
A Model-Driven Approach for the Design of Web
Information Systems based on Frameworks

Beatriz Franco Martins
Ontology & Conceptual Modeling Research
Group (Nemo) - Department of Informatics,
Federal University of Espírito Santo (Ufes)

Vitória, ES, Brazil
bfmartins@inf.ufes.br

Vítor E. Silva Souza
Ontology & Conceptual Modeling Research
Group (Nemo) - Department of Informatics,
Federal University of Espírito Santo (Ufes)

Vitória, ES, Brazil
vitor.souza@ufes.br

ABSTRACT
In the field of Web Engineering, many methods have been
proposed. FrameWeb is a method that targets the develop-
ment of systems that use certain kinds of frameworks in their
architecture, proposing the use of models that incorporate
concepts from these frameworks during design. However,
in its original proposal, FrameWeb’s models do not fit well
different framework instances, its language is not formally
defined and no tool support is offered to aid software archi-
tects in creating the models. In this paper, we propose to
address these issues using model-driven techniques.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Object-oriented design methods

Keywords
Web Engineering; Frameworks; Model-Driven; FrameWeb;
Meta-Model.

1. INTRODUCTION
Since Web Engineering (WebE) was born, many meth-

ods that support the construction of applications for the
Web platform have been proposed. FrameWeb [15] is one
such method. It targets the development of Web Informa-
tion Systems (WISs) that use certain kinds of frameworks in
their infrastructure (e.g., front controller, object/relational
mapping, dependency injection). Given the popularity and
variety of these frameworks, FrameWeb proposes the use of
specific models at design-time, directed towards the frame-
works’ architectures, to help handling the complexity behind
the implementation of the WIS.

In its original proposal, FrameWeb targeted specific in-
stances of frameworks and proposed a UML profile (light-
weight extension) for the creation of its models, reflecting
the constructs of the chosen platform. There are, however,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WebMedia ’15 October 27 - 30, 2015, Manaus, Brazil
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3959-9/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2820426.2820439

a few drawbacks in the approach: (i) its models are platform-
specific, meaning they do not fit well different framework in-
stances (e.g., a front controller framework different from the
one used in [15]); (ii) the proposed UML profile is not strict,
meaning it does not prevent users from including elements
that do not belong in the models; and (iii) the approach
comes with no tools to help developers in any way, such as,
e.g., creating valid models, generating code, etc.

WebE methods such as FrameWeb should strive to pro-
mote fast development, using modeling techniques as sup-
port tools. In this context, Model-Driven Development [11]
can provide a way for increasing productivity during appli-
cation development, as it aims to model the software func-
tionality using a set of diagrams, producing the final result
via transformations between different levels of abstraction.

This paper proposes an evolution of FrameWeb using model-
driven tools and techniques. We provide a meta-model that
specifies the syntax of the method’s proposed architectural
models; a process in which new framework instances can be
accommodated by implementing parts of this meta-model;
and a tool that helps developers build FrameWeb models.

The remainder of the paper is divided as following: Sec-
tion 2 summarizes the baseline of our work; Section 3 presents
our proposal for the evolution of FrameWeb; Section 4 de-
scribes our proposal’s evaluation; Section 5 discusses related
work; and, finally, Section 6 concludes.

2. BASELINE
In this section we summarize the original FrameWeb pro-

posal and the basic concepts of Model-Driven Development.

2.1 FrameWeb
Software reuse has been practiced since programming be-

gan, using, e.g., libraries, domain engineering, design pat-
terns, componentry, etc. [5]. A popular method of reuse
is the use of software frameworks or platform architectures
(e.g., JavaTM Enterprise Edition [3]), which are middleware
on/with which applications can be developed [5]. The use
of frameworks1 helps to avoid the continual rediscovery and
reinvention of basic architectural patterns and components,
reducing cost and improving the quality of software by using
proven architectures and designs [14].

Motivated by this, the Framework-based Design Method

1In this paper, the term framework is used both in its tra-
ditional sense—a reusable set of libraries or classes for a
software system—and in the sense of platform architectures
mentioned above.

http://dx.doi.org/10.1145/2820426.2820439

Table 1: Types of frameworks supported by FrameWeb.
Type of Framework Supported in [15] Java EE Standard Other Examples

Front Controller (MVC) Struts 2 JSF GWT, Spring MVC, VRaptor
Object/Relational mapping (ORM) Hibernate JPA Cayenne, OpenJPA, pBeans
Dependency Injection (DI) Spring Framework CDI Guice, PicoContainer, Plexus

for Web Engineering (FrameWeb) [15] was proposed with
the goal of handling the complexity behind implementing
Web-based Information Systems (WISs) by incorporating
concepts from well established frameworks into higher-level
development artifacts, i.e., architectural design models. Ta-
ble 1 shows the types of frameworks supported by the method.

FrameWeb proposes: (i) a basic architecture that divides
the system in layers (Presentation, Business Logic and Data
Access) for better integration with the type of frameworks
shown in Table 1; and (ii) a UML profile for the construction
of four different design models (all based on the UML Class
Diagram) that bring the concepts used by these frameworks
to the architectural design stage of the software process:

• Persistence Model: represents the Data Access Ob-
jects (from the DAO pattern [1]) responsible for the
persistence of domain objects (Data Access layer);

• Domain Model: represents domain classes and their
object/relational meta-data using concepts from the
ORM framework (Business Logic layer);

• Application Model: represents the classes that are
responsible for implementing the system’s functionali-
ties (Business Logic layer) and their relationship with
classes from other layers (i.e., the dependencies), using
concepts from the DI framework;

• Navigation Model: represents the components that
form the presentation layer, such as Web pages, HTML
forms, etc. (Presentation layer), using concepts from
the Front Controller (MVC) framework.

Due to space constraints, we illustrate only one of the
models described above (for more details, refer to [15]). Fig-
ure 1 shows a Navigation Model taken from the architectural
design of SCAP, an application that helps universities man-
age leave of absence requests from professors, built using
Struts 2 as the MVC framework.

The model defines the architecture of the Presentation
layer for one of SCAP’s functionalities—request leave of ab-
sence—following the constructs of Struts 2. Stereotypes (or
lack thereof) define the type of each component. This partic-
ular scenario starts with the Web page index.jsp requesting
the input of the submit method of the action (controller)
class, which leads to the form.jsp page. This is shown
by the dependency associations between index.jsp and Re-

questLeaveAction, and between the latter and form.jsp.
The form.jsp page contains a form with six fields, repre-

sented as the attributes of requestLeaveForm, whose types
are given according to the Struts 2 tag used in that particular
field (e.g., select creates a drop-down menu; textfield is a
one-line text field). According to a convention, the names of
the attributes indicate that the contents of the form fields
should be bound to specific attributes of the action class.
For instance, request.eventName refers to the eventName

attribute of the request object at the controller.

Figure 1: Example of FrameWeb Navigation Model.

Once again following the dependencies between classes,
when the form is submitted, the values of its fields are sent
and the executeSubmit() method is called. If it returns
input, we go back to the form (which happens when there
are errors in the submitted data); if it returns success, it
displays the done.jsp page instead. That last page refers to
the request in its text component, to show that the leave
of absence request has been successfully registered.

It is important to note that, although the Navigation
Model focuses on behavior, a structural diagram (i.e., the
Class Diagram) was chosen as basis for it instead of a behav-
ioral one (e.g., Sequence or Activity diagrams). This choice
was result of experiment with developers and the Class Di-
agram was chosen for it represents more adequately the in-
ternal structure of controllers, Web pages and forms.

2.2 Model-Driven Development
Model-Driven Development (MDD) [11] is a development

approach that focuses in models: instead of building soft-
ware using programming languages separately from the soft-
ware design artifacts, MDD allows us to develop the func-
tionalities of the system based on a set of models that, af-
ter going through transformations between different levels
of abstraction, result in the final software system.

MDD gained a lot of attention from both industry and re-
search communities because of its potential to provide a way
for increasing productivity during application development
and maintenance. In an MDD process, models are specified
with a clear abstract syntax, with well-defined rules for their
interpretation. This makes them more easily processable by

machines, which in turn enables tools for model creation,
transformation, validation, etc.

There are currently several model-driven tools and frame-
works to aid software developers in following a model-driven
approach. A very popular free and open-source tool is the
Eclipse IDE and its components EMF, OBEO Designer, Ac-
celeo, XText, among others. More details on the use of such
tools will be given in Section 3.3.

3. PROPOSAL
In this section we present our proposal for applying MDD

tools and techniques to FrameWeb. Because of paper size
and organization concerns, we keep the focus only on Fra-
meWeb’s Navigation Model. However, the entire work can
be found at the FrameWeb project website.2

The contributions of this work are: (a) a meta-model for
FrameWeb, based on UML 2.0, serving as the formal ab-
stract syntax for the FrameWeb language, evolving the orig-
inal UML profile [15]; (b) a flexible approach which allows
different frameworks instances to be used with FrameWeb,
enabling designers to choose the most appropriate combina-
tion of frameworks in their context; (c) a FrameWeb design
tool prototype based on the meta-model which can help soft-
ware architects apply the method to the development of Web
Information Systems. We present these contributions next.

3.1 Meta-model
We propose to evolve FrameWeb from a lightweight to a

full UML extension, defining a Domain-Specific Language
(DSL) for the method. We start from the UML meta-model
and add domain-specific types to build the FrameWeb meta-
model. We chose this approach to be able to treat the vari-
ous specific aspects related to frameworks.

We define the FrameWeb Meta-model at a higher meta-
level (M2) and depending on the UML Meta-model, as shown
in Figure 2. However, since our meta-model refers only to a
small part of UML, we create an intermediary package called
Partial UML Meta-model which shows (graphically) only the
UML meta-classes that are actually used and how they re-
late to FrameWeb meta-classes, facilitating visualization by
developers. The FrameWeb Meta-model then specifies the
syntax of the FrameWeb language, which drives the cre-
ation of its models. We can break the syntax into two parts:
framework-independent and framework-dependent syntax.

The framework-independent syntax drives model creation
under a general point of view, i.e., independently of the spe-
cific framework instances being used. This means that all
models created at level M1 using the FrameWeb language
need to follow the same platform-independent rules. For
instance, in a Navigation Model the only types of classes
allowed are Navigation Classes.

For each FrameWeb model (Section 2.1) there is a meta-
model part which defines its syntax, also shown in Figure 2:
the Domain Model is an instance of the Domain Meta-model
part, the Persistence Model is an instance of the Persistence
Meta-model part, and so on. All four parts depend on the
Framework Meta-model part, which specifies the framework-
dependent syntax (discussed in the next section).

In Figure 3 we depict a fragment of the Navigation Meta-
model, which defines the syntax of Navigation Models. Its
meta-classes represent components of the Presentation layer.

2http://nemo.inf.ufes.br/projects/frameweb/

Figure 2: FrameWeb M2 and M1 abstraction levels.

For instance, the meta-classes Page, Form and FrontCon-

trollerClass represent, respectively, a dynamic Web page,
a form in such a page and the controller class.

In Figure 4, we show an instance of this meta-model, rep-
resenting the same functionality of SCAP previously shown
in Figure 1, but using JSF as the Front Controller instead of
Struts 2. The stereotypes from the original profile of Frame-
Web are still used to identify the meta-class of each class in
the model, e.g., Page (stereotype <<page>>), Form (stereo-
type <<form>>) and FrontControllerClass (no stereotype).

The model of Figure 4 shows two pages (form.xhtml and
success.xhtml), a form (requestLeaveForm) and a con-
troller class (RequestLeaveController). The meta-model
(M2) specifies how these components (in M1) can relate to
one another, allowing only some specific dependencies and
compositions relations between them.

For instance, form components can submit their data to
controller classes, which is represented by dependency rela-
tions between these components, defined by the FrontCon-

http://nemo.inf.ufes.br/projects/frameweb/

Figure 3: A fragment of the FrameWeb Navigation Meta-model.

trollerDependency meta-class (Figure 3). In the example
(Figure 4), the form requestLeaveForm submits its data to
the RequestLeaveController class and calls the submit()

method (FrontControllerMethod meta-class).
Analogously, controllers can direct results to Web pages,

also through dependency relations defined by the Result-

Dependency meta-class. RequestLeaveController sends the
result back to form.xhtml if the result is null or to suc-

cess.xhtml if it is "success.xhtml" (Result meta-class).
Moreover, Web pages can be composed of forms, rep-

resented by a composition association and defined by the
NavigationComposition meta-class (between Page and Form

meta-classes). In our example, form.xhtml is composed of
requestLeaveForm. Finally, forms are themselves composed
of form fields, which appear as class attributes in Frame-
Web’s Navigation Models. In the meta-model these are rep-
resented by the meta-composition between the meta-classes
Form and FormComponent. In SCAP, requestLeaveForm is
composed of two drop-down menus (selectOneMenu) and
four text fields (inputText).

In addition to the FrameWeb abstract syntax defined in
its meta-model, there is a set of rules written in Object
Constraint Language (OCL). Because of limitations in UML
Class Diagram expressiveness,3 many rules are necessary to
define the correct syntax for the FrameWeb language.

We present here, however, only a simple rule example that
illustrates the role of OCL in the meta-model (other exam-
ples can be accessed via the project website). In the context
of a ResultDependency, the dependency client must be a

3Actually, some limitations belong to the UML implementa-
tion in the tool that has been used to define the meta-model,
not supporting some of the UML features, e.g., subsets.

Figure 4: SCAP Navigation Model with JSF.

FrontControllerClass and the supplier must be Naviga-

tionClass or a FormComponent. No other UML classes are
allowed to participate of this kind of dependency. This is
defined in the following OCL invariant:� �
context ResultDependency
inv:
(self.oclAsType(Dependency).client.oclIsTypeOf(

FrontControllerClass)) and
((self.oclAsType(Dependency).supplier.oclIsTypeOf(

NavigationClass)) or
(self.oclAsType(Dependency).supplier.oclIsTypeOf(

FormComponent)))� �
It is important to note that the Navigation Model for the

Struts 2 version of the example shown in Figure 1, although
referring to the original proposal of FrameWeb, also seems

Figure 5: Fragment of the Framework Meta-model.

to follow the syntax defined by the meta-models proposed
in this section. This, however, is merely due to the disci-
pline of the architect that produced the model, given that
in its original proposal the syntax of the language was only
informally defined and there were no rules to constrain or
support the designer.

3.2 Multi-Framework Approach
The framework-independent syntax presented in the pre-

vious section applies to all models built using the FrameWeb
language, independently of the specific set of frameworks
included in the system’s architecture. However, different
framework instances have different characteristics that in-
fluence the models. For instance, Struts 2 form fields are
bound to attributes in a single controller class, whereas in
JSF one can bind fields from a single form to attributes in
different controller classes.

Therefore, we need an approach that allows us to accom-
modate different framework instances. Each MVC frame-
work, for example, has its own set of tags, in addition to
the standard HTML and XHTML tags, so the FrameWeb
language must be able to express and accept different frame-
work tag syntax. We thus define a Framework Meta-model
part, depicted in Figure 5. As seen before, the four generic
FrameWeb meta-model parts depend on the Framework Meta-
model, thus including framework-dependent rules in the dif-
ferent models of FrameWeb.

The TagLib meta-class represents the tag libraries pro-
vided by the chosen framework (e.g., the HTML tag library
of JSF). Each taglib has a set of tags (e.g., the selectOne-

Menu and inputText tags used in Figure 4), which are repre-
sented by the Tag meta-class. Once a page imports a specific
taglib, any tags from that library can be used by the page and
all of its parts (e.g., its forms). In the Navigation Model,
tag classes (i.e., instances of the Tag meta-class) from the
chosen framework’s taglibs are used as types of page and
form attributes.

As frameworks have different applications according to
their type, the FrameworkCategoryList meta-class repre-
sents the kinds of frameworks covered by FrameWeb. This
list is used to separate and drive the loaded frameworks be-
havior under the FrameWeb abstract syntax perspective.

Figure 6: The JSF library in FrameWeb.

Finally, the Rule meta-class allows the definition of a set
of OCL rules to be loaded with each specific framework. In
other words, each framework has its own constraints, and
these need to be observed during the creation of the mod-
els. For instance, some frameworks prescribe naming con-
ventions that must be followed in order to activate specific
features, whereas other frameworks do not have this kind
of constraint. Hence, it is necessary to load the OCL rules
to guarantee the model is correct according to the chosen
frameworks.

In order to accommodate a new instance of an MVC frame-
work, we instantiate the meta-model of Figure 5, speci-
fying the taglibs, tags and rules of that particular frame-
work. For example, to be able to design SCAP using JSF,
we define the JSF library depicted in Figure 6 in a file
called MVC_JSF.frameweb. This file defines the taglibs: JS-
Fcore (defined in the namespace http://java.sun.com/jsf/
core), JSFhtml (http://java.sun.com/jsf/html) and JSFcom-
posite (http://java.sun.com/jsf/facelets).

At design-time, the software architect loads the file cor-
responding to the frameworks she wishes to use. Figure 7
shows a Navigation Model for our running example using the
prototype tool presented in the next section. We can see the
MVC_JSF.frameweb file loaded into the editor at the bottom
part of the screen, making the JSF taglibs available for the
architect. At the center of the screen, we see the form com-
ponent request.eventName from requestLeaveForm defined
as a tag of kind inputText, a tag from the JSFhtml taglib.

Using this approach, other framework instances can be
defined and loaded into any FrameWeb project—e.g., we
can create a new SCAP Navigation Model using VRaptor,
by loading its library and following the constraints of that
framework. This approach can be used not only with MVC
frameworks and Navigation Models, but with all FrameWeb
models and any desired framework combination. In other
words, FrameWeb is now extensible.

3.3 FrameWeb Tool
We propose a FrameWeb tool prototype capable of pro-

viding the necessary resources for the design of its models

http://java.sun.com/jsf/core
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets

Figure 7: Model built using the FrameWeb tool.

and, in addition, validate them. We used EMF, along with
Eclipse plug-ins Sirius, OBEO Designer, Acceleo, UML 2.0
and OCL Tools for their UML 2.0/OCL support and code
generation tools.

Firstly we implemented the FrameWeb meta-model using
the Ecore Tools. Then, the FrameWeb Tree Editor is gener-
ated by EMF. This generation process has three main steps:
(1) Model source code generation, which produces the
necessary meta-classes according the defined meta-model,
using some validation features; (2) Edit source code gen-
eration, which performs command-base editing and has
adapters to provide a structured view of the model code;
and (3) Editor source code generation, which provides
the editor user interface based on the EMF platform. The
Model part is the core of the tool because it defines the Fra-
meWeb language (abstract syntax) including all OCL rules.

EMF, however, is not able to automatically generate all
source code, as the OCL rules require special handling. To
deal with this, there are two different approaches: (a) man-
ually add or update the validation classes to meet each OCL
rule; or (b) use Eclipse tools for the automatic generation of
the necessary validation classes, namely: the Java Emitter
Templates (JET) tool, which allows us to create a set of gen-
eral templates which are used as a frame under which EMF
assembles the OCL rules; and the Java Merge (JMerge) tool
used to produce the final code.

Following the latter (tools) approach, we write a set of val-
idation class templates for the FrameWeb tool (*.javajet
files). Then, the EMF Model generation automatically pro-
duces code for all OCL rules of the meta-model.

Finally, we obtained a FrameWeb Tree View Editor tool

through which we can develop and, most importantly, vali-
date FrameWeb models as shown before in Figure 7.

4. EVALUATION
To evaluate our work, we conducted an experiment with

undergraduate students in which a WIS—the running ex-
ample used in this paper, SCAP—was developed using dif-
ferent sets of frameworks. Based on the same requirements
specification, the students produced FrameWeb models for
their version of the system and implemented them using the
selected frameworks.

Based on the reports produced by the students,4 this ex-
periment allowed us to: (a) exercise the original FrameWeb
method using different framework instances than the ones
used in [15]; (b) evaluate what are the common aspects
of the used frameworks (i.e., framework-independent) and
what are their differences (framework-dependent); (c) dis-
cover modeling constructs that FrameWeb was not yet able
to support, thus eliciting requirements for the FrameWeb
language proposed here; and (d) validate the models pro-
duced by the students using the Tree View Editor.

Figure 8 presents yet another version of the Navigation
Model for the SCAP request leave of absence feature, to illus-
trate how the same use case can be designed with FrameWeb
using different frameworks, resulting on distinct implemen-
tation but with a uniform syntax. We can see that different
tags have been used in the form and that the framework
imposes a slightly different flow than JSF (closer to Struts
2). Also, note that one of the pages shares part of the name
with the controller class, which is due to a naming conven-
tion imposed by VRaptor.

Figure 8: SCAP Navigation Model with VRaptor.

Figure 9 shows that same model created using the Fra-
meWeb tool prototype (the Tree View Editor). At the bot-
tom, we can see that the model uses the VRaptor frame-
work (MVC_VRaptor.frameweb), the standard HTML taglib
(Standard_HTML4.frameweb) and the Standard Tag Library
for JavaServer Pages, JSTL (Standard_JSTL.frameweb) (used
because VRaptor does not provide a taglib of its own).

4These reports are also available at the FrameWeb website.

Figure 9: The SCAP VRaptor model created using
the FrameWeb prototype tool.

By using the FrameWeb tool, the architect can verify if the
designed model is valid, i.e., if it correctly follows the Frame-
Web syntax, including the framework-dependent rules. In
Figure 10, we purposefully introduce an error in the model
by not filling in the value for the mandatory property Page-

TagLib of header.xhtml. As a result, the tool displays an
error message, shown in Figure 11.

5. RELATED WORK
The major motivation for the proposal of FrameWeb is

the fact that although there are several Web Engineering
methods defining languages and tools for the development of
WISs, to our knowledge none of them focus on the important
role of frameworks in the system architecture.

IFML [2] standardized by the Object Management Group

Figure 10: Properties for header.xhtml, missing a
mandatory value for PageTagLib.

Figure 11: Example of validation error message.

(OMG) in 2013, is a visual, platform-independent language
based on a traditional MVC approach. Using MDD tech-
niques, it performs automatic code generation from dia-
grams, which are mainly focused on the user’s point of view
and require prior knowledge of the proposed language. Fra-
meWeb, on the other hand, requires less effort to learn its
language, since it is based on UML.

Purificação and Silva [13] propose a DSL, called EngenDSL,
which aims to build a declarative abstraction for building
WIS, in order to avoid typical programming constructs (like
conditional structures and loops) and commitment to a spe-
cific technology. It uses a traditional MVC approach, but
does not consider the different framework instances, result-
ing in a project not necessarily reflecting the real implemen-
tation. FrameWeb considers the specific framework’s rules,
representing more accurately what is in fact implemented.

OOH4RIA [9] is an extension to the OOH method with
a model-driven approach, which performs M2M transfor-
mations from a Platform-Independent Model (PIM) to a
Platform-Specific Model (PSM). The proposal is focused
specifically on Google Web Toolkit (GWT) framework for
the Java platform. In the same line, OOWS [4] propose PIM
to PSM, M2M transformations, but the implementation uses
OlivaNova Transformation Engines5 for the PHP platform.
Instead, FrameWeb is meant to be flexible, allowing for any
framework (of the supported kinds) to be included, even in
platforms other than Java EE.

Jurista et al. [10] propose a framework to deal with Us-
ability Features in an MDD method based on the concept of
Mode of Use (MoU). Based on (and partly dependent of) the
OO-Method [12], the framework tackles MDD deficiencies
related to usability (according to the ISO standard 9241-
11). As a design method, FrameWeb can be integrated to
this proposal by adding the necessary meta-model elements
which would allow us to define MoUs in our models. Thus,
this proposal can be seen as complementary to our work.

Other works have used the MDD approach in Web Engi-
neering, but targeting specific concerns, such as communica-
tion and collaboration [6], multimedia [7], or accessibility [8].
Our use of MDD targets the use of frameworks.

6. CONCLUSIONS
In this paper, we have evolved the FrameWeb method

using model-driven tools and techniques, dealing with some
of the limitations of the original approach. The new Fra-
meWeb has a well-defined syntax based on an extensible

5http://www.omg.org/mda/mda files/SOSY OlivaNova
Overview1.pdf

http://www.omg.org/mda/mda_files/SOSY_OlivaNova_Overview1.pdf
http://www.omg.org/mda/mda_files/SOSY_OlivaNova_Overview1.pdf

meta-model, which allows developers to include support for
new instances of the kinds of frameworks supported by the
method. Moreover, we provide a simple, but useful tool that
allows architects to design FrameWeb models and validate
them against general and framework-dependent rules.

This research is a work in progress and has many limi-
tations that are subject to future work. Here, we highlight
some of the more urgent ones.

The FrameWeb tool is still very simple, offering only the
Tree View Editor and model validation. More advanced
model-driven tools can be used to provide a graphical UML
editor, the ability to import models built in other UML ed-
itors (to validate FrameWeb rules) and code generators, re-
lieving developers of much of the coding effort. The editor
presented here is currently being used as basis for the devel-
opment of a more flexible and user-friendly graphical editor.

More experiments need to be conducted to assess the
usefulness and effectiveness of FrameWeb. More instances
of frameworks—including more kinds of frameworks (e.g.,
authentication & authorization, Aspect-Oriented Program-
ming, etc.)—need to be tested to verify the completeness of
the meta-model. Since each framework has its own charac-
teristics, introduced via meta-model loaded libraries, each
library must be checked and validated by themselves as well
as their implementation/integration with the framework-
independent meta-model.

More practitioners, preferably from outside the academic
environment, should evaluate the method in more varied
scenarios than a single system’s use cases (SCAP). Also,
more attention should be given to activities of the software
process other than design: how does the use of FrameWeb
relates to Requirements Engineering, Testing, etc.? In terms
of experimental Software Engineering, there is still much to
be accomplished in our future work.

Finally, the choice of extending the UML meta-model, al-
though it provides some benefits (familiar language to de-
velopers, tool support, etc.), is not set in stone. We intend
to experiment with defining a DSL from scratch in order to
compare pros and cons of each model-driven approach.

7. ACKNOWLEDGMENTS
This work has been directly supported by the 2015 call of

the FAP institutional funding program from the Federal Uni-
versity of Esṕırito Santo. Nemo (http://nemo.inf.ufes.br) is
currently supported by Brazilian research agencies CAPES
and CNPq, process numbers 402991/2012-5, 485368/2013-7
and 461777/2014-2. We would like to thank our colleagues
at Nemo for their feedback regarding this work and, in par-
ticular, prof. João Paulo A. Almeida and Cássio C. Reginato
for their direct assistance in parts of it.

8. REFERENCES
[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns:

Best Practices and Design Strategies. Prentice Hall /
Sun Microsystems Press, 2nd edition, 2003.

[2] P. P. Baresi Luciano, Garzotto França. Extending
UML for Modeling Web Applications Luciano. In
Proceedings of the 34th Hawaii International
Conference on System Sciences, pages 1285–94. IEEE
Comput. Soc. Press, 2001.

[3] L. DeMichiel and B. Shannon. JSR 342:
JavaTMPlatform, Enterprise Edition 7 (Java EE 7)

Specification, https://jcp.org/en/jsr/detail?id=342
(last access: April 29th, 2015).

[4] J. Fons, V. Pelechano, O. Pastor, P. Valderas, and
V. Torres. Applying the OOWS model-driven
approach for developing web applications. The
Internet Movie Database case study. In Web
Engineering: Modelling and Implementing Web
Applications, pages 65–108. Springer, 2008.

[5] W. Frakes and K. Kang. Software reuse research:
status and future. IEEE Transactions on Software
Engineering, 31(7):529–536, July 2005.

[6] T. C. Gaspar, S. Paulo, C. A. C. Teixeira, S. Paulo,
A. F. Prado, and S. Paulo. A Service Oriented
Approach for Synchronous Collaborative RIAs
Development. In WebMedia - XVI Brazilian
Symposium on Multimedia and the Web, pages
115–122, Belo Horizonte (MG), Brazil, 2010.

[7] M. D. Jacyntho and D. Schwabe. Modelos e
Meta-Modelos para Transações em Aplicações Web. In
WebMedia - XVI Brazilian Symposium on Multimedia
and the Web, pages 75–82, 2010.

[8] L. S. Maia, M. A. S. Turine, H. d. C. Sandim, and
D. M. B. Paiva. Um Modelo para o Desenvolvimento
de Aplicações Web Acesśıveis. In WebMedia - XVI
Brazilian Symposium on Multimedia and the Web,
pages 235–242, Belo Horizonte (MG), Brazil, 2010.

[9] S. Meliá, J. Gómez, S. Pérez, and O. Dı́az. A
model-driven development for GWT-based rich
internet applications with OOH4RIA. In Proceedings -
8th International Conference on Web Engineering,
ICWE 2008, pages 13–23. Ieee, July 2008.

[10] J. I. Panach, N. Juristo, F. Valverde, and O. Pastor. A
framework to identify primitives that represent
usability within Model-Driven Development methods.
Information and Software Technology, 58:338–354,
2014.

[11] O. Pastor, S. España, J. I. Panach, and N. Aquino.
Model-driven development. Informatik-Spektrum,
31:394–407, 2008.

[12] O. Pastor, J. Gómez, E. Insfrán, and V. Pelechano.
The oo-method approach for information systems
modeling: from object-oriented conceptual modeling
to automated programming. Information Systems,
26(7):507 – 534, 2001.

[13] C. E. P. D. Purificação and P. C. D. Silva. EngenDSL
– a Domain Specific Language for Web Applications.
Proceedings of 10th CONTECSI International
Conference on Information Systems and Technology
Management, pages 879–899, June 2013.

[14] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture, Patterns for
Concurrent and Networked Objects. Wiley, 2013.

[15] V. E. S. Souza, R. A. Falbo, and G. Guizzardi.
Designing Web Information Systems for a
Framework-based Construction. In T. Halpin,
E. Proper, and J. Krogstie, editors, Innovations in
Information Systems Modeling: Methods and Best
Practices, chapter 11, pages 203–237. IGI Global, 1
edition, 2009.

http://nemo.inf.ufes.br

	Introduction
	Baseline
	FrameWeb
	Model-Driven Development

	Proposal
	Meta-model
	Multi-Framework Approach
	FrameWeb Tool

	Evaluation
	Related Work
	Conclusions
	Acknowledgments
	References

