
From Requirements to Statecharts via Design Refinement

João Pimentel, Jaelson
Castro

Universidade Federal de
Pernambuco - UFPE

Recife, Brazil
jhcp@cin.ufpe.br

John Mylopoulos,
Konstantinos
Angelopoulos

University of Trento - UniTn
Trento, Italy

jm@disi.unitn.it

Vítor E. Silva Souza
Universidade Federal do
Espirito Santos - UFES

Vitória, Brazil
vitorsouza@inf.ufes.br

ABSTRACT
The derivation of statecharts from requirements has been
addressed from many perspectives. All of them assume that
the derivation process is a linear series of refinements result-
ing in a single statechart, thereby missing the opportunity
to explore alternatives in the design space. We propose a
multi-dimensional approach that exploits inherent variabil-
ity of the design space, where alternative refinements are
considered for the same intermediate problem, resulting in
multiple solutions (statecharts) from a single initial problem
(requirements). In order to accomplish this, we propose an
extended form of goal model where architects can incremen-
tally refine the original requirements by considering behav-
ioral alternatives leading to design solutions. The proposed
refinement process is illustrated through an example from
the literature. Experimentation with randomly generated
models suggests that the proposal is scalable.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.2 [Software Engineering]: Design Tools and
Techniques

1. INTRODUCTION
Requirements engineering and architectural design, while

addressing the system specification at different abstraction
levels, are intertwined activities. The former focuses on the
problem at hand, whereas the latter provides solutions for
that problem [14]. One of the challenges in Software Engi-
neering (SE) is to determine whether a system specification
is actually a solution to the given requirements. We propose
to tackle this challenge by systematically deriving the lat-
ter from the former. In earlier work we proposed a process
for deriving architectural models from requirements [4][15] .
However, these proposals handle only the structural view of
the architectural design, lacking any behavioral specification
of the system-to-be. The behavioral view accounts for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

order of execution of tasks that fulfills requirements, includ-
ing concurrency and time dependencies for the system-to-be
[2]. Besides, it allows further refinement/design of the sys-
tem and supports reasoning to detect potential deadlocks,
termination and efficient use of scarce resources.

In this work we propose a systematic process for deriv-
ing behavioral models — expressed as statecharts [8] —
from goal models through a series of refinements expressed
within an extended goal model that constitutes an interme-
diary model between requirements and architecture, similar
to [7]. By exploiting the use of views, we reduce the burden
of maintaining an additional model. A key contribution of
this work is that, through the definition of alternative refine-
ments for the same design element, this model captures the
inherent variability of the design space, where different solu-
tions (statecharts) for a given problem can be devised. More-
over, the ability to automatically generate statecharts from
partially refined models facilitates incremental design and
the intertwined refinement of requirements and architecture
[14]. To evaluate this process, a case study was developed
based on an Automated Teller Machine (ATM), a system
extensively described in the software engineering literature,
which is also used as running example in this paper. This
case study was performed using a prototype tool developed
to support this process. Furthermore, in order to analyze
the applicability of deriving statecharts for large models, we
performed a scalability assessment of the automatic gener-
ation of statecharts from design goal models, presented in
Section 4.

2. BASELINE
The following sub-sections provide a brief overview of the

baseline of this proposal.

2.1 Goal Modeling
Requirements can be represented as goals, tasks, domain

assumptions (DAs) and quality constraints (QCs). These
elements are supported by many requirements modeling ap-
proaches . The space of alternatives for goal satisfaction is
represented by Boolean AND/OR refinements with obvious
semantics. Tasks, on the other hand, are directly mapped
to functionality in the running system and are satisfied if
executed successfully. However, QCs can define additional
restrictions for the satisfaction of goals and for the execution
of tasks. Finally, DAs are satisfied if they hold (affirmed)
while the system is pursuing their parent goal.

Fig. 1 shows a goal model with the requirements for our
running example, an Automated Teller Machine (ATM) sys-

995http://dx.doi.org/10.1145/2554850.2555056

ProvideDATM

ShutdownDATM

TurnDATMDOff

CloseDConnection
toDBank

MakeDATMDUnavaiable

ServeDCustomers

PrintDReceipt
DisplayDConfirmation

Transfer
PerformDTransfer

Transaction

GetDTransfer
Information

GetDTransfer
Amount

GetDDestination
Account

GetDOrigin
Account

Authenticate
Customer

StartDATM

TurnDATMDOn

DetectDCash
Amount

SetupDConnection
toDBank

MakeDATM
Available

GetDCardDInfo

GetDCardDNumber

MagneticDCard

TwoDFactor
Authentication

Authenticate
withDPIN

VerifyDAmount
inDEnvelope

ProcessDDeposit

AcceptDEnvelope

CheckDDestination
Account

Deposit

Withdraw

SMSDAuthentication

ConfirmDTransaction

ConductDATM
Transaction

PerformDTransaction

SelectDTransaction

GetDDeposit
Information

ProvideDCash

ProcessDWithdrawal

GetDWithdrawal
Information

GetDDeposit
Amount

PrintDCompesation
Token

DispenseDCash

PerformDWithdrawal
Transaction

CheckDATMDFunds

GetDWithdrawal
Amount

GetDWithdrawal
Account

GetDDeposit
Account

ValidateDPIN

GetDPIN

CardDwithDChip

Authentication
withDExtraDKeys

Fingerprint
Authentication

Goal Task

Legend

AND-refinement OR-refinement

Figure 1: ATM Requirements Model. QCs omitted for the sake of space

tem. This model was based on a model from [19]. In order
to provide its services, the ATM needs to be turned on and
off, as well as to Serve Customers. This goal is refined into
Authenticate Customers and Conducting Transactions. In
order to conduct transactions, it is required to Select Trans-
action, Perform Transaction and Confirm Transaction. The
transactions available to be performed are Withdraw, De-
posit and Transfer.

2.2 Flow Expressions
Flow expressions [16][5] describe the flow of system be-

havior in terms of extended regular expressions. In our use
of such expressions we adopted different symbols in order to
facilitate their writing (e.g., | in place of ∪ for expressing
alternative behaviors). Each atomic symbol represents an
element of the flow, which in our case is an element from
the goal model. For example, if g1 is a goal, the atomic
expression g1 represents the state where the goal g1 has
been fulfilled. Flow expressions can be composed in terms
of regular expression operators, such as concatenation (g1
g2), meaning “first satisfy g1 then g2” (sequential flow), or
g1*, meaning that g1 is to be satisfied zero or more times.

Flow expressions separated with a vertical bar | symbol
represent alternative flows. The question mark ? is used
to represent the optionality of the flow to its left, i.e., that
flow may be executed zero or one times. The star symbol
* indicates that the flow to its left may be executed zero,
one or more times, while the plus symbol + indicates that
that flow may be executed one or more times. The shuffle
operator (here expressed as the sharp symbol #) indicates
that two flows are to be carried out concurrently, in the sense
that their states can be interleaved. Considering the letters
from A to H as atomic flows, the flow expression

(A B (C | D) E F* G) # (H*)

indicates that state A is followed by state B. After B, the
possible states are C or (exclusively)D, followed by E. After

E, F may be reached any number of times. State G may
be entered after E or after F . Concurrently to all that, the
state H may occur any number of times.

2.3 Statecharts
Statecharts [8] are a visual formalism that can be used to

specify architectural behavior [2]. The main elements of this
modeling language are states that our system-to-be can be
in, and transitions that represent possible state changes. A
transition has an associated event that triggers the transi-
tion, and a condition that must be true for the transition
to occur. Thus, by specifying a graph of states connected
by transitions it is possible to specify how the system-to-be
reacts to different events, depending on its current state.

Unlike their finite state machine cousins, statecharts allow
to structure states in a hierarchy of super- and sub-states.
In an XOR state, if the state is active, so is one and only
one of its sub-states; in an AND state, if a state is active
so are all of its sub-states. The AND state (concurrent) is
represented with a dashed line separating its sub-states.

3. FROM GOALS TO STATECHARTS
In order to move from requirements to statecharts, we ad-

vocate the use of extended goal models which capture both
requirements and design concerns. This design goal model
extends the goal model presented in Section 2.1 with (i) de-
sign tasks and design quality constraints, (ii) assignments,
and (iii) behavioral refinements. The complete process com-
prises five steps: Identify design tasks and constraints; As-
sign tasks; Define basic flows; Generate base statechart ; and
Specify transitions. While these steps can be followed se-
quentially, waterfall-like, in realistic settings it is expected
that the architect will go back and forth, by introducing ad-
ditional refinements to already refined elements. Moreover,
during the derivation process there may be a need to revisit
the original requirements in order to introduce new refine-

996

ments because those currently pursued are not working out.
In fact, in accordance with the Twin Peaks directive [14],
the approach supports the generation of statecharts from
partial design goal models, i.e., from models that have not
been fully refined all the way down to its leaf elements. For
instance, if one defines the behavioral refinement only of the
root goal, the result would be a very high-level statechart.
As further refinements are defined and new elements are
added to the model, the resulting statechart will get more
complete. Thus, it is not necessary to complete one step in
order to proceed to the next one.

The steps of the process are presented with further details
in the following sub-sections.

3.1 Identify Design Tasks and Constraints
Requirements expressed as goal models describe the prob-

lem space for the system-to-be, capturing concerns from dif-
ferent stakeholders such as customers, users and domain ex-
perts. During design, i.e., as we move towards the solution
space, the different elements of the requirements model need
to be further refined, reflecting design decisions that have
been made. These decisions can be classified in three cate-
gories: existence decisions, property decisions, and executive
decisions [9]. Although some of these impact the system as
whole (e.g., the selection of an architectural pattern), some
others can be traced to specific elements of the requirements
model.

In order to capture design decisions that refine how a cer-
tain goal can be achieved, how a certain task can be per-
formed, and how a given quality constraint can be satisfied,
we propose the inclusion of design tasks and design quality
constraints in the goal model. As argued in [6], there is a
large similarity between architecturally significant require-
ments and design decisions. Nonetheless, we opt to differ-
entiate design elements from their requirements cousins in
order to make it clear, among other things, (i) who (stake-
holders or designers) is responsible for making decisions with
respect to those elements, and (ii) in which stage of the
project they appear. This differentiation is done by using
dashed borders for the design elements (e.g., design tasks in
Fig. 2).

Design tasks and design quality constraints are included
in the goal model through AND/OR refinements. By in-
cluding these elements in the goal model, rather than using
a separate design decisions model, we can take advantage of
existing goal reasoning infrastructure when designing sys-
tems with specific needs such as self-adaptation [18] and
context-awareness [10]. In Fig. 2 we present excerpts of the
refinements for the ATM system. The Get PIN task was
refined with three different alternatives for getting the PIN
code: through a regular keypad, through a 2-key keypad and
through a touchscreen keypad. For the Detect Cash Amount
task, two alternatives were identified: Use Cash Sensor and
Use Operator Entry.

3.2 Assign Tasks
The goal model presents the tasks that need to be per-

formed by the system-to-be, but does not prescribe who is
responsible for performing them: human actors, organiza-
tions, software systems, etc. This step of the process con-
sists of defining this responsibility. A task may be assigned
to one or more actors, with the meaning that it may be per-
formed by any one of them. If, instead, part of the task

UsevOperatorvEntry

GetvPINvfrom
TouchscreenvPad

GetvPINvfrom
two-keyvKeypad

GetvPINvfromvKeypad

GetvPIN

VerifyvAmount
invEnvelope

AcceptvEnvelope

CheckvDestination
Account

ProcessvDeposit

Clerk

UsevCashvSensor

DetectvCash
Amount

Figure 2: Excerpts of the ATM Design Model, with
Design Tasks and Assignment

ProvideyATM

StartyATM

TurnyATMyOn

DetectyCash
Amount

SetupyConnection
toyBank

MakeyATM
Available

ServeyCustomers

Authenticate
Customer

ConductyATM
Transaction

ShutdownyATM

UseyCashySensor UseyOperator
Entry

g2 g7* g10

g1

t3 t4 t5 t6

g2

t3

dt11
dt12

dt11 dt12?
i1 (dt11|dt12)

t4
t5

t6

g8 g9* dt14
(g8 g9)+ dt14

g7

g8

g9

g10

dt11 dt12

TerminateySession
dt58

Figure 3: Behavior refinements for an excerpt of the
ATM Design Model

will be performed by an actor and another part by another
actor, the original task can be further refined with sub-tasks
assigned to different actors. Fig. 2 shows the assignment of
the Verify Amount in Envelope task to a bank clerk.

3.3 Define Basic Flows
In this step we define the order of goal fulfillment and

task execution, through the use of flow expressions. This
is done by, for each element that will be refined, defining a
flow expression which describes the behavior of its children
elements. By constraining this decision-making to descen-
dants (children) of a node, instead of considering the system
as a whole at once, it is easier to define the flows.

Before defining the flow it is important to reconsider the
AND refinements present in the original model. At the re-
quirements level an AND refinement means that the system
must support functionality for fulfilling all the children ele-
ments of that refinement. At runtime, though, this does not
mean that all of these children need to be executed every
time in order to achieve the parent goal. This is the case, for
instance, on the refinement for the Perform Transaction goal
of the ATM system. This kind of system must provide both
deposit, withdraw and transfer capabilities, which can be
expressed as an AND-refinement in the requirements model
(Fig. 1). At runtime, however, the user may select only to
deposit or only to withdraw (among other options). Addi-
tionally, the user may select to perform a task repeatedly,
which calls for the need to express multiplicity of execution.

These cases are handled by refactoring the goal model,
moving the element to the appropriate level in the tree.

Fig. 3 shows the flow expressions for an excerpt of the
ATM system. The flow expression from the root goal Pro-
vide ATM (g1) indicates that its behavior is defined as start-

997

ing the ATM (g2), then serving customers zero, one or more
times (g7), and finally shutting down the ATM (g10). Sim-
ilarly, the behavior of Start ATM (g2) is defined by the se-
quential execution of its children tasks (from t3 to t6).

In the same way that OR refinements of goals can express
alternative ways for achieving a goal, it is possible to define
alternative behavioral refinements. This is the case of the
Serve Customers goal (g7), with two options, and of Detect
Cash Amount (t4), with four alternatives, totaling eight dif-
ferent statecharts that can be generated from that excerpt.
The requirements model dictates that to be able to Serve
Customers the system must provide functionalities to Au-
thenticate Customer and Conduct ATM Transaction. There
are different behaviors for this goal, as shown in Fig. 3. The
first option is to authenticate customers (g8) only once, and
then conduct ATM transactions (g9) any number of times.
The second option is to authenticate customers (g8) before
conducting each transaction (g9).

This is also the case for Detect Cash Amount (t4), which
has four alternative behavioral refinements. The first option
is to use only a cash sensor (dt11), while the second option
is to use only the entry of an operator (dt12). The third
option is to use the cash sensor and then use the operator
entry only if it is necessary (e.g., if there is a malfunction
on the cash sensor). The last alternative includes the use of
an intermediate state where the operator can select whether
to use the cash sensor or to entry the value manually. The
use of intermediate states is a common practice when cre-
ating statecharts, to define points where the system is wait-
ing for some input, e.g., waiting for a selection by the user.
These states are included in the flow expressions using the
‘i’ prefix. As future work, we plan to identify the most
common types of intermediate states and create pre-defined
constructs for them.

Considering that there are different ways for the system
to perform a set of tasks, determining the behavioral re-
finement (through flow expressions) is not a matter of di-
rect translation, but rather constitutes an important design
decision – it is, thus, influenced by non-functional require-
ments, reuse of components, previous decisions (for instance,
regarding the architectural style for the system structure),
among other factors.

It is important to note that it is possible to generate par-
tial statechart models from partially refined models, as de-
scribed in the following subsection. In other words, it is not
necessary to define the behavioral refinement of the entire
model in order to visualize the resulting statechart, which
is consonant with the Twin Peaks notion of iteratively and
incrementally refining requirements and architecture [14].

3.4 Generate base statechart
Considering the behavioral refinements defined in the pre-

vious step, it is now possible to generate a base statechart
model, which presents a comprehensive view of the system
behavior. In order to support the generation of the state-
chart, we define a set of derivation patterns related to the
different flows that may be expressed — sequential, alter-
native and concurrent — as well as to their optionality and
multiplicity. These patterns, grounded on the graphical rep-
resentation from [16], are depicted in Fig. 4.

Since it is possible to define alternative flow expressions in
the model, the architect first needs to select the flows that
will be used for the derivation. The statechart resulting

Sequential tasks:
ABC

A B C

Alternative tasks
(triggered):
(A | B | C)

A

B

C

Concurrent tasks:
A – B – C A B C

One or more
executions: (AB)+

A

Zero or more
executions: (AB)*

Optional
execution: (AB)?

B

A B

A B

Figure 4: Visual representation of patterns for de-
riving statecharts from flow expressions

from applying the derivation patterns in the partial refine-
ment presented in Fig. 3 is presented in Fig. 5A. For this
statechart, we selected the third alternative refinement of
Detect Cash Amount — dt11 dt12? — and the first alter-
native of Serve Customers — g8 g9* dt14. The goals which
were not refined are highlighted in the statechart. Fig. 5B
shows another version of the Serve Customers state, which
represents its second alternative behavioral refinement —
(g8 g9)+ dt14.

3.5 Specify transitions
So far we have defined the basic flow of the system, making

it possible to check at runtime if the trace of tasks execution
is valid. However, in order to define the system behavior in
the face of optionality, multiplicity and alternatives, we need
to know when a particular task should be triggered. Thus,
in this step it is defined which events trigger a particular
alternative, the execution of an optional task, as well as
whether a flow should be repeated or not. It is also possible
to define a combination of alternative events — for instance,
a given task will be executed at 30 minutes intervals or upon
user request.

Besides events, it is often useful to associate conditions to
transitions, also adding transitions for cases where a condi-
tion is not satisfied. Defining such conditions is a task for
the designers. Nonetheless, some elements of the require-
ments model can guide the definition of these conditions:
domain assumptions, quality constraints, and other tasks
(that constitute pre-conditions).

4. VALIDATION
In order to evaluate the derivation of statecharts we devel-

oped a prototype tool and used it to derive statecharts for
the ATM system. When starting the derivation, the tool al-
lows us to select between alternative behavioral refinements
previously included in the models. Once selected, it tra-
verses the design goal model generating a combined flow
expression. For instance, considering that (g2 g3) is the

998

Shutdown ATM

Start ATM

Turn ATM
On

Setup
Connection

to Bank

Make ATM
Available

Use Cash
Sensor

Use Operator
Entry

Detect Cash
Amount

Authenticate
Customer

Conduct ATM
Transaction

Serve Customers

Terminate
Session

Authenticate
Customer

Conduct ATM
Transaction

Serve Customers

Terminate
Session

A) B)

Figure 5: Statechart for a partial behavioral refine-
ment of the ATM system

� �
XOR -states: g1(g2,g7,g10), g2(t3,t4,t5,t6), t4(dt11 ,

dt12), g7(g8,g9,dt58), g8(g14 ,g15 ,g53), g14(g16),
g16(t17 ,t18), g15(t19 ,t20), g53(g54 ,g55 ,g56), g9

(t24 ,g25 ,g26), g25(g29 ,g30 ,g31), g29(g37 ,g38 ,g39)
, g37(t40 ,t41), g38(t42 ,t43), g39(t44 ,t45), g30(
g46 ,g47), g46(t48 ,t49), g47(t50 ,t51), g31(g32 ,t33
), g32(t34 ,t35 ,t36), g26(t27 ,t28), g10(t21 ,t22 ,
t23)

Atomic states: t3, dt11 , t5, t6, t17 , t18 , t19 , t20 ,
g54 , g55 , g56 , t24 , t40 , t41 , t43 , t42 , t45 , t44 ,
t48 , t49 , t50 , t51 , t34 , t35 , t36 , t33 , t27 , t28

, dt58 , t21 , t22 , t23
Transitions: ~->t3, t3->dt11 , dt11 ->t5, t5->t6, t19 ->

t20 , t17 ->t19 , t18 ->t19 , t20 ->g54 , t20 ->g55 , t20
->g56 , t40 ->t41 , t43 ->t42 , t41 ->t43 , t45 ->t44 ,
t42 ->t45 , t42 ->t44 , t48 ->t49 , t50 ->t51 , t49 ->t50 ,
t34 ->t35 , t35 ->t36 , t36 ->t33 , t24 ->t40 , t24 ->t48

, t24 ->t34 , t27 ->t28 , t42 ->t27 , t45 ->t27 , t44 ->
t27 , t51 ->t27 , t33 ->t27 , t27 ->t24 , t28 ->t24 , g54
->t24 , g55 ->t24 , g56 ->t24 , g54 ->dt58 , g55 ->dt58 ,
g56 ->dt58 , t27 ->dt58 , t28 ->dt58 , dt58 ->t17 , dt58
->t18 , t6->t17 , t6->t18 , t21 ->t22 , t22 ->t23 , t6->
t21 , dt58 ->t21

Concurrent states: none� �
Figure 6: Output of the statechart derivation for the
ATM system

selected behavioral refinement for a goal g1, and (t4+ t5)

and (t6|t7) are the selected behavioral refinements, respec-
tively, for g2 and g3, then the combined expression flow will
read t4+ t5 (t6|t7). While traversing the model, the tool
also identifies the XOR-states and its sub-states resulting
from the combination, which in this example are g1(g2,g3),
g2(t4,t5) and g3(t6,t7) — i.e., g1 is an XOR-state contain-
ing g2 and g3, g2 is a XOR-state containing t4 and t5, and
g3 is a XOR-state containing t6 and t7.

The combined flow expression is then used by the tool to
identify the states, transitions and AND-states (concurrent
states). The output for the above expression, along with
the XOR-states, is presented in Fig. 6, where a tilde (~)
represents the initial state of the system. From the output,
our statechart is defined as the tuple 〈S, T,R〉, where S is
the union of the atomic states, the XOR states and the AND
(concurrent) states; T is the set of transitions; and R is the
union of the set of XOR state refinements and the set of
AND state refinements.

Besides applying the process to the ATM system, we con-
ducted an experiment to study the scalability of statechart
generation algorithm. The experiment was conducted on a
computer with a 64 bits Pentium Dual CPU T4300 processor
with 2.1 GHz and 3 Gb of memory.

Table 1: Average time for deriving statecharts from
flow expressions.

Size Average time (ms) σ(%)

100 63.40 16.12

300 77.16 13.62

500 86.04 17.82

700 92.86 13.36

900 98.27 13.42

The inputs of this simulation are five flow expressions with
different number of elements (100, 300, 500, 700, and 900).
The first flow expression, with 100 elements, was randomly
generated and then composed to create the larger expres-
sions. These expressions use all possible operators: sequen-
tial, alternative, concurrent, optional, zero or more times,
and one or more times. The derivation of each expression
was executed 1000 times, cycling between the expressions,
in order to reduce interference from the operating system.
Table 1 presents the results of the experiment, with average
execution times and deviation. These results indicate that
the derivation algorithm is definitely scalable.

To complement this evaluation we plan to perform anal-
ysis with large industrial systems, as well as to assess the
human effort required by this design process.

5. RELATED WORK
There are other approaches that use goal models as a basis

for the definition of system behavior. In particular, the work
by Yu et al. [20] is similar in spirit to ours. However, their
statechart structure is derived directly from the structure of
the goal model, thus not supporting the definition of inter-
relation between elements that are in different sub-trees on
the goal model. Both approaches are able to translate the
variability present in a goal model to variability of a derived
statechart. However, we support the definition of additional
variability by supporting the design of alternative design
tasks and alternative behavior refinements.

Liaskos et al. [13] support the definition of systems where
the order of task execution is constrained at design time
through Linear Temporal Logic (LTL) expressions. The
resulting models are intended to support customization of
system behavior, whereas here we focus on system behav-
ior design. Letier et al. [11] start with KAOS models and
derive Labeled Transition Systems (LTS), which have a for-
malization akin to statecharts. The goal models in KAOS
present a temporal formalization in LTL, thus the derivation
of behavioral models is mostly (but not only) a translation
of formalism, with little human input.

There are some other relevant approaches for architectural
derivation from requirements. The SIRA approach [3] guides
the derivation of architectures from requirements based on i*
models. In Silva et al. [17] a set of mapping rules is proposed
between Aspectual Oriented V-graph (AOV-graph) and As-
pectualACME. The CBSP approach [7] supports the deriva-
tion from requirements to architecture. The STREAM-A
approach [15] presents a systematic approach for deriving
ACME models from i* models in the context of adaptive
systems. All these approaches differ from ours in the sense
that they do not support the derivation of behavioral models
of the architecture, focusing on its structure.

999

~

6. CONCLUSION
We have presented a systematic process for deriving archi-

tectural behavioral models — namely, statecharts — from
requirements models, supporting the Twin Peaks model [14]
of software design. Through a series of incremental refine-
ments the architect can move towards architecture, by (i)
adding design elements (tasks and quality constraints), (ii)
adding behavioral refinements (in the form of flow expres-
sions), and (iii) generating statechart models from (possibly
incomplete) models. Acknowledging the inherent variability
of the design process, where different solutions for a sin-
gle problem can be devised, the design goal model supports
the documentation of alternative design elements and alter-
native behavior refinements, which can lead to the genera-
tion of multiple (alternative) statecharts. Since the result-
ing models are statecharts without any extension, they are
amenable to validation, simulation and code generation us-
ing existing tools. Moreover, the properties of these models
can be checked for consistency using one of the several for-
malizations of statecharts (for instance, [12]).

A key element of our proposal is the integration of re-
quirements and design elements in a single model. The use
of different views in the supporting tool allows to seamlessly
navigate between requirements and design elements. We
plan to further advance this approach to support the devel-
opment of self-adaptive systems, adopting goal model exten-
sions such as awareness requirements and control variables
[18]. This will allow us to support both requirements-based
and architectural-based adaptation [1].

7. ACKNOWLEDGMENTS
This work has been supported by the ERC advanced grant

267856 “Lucretius: Foundations for Software Evolution” and
by Brazilian institutions CAPES and CNPq.

8. REFERENCES
[1] K. Angelopoulos, V. E. S. Souza, and J. Pimentel.

Requirements and Architectural Approaches to
Adaptive Software Systems: A Comparative Study. In
Proc. of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems
(to appear), 2013.

[2] F. Bachmann, L. Bass, P. Clements, D. Garlan,
J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architecture : Documenting
Behavior. Technical Report January, 2002.

[3] L. R. D. Bastos and J. Castro. From requirements to
multi-agent architecture using organisational concepts.
SIGSOFT Software Engineering Notes, 30(4):1–7,
2005.

[4] J. Castro, M. Lucena, C. Silva, F. Alencar, E. Santos,
and J. Pimentel. Changing attitudes towards the
generation of architectural models. Journal of Systems
and Software, 85(3):463–479, Mar. 2012.

[5] F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos.
Runtime Goal Models. In Proceedings of the 7th IEEE
International Conference on Research Challenges in
Information Science (RCIS 2013), 2013. Invited paper.

[6] R. C. de Boer and H. van Vliet. On the similarity
between requirements and architecture. Journal of
Systems and Software, 82(3):544–550, Mar. 2009.

[7] P. Grünbacher, A. Egyed, A. Way, W. Place, M. D.
Rey, and N. Medvidovic. Reconciling software
requirements and architectures: the CBSP approach.
In Proceedings Fifth IEEE International Symposium
on Requirements Engineering, pages 202–211. IEEE
Comput. Soc, 2001.

[8] D. Harel. Statecharts: A visual formalism for complex
systems. Science of computer programming,
8(3):231–274, 1987.

[9] P. Kruchten. An Ontology of Architectural Design
Decisions in Software-Intensive Systems. 2nd
Groningen Workshop Software Variability, pages
54–61, 2004.

[10] A. Lapouchnian and J. Mylopoulos. Modeling domain
variability in requirements engineering with contexts.
Conceptual Modeling - ER 2009 - LNCS,
5829/2009:115–130, 2009.

[11] E. Letier, J. Kramer, J. Magee, and S. Uchitel.
Deriving event-based transition systems from
goal-oriented requirements models. Automated
Software Engineering, 15(2):175–206, May 2008.

[12] F. Levi. Verification of Temporal and Real-Time
Properties of Statecharts. PhD thesis, University of
Pisa, 1997.

[13] S. Liaskos, S. M. Khan, M. Litoiu, M. D. Jungblut,
V. Rogozhkin, and J. Mylopoulos. Behavioral
adaptation of information systems through goal
models. Information Systems, 37(8):767–783, Dec.
2012.

[14] B. Nuseibeh. Weaving together requirements and
architectures. Computer, 34(3):115–119, Mar. 2001.

[15] J. Pimentel, M. Lucena, J. Castro, C. Silva, E. Santos,
and F. Alencar. Deriving software architectural
models from requirements models for adaptive
systems: the STREAM-A approach. Requirements
Engineering, 17(4):259–281, June 2012.

[16] A. C. Shaw. Software Descriptions with Flow
Expressions. IEEE Transactions on Software
Engineering, SE-4(3):242–254, May 1978.

[17] L. F. Silva, T. V. Batista, A. Garcia, A. L. Medeiros,
and L. Minora. On the symbiosis of aspect-oriented
requirements and architectural descriptions. Early
Aspects: Current Challenges and Future Directions -
LNCS, 4765/2007:75–93, 2007.

[18] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and
J. Mylopoulos. Awareness Requirements. In R. Lemos,
H. Giese, H. A. Müller, and M. Shaw, editors,
Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science,
pages 133–161. Springer, 2013.

[19] G. Tallabaci and V. E. S. Souza. Engineering
Adaptation with Zanshin: an Experience Report. In
Proc. of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems
(to appear), 2013.

[20] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos,
and J. C. S. P. Leite. From Goals to High-Variability
Software Design. In Foundations of Intelligent
Systems, volume 4994/2008, pages 1–16, 2008.

1000

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

