

Towards a Characterization to Aid in Ontology Reuse

 Gabriel G. Nogueira, Monalessa P. Barcellos, Vítor E. Silva Souza

Ontology and Conceptual Modelling Research Group (NEMO), Computer Science
Department – Federal University of Espírito Santo

Vitória, ES, Brazil

gabriel.g.nogueira@aluno.ufes.br, monalessa@inf.ufes.br,
vitor.souza@ufes.br

Abstract. Developing ontologies is not a trivial task. Reusing existing ontologies
can be helpful in this matter. However, with the high number of ontologies
available on the web, selecting the ontology that best fits the needs of the ontology
engineer is still a complex task. Knowing the characteristics of the candidate
ontologies can help the ontology engineer better decide which one to reuse. In this
sense, this paper gives the first step toward an ontology characterization to aid
reuse. We propose a set of properties that can be easily accessed and interpreted
by the ontology engineer to make a decision about which ontology to reuse. We
exemplify the use of the proposed characterization to select ontology patterns by
using the GoopHub tool.

1. Introduction

Nowadays, ontology engineers are supported by a wide range of ontology engineering
methods and tools. However, building ontologies is still a complex task even for experts
[Noppens and Liebig 2009]. Some of the main reasons for that are: (i) the ontology
engineer must have a consistent and mature view of the domain being represented; (ii)
ontology representation languages (e.g., Web Ontology Language (OWL), Resource
Description Framework (RDF)) are usually not very expressive and leave much room for
interpretation; and (iii) even when we aim at developing reference ontologies (i.e.,
conceptual models without concern with computational properties), developing the right
conceptual model is also known to be quite complex.

 Moreover, the emergent scenario has required more comprehensive and high-
quality ontologies to solve problems involving semantic issues. In this context,
developing a new ontology by reusing existing ontologies may be useful. Ontology reuse
allows speeding up the ontology development process, saving time and money, and
promoting the application of good practices. However, ontology reuse, in general, is a
hard research issue, and one of the most challenging and neglected areas of Ontology
Engineering [Fernández-López et al. 2019]. For example, ontology engineers still face
problems to find and select the right ontologies for reuse and integrate several ontologies
into a new ontology [Park et al. 2011].

 In a recent study, Fernández-López et al. (2019) point out that although ontology
reuse is recommended in the community, in practice it is not yet consolidated. Factors
such as language heterogeneity, deficiencies in the documentation and lack of information
about the ontology are obstacles for finding and reusing ontologies. Even though one of

the main characteristics of ontologies has been claimed to be reusability, the practice has
shown that it has not been achieved yet.

 In the literature, there are some ontology engineering methods that include reuse
as an important step to develop new ontologies (e.g., SaBiO [Falbo 2014], NeOn [Suárez-
Figueroa et al. 2012]). Furthermore, the use of ontology patterns (OPs) has been an
emerging approach for ontology reuse, favoring the reuse of encoded experiences and
good practices. OPs are ontology fragments referring to modeling solutions to solve
recurrent ontology development problems. Experiments, such as the ones presented in
[Blomqvist et al. 2009], show that ontology engineers perceive OPs as useful, and that
the quality and usability of the resulting ontologies are improved.

 Although there are several ontologies and OPs available for reuse (e.g., OPs of
the NeOn project1 [Suárez-Figueroa 2012] and Linked Open Vocabularies (LOV)
[Vandenbussche 2017]), to select the ones suitable for reuse when developing a new
ontology is still a challenging task [Fernández-López et al. 2019]. Aiming to aid in this
matter, Reginato et al. (2019) advocate the use of GORE (Goal-Oriented Requirements
Engineering) to make the ontology design rationale explicit, providing a notion of the
kind of knowledge that is represented in the ontology. In this context, they propose GO-
FOR (Goal-Oriented Framework for Ontology Reuse), which uses goals as the main
element to select OPs for reuse. Hence, in GO-FOR, OPs are goal-oriented ontology
patterns (GOOPs), i.e., OPs related to the goals that establish the scope addressed by the
ontology fragment. GOOPs are stored in a goal-oriented ontology pattern repository
(GOOPR) and can be reused based on the goal to which they relate.

 Even though a goal-based search for selecting ontologies is a promising approach
[Reginato et al 2019], it may not be enough to obtain the best ontology for reuse. In order
to properly select the ontology (or OP) that best fits a certain ontology development need,
it is necessary to know additional information about it. In this sense, some ontology search
approaches consider structural properties such as class matching and semantic similarity
[Alani and Brewster 2005]. Others, analyze the ontology as a graph (e.g., [Alani and
Brewster 2006] and [Park et al. 2011]). There are also works that take popularity
properties into account (e.g., [Ding et al. 2004]). However, a popular ontology does not
necessarily indicate a good representation of the concepts it covers. Popularity does not
necessarily correlate with good or appropriate representations of knowledge [Alani and
Brewster 2006]. Furthermore, structural properties may not be easy to interpret and can
drive the ontology engineer not to choose the best ontology for reuse.

 Considering the need for a set of properties that can be used to provide relevant
information about ontologies and support selecting the ones more suitable for reuse when
developing a new ontology, in this work, we give the first step towards a characterization
to aid in ontology reuse. Our goal is to reach a set of properties that provide the ontology
engineer with useful and accessible information that characterizes ontologies and helps
him/her make decisions about which ones to reuse. To illustrate the use of our initial
proposed characterization, we applied it to select GOOPs in the GoopHub, the
computational tool that supports GO-FOR use.

1 http://ontologydesignpatterns.org/

 This paper is organized as follows: Section 2 provides the background for the
paper, addressing ontology reuse and introducing GO-FOR; Section 3 presents the
proposed characterization; Section 4 exemplifies the use of the proposed characterization
in the GO-FOR context; Section 5 discusses related works; and Section 6 presents our
final considerations, points out future work and concludes the paper.

2. Background

2.1. Ontology Reuse

Reusability has long been recognized as a key attribute of ontologies, yet the principles
and practice of reuse remain underdeveloped. The current lack of design through reuse
presents a serious problem for the ontology community. There is not even a formal and
consensual definition of ontology reuse within the community [Katsumi and Grüninger
2016]. In general, reuse can be defined as the process in which available ontological
knowledge is used as input to generate new ontologies [Bontas et al. 2005]. It is a special
case of design. Intuitively, it refers to the task of taking some existing ontology and
manipulating it in some way in order to satisfy the design requirements. Some more
specific, related, and sometimes overlapping subtypes of reuse have been defined, such
as merging and alignment, integration, modular or safe reuse, and the application of
ontology patterns [Katsumi and Grüninger 2016].

 Ontology Patterns (OPs) are an emerging approach that favors the reuse of
encoded experiences and good practices [Falbo et al. 2013]. Patterns are vehicles for
encapsulating knowledge. They are considered one of the most effective means for
naming, organizing, and reasoning about design knowledge. According to Buschmann et
al. (2007), a pattern describes a particular recurring problem that arises in specific
contexts and presents a well-proven solution for the problem.

 Currently, there are several ontologies that attempt to model the same domain (or
portion of the domain), yet varying the modeling, concepts and relations between the
concepts. This creates a problem in reusing existing ontologies since the ontology
engineer would have to sift through several ontologies in order to select the ones to reuse
[Hlomani and Stacey, 2014]. Aiming to resolve this problem, some works propose
properties that can be used to help the ontology engineer in the process of choosing the
ontology that best fits his/her necessity. For example, Buitelaar et al. (2004) propose
OntoSelect, which allows for searching ontologies for a given knowledge markup task
based on coverage, structure, and connectedness. Coverage refers to the number of classes
and properties that can be matched by search terms. Structure is given by the number of
properties relative to the number of classes of the ontology. Connectedness refers to the
number of imported ontologies. Park et al. (2011) propose an approach for ontology
selection and ranking based on semantic and lexical matching. It uses measures proposed
in [Alani and Brewster 2005] and adds other two that can improve the selection of
ontologies, namely, relation match and taxonomy match. The former calculates the degree
of semantic similarity of a relationship between search terms in an ontology, and the latter
is meant to evaluate the degree of semantic similarity of a taxonomic relation in a
taxonomy structure.

 Some works define properties to assess aspects of ontology quality. Although not
focused on reuse, the properties can be used to evaluate an ontology and verify if it is
good enough to be reused. Burton-Jones et al. (2005), for example, propose metrics (e.g.,
history, authority, accuracy) to assess the syntactic, semantic, pragmatic, and social
aspects of ontology quality. D’aquin and Gangemi (2011), in turn, present some
characteristics generally present in “beautiful ontologies”. According to the authors, a
beautiful ontology is one that reflects an elegant solution for modeling a problem and it
is at the same time good (in terms of formal quality), usable and practicable. Have a good
coverage of the targeted domain, be often easily applicable, and be structurally well
designed are some of the characteristics pointed out by the authors.

2.2. Goal-Oriented Framework for Ontology Reuse (GO-FOR)

The search and selection of ontologies (or OPs) to be reused to develop a new ontology
should consider the alignment between their scope and the scope of the ontology to be
developed. Therefore, Reginato et al. (2019) argue that ontology reuse should be driven
by ontology requirements. Based on that, they proposed GO-FOR, a framework that uses
goals as the main element to select OPs for reuse. Goal-oriented ontology patterns
(GOOPs) are the basic elements of GO-FOR. A GOOP consists of an ontology fragment
wrapped by a goal. In other words, it refers to an ontology model fragment that can be
used to achieve a goal. A GOOP can be created whether using an ontology model
fragment already built (i.e., a fragment of an existing ontology can be used to achieve a
goal, giving rise to a GOOP) or building the model fragment from scratch (i.e., a model
fragment is built aiming to achieve a goal).

 GOOPs are stored in a goal-oriented ontology pattern repository (GOOPR) and
relate to each other according to the relationships between their goals. When developing
a new ontology, the ontology engineer can search the GOOPR for GOOPs to be reused
to address the scope of the new ontology. He/she defines the goals to which the ontology
is committed by developing its goal models and uses the goals as a basis to search for
GOOPs. This search involves comparing the goals of the new ontology to the goals of
GOOPs stored in the GOOPR, to identify matchings between them (i.e., to find GOOPs
that meet the goals). Figure 1 shows an overview of GO-FOR conceptual architecture.

Figure 1. GO-FOR architecture [Reginato et al., 2019].

 In a nutshell, in order to reuse GOOPs for ontology development, the ontology
engineer must start by identifying the actors in the domain of interest and developing the
goal models that describe the scope of the ontology to be developed (as suggested in
[Fernandes et al. 2011]). For each goal represented in the goal model, the ontology
engineer verifies if there is a GOOP in the GOOPR related to it (i.e., if there is a GOOP
containing that goal). If this is the case, the ontology engineer can reuse the GOOP by
integrating it into the ontology model. In this case, we have development with reuse.
Otherwise, the ontology engineer can create a new ontology model fragment to achieve
the goal. Thus, it can relate the fragment to the goal (resulting in a GOOP) and store it in
the repository for future reuse. In this case, we have development for reuse.

3. Ontology Characterization aiming at Reuse

Building an ontology through reuse depends on finding suitable ontologies for being
reused. This is one of the most challenging tasks in ontology reuse, particularly when the
ontology engineer has more than one candidate ontology [Park et al. 2011] [Fernández-
López et al. 2019]. Hence, we proposed a set of properties to characterize ontologies and
help the ontology engineer select the one that best fits his/her needs. The properties were
defined based mainly on the works by Gangemi et al. (2005), Burton-Jones et al. (2005),
Obrst et al. (2007), d’Aquin and Gangemi (2011), Porn et al. (2016) and De Freitas et al.
(2019). It is worth clarifying that we do not intend to define an exhaustive set of
properties. Contrariwise, our purpose is to reach a set of properties that can be easily
interpreted and accessed, requiring little effort from the ontology engineer. In this sense,
we advocate that most of the properties should be able to be automatically obtained.
Hence, an operational version of the ontology (e.g., OWL, RDF, RDFS) to be
characterized is necessary.

 Table 1 shows the current proposed set of properties. For each property, the table
presents its name, a brief description, how it is calculated/collected, and the main
reference we considered to define it.

Table 1. Properties to characterize ontologies

Name Description Calculation Based on
Applicability Indicates the effort degree

(low, medium, high) necessary
to use the ontology. More
complex ontologies tend to
require more effort to be
reused.

Ontology engineers that have
reused the ontology must
inform (manually) the effort
needed to reuse it.
Applicability is obtained by
assigning the values 1, 2, and
3, respectively, to the low,
medium, and high effort
degree and calculating the
average of the values
informed by different
ontology engineers.

[Gangemi et
al. 2005]

Clarity

Identifies how clear and non-
ambiguous is the ontology,
based on the terms used to
name classes and object
properties. Terms that have
many meanings often open

Let C the name of the class or
property in the ontology. For
each C, count A (the number
of word senses that the term
has in WordNet [Miller
1998]). Then Clarity = A/C.

[Burton-
Jones et al.

2005]

Name Description Calculation Based on
more space for
misinterpretation. Thus, the
higher the number of different
meanings of the same term, the
lower the ontology clarity.

The return is the average
number of words senses, a
value next to 0 mean that the
ontology has more clarity.

Consistency

Indicates the possibility of
reaching contradictory
conclusions in an ontology,
from valid input data. When the
ontology engineer creates
instances of concepts of an
inconsistent ontology, he/she
may find invalid statements
from axioms.

Obtained by using the Hermit
reasoner [Shearer et al.,
2008] in order to search for
inconsistency inside the
ontology. The reasoner
returns false in case the
ontology allows
contradictory conclusions.
Otherwise, it returns true.

[Porn et al.
2016]

Described in
more than one

language

Indicates if the ontology is
described in more than one
language and the percentage of
concepts described in each
used language. This property
helps the ontology engineer
verify if the ontology is
described in the same
language, he/she has used to
develop the new ontology or in
another language he/she is
familiar with.

Obtained by verifying if the
concepts’ rdfs:label or
rdfs:comment properties are
declared using one or more
language. In this case, the
return is true, and the
percentage of concepts
written in each language is
calculated.

[De Freitas
et al. 2019]

Foundational
Ontologies

reuse

Identifies if the ontology reuses
foundational ontologies and the
percentage of concepts
declared using classes or object
properties of the foundational
ontology. Reusing
foundational ontologies
usually indicates a well-
founded ontology.

Obtained by checking if the
ontology imports
foundational ontologies. If
so, the percentage of classes
and object properties that are
rdfs:subClassOf or
rdfs:subPropertyOf a
foundational ontology entity
is calculated. Otherwise, the
return is false.

[D’aquin
and

Gangemi
2011]

Has
documentation

Indicates the percentage of
classes and object properties
that have comments,
descriptions or labels
documenting them. Well-
documented ontologies are
often easier to understand.

Verify if the ontology
concepts contain rdfs:label or
rdfs:comment explaining or
presenting examples of how
to use them. If so, the return
is true and the percentage of
concepts with description or
example to use is calculated.
Otherwise, the return is false.

[De Freitas
et al. 2019]

Has version
control

Indicates if the ontology
version is identified. This
information allows the
ontology engineer to identify
the reused ontology version,
even when other versions of the
ontology are available.

Return true if the ontology
has the annotationProperty
owl:versionInfo. Otherwise,
the return is false.

[De Freitas
et al. 2019]

Name Description Calculation Based on
Has violation

Indicates if the ontology
violates OWL profiles, which
can increase the reasoning
complexity and hamper the
efficiency of a reasoner.

For each OWL Profile (DL,
RL, QL, EL and Full) check
if the ontology violates the
profile. The return is true or
false for each checked
profile. Obtained by using the
Hermit reasoner [Shearer et
al., 2008] combined with the
OWL API to check for
violations.

[Obrst et al.
2007]

Published by

Informs the person, group or
organization that published the
ontology. Ontologies
developed by trusted people,
group or organization tend to
be more reliable and have some
support in case of doubts.

The name of the person,
group or organization is
manually informed.

[De Freitas
et al. 2019]

Valid IRIs

Indicates if the ontology
redirects to valid IRIs. This
information is useful to avoid
the reuse of ontologies that
have not been maintained.

Obtained by calculating the
percentage of valid IRIs (i.e.,
IRIs that return an HTTP
response that does not mean
error (e.g., 200, 300)).

[De Freitas
et al. 2019].

4. Applying the Proposed Characterization in GO-FOR

Aiming to demonstrate the use of the proposed characterization, we applied it in GO-FOR
to characterize GOOPs and aid GOOPs selection for reuse. The use of GO-FOR is
supported by a tool called GoopHub [Reginato et al. 2019]. The tool allows ontology
engineers to select GOOPs for reuse (i.e., development with reuse) as well as store new
GOOPs that are made available for future reuse (i.e., development for reuse). Originally,
the search for GOOPs in the GoopHub was based only on the goal the ontology engineer
wanted to achieve. For example, if the ontology engineer needed a GOOP to "describe
location", he/she provided a string representing his/her goal as an input and the GoopHub
returned the GOOPs that meet the search string. However, this type of search may result
in a high number of GOOPs, requiring the ontology engineer to analyze many ontology
fragments to identify the one that best fits his/her needs to develop the new ontology,
which demands effort and time. As a consequence, the ontology engineer may not select
the best GOOP for his/her needs or may even give up the reuse. Thus, we decided to
improve the search for GOOPs by implementing a new feature that enables GOOP’s
characterization and extending the search to allow ontology engineers to apply filters
based on the GOOPs properties, helping them in the decision of which GOOP will be
reused.

 To implement these improvements, we first extended the GoopHub metamodel
proposed in [Reginato et al. 2019]. Figure 2 shows the extended GoopHub metamodel.
Concepts in pink (darker background) were added to enable GOOPs characterization.
Characteristic was added to the model to represent the properties we proposed to
characterize ontologies. GOOPCharacteristic, in turn, is necessary to store the value of a
given characteristic when referring to a particular GOOP. By extracting the values of all

characteristics of a certain GOOP, we obtain the GOOP characterization. The complete
description of the GoopHub metamodel can be found in [Reginato et al., 2019].

Figure 2. The GoopHub metamodel (extended from [Reginato et al. 2019]).

 To store a GOOP in the GoopHub (i.e., development for reuse), the ontology
engineer must register the GOOP by informing its name and the goal to which it is related,
and uploading the image of the GOOP conceptual model and the GOOP OWL file. Thus,
the characterization feature extracts from the OWL file the automatic GOOP properties
(see Table 1). Manual properties must be informed by the ontology engineer. The
uploaded OWL file is then converted to the GOOP metamodel and data is inserted in a
triple store database. This way, the GOOP is made available for retrieval and reuse. When
developing a new ontology, the ontology engineer searches for GOOPs to be reused (i.e.,
development with reuse) by informing the goal he/she wants to achieve. Thus, the
GoopHub returns the GOOPs that satisfy that goal and the ontology engineer can filter
the returned GOOPs by using the properties he/she considers relevant for achieving
his/her needs. As a result, the number of candidate GOOPs is reduced and the ontology
engineer can reach a more effective decision.

 To extract the values for the automatic properties from the GOOP OWL file, we
followed the calculation procedures indicated in Table 1 and used the OWL API
(https://github.com/owlcs/owlapi). The API has features to navigate and manipulate the
concepts declared on the OWL file.

 To illustrate the use of the proposed characterization to support the selection of
GOOPs, we considered a scenario in which an ontology engineer is developing an
ontology for the soccer championship domain and, in this context, he/she needs to
describe the locations where the matches will take place (city, state, country, stadium,
etc.). Thus, the ontology engineer used the GoopHub to search for GOOPs able to meet
the "Describe Place" goal. The search returned three GOOPs, namely: "Describe Urban

Place", "Describe Location Place" and “Describe Geographic Place". Figure 3 shows the
GoopHub search page and the three GOOPs returned in the search.

Figure 3. GoopHub search page showing three returned GOOPs.

 Aiming to decide which of the returned GOOPs best fits his/her needs, the
ontology engineer takes advantage of the GOOPs characterization and applies the filters
available in the left sidebar of the page to help him/her select the GOOP more suitable
for the ontology under development. As the ontology engineer changes the filter
parameters, the search result is updated to include only the GOOPs that meet the
properties values indicated by the ontology engineer. After applying the filters, the
ontology engineer reached the “Describe Urban Place” as the GOOP suitable for reuse in
the soccer championship domain ontology.

 Besides applying the filters, by clicking the “Show” button in the GOOP card, the
ontology engineer has access to a detailed view of the GOOP, which includes, among
others, an image of its conceptual model, the description of its concepts, and the value of
each property. Thus, if the search returns more than one GOOP even after the ontology
engineer applying the filters, he/she can analyze each GOOP in detail to make a decision
about which one to reuse. Figure 4 shows a partial view of the page providing a detailed
view of the “Describe Urban Place” GOOP.

Figure 4. GoopHub page showing the GOOP “Describe Urban Place”.

 Table 2 summarizes the values of the properties automatically obtained for the
GOOPs returned in the search considered in the example discussed in this section.

Table 2. Characteristics of each GOOP returned in the search

Properties "Describe Location
Place”

“Describe Urban
Place”

"Describe Geographic
Place”

Clarity 7.95 7.12 2.80

Computational efficiency

DL: False
EL: True
QL: True
RL: True

Full: False

DL: False
EL: True
QL: True
RL: True

Full: False

DL: True
EL: True
QL: True
RL: True

Full: False
Consistency True True True

Described in more than one
language

True
English: 100%
Italian: 100%

True
English: 75%
Italian: 75%

False
English: 100%

Foundational Ontologies
reuse

False False False

Properties "Describe Location
Place”

“Describe Urban
Place”

"Describe Geographic
Place”

Has documentation 80% 100% 100%
Has version control True True True

Valid IRIs 11.36% 75% 100%

 By analyzing the GOOPs characteristics, it is possible to notice that there are
similarities among the GOOPs. However, an important distinction for the ontology
engineer in this particular example is that he was interested in an ontology described in
both, English and Italian. This led him to select the GOOP “Describe Urban Place”,
because it is consistent, documented, has the second-best value of clarity (the lower the
value, the better the clarity), has version control, a good rate of valid IRIs and it is defined
in English and Italian.

5. Related Work

In the literature, there are some works presenting proposals involving properties to
evaluate ontologies considering different purposes. Some of them aim to rank ontologies.
Ding et al. (2004), for example, proposed Swoogle, a Semantic Web search engine that
crawls, indexes and stores Semantic Web documents in a triple store. It contains 10,000
ontologies and uses a PageRank-like method to rank ontologies by analyzing links and
referrals between ontologies. Swoogle considers most popular ontologies the ones most
referred. Also aiming at ranking ontologies, Alani and Brewster (2006) proposed
AKTiveRank, an ontology ranking engine based on an internal analysis of the concepts
in the ontologies. It applies four measures: class matching, centrality, semantic similarity
and density. Another example is the work by Park et al. (2011), OntoRank, which
proposes a ranking model based on better semantic matching capabilities and extends
AKTiveRank by adding the measures relation matching and taxonomy matching.
Although these works measures properties to evaluate and rank ontologies, they are not
devoted to supporting reuse, as our work. Moreover, several measures used in these works
focus on the ontology structure as a graph and can be hard to be understood by less
experienced ontology engineers.

 As we discussed in Section 2, some works have defined properties to help assess
ontology quality. An example is the work by Burton-Jones et al. (2005), which proposes
a quality model composed by ten properties (authority, accuracy, clarity,
comprehensiveness, history, consistency, interpretability, lawfulness, relevance and
richness) to provide a theory-based framework that developers can use to develop high-
quality ontologies and that applications could use to choose appropriate ontologies for a
given task. Gómez-Pérez (2001), in turn, considers five properties (consistency,
completeness, conciseness, expandability and sensitiveness) as important to evaluate
ontology quality, while Gangemi et al. (2005) consider other seven (cognitive
ergonomics, compliance to expertise, compliance to procedures, computational integrity
and efficiency, flexibility, meta-level integrity and organizational fitness). Since these
works are concerned with ontology quality in a broader sense, they consider several
properties that are difficult to be automatically obtained and do not provide an ontology
repository or a search engine for ontologies. In fact, many of them depend on human
interpretation to be measured.

 In summary, our work differs from the ones intended to rank ontologies mainly
because our focus is on higher-level properties (e.g., applicability, consistency). On the
other side, our proposal differs from the works devoted to assessing ontology quality
because, even focusing on higher-level properties like these works, we are more interested
in properties that can be easily accessed and interpreted and, thus, we have prioritized the
ones that can be automatically obtained (except for applicability, which is not amenable
to automation). Moreover, different from all the cited works, our purpose is to define a
set of properties that can aid the reuse of ontologies, reducing the effort of the ontology
engineer and making smoother the process of selecting an ontology for being reused. In
order to bring a more concrete and precise approach for measuring the properties, most
of them can be obtained by processing the OWL ontology file.

6. Final Considerations

In this paper, we presented a set of properties to characterize ontologies. It is the first step
towards an ontology characterization to aid reuse. In order to demonstrate the use of the
proposal set of properties, we extended the GoopHub tool [Reginato et al., 2019] to enable
it to support ontology pattern (particularly goal-oriented ontology pattern – GOOP)
characterization and help ontology engineers in the selection of GOOPs when developing
a new ontology with reuse. We proposed a total of ten properties, eight of them
automatically obtained from the ontology OWL file. The characterization was
implemented in the GoopHub and can be used as a new filter to search GOOPs.

 In the literature, there are several approaches proposing properties to evaluate
ontologies with different purposes, such as raking ontologies (e.g., [Park et al., 2019] or
assessing their quality (e.g., [Gangemi et al., 2005]). We took some of these works into
account and selected properties present in more than one approach, while aiming at an
ontology engineer independent collection by obtaining the properties based only on the
operational ontology. To demonstrate the viability of the proposed set of properties, we
performed a proof of concept using a new filter feature developed in the GoopHub. This
feature allows a refinement in the search of GOOPs, decreasing the effort to select a
GOOP for reuse, particularly when several GOOPs are returned by the search. The new
feature provided an improvement on the goal-based search, allowing the ontology
engineer to refine the results.

 The main contributions of the work addressed in this paper are the proposed set
of properties used to characterize ontologies and the new version of GoopHub, containing
a feature to automatize GOOP characterization and selection for reuse. It is important to
emphasize that the work addressed in this paper is a work in progress and has limitations.
For example, the proposal has only been applied to select GOOPs. As future work, we
will extend the initial set of properties proposed in this paper to make it more
comprehensive and improve the support to ontology selection. Aiming to identify
properties to be added to the current set of properties, we intend to keep investigating the
literature and to conduct a study with ontology engineers to identify properties they
consider relevant when selecting an ontology for reuse. We also plan to perform a case
study in a real setting by applying the new version of GoopHub to support ontology search
and selection for reuse.

References

Alani, H., and Brewster, C. (2005). Ontology ranking based on the analysis of concept
structures. In Proceedings of the third international conference on knowledge capture
(K-CAP’05), Banff, Canada

Alani, H., and Brewster, C. (2006). Metrics for ranking ontologies.

Bontas, E.P., Mochol, M., Tolksdorf, R., Case Studies on Ontology Reuse, in: Proc.
IKNOW05 Int. Conf. Knowl. Manag. (Vol. 74), 2005: pp. 345–353.
https://doi.org/10.1016/j.sysarc.2006.02.002.

Buitelaar, P., Eigner, T. and Declerck, T. (2004). OntoSelect: A dynamic ontology library
with support for ontology selection. In In Proceedings of the Demo Session at the
International Semantic Web Conference.

Burton-Jones, A., Storey, V. C., Sugumaran, V. and Ahluwalia, P. (2005). A semiotic
metrics suite for assessing the quality of ontologies. Data & Knowledge Engineering,
55(1), 84-102.

Buschmann, F., Henney, K., Schmidt, D.C., Pattern-Oriented Software Architecture: On
Patterns and Pattern Languages, Vol. 5, John Wiley & Sons, 2007.
https://doi.org/10.1093/intimm/dxu027.

De Almeida Falbo, R. (2014, September). SABiO: Systematic Approach for Building
Ontologies. In ONTO. COM/ODISE@ FOIS.

De Freitas, M. L., Guizzardi, R. S. S. and Souza, V. E. S. (2019). GRALD: an Approach
for Goal and Risk Analysis in the Development of Information Systems for the Web
of Data. J. Softw. Eng. Res. Dev., 7, 4.

Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y. and Sachs, J. (2004,
November). Swoogle: A semantic web search and metadata engine. In Proc. 13th ACM
Conf. on Information and Knowledge Management (Vol. 304, pp. 10-1145).

D'Aquin, M. and Gangemi, A. (2011). Is there beauty in ontologies?. Applied Ontology,
6(3), 165-175.

Falbo, R. D. A., Guizzardi, G., Gangemi, A. and Presutti, V. (2013, October). Ontology
patterns: clarifying concepts and terminology. In Proceedings of the 4th Workshop on
Ontology and Semantic Web Patterns.

Fernandes, P. C. B., Guizzardi, R. S. and Guizzardi, G. (2011). Using goal modeling to
capture competency questions in ontology-based systems. Journal of Information and
Data Management, 2(3), 527-527.

Fernández-López, M., Poveda-Villalón, M., Suárez-Figueroa, M. C. and Gómez-Pérez,
A. (2019). Why are ontologies not reused across the same domain?. Journal of Web
Semantics, 57, 100492.

Gangemi, A., Catenacci, C., Ciaramita, M. and Lehmann, J. (2005, December). A
theoretical framework for ontology evaluation and validation. In SWAP (Vol. 166, p.
16).

Gómez‐Pérez, A. (2001). Evaluation of ontologies. International Journal of intelligent
systems, 16(3), 391-409.

Guarino, N. and Welty, C. (2002). Evaluating ontological decisions with OntoClean.
Communications of the ACM, 45(2), 61-65.

Hlomani, H. and Stacey, D. (2014, August). An extension to the data-driven ontology
evaluation. In Proceedings of the 2014 IEEE 15th International Conference on
Information Reuse and Integration (IEEE IRI 2014) (pp. 845-849). IEEE.

Katsumi, M., Grüninger, M., What is ontology reuse?, in: Front. Artif. Intell. Appl., 2016:
pp. 9–22. https://doi.org/10.3233/978-1-61499-660-6-9.

Miller, G. A. (1998). WordNet: An electronic lexical database. MIT press.

Noppens, O. and Liebig, T. (2009, October). Ontology patterns and beyond: towards a
universal pattern language. In Proceedings of the 2009 International Conference on
Ontology Patterns-Volume 516 (pp. 179-186).

Obrst, L., Ceusters, W., Mani, I., Ray, S. and Smith, B. (2007). The evaluation of
ontologies. In Semantic web (pp. 139-158). Springer, Boston, MA.

Park, J., Oh, S. and Ahn, J. (2011). Ontology selection ranking model for knowledge
reuse. Expert Systems with Applications, 38(5), 5133-5144.

Porn, A. M., Huve, C. G., Peres, L. M. and Direne, A. I. (2016). A Systematic Literature
Review of OWL Ontology Evaluation. In 15th International Conference on
WWW/Internet (pp. 67-74).

Reginato, C., Salamon, J., Nogueira, G., Barcellos, M., Souza, V. and Monteiro, M.
(2019, July). GO-FOR: A Goal-Oriented Framework for Ontology Reuse. In 2019
IEEE 20th International Conference on Information Reuse and Integration for Data
Science (IRI) (pp. 99-106). IEEE. Blomqvist, E., Gangemi, A., & Presutti, V. (2009,
September). Experiments on pattern-based ontology design. In Proceedings of the fifth
international conference on Knowledge capture (pp. 41-48).

Shearer, R., Motik, B. and Horrocks, I. (2008, October). HermiT: A Highly-Efficient
OWL Reasoner. In Owled (Vol. 432, p. 91).

Suárez-Figueroa, M. C., Gómez-Pérez, A. and Fernández-López, M. (2012). The NeOn
methodology for ontology engineering. In Ontology engineering in a networked world
(pp. 9-34). Springer, Berlin, Heidelberg.

Vandenbussche, P. Y., Atemezing, G. A., Poveda-Villalón, M. and Vatant, B. (2017).
Linked Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the
Web. Semantic Web, 8(3), 437-452.

