
A Domain-Specific Language for Fault Diagnosis in
Electrical Submersible Pumps

Gustavo Epichim Monjardim, Alexandre Rodrigues, Flávio Miguel Varejão, Vı́tor E. Silva Souza
Federal University of Espı́rito Santo – Vitória, ES – Brazil

gustavo monjardim@hotmail.com, alexandre.rodrigues@ufes.br, {fvarejao, vitorsouza}@inf.ufes.br
Marcos Pellegrini Ribeiro

Petroleo Brasileiro SA - Petrobras – Rio de Janeiro, RJ – Brazil
mpellegrini@petrobras.com.br

Abstract—Electrical submersible pumps are devices frequently
used in off-shore oil exploration. Vibration signals analysis and
expert systems technology are used for detecting faults on these
motor pumps. Fault diagnosis classifiers may need to be updated
or expanded. This paper proposes a domain specific language for
enabling non-programmers engineers to create and adjust rule-
based fault diagnosis classifiers of electrical submersible pumps.

Index Terms—Fault diagnosis, Electrical submersible pumps,
Domain specific language, Expert systems

I. INTRODUCTION

An Electrical Submersible Pump (ESP) is an efficient
and reliable artificial-lift method for off-shore oil and gas
exploration [1], [2]. This process involves the use of very
sophisticated and expensive equipments. The most impor-
tant component of this system is a multi-stage centrifugal
pump driven by electric motors. The installation, removal
and replacement of this equipment is highly costly, since
it requires the use of a drillship (ship designed for use in
exploratory offshore drilling of new oil and gas wells) and the
interruption of oil production. Hence, these equipments are
carefully examined in tests carried out before the installation.

The pre-installation tests are performed in a controlled
environment and aim to diagnose failures in the equipment.
In these test procedures, accelerometers are attached to the
pump and vibration signals are collected during the operation
of the equipment. Two accelerometer sensors are orthogonally
(X-axis and Y-axis) attached in several points distributed along
the main components of the pump. This distribution results in
a total of 36 sensors that simultaneously collect signals of
vibration in the time domain. After the collection, the signals
are taken to the frequency domain via conventional Fourier
Transform to be analyzed by an expert engineer. Based on
this analysis, the expert decides whether the conditions of the
equipment are suitable or not for installation.

This process of analyzing and deciding about the conditions
of the equipment requires a tacit knowledge that is only
acquired along years of experience solving similar problems.
This knowledge cannot be easily taught or transfered and, as
a result, new engineers need years of study and practice to
be able to perform the analysis. In order to depersonalize the
expert knowledge, computational and statistical methodologies

for the storage, processing, visualization and automatic anal-
ysis of the vibration signals were developed and packed into
an expert system called RPDBCS.1 Machine learning based
classifiers [3]–[7] were developed and implemented in the
artificial intelligence module of the system to detect four fault
conditions (unbalance, misalignment, rubbing and sensor fail-
ure) and the normal condition operation. RPDBCS performs
the data analysis automatically and enables non specialized
personnel to assess the conditions of the equipment.

The artificial intelligence (AI) of the expert system
RPDBCS was built based on interviews and discussions with
the domain expert. However, as widespread in the expert
system literature [8], the knowledge acquired by the expert is
not easily transferred and it is reactive (in the sense that only
when faced with a specific situation the knowledge emerges).
Therefore, the features used in RPDBCS’s AI module may not
completely represent the tacit knowledge needed to analyze
the data acquired. In fact, something frequently observed
throughout this research project is that the human expert
eventually changed his opinion about some patterns when
confronted to new ones. In addition, new type of faults (or
faults not yet considered in RPDBCS) might appear and the
classifiers must be updated or expanded.

Since training machine learning classifiers is not an easy
task and demands many examples of the new concepts to
be classified, it is not likely that domain engineers would
be able to adjust and expand the classifiers by themselves.
However, this recurrent need of adjustment and creation of new
classifiers highlights the need of a high level language with
which the engineers may describe the features and patterns
relevant for classifying existing faults or new ones.

Whereas general purpose rule based systems like Drools [9]
support a declarative, rule-based approach for problem solving,
rules are still implemented in a Java-based way, which is
difficult to implement and understand for non-programmers.
Domain Specific Languages (DSLs) [10] allow for imple-
menting rules in a language that is closer to the user natural
language. In a DSL, rules can be written, read, and modified
much easier, even by non-programmers.

1Acronym for Reconhecimento de Padrões de Defeitos em sistemas de
Bombeio Centrı́fugo Submerso, Portuguese for Fault Pattern Detection in
Electrical Submersible Pump systems.

This paper proposes DSL-FDESP (Domain Specific Lan-
guage for Fault Diagnosis in Electric Submersible Pumps), a
new DSL that allows the construction of rule-based classifiers
for diagnosing faults in ESPs based on vibration signals
analysis.

The use of DSLs in industrial settings have been proposed
in the past. For instance, Preschern et al. [15] present a DSL
for modeling automation systems; Consel et al. [16] propose
Spidle, a DSL for the development of streaming applications.
To the extent of our knowledge, however, a DSL to represent
classifiers for fault diagnosis based on vibration analysis has
not yet been proposed. Our paper aims to fill this gap.

The remainder of this paper is organized as follows: Sec-
tion II summarizes the process of detecting faults performed
by the engineer expert. Section III describes in detail the DSL,
which is validated in Section IV. Finally, Section V concludes
and discusses future works.

II. FAULT DIAGNOSIS IN ELECTRICAL SUBMERSIBLE
PUMPS (ESPS)

To categorize the mode of operation of an ESP, the expert
engineer visually inspects a large amount of vibration spectra
of frequencies looking for an error pattern. For some kinds of
faults (misalignment and unbalance, for example) the faulty
pattern must be captured by the sensors in both directions (X-
axis and Y-axis) to validate the faulty condition, whereas for
other types of failures (rubbing, for example) a single detection
of the faulty signature characterize a defective condition.

Typical examples of relevant features from the vibration
spectra used by the expert to identify possible faults in
the equipment are the rotation frequency, peaks around the
harmonics of the shaft rotation frequency and the shape of
magnitudes in the low frequencies. For example, Figure 1
illustrates a typical fault signature in the frequency domain
for the misalignment fault. Misalignment is characterized by
high amplitudes at the first and second harmonics of the shaft
rotation frequency.

0 100 200 300 400 500 600 700 800
Frequency (Hz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Am
pl
itu

de
 (i
nc

he
s/
s)

Fig. 1. Fault signature in the frequency domain for the misalignment fault.

III. DSL-FDESP

In this section, we present the proposed Domain-Specific
Language (DSL) for fault diagnosis in electrical submersible
pumps. Subsection III-A presents the Model-Driven Devel-
opment paradigm, which was used to build the DSL; subsec-
tion III-B provides an overview of the language, how it was de-
signed and how it represents fault classifiers; subsection III-C
lists the operators, constants and functions that are part of the
DSL; subsection III-D explains how classifiers written in the
language are validated; subsection III-E then shows how these
classifiers are interpreted and transformed into Java code, in
order to integrate them into the expert system RPDBCS.

A. Model-Driven Development

Model Driven Development (MDD) [11] is a software
development approach that focuses on models: instead of
building software using programming languages separately
from the software design artifacts, system functions are spec-
ified using models, which can be validated and transformed
from one stage to another, until the level of code.

In order for these models to be transformable to code,
independent from software, reusable in different contexts and
more easily processed by machines in general, they have to
be specified with a clear abstract syntax, with well-defined
rules for its interpretation. As models play a pervasive role in
MDD, the approach advocates the representation of the models
themselves as “instances” of some more abstract models,
called meta-models. Meta-models constitute the definition of
a modeling language, given they provide a way of describing
the whole class of models that can be represented [12].

Languages defined by meta-models in MDD can be
Domain-Specific Languages (DSLs) or General-Purpose Lan-
guages (GPLs). The former are designed specifically for a
certain domain, context or company to aid the description
of things in that particular domain (e.g., BPMN for business
process modeling or HTML for web page design), whereas
the latter can be applied to any sector or domain for mod-
eling puposes (e.g., the UML modeling language or the Java
programming language) [12].

In another dimension, modeling languages can be textual
(HTML, Java) or graphical (BPMN, UML), depending on
which form of representation is more adequate for the uses
of the language. The choice of visual notation defines the lan-
guage’s concrete syntax, whereas its abstract syntax is defined
by the meta-model. Finally, when designing a language, one
should also define (formally or not) its semantics, i.e., the
meaning of the elements defined in the language’s syntax.

B. Overview of the DSL

The Domain Specific Language for Fault Diagnosis in
Electric Submersible Pumps (DSL-FDESP) is a textual DSL
that allows domain experts to create new classifiers for fault
diagnosis in the expert system RPDBCS.

DSL-FDESP was build with Xtext [13] on top of the Eclipse
Modeling Platform [14], which runs on Java. Xtext allows
the definition of textual DSLs using a powerful grammar

LISTING 1
GENERAL SYNTAX FOR THE DEFINITION OF A NEW DEFECT CLASSIFIER.

1 classifier <id> {
2 name <text>
3 description <text>
4 target <Single | Pair>
5 faultType <FaultType>
6
7 expression <id> {
8 eval <expression>
9 }

10
11 faultEval <expression>
12 }

language, providing reusable infrastructure composed of a
lexical analyzer, which converts a sequence of characters into
a sequence of tokens; a parser, which performs syntactic
analysis to make sure the sequences of tokens form valid
statements; and a standard in-memory representation of the
parsed program in a structure called the Abstract Syntax Tree.

Listing 1 shows the general syntax for the definition of a
new fault classifier using DSL-FDESP. A valid definition starts
with the classifier keyword, followed by an identifier and
curly brackets to determine the scope of the definition (lines
1 and 12). Inside this scope, attributes of the classifier are
defined in a header (lines 2–5) and the keyword faultEval (line
11) precedes an expression that determines the presence of the
fault this classifier will look for (therefore, should evaluate to
true or false). For complex expressions, the language allows
you to modularize by defining one or more expressions
(lines 7–9), assigning them identifiers and reusing them in
the definition of other expressions (these can evaluate to non-
Boolean values).

In the header, the following keywords are used to specify a
few attributes of the classifier being defined:

• name: a short name of the type of fault this classifier
will look for, written between “quotes”;

• description: a longer description of the type of fault (for
human use), also between “quotes”;

• target: Single, if the classifier will analyze each signal
individually; or Pair, if the signals (X, Y) are analyzed
together as a pair;

• faultType: defines the icon that will be shown in the
graphical user interface of the RPDBCS tool, to be
chosen among the following possibilities: rubbing, un-
balance, sensorFault, misalignment, othersDHP, oth-
ersM, othersH60P, othersSP, othersAUC, others.

Finally, expressions are written based on the operators and
functions presented in the next subsection. As an example,
Listing 2 shows the definition of a classifier to detect small
peak anomalies. Analyzing each signal individually, this clas-
sifier will indicate a possible fault in an electrical pump if
the magnitude in its vibration signal’s first harmonic is less
than 0.07 (represented by expression Exp1) and the rotation
frequency of that same harmonic is greater than 55 (Exp2).

LISTING 2
EXAMPLE OF A CLASSIFIER TO DETECT SMALL PEAK ANOMALIES.

1 classifier SmallPeak {
2 name "SmallPeak"
3 description "Detects small peak anomalies."
4 target Single
5 faultType othersSP
6
7 expression Exp1 {
8 eval harmonicPeak(Signal, 1) < 0.07
9 }

10 expression Exp2 {
11 eval harmonicFreq(Signal, 1) > 55
12 }
13
14 faultEval Exp1 && Exp2
15 }

C. Operators, Constants and Functions

To compose expressions, DSL-FDESP supports Boolean,
relational and arithmetic operators, listed below in order of
precedence (lower to higher). Parentheses can be used to
change precedence in an expression, in the same fashion they
are used in most programming languages. All operators are
binary and in-fixed, with the exception of ! (not), which is
unary and, despite its position in the list below, has the highest
precedence among all operators.
• Boolean operators: ! (not), && (and), || (or);
• Relational operators: == (equal to), ! = (not equal to),

> (greater than), >= (greater than or equal to), < (lower
than), <= (lower than or equal to);

• Arithmetic operators: + (addition), − (subtraction), ∗
(multiplication), / (division).

As operands, the language allows the use of constants (such
as Signal in Listing 2) and functions (such as harmonicPeak
and harmonicFreq in Listing 2), all of them elicited from
domain experts in the area of fault diagnosis in electrical
submersible pumps. Table I lists the available functions,
along with their expected argument and their semantics. The
available constants, which can also be used as arguments in
functions, are listed below:
• Signal: a single vibration signal, in any axis, used only

in classifiers of target Single;
• SignalX, SignalY: vibration signals in the X and Y axis,

respectively, used only in classifiers of target Pair;
• Signal.rotation: the rotation frequency of the vibration

signal;
• Acquisition: the set with all 36 vibration signals from an

electrical submersible pump.
An important aspect regarding operators, constants and

functions is their type. DSL-FDESP uses four types inherited
from the Java platform, namely Boolean, Double, Double[]
(array of Double) and Integer; two classes created specifi-
cally for the DSL, Signal and Acquisition; the enumerated
type FlowType with values MAX, MIN and BEP (Best
Efficient Point) representing acquisition flows; and, finally,
List〈Signal〉, a list of Signal objects using Java’s Collection
API.

TABLE I
FUNCTIONS AVAILABLE IN DSL-FDESP (IN ALPHABETICAL ORDER), WITH THEIR EXPECTED ARGUMENTS, SEMANTICS AND TYPES.

Function name Function arguments Semantics Type

acquisitionInterval Acquisition, p (Double)

This function first calculates a matrix with frequencies and modes of an Acquisition. Then it
extracts the modes and returns an array containing two numbers representing an interval of
frequencies. For instance, if there are 20 signals with 33.2Hz and 20 signals with 34.5Hz,
it will return [33.2× (1− p), 34.5× (1 + p)].

Double[]

checkFlow Acquisition, FlowType True if Acquisition has the indicated FlowType (BEP, MAX, MIN), otherwise false. Boolean

contains signalList (List〈Signal〉), Signal True if a Signal is contained in signalList, false otherwise. Boolean

faultySensorKNN
harmonicPeak1x (Double), har-
monicPeak2x (Double), quadrat-
icError (Double)

True if there is a sensor fault, false otherwise, according to a K-Nearest-Neighbor algorithm
(usually, K = 1) comparing the harmonicPeak1x, the harmonicPeak2x and the quadrat-
icError with records of sensor faults from the past in the database.

Boolean

findPeak Signal, interval (Double[]) The highest Signal amplitude in the given frequency interval. Double

frequencyInterval firstFrequency, lastFrequency An array with two elements [firstFrequency, lastFrequency] representing an interval of
frequencies, which is an input required by many other functions. Double[]

frictionError Signal, interval ([f0, fn]), slope
(Double), intercept (Double)

∑fn
i=f0

[ln(Signal.peakList[i])− (slope× Signal.freqList[i] + intcpt)]

f0 − fn
(1)

Double

frictionSearch Signal, interval Proportion of times that the Signal median magnitude grows considering 30 equally divided
parts in the given frequency interval. Double

harmonicFreq Signal, harmonic (Integer) Signal rotation frequency in the indicated harmonic. Double

harmonicPeak Signal, harmonic Signal magnitude in the indicated harmonic. Double

logisticRegression target (Double), beta0 (β0, Dou-
ble), beta1 (β1, Double)

e(β0+β1×target)

1 + e(β0+β1×target) (2) Double

medianMagnitude Signal, interval Median of the Signal magnitudes in the given frequency interval. Double

peakThreshold Signal, interval, threshold (Dou-
ble)

True if there is a peak above the indicated threshold in the given frequency interval of the
Signal’s shaft rotation frequency, otherwise false. Boolean

quadraticError Signal, interval, partition (Inte-
ger)

The quadratic error of the set composed by the highest Signal amplitudes for every partition
of the given frequency interval. Double

regressionA Signal, interval

Intercept (a) of the linear regression of the logarithm of the Signal’s frequency magnitudes
(Mag) over the interval of frequencies (Fq), c.f. Equation (3).

log(Mag) = a− b× Fq (3)

Double

regressionB Signal, interval Slope (b) of the linear regression of the logarithm of the Signal’s frequency magnitudes (Mag)
over the interval of frequencies (Fq), c.f. Equation (3). Double

rMS Signal, interval Root mean square of the Signal magnitudes in the given frequency interval. Double

signalsOutOfInterval interval (Double[]), Acquisition A list with all signals containing magnitudes that are outside an Interval. List〈Signal〉
verifyAreaUnderCurve Signal, interval Size of the area under the curve of a Signal’s vibration chart, in the given frequency interval. Double

Starting with the constants, Signal, SignalX and SignalY
are defined as being of type Signal; analogously, the Acquisi-
tion constant is typed Acquisition; lastly, Signal.rotation is of
type Double. The type of each function and their arguments is
shown in Table I. Finally, as intuitively expected, Boolean and
relational operators are of Boolean type, whereas arithmetic
operators are typed Double.

The definition of this small type system for the DSL is the
first step towards the language’s validation and interpretation,
which are presented next.

D. Model Validation

DSL-FDESP performs a series of validations on classifiers
written in the language, displaying error messages to users
if any problems are encountered. Some of these validations
are automatically performed by Xtext. For instance, it checks
that the syntax of the language (as shown in Listing 1) was
respected. It also verifies that all identifiers are unique, i.e.,
there are no two classifiers, or even two expressions within a
classifier, with the same name.

LISTING 3
VALIDATION METHOD FOR FUNCTION HARMONICPEAK.

1 def checkType(HarmonicPeak harmonicPeak) {
2 checkExpectedSignal(harmonicPeak.signal,

RPDBCSPackage.Literals.HARMONIC_PEAK__SIGNAL)
3 checkExpectedInt(harmonicPeak.harmonic,

RPDBCSPackage.Literals.HARMONIC_PEAK__HARMONIC
)

4 }

A few validation methods were implemented specifically
for the DSL. For each function and operator of the language,
there is a method that uses the type system described in
the previous subsection to check if the arguments of such
functions/operators are of the expected types. For instance,
the harmonicPeak function expects as arguments a Signal
and a harmonic (of type Integer), therefore its validation
method checks that the expressions passed as parameters to
this function satisfy these constraints. Listing 3 shows how
this validation method was implemented in the DSL.

Another validation method implemented for the DSL con-
cerns the target keyword at the header of the classifier. When
the target is defined as Single, meaning that the classifier
will analyze vibration signals individually, constants SignalX
and SignalY should not be used, as they refer to the X and
Y parts of a pair of signals. Analogously, when the target
is defined as Pair, the Signal constant cannot be used as the
user must specify which axis from the pair is being used in
the expression.

E. DSL Interpretation

Once a classifier has been validated, it is ready to be
interpreted. For DSL-FDESP, this means generating Java code
that evaluates the expressions written in the DSL using the
data available in the RPDBCS tool.

For each classifier defined in the language, the interpreter
generates a corresponding Java class using the classifier’s
identifier as name for the class. Inside this class, the interpreter
generates the following methods:
• Methods that return the classifier’s name, description

and faultType (information from the classifier’s header,
to be used in the tool’s graphical user interface);

• A method for every expression defined in the classifier,
using the expression’s identifier as method name. Its
return type depends on the type to which the expression
evaluates;

• The method faultEval() with return type Boolean, which
refers to the classifier’s fault expression (the one after the
faultEval keyword);

• The method classify(SignalXY pair), which is the
method used by the RPDBCS tool when applying this
classifier to the data.

The classify() method receives as parameter a SignalXY
pair, i.e., a pair of signals, one in the X axis and one in
the Y axis. For classifiers with target Single, this method
will call the faultEval() method twice, once for each signal of
the pair, as the fault may be identified in one of the signals
independently. On the other hand, for classifiers with target
Pair, the classify() method will call faultEval() only once, as
the fault is identified by analyzing the signals as a pair. The
classify() method returns a list of Fault objects, one for each
fault identified, empty if no fault is found.

The contents (Java implementation) of the faultEval()
and other expression methods consist of a mapping that the
interpreter performs from DSL-FDESP to Java, using the
API provided by RPDBCS. The interpreter works recursively
when confronted with expressions that use operators, such that
a call to interpret (〈left〉 〈operator〉 〈right〉) is resolved as
interpret (〈left〉) interpret (〈operator〉) interpret (〈right〉),
which breaks expressions down to the level of operators,
constants and function calls. Operators are interpreted as their
obvious Java counterparts, whereas constants and function
calls are mapped to methods in RPDBCS’s API.

For instance, the DSL constant Signal.rotation is mapped
to function call dslUtils.signalRotation(s), where dslUtils
is an instance of RPDBCS class DSLUtils, s is the signal

LISTING 4
INTERPRETATION (IMPLEMENTATION) FOR CLASSIFIER SMALLPEAK.

1 class SmallPeak extends BinarySignalClassifier {
2 DSLUtils dslUtils = new DSLUtils();
3
4 public SmallPeak() {
5 super(FaultType.othersSP);
6 }
7
8 public List<Fault> classify(SignalXY s) {
9 List<Fault> fs = new ArrayList<>();

10 Fault f = classify(s.getX());
11 if (f != null) fs.add(f);
12 f = classify(s.getY());
13 if (f != null) fs.add(f);
14 return fs;
15 }
16
17 private Fault classify(Signal s) {
18 if (s == null) return null;
19 if (faultEval(s)) {
20 Fault f;
21 f = new Fault(s, getRecognizableFaultType());
22 f.setDescription(this.getDescription());
23 return f;
24 }
25 return null;
26 }
27
28 public boolean faultEval(Signal s){
29 return (Exp1(s) && Exp2(s));
30 }
31
32
33 public boolean Exp1(Signal s){
34 return (dslUtils.harmonicFreq(s, 1) > 55);
35 }
36
37
38 public boolean Exp2(Signal s){
39 return (dslUtils.harmonicPeak(s, 1) < 0.07);
40 }
41
42 public String getName() { return "Small Peak"; }
43 public String getDescription() {
44 return "SmallPeak";
45 }
46 }

being analyzed (received as argument by classify() and passed
along as parameter in all method calls it is needed) and
signalRotation() is a method from DSLUtils that, given a
signal, returns its rotation.

For instance, Listing 4 shows an excerpt (parts of the code
omitted for brevity) of the interpretation of classifier Small-
Peak, defined in Listing 2, i.e., the Java code generated by
DSL-FDESP in order to integrate this classifier into RPDBCS.
Expressions Exp1 and Exp2 derive homonymous methods
(lines 33 and 38), which are used by faultEval() (line 28)
to determine if there is a fault in a signal. Being of target
Single, the faultEval() method is called twice, once for each
axis in the pair, as can be seen in classify(SignalXY) (line 8).

IV. VALIDATION

To evaluate the DSL, we used data from several sweep
tests that have been conducted on ESPs belonging to the
RPDBCS project’s data set. A sweep test consists on feeding
the pumps with frequencies 40Hz, 45Hz, 50Hz, 55Hz and
60Hz and, for each frequency, conducting tests with flows

TABLE II
CLASSIFIERS IMPLEMENTED WITH DSL-FDESP.

Classifier Fault description DSL Dependencies

Acqui-
sition-
Mode

A signal with a rotation frequency
in the first harmonic outside an
interval, which is calculated by
first getting the mode of frequen-
cies in the acquisition then applying
[mode− 1%,mode+ 1%] to cre-
ate the interval.

Signal, Acquisition,
acquisitionInterval,

signalsOutOfInterval,
contains

Area-
Under-
Curve

The size of the area under the curve
of a signal’s vibration chart between
the interval of frequencies [3, 10] is
greater than 0.21.

Signal,
verifyAreaUnderCurve,

frequencyInterval

Distant-
High-
Peak

A high peak between the interval of
frequencies [2x, 1000].

Signal, Signal.rotation,
peakThreshold,

frequencyInterval

Faulty
Sensor

High noise and absence of significant
amplitude at the rotation frequency.

Signal, harmonicPeak,
quadraticError,

frequencyInterval,
faultySensorKNN

Friction

Rubbing that occurs due to contact
between stationary and rotating sur-
faces, which leads to low frequency
noise with amplitudes decaying expo-
nentially.

Signal, Signal.rotation,
frictionError,

frictionSearch,
frequencyInterval,
logisticRegression

High60-
Peak

A high peak between the interval of
frequencies [59.2, 60.2].

Signal, Signal.rotation,
peakThreshold,

frequencyInterval
Mis-
align-
ment

A high peak in the 1x frequency,
where x is the rotation frequency of
the shaft.

SignalX, SignalY,
harmonicPeak,

logisticRegression

Small-
Peak

A magnitude in the first harmonic of
the rotation frequency smaller than
0.07 and rotation frequency greater
than 55Hz.

Signal, harmonicFreq,
harmonicPeak

Unbal-
ance

An abnormal high peak in the 2x
frequency.

SignalX, SignalY,
harmonicPeak,

logisticRegression

MIN, MAX and BEP (Best Efficiency Point), as specified for
the equipment.

All of the test data was imported into RPDBCS and each
test was diagnosed using the expert tool’s original, built-
in classifiers. Each diagnosis was recorded, establishing a
benchmark against which the DSL would be tested. Then, the
original classifiers were removed from RPDBCS and replaced
by the ones generated by DSL-FDESP and the test data
was imported once again for diagnosis. The DSL classifiers
produced the same diagnostic results as the benchmark, with
no significant difference with respect to performance.

A total of nine built-in classifiers were replaced by DSL-
FDESP versions, which were validated by the procedure
described above. Table II lists the classifiers that were im-
plemented, describing the faults they diagnose and specifying
the DSL elements they use to perform such diagnosis.

V. CONCLUSIONS

This paper presented DSL-FDESP, a new DSL for allowing
engineers without background in software development to
adjust or add new classifiers in the domain of ESP fault
diagnosis. The DSL was validated by replacing the original
expert system’s classifiers by the ones generated using the
DSL. The DSL classifiers produced the same diagnostic results
with similar computational performance.

Currently, the DSL generates Java code that is manually
integrated to the system. One future work consists of imple-
menting the automatic integration of this Java code for not
requiring a Java programmer for performing this task. Another
future work consists of evaluating the language usability, i.e.
if the language is intuitive and easy to be used by the expert
engineers. Tests should also evaluate the classifiers scalability,
i.e., if the classifiers performance scales well to large datasets.

ACKNOWLEDGMENT

Work supported by CENPES-Petrobras under Grant Termo
de Cooperação 0050.00070332.11.9 Petrobras-UFES.

REFERENCES

[1] H. Toliyat, S. Nandi, S. Choi, and H. Meshgin-Kelk, Electric Machines:
Modeling, Condition Monitoring, and Fault Diagnosis. CRC Press,
2016.

[2] H. Pasman, Risk Analysis and Control for Industrial Processes - Gas,
Oil and Chemicals: A System Perspective for Assessing and Avoiding
Low-Probability, High-Consequence Events. Elsevier Science, 2015.

[3] T. W. Rauber, F. M. Varejao, F. Fabris, M. Pellegrini, and A. Rodrigues,
“Automatic diagnosis of submersible motor pump conditions in offshore
oil exploration,” in 39th Annual Conference of the IEEE Industrial
Electronics Society. Vienna, Austria: IEEE, nov 2013, pp. 5537–5542.

[4] F. Boldt, T. W. Rauber, F. M. Varejao, and M. Pellegrini, “Perfor-
mance analysis of extreme learning machine for automatic diagnosis
of electrical submersible pump conditions,” in 12th IEEE International
Conference on Industrial Informatics. Porto Alegre, Brazil: IEEE, jul
2014, pp. 67–72.

[5] ——, “Fast feature selection using hybrid ranking and wrapper approach
for automatic fault diagnosis of motorpumps based on vibration signals,”
in 13th IEEE International Conference on Industrial Informatics. Cam-
bridge, UK: IEEE, jul 2015, pp. 127–132.

[6] T. Oliveira-Santos, T. W. Rauber, F. M. Varejao, L. Martinuzzo,
W. Oliveira, M. P. Ribeiro, and A. Rodrigues, “Submersible Motor
Pump Fault Diagnosis System: A Comparative Study of Classification
Methods,” in 28th International Conference on Tools with Artificial
Intelligence. San Jose, CA, USA: IEEE, nov 2016, pp. 415–422.

[7] F. Boldt, T. W. Rauber, F. M. Varejao, T. Oliveira-Santos, A. Rodrigues,
and M. Pellegrini, “Binary Feature Selection Classifier Ensemble for
Fault Diagnosis of Submersible Motor Pump,” in 26th International
Symposium on Industrial Electronics. Edinburg, UK: IEEE, jun 2017,
pp. 1807–1812.

[8] J. Cullen and A. Bryman, “The knowledge acquisition bottleneck: time
for reassessment?” Expert Systems, vol. 5, no. 3, pp. 216–225, 1988.

[9] M. Proctor, “Drools: A rule engine for complex event processings,” in
4th International Conference on Applications of Graph Transformations
with Industrial Relevance. Springer, 2012, pp. 2–2.

[10] M. Fowler, Model-Driven Software Engineering in Practice: Second
Edition. Addison–Wesley, 2011.

[11] O. Pastor, S. España, J. I. Panach, and N. Aquino, “Model-driven
development,” Informatik-Spektrum, vol. 31, no. 5, pp. 394–407, 2008.

[12] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engi-
neering in Practice: Second Edition. Morgan & Claypool Publishers,
2017.

[13] L. Bettini, Implementing Domain-Speci c Languages with Xtext and
Xtend: Second Edition. Packt Publishing, 2016.

[14] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit, 1st ed. Addison-Wesley Professional, 2009.

[15] C. Preschern, A. Leitner, and C. Kreiner, “Domain-Specific Language
Architecture for Automation Systems: An Industrial Case Study,” in
Workshop on Graphical Modeling Language Development at the 8th Eu-
ropean Conference on Modelling Foundations and Applications (ECMFA
2012), Lyngby, Denmark, 2012.

[16] C. Consel, H. Hamdi, L. Réveillère, L. Singaravelu, H. Yu, and C. Pu,
“Spidle: A DSL Approach to Specifying Streaming Applications,” in 2nd
International Conference on Generative Programming and Component
Engineering (GPCE 2003). Springer, 2003, pp. 1–17.

