" name="

↪→ LoginController">
<ownedOperation xsi:type="frameweb:AuthProcessingMethod" name="

↪→ login"/>
</packagedElement>

</packagedElement>
<packagedElement xsi:type="frameweb:ViewPackage" name="View Package

↪→ ">
<packagedElement xsi:type="frameweb:AuthForm" name="loginForm">
<ownedAttribute xsi:type="frameweb:UIComponentField" name="

↪→ username"/>
<ownedAttribute xsi:type="frameweb:UIComponentField" name="

↪→ password"/>
<packagedElement/>
<packagedElement xsi:type="frameweb:AuthPage" name="login"/>
<packagedElement xsi:type="frameweb:Page" name="index"/>

</packagedElement>
<packagedElement xsi:type="frameweb:AuthFailureUrl" client="//

↪→ @compose.1/Controller%20Package/LoginController" supplier
↪→ ="//@compose.1/View%20Package/login_page">

<resultDependencyConstraint result="null"/>
</packagedElement>
<packagedElement xsi:type="frameweb:AuthSuccessUrl" client="//

↪→ @compose.1/Controller%20Package/LoginController" supplier
↪→ ="//@compose.1/View%20Package/index">

<resultDependencyConstraint result="null"/>
</packagedElement>

</compose>

Listing 5: Fragment of the generated XML configuration file
for Spring Security.
<http auto-config='true' use-expressions = "true">
<intercept-url pattern="/FW_AUTH_LOGIN_PAGE" access="permitAll" />
<intercept-url pattern="/FW_AUTH_LOGIN_PROC_URL" access="permitAll"

↪→ />
<form-login login-page="/FW_AUTH_LOGIN_PAGE" login-processing-url="

↪→ /FW_AUTH_LOGIN_PROC_URL" username-parameter="
↪→ FW_AUTHAT_USERNAME" password-parameter="
↪→ FW_AUTHAT_PASSWORD" default-target-url="/
↪→ FW_AUTH_LOGIN_SUCC_URL" authentication-failure-url="/
↪→ FW_AUTH_LOGIN_FAIL_URL"/>

<logout logout-url="/logout" logout-success-url="/
↪→ FW_AUTH_LOGIN_PAGE"/>

</http>

type. As for the success and failure URLs, the respective page is
found in the client property that both types inherit from the Result-
Dependency meta-class. For instance, the code generator looks
for a packagedElement with type AuthSuccessUrl and reads the
client property in order to build the authentication success URL.

Listing 5 shows a template that serves as input for the tool to
generate an XML configuration file for Spring Security. The Code
Generator replaces specific tags (e.g., FW_AUTH_LOGIN_PROC_URL)
with the information extracted from the model (e.g., the processing
URL), as explained above. The template makes sure that the login
page URL and login processing URL are accessible to unauthenti-
cated users, so the authentication can be possible.

Listing 6 shows the Entity Model portion of the .frameweb file.
The tool searches for the AuthUser, AuthRole and AuthPermission
types. Inside AuthUser it looks for ownedAttribute tags with type
AuthUserName and AuthPassword in order to match against the

Securing FrameWeb: Supporting Role-based Access Control in a
Framework-based Design Method for Web Engineering WebMedia ’18, October 16–19, 2018, Salvador-BA, Brazil

Listing 6: Excerpt of .frameweb file for an Entity Model.
<compose xsi:type="frameweb:EntityModel" name="Entity Model">
<packagedElement xsi:type="frameweb:DomainPackage" name="Entity

↪→ Package">
<packagedElement xsi:type="frameweb:AuthUser" name="User">
<ownedAttribute xsi:type="frameweb:AuthUserName" name="username

↪→ "/>
<ownedAttribute xsi:type="frameweb:AuthPassword" name="password

↪→ "/>
<ownedAttribute xsi:type="frameweb:IdAttribute" name="user_id"/

↪→ >
</packagedElement>
<packagedElement xsi:type="frameweb:AuthRole" name="Role">
<ownedAttribute xsi:type="frameweb:AuthRoleName" name="roleName

↪→ " visibility="private" type="//@compose.3/Entity%20
↪→ Package/String"/>

</packagedElement>
<packagedElement xsi:type="frameweb:AuthPermission" name="

↪→ Permission">
<ownedAttribute xsi:type="frameweb:AuthPermName" name="

↪→ permissionName"/>
</packagedElement>
<packagedElement xsi:type="frameweb:DomainClass" name="Person">
<ownedAttribute xsi:type="frameweb:IdAttribute" name="id"/>
<ownedAttribute xsi:type="frameweb:DomainAttribute" name="

↪→ address"/>
<ownedAttribute xsi:type="frameweb:DomainAttribute" name="email

↪→ "/>
</packagedElement>

</packagedElement>

Listing 7: Fragment of the generated xml configuration file
for Spring Security with the SQL query for acquiring user
credentials and permissions.
<authentication-manager>
<authentication-provider>
<jdbc-user-service
data-source-ref="dataSource"

users-by-username-query="select FW_AUTH_USER.
↪→ FW_AUTHAT_USER_USERNAME, FW_AUTH_USER.
↪→ FW_AUTHAT_USER_PASSWORD, 1 from FW_AUTH_USER where
↪→ FW_AUTH_USER.FW_AUTHAT_USER_USERNAME=?"

authorities-by-username-query="SELECT DISTINCT FW_AUTH_USER.
↪→ FW_AUTHAT_USER_USERNAME, FW_AUTH_ROLE_FW_AUTH_PERM.
↪→ FW_AUTH_PERMs_FW_AUTHAT_PERM_NAME

FROM FW_AUTH_USER, FW_AUTH_USER_FW_AUTH_ROLE,
↪→ FW_AUTH_ROLE_FW_AUTH_PERM

where FW_AUTH_USER.FW_USER_ID = FW_AUTH_USER_FW_AUTH_ROLE.
↪→ FW_AUTH_USER_FW_USER_ID and

FW_AUTH_ROLE_FW_AUTH_PERM.
↪→ FW_AUTH_ROLE_FW_AUTHAT_ROLE_ROLENAME =
↪→ FW_AUTH_USER_FW_AUTH_ROLE.
↪→ FW_AUTH_ROLEs_FW_AUTHAT_ROLE_ROLENAME and
↪→ FW_AUTH_USER.FW_AUTHAT_USER_USERNAME = ?" />

</authentication-provider>
</authentication-manager>

credentials provided in an authentication request. AuthRole and
AuthPermission and their owned attributes AuthRoleName and
AuthPermName will be used to get the list of permissions related to
those credentials. Listing 7 shows a template for a Spring Security
XML implementation [11] that uses information extracted from the
Entity Model to generate the code artifact.

Code generation based on the Application Model follows the
same principles and is not detailed here due to space constraints.
Further, different templates could be provided in order to generate
code for different frameworks (e.g., Apache Shiro, JAAS, etc.). The

Table 1: Results of evaluation using Web Development
projects.

Project Auth? RBAC? Gen Not Adj %

SGAF Yes / Yes No 37 7 2 84%
C2D No / Yes No 20 7 6 74%
S2C-VV No / No No 37 4 2 90%

implementation described in this paper is available at a public
source code repository4 for the interested reader.

4 EVALUATION
The main purpose of this work is to simplify the configuration
of security frameworks through graphical models, plus generate
code for such configuration. With that in mind, to evaluate our
work we used projects developed by undergraduate students from
our university in the context of a Web Development course5 and
measured the extent to which FrameWeb models could have helped
developers implement Role-Based Access Control (RBAC). We re-
port on the result for three projects in particular: SGAF (publication
of movie reviews), C2D (evaluation of researchers based on their
publications) and S2C-VV (management of religious activities).

The following methodology was used: (1) the security level
present in the original application was identified; (2) models were
designed using FrameWeb Editor ; (3) the models were used to gen-
erate code for a Security Framework; (4) the code lines generated
were compared against the code lines already present in the ap-
plication’s security files, if any, in order to verify the coverage of
what was generated; (5) the number of adjustments needed to be
made in the generated code in order to prepare configuration files
to implement RBAC was measured.

Table 1 shows the result of the evaluation, with the first columns
reporting on the security level analysis for each application. Col-
umn Auth? indicates whether the original project implemented
authentication / authorization, whereas column RBAC? reports if
true RBAC was already implemented, according to the definition
presented in Section 2.2.

The remaining columns show the comparison of the generated
code with the original. Column Gen informs the number of lines
automatically generated to be used in the Security Framework
configuration. Column Not indicates how many lines related to
security features were present in the original projects but were
not automatically generated by FrameWeb, such as security data-
base definitions, hash configuration, etc. Column Adj depicts how
many lines were generated, but required manual adjustments, like
indicating the basic permission name, required for a secured JAAS
implementation. Finally, column % shows the percentage of lines of
code generated over the total lines required to implement security
in these projects.

These results tell us that FrameWeb was able to generate most
of the code needed to implement security features based on the
proposed extensions to its models, relieving the developers of most
of the coding effort in this context. Moreover, the code generated
4https://github.com/nemo-ufes/FrameWeb.
5https://github.com/dwws-ufes/.

https://github.com/nemo-ufes/FrameWeb
https://github.com/dwws-ufes/

WebMedia ’18, October 16–19, 2018, Salvador-BA, Brazil
R. C. Prado & V. E. S. Souza

by FrameWeb implements true RBAC, which was not present in
any of the projects reported in Table 1.

However, it is important to mention that the evaluation pre-
sented here is preliminary. It is currently under planning a new
evaluation effort with practitioners, following a more formal pro-
tocol, in order to try and assess if the benefits of communicating
through models and generating code outweight the learning curve
to use FrameWeb and its editor. Further efforts, regarded as future
work, could evaluate the approach on nontrivial applications, in
industrial settings, comparing different security frameworks, etc.

5 RELATEDWORK
As mentioned in Section 1, the FrameWeb method aims to visually
depict concepts of the frameworks that will be used in the construc-
tion of Web-based Information Systems (WISs). Previous work in
the context of FrameWeb [4, 10, 15] have not proposed the addition
of Security Frameworks to the list of supported types of framework.
Our work aims to fill in this gap. Other works in the literature have
also proposed modeling security features for WISs, as follows.

SecureUML [9] proposes a UML-Based modeling language to cre-
ate models that depict the authorization structure intended for an
application. Like FrameWeb, the SecureUML meta-model is derived
from the UML meta-model and adds concepts of RBAC (cf. Sec-
tion 2.2). In SecureUML models, instances of Role are represented
and a Permission is depicted as a relation between a specific role
and a class, associating that relation with a certain action. Possible
security constraints can be added in the model as UML constraints
bound to classes or permissions relations.

The work presented in this paper differs from SecureUML be-
cause it does not aim to represent instances of roles or users. The
only RBAC concept that has instances represented in our work is
that of permissions, which is included in the Application Model
(cf. Section 3.1). This addition to FrameWeb depicts the classes that
will be instantiated into roles, users and permissions. This way, the
users of an application can dynamically create their own authoriza-
tion scheme. A SecureUML model would be a photograph of that
scheme, although concepts presented in [9], such as role hierarchy
and security constraints, could be added to FrameWeb in the future.

Pavlich-Mariscal et al. [14] propose an extension to the UML
language to model the security aspects of an application domain,
which can be really useful for creating the authorization require-
ments of a system. However, it is also a static representation of this
authorization logic, whereas the work in this paper aims to model
how a Security Framework can be used to enforce that logic.

UMLsec [8] also extends UML to create models with the intent of
simplify the development of security critical systems, but the secu-
rity scope of the work is much larger than the one presented in this
paper, taking in consideration the environment of an application
whereas this work is focused on the design and implementation of
WISs that use Security Frameworks.

Emig et al. [5] propose a metamodel for access control for Web
service architectures that extends the RBAC meta-model, but it
does not takes in consideration the usage of frameworks to handle
security, so the models created would not be as useful to guide
implementation in this particular architectural style or even used
for automatic code generation.

6 CONCLUSIONS
In this paper, we propose an extension of FrameWeb’s modeling
language, graphical editor and code generator in order to support
the specification of authentication & authorization features in ar-
chitectural design models in a generic way and the generation of
code for a specific Security Framework, improving developer com-
munication and relieving programmers from most of the coding
effort in this regard.

Our initial evaluations show promising results. However, future
work includes further evaluation (with practitioners), experiments
involving frameworks from platforms different than Java and in-
vestigating other features from Security Frameworks that might
benefit from further extensions of the FrameWeb language.

ACKNOWLEDGMENTS
NEMO (http://nemo.inf.ufes.br) is currently supported by Brazilian
research funding agencies CNPq (process 407235/2017-5), CAPES
(process 23038.028816/2016-41), and FAPES (process 69382549/2015).

REFERENCES
[1] Deepak Alur, John Crupi, and Dan Malks. 2003. Core J2EE Patterns: Best Practices

and Design Strategies (2nd ed.). Prentice Hall / Sun Microsystems Press.
[2] Christian Bauer and Gavin King. 2004. Hibernate in Action (1 ed.). Manning.
[3] Silas Louzada Campos and Vítor E. S. Souza. 2017. FrameWeb Editor: Uma

Ferramenta CASE para suporte ao Método FrameWeb. In Anais do 16º Workshop
de Ferramentas e Aplicações, 23º Simpósio Brasileiro de Sistemas Multimedia e Web.
SBC, Gramado, RS, Brazil, 199–203.

[4] Nilber V. de Almeida, Silas L. Campos, and Vítor E. S. Souza. 2017. A Model-
Driven Approach for Code Generation for Web-based Information Systems Built
with Frameworks. In Proc. of the 23rd Brazilian Symposium on Multimedia and
the Web. ACM, Gramado, RS, Brazil, 245–252.

[5] Christian Emig, Frank Brandt, Sebastian Abeck, Jürgen Biermann, and Heiko
Klarl. 2007. An access control metamodel for web service-oriented architecture.
In 2nd International Conference on Software Engineering Advances - ICSEA 2007.
https://doi.org/10.1109/ICSEA.2007.15

[6] David Ferraiolo, Janet Cugini, and D Richard Kuhn. 1995. Role-based access
control (RBAC): Features and motivations. In Proc. of 11th Annual Computer
Security Application Conference. 241–248.

[7] Martin Fowler. 2004. Inversion of Control Containers and the Dependency Injec-
tion pattern, http://www.martinfowler.com/articles/injection.html (last access:
September 29th , 2016). (2004).

[8] Jan Jürjens. 2004. UMLsec: Extending UML for Secure Systems Development.
(2004).

[9] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. 2002. SecureUML: A
UML-Based Modeling Language for Model-Driven Security. In Proceedings of
the 5th International Conference on The Unified Modeling Language (UML ’02).
Springer-Verlag, London, UK, UK, 426–441. http://dl.acm.org/citation.cfm?id=
647246.719477

[10] Beatriz Franco Martins and Vítor E. Silva Souza. 2015. A Model-Driven Approach
for the Design of Web Information Systems based on Frameworks. In Proc. of the
21st Brazilian Symposium on Multimedia and the Web. ACM, 41–48.

[11] Peter Mularien. 2010. Spring Security 3: Secure your web applications against
malicious intruders with this easy to follow practical guide. Packt Publishing Ltd.

[12] San Murugesan, Yogesh Deshpande, Steve Hansen, and Athula Ginige. 2001.
Web Engineering: a New Discipline for Development of Web-Based Systems.
In Web Engineering - Managing Diversity and Complexity of Web Application
Development, San Murugesan and Yogesh Deshpande (Eds.). Springer, Chapter 1,
3–13.

[13] Oscar Pastor, Sergio España, José Ignacio Panach, and Nathalie Aquino. 2008.
Model-driven development. Informatik-Spektrum 31 (2008), 394–407.

[14] Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian. 2007. Enhancing
UML to model custom security aspects. In Proceedings of the 11th International
Workshop on Aspect-Oriented Modeling (AOM@ AOSD’07).

[15] Vítor E. S. Souza, Ricardo A. Falbo, and Giancarlo Guizzardi. 2009. Designing
Web Information Systems for a Framework-based Construction. In Innovations
in Information Systems Modeling: Methods and Best Practices (1 ed.), Terry Halpin,
Eric Proper, and John Krogstie (Eds.). IGI Global, Chapter 11, 203–237.

http://nemo.inf.ufes.br
https://doi.org/10.1109/ICSEA.2007.15
http://dl.acm.org/citation.cfm?id=647246.719477
http://dl.acm.org/citation.cfm?id=647246.719477

	Abstract
	1 Introduction
	2 Baseline
	2.1 The FrameWeb Method
	2.2 Role-Based Access Control
	2.3 Security Frameworks

	3 Proposal
	3.1 New Language Constructs
	3.2 Tool Support
	3.3 Code Generation

	4 Evaluation
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

