
Dealing with Multiple Failures in Zanshin: A
Control-Theoretic Approach

Konstantinos
Angelopoulos

University of Trento, Italy
angelopoulos@disi.unitn.it

Vítor E. Silva Souza
Federal University of Espírito

Santo, Brazil
vitorsouza@inf.ufes.br

John Mylopoulos
University of Trento, Italy

jm@disi.unitn.it

ABSTRACT
Adaptive software systems monitor the environment to en-
sure that their requirements are being fulfilled. When this is
not the case, their adaptation mechanism proposes an adap-
tation (a change to the behaviour/configuration) that can
lead to restored satisfaction of system requirements. Un-
fortunately, such adaptation mechanisms don’t work very
well in cases where there are multiple failures (divergence
of system behaviour relative to several requirements). This
paper proposes an adaptation mechanism that can handle
multiple failures. The proposal consists of extending the
Qualia adaptation mechanism of Zanshin enriched with fea-
tures adopted from Control Theory. The proposed frame-
work supports the definition of requirements for the adapta-
tion process prescribing how to deal at runtime with prob-
lems such as conflicting requirements and synchronization,
enhancing the precision and effectiveness of the adaptation
mechanism. The proposed mechanism, named Qualia+ is il-
lustrated and evaluated with an example using the meeting
scheduling exemplar.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions

Keywords
requirements engineering, adaptive systems, multiple fail-
ures, optimization, Zanshin

1. INTRODUCTION
Adaptive software systems are designed so that they fulfill

their requirements in multiple ways (through multiple con-
figurations/behaviours). When a failure is detected (i.e., a
requirement of the system is not fulfilled), the system adapts
by switching to an alternative behaviour. Unfortunately,
such mechanisms treat each failure on its own merits and
don’t work very well in cases where multiple failures occur.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS’14 June 3-4, 2014, Hyderabad, India.
Copyright 2014 ACM 000-0-0000-0000-0/00/00 ...$15.00.

The reason is simple: in case of failures F, F’, the chosen
adaptations A, A’ may be conflicting, as A may call for a
behaviour that exacerbates F’, and vice versa with A’. This
problem is common in Control Theory, known as multivari-
able control problem for Multiple Inputs Multiple Outputs
(MIMO) [5, 10, 17].

Current approaches either deal with requirement failures
individually (e.g., Qualia [21]) or apply reconfiguration strate-
gies using rules (e.g., Rainbow [6]). Both approaches have
their pitfalls and drawbacks, as they can result in behaviour
that continues to fail to fulfill requirements and/or is unsta-
ble because of existing dependencies among requirements.
Therefore, while treating one failure by tuning some param-
eters of the system other requirements may be negatively im-
pacted, resulting in immediate or eventual failure of other
requirements rather than the one being treated. On the
other hand, rule-based adaptation strategies, e.g., [13, 6],
don’t scale very well as the number of combinations that
need to be considered grows combinatorially with the num-
ber of concurrent failures. More specifically, if we had to
define at design time adaptation rules for up to k possible
failures then in order to cover all possible combinations of
failures we would require O(2k) rules.

The main objective of this paper is to propose an adapta-
tion mechanism that can handle multiple failures (i.e., mul-
tiple failing requirements). Our proposal considers at the
same time all failing requirements and attempts to select an
adaptation that is coherent in the sense that it reduces the
overall degree of failure, taking into account priorities among
requirements. Our proposal supports the definition of adap-
tation requirements provided by stakeholders. For example
an adaptation requirement may state that the adaptation
should be conservative in that it does not change param-
eters in a way that could harm non-failing requirements.
Such adaptation requirements are taken into account as the
adaptation mechanism considers iteratively current failures,
selects an adaptation, applies it, and observes results. The
ultimate goal of this approach is to handle dependencies
among requirements in a way that is consistent with stake-
holder expectations about the adaptation process itself.

The rest of the paper is structured as follows. Section
2 presents the research baseline for this work. Section 3
describes the use of the Analytic Hierarchy Process (AHP)
to prioritize requirements and the definition of adaptation
requirements using concepts from the Zanshin framework.
Section 4 depicts the Qualia+ adaptation mechanism and
the extensions applied on Zanshin. In Section 5 we evalu-
ate the new mechanism comparing it with older version of

Qualia. Finally, in Section 6 we compare the related work
with our proposal and concluding in Section 7.

2. BASELINE
This paper builds on concepts adopted from Goal-Oriented

Requirements Engineering, such as goals for modelling stake-
holder requirements, softgoals for modelling non-functional
requirements, and AND/OR refinements that refine a goal
G into simpler goals G1, ...Gn whose satisfaction implies
the satisfaction of G. Tasks are actions that an actor can
take (the system itself, or an external actor) to fulfill or
operationalize a goal. For example, in Figure 1, Schedule
meeting is a top-level goal, while Good participation is a
softgoal. The goal Schedule meeting is AND refined into
task Characterize meeting and subgoals Collect timetables
etc. (4 subgoals in all).

Given this model, we use Zanshin [19] for the design of
adaptive systems. Based on requirements and inspired by
feedback control theory, the Zanshin framework consists of
three steps: Awareness Requirements Engineering, System
Identification and Evolution Requirements Engineering.

Awareness Requirements Engineering : the first step
is concerned with the elicitation of Awareness Requirements,
hereafter AwReqs, which are requirements that impose con-
straints over the success/failure of other requirements. AwReqs
determine the monitoring component of the feedback loop
that monitors and adapts a base system. For instance, Fig-
ure 1 includes requirement Q: At least 90% of participants
attend meetings. A possible AwReq AR6 over this require-
ment is: Q should have 75% success rate.

System Identification : the second step extracts indica-
tors from elicited AwReqs and identifies system parameters
that, when changed, affect such indicators. These param-
eters can be either Control Variables (CVs) or Variation
Points (VPs). The CVs are variables bounded within a
limited range of values that could be either continuous or
discrete. One the other hand, VPs are result of the OR-
decompositions of the goal models and represent the func-
tional variability of our system without though the exten-
sive detail that architectural models do. The nature of
this change is represented by differential relations. Back
to the Meeting Scheduler example, indicator I6 (meeting at-
tendance) can be extracted from AR6. Then, parameter
FhM , representing from how many participants one should
collect timetables before scheduling a meeting, is identified.
The impact that a parameter has on an indicator is char-
acterized qualitatively by a monotonicity relation. For in-
stance, the relation ∆ (I6/FhM) > 0 represents the fact
that if you increase FhM , I6 should also increase (knowing
more participants’ timetables results in better scheduling
and, hence, better attendance). In this case the monotonic-
ity of this relation is isotone. On the other hand, the rela-
tion ∆ (I3/FhM) < 0 represents the fact that if you increase
FhM , I3 is expected to decrease (antitone monotonicity).

Evolution Requirements Engineering : if AwReqs are
requirements for the monitoring component of the feedback
loop, Evolution Requirements (hereafter EvoReqs) repre-
sent requirements for the adaptation component. EvoReqs
specify required changes to other requirements when certain
conditions apply (e.g., the failure of an AwReq). For in-
stance, say there is a domain assumption D in the Meeting

Scheduler’s requirements model that says Participants use
the system calendar to keep track of their free/busy hours.
If AwReq AR7: D should always be true fails, one way of
adapting is to replace assumption D with a task T : Enforce
participants’ use of system calendar. This requirement ef-
fectively defines an evolution of other requirements in the
requirements model.

The Zanshin framework1 takes as input the requirements
model for the base system, including the elements described
above, and acts as a feedback controller that monitors for
failures and determines adaptation actions to be carried out.
Zanshin supports two kinds of adaptation: evolution, de-
scribed above, and reconfiguration. Reconfiguring consists
on finding an alternative specification with new values for
system parameters (identified during System Identification)
in order to improve indicators of failing AwReqs and take
the system back to an acceptable state. For instance, if
AR6 fails, which means I6 needs improving, Zanshin might
instruct the base system to increase FhM .

Although Zanshin can be integrated with other reconfig-
uration mechanisms, it provides its own named Qualia [21].
Qualia is an extensible adaptation mechanism that defines a
basic algorithm composed of 8 procedures (parameter selec-
tion, parameter change, and so on), which can be replaced by
more advanced procedures if desired. The basic algorithm
uses qualitative information about indicators, parameters
and their interrelations (defined by differential relations) in
order to randomly select which parameter to tune from the
set of parameters that can positively affect a given indica-
tor of a failing AwReq . Advanced procedures may require
more precise information from the model (e.g., parameters
related to an indicator be given an order of magnitude of
their effect), allowing Zanshin to handle multiple levels of
precision for the adaptation mechanism.

This paper tackles one of Qualia’s main limitations: it
deals with one failure at a time, on a first-come-first-served
fashion. Moreover, it ignores the case in which the adapta-
tion action chosen for one indicator affects negatively other
indicators that its AwReq may or may not be failing concur-
rently. For instance, for the Meeting Scheduler we identify
the differential relations ∆ (I6/FhM) > 0 and ∆ (I3/FhM) <
0 that share the same parameter characterized by opposite
monotonicity. Consequently if AR3 fails by decreasing the
FhM parameter, I6 would be affected negatively.

3. REQUIREMENTS FOR ADAPTATION
Handling multiple requirements failures requires trade-

offs. To achieve this, we extend Zanshin in a way that it can
dynamically put together adaptation strategies using prior-
ities over the requirements as criteria for resolving runtime
conflicts among requirements that could not be eliminated at
design time. We also propose the specification of Adaptation
Requirements (AdReqs) . These requirements are defined by
reusing the Zanshin framework, namely the notation used
to specify AwReqs and EvoReqs.

3.1 Prioritizing Requirements
Requirements are prioritized in order to support the se-

lection among alternative adaptations during the adaptation
process. If R, R’ are both failing, it is important to know

1See https://github.com/sefms-disi-unitn/Zanshin.

Collect
timetables

Find a suitable
room

Manage
meeting

Participants use
the system calendar

Find a local
room

Local rooms
available

List available
local rooms

Cancel
meeting

Confirm
occurrence

AND

OR

OR

OR

Good
participation

Characterize
meeting

Schedule
meeting

Fast
scheduling

Low cost

Collect
from system

calendar

AND

At least 90% of participants attend

Schedules produced
in less than a day

Meetings cost
less than € 100

Get room
suggestions

Book room

Cancel less
important
meeting

OR

Use available
room

Email
participants

OR

Collect
automatically

Call
participants

Use local
room Call hotels

and convention
centers

Call partner
institutions

AND

Choose
schedule

Schedule
manually

Let system
schedule

OR

SuccessRate(75%)

 NeverFail

 not Trend
 Decrease(7d, 2)

NeverFail

NeverFail

MaxFailure(1, 7d)

ComparableSuccess
(T-SchedManual, 10)

SuccessRate(75%)

SuccessRate(90%)

(AR1)

(AR2)

(AR3)

(AR4)

(AR5)

(AR6)

(AR8)

(AR9)

(AR10)

 NeverFail
(AR7)

VP1

VP2

VP3

VP4 VP5

 RF

 FhM

VPA RfM

MCA

Figure 1: Meeting Scheduler Goal Model

which of the two has higher priority. To make our adap-
tation mechanism more precise in dealing with failures, we
actually require information on how much higher priority
does R have over R’, a little or a lot.

Given such information, we can adopt the Analytic Hier-
archy Process (AHP) [14] which has been proven to be an
effective method for prioritizing objectives [8]. Other appli-
cations of the AHP prioritize requirements as a means to
select adaptations that address failures for requirements of
highest priority. [7]. In our case the prioritization is useful
for selecting which requirement failure should be fixed and
which one should not because it would create further failures
that should lead to changes to other requirements.

The process for prioritizing AwReqs and their associated
indicators includes the following steps. First, after the sys-
tem identification process is carried out and the qualitative
relations among indicators and the parameters are elicited,
we identify which indicators present potential conflicts. By
the term ‘conflict’ we mean that two indicators are influ-
enced by the same parameter in opposite directions. For
example if I1 and I2 are both influenced by parameter P4

and ∆ (I1/P4) > 0 and ∆ (I2/P4) < 0 their differential rela-
tions mean that if AR1 and AR2 are failing and we can treat
them only by tuning P4 then we cannot fix both of them.
Then, by using the scale presented in Table 2 we compare
all the pairs of indicators and assign a value to each pair.
For the purpose of illustration consider that we have four
indicators I1, I2, I3 and I4 and the result of the pairwise
comparisons is shown in Table 1.

- I1 I2 I3 I4
I1 1 3 1/5 1
I2 1/3 1 7 1/5
I3 5 1/7 1 1/5
I4 1 5 5 1

Table 1: Pairwise Comparison Values

For an effective use of AHP we apply two heuristics that
work as guidelines for assigning consistent priority values:

Heuristic 1: Indicators associated with hard-goals are pre-
ferred over those of soft-goals.

Heuristic 2: Indicators of hard-goals that are closer to the
top-goal are preferred over lower level ones.

The purpose of these heuristics is to give higher priority
to the functional integrity of the system over satisfaction of
the non functional requirements. The process continues by
calculating eigenvalues and then normalizing sums of rows.
The final result is shown in equation 1.

1

4
·

0.87
0.75
0.84
1.45

 =

0.22
0.18
0.21
0.36

I1
I2
I3
I4

 (1)

We have now assigned weights over each indicator that
represent their relative and we have a numerical guide to
perform comparisons when needed. For instance, in the case
where the system has to choose between fixing either I1 and
I3 or I4, even if I4 is ranked higher than the other two
their aggregated weight is higher and therefore should be
preferred.

3.2 Adaptation Requirements
Our proposal includes a component that, given a require-

ments model and differential relations among requirements
and system parameters is able to dynamically compose adap-
tation strategies that can handle multiple failures. As a first
step we prioritized the indicators of the target system with
weights that also measure their overall contribution to the
correct operation of the system. This, combined with the
qualitative relations from the system identification process
allows Zanshin to automatically compose adaptation strate-
gies, reconfiguring the system and maximizing the value of
the satisfied indicators.

Relative Intensity Definition Explanation
1 Of equal importance The two indicators are not conflicting
3 Slightly more important Experience and judgement slightly favors one indicator over the other
5 Essentially more important Experience strongly favors one indicator over another
7 Very much more important An indicator is strongly favored and its dominance is demonstrated in practice
9 Extremely more important The evidence favoring one over the other is of the highest possible validity

2,4,6,8 Intermediate values When compromise needed
Reciprocals: If indicator I has one of the above numbers assigned to it when compared with requirement I’, then I’ has the reciprocal
value when compared with I.

Table 2: Scale For Pairwise Comparisons

Our framework deals with the following kinds of failure:

• Single Failure (SF): Only one indicator is failing and
needs to be fixed.

• Multiple Independent Failures (MIF): Many indicators
are failing and either they don’t have any common pa-
rameters or the common parameters have the same
monotonicity with every failing indicator.

• Multiple Dependent Failures (MDF): Many indicators
are failing and all or groups of them share parameters
with opposite monotonicity.

• Priority Conflict (PC): A failing indicator can be fixed
only by tuning a parameter that harms a non-failing
indicator of higher priority.

• Synchronization Conflict (SC): An indicator is cur-
rently being treated and in the meantime a new failing
indicator requires tuning of a parameter that has a
negative impact on the one being treated.

In Control Theory a common way to resolve such conflicts
is through compensation [4]. This method involves the addi-
tion of control mechanisms called compensators whose role
is to compensate for deficient performance. In other words,
compensators make trade-offs on output values or modify
the reference input to achieve an acceptable result. Zanshin
is able to accommodate compensation mechanisms by defin-
ing EvoReqs that refer to the adaptation process itself. In
this work we exploit this capability of Zanshin to achieve
conflict resolution and minimize the error caused by failing
AwReqs.

Therefore, we model in Zanshin additional AwReqs and
EvoReqs whose subject is the adaptation process itself, rather
than the base-system. Figure 2 presents a simple goal model
that prescribes how conflicts should be resolved during the
adaptation process. The task Adapt Conservatively instructs
the framework not to harm non-failing AwReqs while fixing
the failing ones. The alternative task Adapt with Compensa-
tion represents the compensation mechanism we mentioned
earlier. More specifically, the adaptation framework is al-
lowed to harm a non-failing AwReqs of higher value for fix-
ing another one, only if there is a possible action that would
increase the indicator of the AwReq being harmed. Along
the same lines, Adapt Optimistically does not consider pri-
ority conflicts as hazards for the base system because there
is the assumption that the non-failing AwReqs are tolerant
enough to a potential negative impact. We refer to these
requirements as AdReqs.

Resolve Conflicts

Avoid Syncronization
Conflicts

Don't tune parameters of
unresolved indicatorsOR

NeverFail

(AR2)

Non-failing indicators don't fail when
receiving negative impact

VP1

SuccessRate(80%)

(AR1)

Adapt
Conservatively

Adapt with
Compensation

Adapt
Optimistically

Figure 2: Adaptation Requirements Goal Model

To monitor the success/failure of requirements for the
adaptation process depicted in Figure 2 we use AwReqs.
In this case AR2 imposes the constraint that non-failing
AwReqs should not fail when receiving negative impact. As
we would do for any goal model of a target system we define
an adaptation strategy to overcome failures of this Aware-
ness Requirement. Given the differential relation ∆ (I2/V P1)
[AdaptConservatively → Adaptwith Compensation→
AdaptOptimistically] < 0 (the arrows indicate growing enu-
meration values [20]) the strategy switches among the pos-
sible values of the parameter V P1.� �
AwReq AR2: Non -failing indicators don ’t fail when

receiving negative impact
-Checked at: every 5 minutes
-Adaptation Strategy 3.1: ChangeParam(VP1 , Adapt with

Compensation)
-Applicability Condition: this is the first failure

-Adaptation Strategy 3.2: ChangeParam(VP1 , Adapt with
Compensation)

-Applicability Condition: AS3.1 applied last , more
than 5 minutes ago

-Adaptation Strategy 3.3: ChangeParam(VP1 , Adapt
Optimistically)

-Applicability Condition: no failure for more than
1 hour� �

Listing 1: Adaptation Strategy for Adaptation
Requirements

Independently of the value of parameter V P1, the adap-
tation framework is required to perform trade-offs among
indicators of failing and non failing AwReqs. For some indi-
cators there is a parameter to change in order to be bring
it closer to fulfilment. For others there won’t be any, at
least ones that don’t harm higher priority indicators. Hence,
when potential conflicts are detected during system identi-
fication process EvoReqs operations (e.g. abort, retry, re-
place etc) should be assigned to every indicator that may
conflict with others. For instance, for the Meeting Sched-
uler AR6 and AR10 are both dependent on the parameter

FhM through the differential relations ∆ (I6/FhM) > 0
and ∆ (I10/FhM) < 0. Consequently, if AR6 has higher
priority than AR10 and AR10 fails, but the framework ap-
plies conservative adaptation, a predefined EvoReqs opera-
tion for AR10 could be Replace(AR10 1day,AR10 2days).
This way we acquire compensation in accordance with re-
quirements set by the stakeholders.

Given the fact that the changes to parameter values do not
take effect immediately and in the meantime more failures
may take place, it is important to apply a form of synchro-
nization to the adaptation process. In Figure 2 the Avoid
Synchronization Conflicts and the AR1 satisfy this need.
This goal states that when a failing indicator is being fixed
no parameter can be tuned in a way that will affect the fail-
ing indicator negatively. For example, if AR8 is failing and
the adaptation framework increases RfM to fix it. How-
ever, this change may require several time to take effect and
before that happens. AR2 fails. In order to fix AR2 the
parameter V P2 must be decreased, but that would affect
negatively AR8 before the latter has been fixed. To avoid
such situations that could lead the adaptation process into
non-converging adaptations, we set as a requirement not to
apply changes that affect unresolved indicators for the shake
of fixing other failures.

4. ADAPTATION PROCESS FOR MULTIPLE
FAILURES

In the previous section we presented a set of features
such as prioritization and compensation mechanisms that
can help us handle multiple concurrent failing indicators
and compose dynamically adaptation strategies. This sec-
tion describes the additions to the Zanshin framework that
implement these features and explains the steps that the
adaptation process carries out.

Figure 4 depicts the conceptual architecture of the ex-
tended Zanshin framework. A Monitor Component exam-
ines the log files that are produced at runtime from the base
system if any failing AwReqs are detected the Failure Man-
ager and the Adaptation Manager are informed. The Failure
Manager groups failing indicators according to the presence
of conflicts with other indicators and informs the Decision-
Maker component. The Adaptation Manager is responsible
for configuring the adaptation process by monitoring the re-
quirements model such as the one in Figure 2. When an
AwReq fails, it selects an adaptation strategy for this fail-
ure. Then, it informs the Decision-Maker about the selected
parameter values of the adaptation process goal model in
order to perform the trade-offs accordingly. The Decision-
Maker exploits input from other components and the indica-
tors’ value derived from the AHP to select which indicators
should be tuned and which should be compensated. The
Strategy Manager converts decisions to adaptation strate-
gies by putting together all the required operations. Finally,
the Adapt component executes the operations that are pre-
scribed in the adaptation strategy.

To give a better understanding of how the framework op-
erates, the diagram of the Figure 3 presents every step of
the adaptation process. The steps are:

1. All the AwReq failures are collected by the failure man-
ager;

2. The indicators of the failing AwReqs are separated

Collect
Failures

1
Group

Indicators

2
Resolve
Conflicts

3
Select
Parameters

4

ii:Conflicting
Indicators

i:Not Conflicting
Indicators

Perform Parameter
Change and EvoReq

Operations

6
Wait

7
Evaluate
Indicators

8
Learning

9

Resolution
Check

10

Not Done

Done

Evaluate
Adaptation
Goa-Model

11 Calculate
Parameter
Values

5

Figure 3: Zanshin’s Adaptation Process

with criteria related to the conflicts they may be part
of;

3. The decision-maker exploiting the differential relations
and the values assigned to each indicator resolves any
conflicts that may exist by deciding what action should
be performed;

4. For every indicator that is selected to be fixed there
might be more than one parameter available and one
parameter may be able to fix more than one selected in-
dicator. The framework selects the minimum number
of parameters that should be tuned to fix the chosen
indicators.

5. The values for the selected parameters are calculated;

6. The values of the selected parameters are changed and
the EvoReqs operations for the indicators that can’t
be treated are executed;

7. The framework waits for the changes to take effect;

8. After the wait time the indicators are evaluated again;

9. In each cycle, the process learns from the outcome of
this change and the recorded data could be used to
derive quantitative relations among indicators and pa-
rameters;

10. Finally, if there are no more failing AwReqs after the
evaluation the process terminates successfully.

11. Otherwise, the framework will look for violations on
the requirements for the adaptation process and if any
are found the defined adaptation strategy will be exe-
cuted.

The strategy manager composes a new strategy with all
the actions that will apply the new values to the parame-
ters. These actions are executed by Requirement evolution
operations on the target system. The framework waits for
an amount of time for the changes to take place and then
evaluates the indicators that were treated. There is a step
that the framework is performing learning in order to derive
quantitative relations among parameters and indicators, but
it’s part of our future research agenda and is not examined in
this paper. Finally, the algorithm terminates if all the fail-
ing AwReqs are fixed and if not the policy manager controls

Instrumented
target system

Target
system

E
vo

lu
tio

n
 A

P
I

Zanshin framework

A

da
p

t

Requirement
evolution

operations

Log entries

M

o
n

ito
r

Requirements
(Goal models)
(SysId Info)

Adaptation
Manager

S
tr

a
t e

g
y

M
a

n
ag

e
r

Failure
Manager

Decision-Maker

Requirements
for Adaptation

Decisions Actions

AwReq
State change

 Failure
 Groups

Figure 4: Zanshin Architecture

the status of of the adaptation requirements and switches
policy if there are any failures.

Computationally the most complex step of the adaptation
process is the one that groups failing indicators. The Failure-
Manger has to compare all the failing indicators pairwise.
The output is two disjoint sets of indicators. The indicators
of the first set do not present any conflicts with each other
neither with those of the other set. On the other hand, the
indicators of the the second set do present conflicts with
other indicators of the same subset. The Decision-Maker is
responsible for finding a subset of this set where the indica-
tors don’t conflict with each other and the sum of their prior-
ity values is the maximum. This is a well-studied NP-hard
combinatorial optimization problem [11] for which greedy
algorithms have been proposed [15] and perform sufficiently
well. We note that as a task of our research agenda is to
improve the decision-making performance of the framework
by exploiting log data and deriving quantitative relations
among indicators and parameters through. Then, faster
quantitative optimization approaches will be applicable.

5. EVALUATION
This section explains how the Qualia+ mechanism works

through the Meeting Scheduler case study we introduced in
Section 2. Then we demonstrate several cases that the older
version of Zanshin wouldn’t be able to handle as effectively
as the extended one does.

5.1 Meeting Scheduler Case Study
The first step for building an adaptive system that will

be managed by our proposed framework is to perform sys-
tem identification and elicit the differential relations among
AwReqs and the parameters of the system’s goal model.
From the goal model of the Meeting Scheduler depicted in
Figure 1 we elicit a set of differential relations presented in
Table 3. We then apply AHP as discussed earlier and show
the result in Table 4. The final step for having all the prereq-
uisites for our frameworks input is to assign to each AwReq
an EvoReq operation to be executed in case it cannot be
fixed by changing a parameter value due to the presence of
conflict(s). For our case study the assigned EvoReq opera-
tions are listed in Table 5.

order (RF) : listonly ≺ short ≺ full (2)

order (V P2, AR10) : partner ≺ hotel ≺ local (3)

∆ (I1/RF) < 0 (4)

∆ (I2/RfM) < 0 (5)

∆ (I2/V P2) < 0 (6)

∆ (I3/FhM) < 0 (7)

∆ (I4/RfM) > 0 (8)

∆ (I4/V P2) > 0 (9)

∆ (I5/MCA) > 0 (10)

∆ (I5/V P3) < 0 (11)

∆ (I6/RF) > 0 (12)

∆ (I6/FhM) > 0 (13)

∆ (I6/V PA) {false→ true} > 0 (14)

∆ (I6/MCA) < 0 (15)

∆ (I6/V P1) < 0 (16)

∆ (I6/V P3) < 0 (17)

∆ (I7/V PA) {false→ true} < 0 (18)

∆ (I8/RfM) [0, enough] > 0 (19)

∆ (I8/V P2) > 0 (20)

∆ (I9/MCA) > 0 (21)

∆ (I9/V P3) > 0 (22)

∆ (I10/RF) < 0 (23)

∆ (I10/FhM) < 0 (24)

∆ (I10/V P1) > 0 (25)

∆ (I10/V P2) > 0 (26)

∆ (I10/V P3) > 0 (27)

Table 3: Differential relations elicited for the Meet-
ing Scheduler example [18]

AwReq Priority Value
AR6 1.63
AR5 1.58
AR4 1.17
AR1 1.09
AR8 0.93
AR2 0.8
AR3 0.7
AR7 0.76
AR9 0.64
AR10 0.6

Table 4: Priority Values of AwReqs

In our previous work [18] we state that some EvoReq op-
erations can act either at instance level or class level. For
example, when a requirement R is replaced by a requirement
R’ at an instance level, it means that future runs of the base
system will use R, not R’. On the other hand, a class-level
change means that subsequent executions of the base system
will see only R’. As presented in Table 5, AR2, AR3, AR6,
AR8 and AR10 can be replaced by other requirements with
weaker quality constraints. For example, for Good participa-
tion, instead of expecting 90% participation we could lower
expectations to 80%. For the AwReqs AR1, AR4 and AR5
we don’t weaken requirements but rather postpone dealing
with them, using the Retry(time) operation. For AR7 and
AR9 we use the EvoReq operations Warning() and Abort()
respectively. The first one prints a warning message and the
second one suspends the requirement altogether.

Now that all the required input for Zanshin has been spec-
ified we present a case of multiple failures and how these
are resolved. The adaptation requirements for the frame-
work are those presented in Figure 2 and the predefined
value of V P1 is Adapt Optimistically. The monitor compo-
nent checks periodically every 1 hour if there are any fail-
ures. In the first scenario the monitor detects failures of
AR1, AR2. Then the Failure Manager collects the parame-
ters than can tune failing indicators. According to Table 3
for AR1 the only option is to decrease RF (required fields
to organize a meeting) and for AR2 either decrease RfM
(Rooms for Meetings available) or decrease V P2. There
are though priority conflicts with non-faillling AwReqs a)
AR1 conflicts with AR6 and b) AR2 conflicts with AR4 and
AR8. The Decision-Maker takes into account the adapta-
tion goal Adapt Optimistically and ignores the priority con-
flicts. Therefore, the Strategy Executor composes an adap-
tation strategy that executes two operations decrease(RF)
and decrease(RfM). The framework will wait for the ef-
fects to take place and then examines if the indicators still
need improvement. The previous AwReqs are not failing
anymore, but AR4 and AR8 are adversely affected as they
are now failing. Moreover, the Adaptation Manager because
of these new failures switches to Adapt with Compensation.
The Decision Manager then decides to increase the param-
eter RfM to improve AR4 and AR8 and executes the as-
signed EvoReq operation for AR2 since it has the lowest
priority and no other parameter to be reconfigured. The re-
sult is a new strategy with the operations increase(RfM)
and Replace(AR2, AR2 200euro). The outcome is that the
new AR2 is not failing anymore and AR4 and AR8 are not

failing.

AwReq EvoReq operation
AR1 Retry(50000ms)
AR2 Replace(AR2,AR2 200euro)
AR3 Replace(AR3,AR3 14d)
AR4 Retry(1day)
AR5 Retry(10000)
AR6 Replace(AR6,AR6 80%prt)
AR7 Warning()
AR8 Replace(AR8,AR8 14d)
AR9 Abort()
AR10 Replace(AR10,AR10 3days)

Table 5: Evoreq operations for AwReqs

5.2 Improved Adaptation
The previous version of Zanshin and Qualia adaptation

mechanism were ignoring the fact that there are cases where
multiple failures cannot be handled independently by treat-
ing individually and sequentially indicators of failing AwReqs.
To test our approach we implemented a simulation of the
meeting scheduler example. The participants were imple-
mented as agents with their own calendars and the rooms
for the meetings registered to our implementation’s database
have the same characteristics with the meeting rooms of the
University of Trento and its collaborating institutions. To
test our system we initialize the calendars of every partici-
pant in order to create more realistic conditions. Then the
user of the system has the role of the meeting organizer and
initiates meeting requests specifying the room requirements
and the participants. The participants may have conflicts
with their own schedules or not. A monitoring mechanism
is measuring every indicator after every meeting and updates
it’s status as failing or healthy. For comparison reasons we
ran the same simulations using Qualia and Qualia+ and be-
low we demonstrate some of the failing scenario that took
place and how each algorithm dealt with them.

Scenario 1: The monitor detects failures for AR4 and AR8.

Qualia: The framework will treat first the failure that was
detected first, in this case AR4. The parameter RfM
is increased due to the differential relation (7) of Ta-
ble 3. If after the change AR4 is not failing a new
adaptation session starts for AR8 increasing V P2 due
to the differential relation (18). When AR8 ceases to
fail as a consequence of the parameters increment AR2
fails because of the negative impact the changes (dif-
ferential relations (4) and (5)). Then Qualia would
decrease again either RfM or V P2 (or both) in order
for AR2 to recover. It is obvious that such an adap-
tation mechanism will fall into an infinite loop doing
and undoing the same changes.

Qualia+: The framework is instructed how to adapt in
these cases using AdReqs as described in the example
of the previous subsection.

Scenario 2: The monitor detects failures for AR5, AR6
and AR9.

Qualia: The framework treats again the failures sequen-
tially changing parameters that would result again in
an infinite loop.

Qualia+: The Failure Manager finds MCA (maximum con-
flicts allowed among the participants’ time-schedules)
as only available parameter which means that the De-
cision Maker has to choose between increasing MCA
to improve AR5 and AR9 and worsen AR6 or decrease
MCA to improve AR6 and worsen AR5 and AR9. The
choice is based on the priority values of the indicators
shown in Table 4 and since (1.58+0.64>1.63) AR5 and
AR9 are preferred. The finally result would be a strat-
egy with the operations: a) increase(MCA) and b)
Replace(AR6, AR6 80%prt). This way we compensate
for not improving AwReq while meeting adaptation re-
quirements.

We note that adaptation strategies could have also been
composed defining rules that specify in what order should
EvoReqs operations be executed and under what circum-
stances. However, such rules are outside the scope of re-
quirements and hard for stakeholders to conceptualize, and
therefore define. Qualia+ allows stakeholders to define the
policies by which such conflicts should be resolved during
the adaptation process. Moreover, the dynamic composition
of adaptation strategies means that the adaptation process
does not need to go off-line when adaptation requirements
are changed.

6. RELATED WORK
In the field of software-adaptation a variety of approaches

have been proposed to handle multiple objectives that need
to be achieved. First, Rainbow[6] exploits Utility Theory
to perform trade-offs among conflicting objectives maximiz-
ing the overall utility of the system. In the context of the
same work, improved adaptation strategies are proposed us-
ing the concept of preemption [13]. The revised adaptation
mechanism schedules better available strategies and can in-
terrupt them when needed if new failures, more important,
come into play. These strategies intended to be based on
human experience and expertise of a control-based process.
Consequently, there is no guarantee that after the addition
or removal of one or more requirements they will still be ef-
fective. On the other hand, the basic idea of our work is to
automate the composition of the adaptation strategies based
on stakeholder requirements and preferences.

The work of Kramer and Magee [9] proposes another Architecture-
based solution for self-adaptive systems. Adaptations in this
framework are determined at three layers. The bottom layer,
called Component Control, monitors the base-system and
detects failing components. When a failure is noticed a re-
quest for adaptation actions is sent to the upper layer, called
Change Management. This layer is responsible for an adap-
tation plan that will reconfigure and restore the failing sys-
tem. If a plan is not available then the top layer, called Goal
Management is invoked to produce new adaptation plans
when new goals are introduced to the system. In this work,
as in ours, adaptation strategies are composed dynamically.
Our proposal attempts to go farther by exploiting require-
ments models that prescribe not only how the base-system
should operate but also how it should adapt, even if there
are no available adaptation actions, through EvoReqs. On

the other hand architecture models facilitate software adap-
tation because they offer adaptation options that are simply
not there in the requirements models we use. In our previ-
ous work [1] we advocate the combination of Requirements-
based and Architecture-based approaches to better support
adaptation. This is also part of our research agenda.

Another Requirements-based approach is RELAX [23],
that captures uncertainty declaratively with modal, tempo-
ral and ordinal operators applied over SHALL statements
(e.g.,“the system SHALL ... AS CLOSE AS POSSIBLE to
...”). A similar approach, but based on the goal-oriented
language KAOS [3], is FLAGS [2]. This approach extends
the linear temporal logic (LTL) used in KAOS with fuzzy
relational and temporal operators, allowing some goals to
be satisfied even if values are close to but not equal to the
desired ones. FLAGS also proposes an operationalization
of its models in a service-oriented infrastructure. Although
FLAGS deals with conflict resolution and synchronization
during the adaptation process as our work does, the dif-
ferential relations, the prioritized requirements and AdReqs
offer a more pragmatic basis for stakeholders to express their
requirements on the adaptation process.

Multiple failures are also handled by Vromant et al in
[22]. This work adopts and extends the Monitor-Analyze-
Execute-Plan (MAPE) adaptation model focusing on inter-
acting feedback loops. The baseline exemplar is a traffic
monitoring system that is composed of several groups of
agent-cameras that depend on each other to operate and
provide accurate results. When several agents are not oper-
ating properly, several adaptation loops are being executed
and co-ordinated in order to produce effective adaptation
plans. Even though the approach presents an interesting
way to adaptation mechanism to schedule adaptation ac-
tions, the focus is only on detecting which agents are not
responding and how the the nodes of the system should be
regrouped so that the system will keep providing the re-
quired service. In other words the dependencies are among
system components and not the requirements as in our case.

Another Requirements-based and control theoretic approach
is presented in [12]. In this work the authors implement a
PID controller that monitors the set values of the satisfac-
tion of goal model’s softgoals and when the output declines
finds a different configuration over the goal model. A pref-
erence ranking is used to assist the trade-off process among
conflicting softgoals. This configuration is a result of rea-
soning supported by the OpenOME tool [16]. The imple-
mentation of the PID controller enhances the precision to
the adaptation process, however the approach takes into ac-
count only failing softgoals. Moreover, there is no consid-
eration about how lower priority failures are to be treated,
while in our proposal we introduce the concept of compensa-
tion to achieve that. Nevertheless, this work is closest to the
goal-oriented requirements framework we are using here.

7. CONCLUSIONS
The main contribution of this paper is a requirements-

based adaptation mechanism that can handle multiple con-
current requirements failures. To accomplish this, we have
extended the Zanshin framework with two basic new fea-
tures. The first is the concept of AdReqs, which are require-
ments about the adaptation process itself. Like all require-
ments, these come from the stakeholders and define policies
the adaptation process has to comply with. The second fea-

ture is a decision making mechanism that takes into account
AdReqs to decide which requirements should be improved
and which have to be compensated temporarily or perma-
nently by EvoReqs operations. The new adaptation mecha-
nism, called Qualia+, makes it possible for stakeholders to
reflect their needs and preferences for the adaptation process
by assigning priorities and compensation operations to base
system requirements. Moreover, the fact that adaptation
strategies are composed dynamically allows stakeholders to
change AdReqs during system operation.

Our proposal needs to be further evaluated to ensure its
effectiveness on several case studies. Moreover, we plan to
extend Zanshin so that it can learn during its operations
quantitative relations between indicators and control param-
eters, to replace qualitative relations provided by require-
ments engineers and domain experts.

8. ACKNOWLEDGMENTS
This work has been supported by the ERC advanced grant

267856“Lucretius: Foundations for Software Evolution”(April
2011 – March 2016, http://www.lucretius.eu).

9. REFERENCES
[1] K. Angelopoulos, V. E. S. Souza, and J. a. Pimentel.

Requirements and architectural approaches to
adaptive software systems: A comparative study. In
Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’13, pages 23–32, Piscataway, NJ,
USA, 2013. IEEE Press.

[2] L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy Goals
for Requirements-driven Adaptation. In Proc. of the
18th IEEE International Requirements Engineering
Conference, pages 125–134. IEEE, 2010.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed Requirements Acquisition. Science of
Computer Programming, 20(1-2):3–50, 1993.

[4] R. Dorf. Modern control systems. Pearson Prentice
Hall, Upper Saddle River, NJ, 2008.

[5] J. Doyle and G. Stein. Multivariable feedback design:
Concepts for a classical/modern synthesis. Automatic
Control, IEEE Transactions on, 26(1):4–16, 1981.

[6] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46–54, 2004.

[7] J. Karlsson and K. Ryan. A cost-value approach for
prioritizing requirements. Software, IEEE,
14(5):67–74, 1997.

[8] J. Karlsson, C. Wohlin, and B. Regnell. An evaluation
of methods for prioritizing software requirements,
1998.

[9] J. Kramer and J. Magee. A rigorous architectural
approach to adaptive software engineering. J. Comput.
Sci. Technol., 24(2):183–188, 2009.

[10] A. Morse and W. Wonham. Status of noninteracting
control. Automatic Control, IEEE Transactions on,
16(6):568–581, 1971.

[11] C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization: Algorithms and Complexity.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1982.

[12] X. Peng, B. Chen, Y. Yu, and W. Zhao. Self-tuning of
software systems through dynamic quality tradeoff
and value-based feedback control loop. Journal of
Systems and Software, 85(12):2707–2719, 2012.

[13] R. Raheja, S.-W. Cheng, D. Garlan, and B. Schmerl.
Improving architecture-based self-adaptation using
preemption. In Proceedings of the First International
Conference on Self-organizing Architectures, SOAR’09,
pages 21–37, Berlin, Heidelberg, 2010. Springer-Verlag.

[14] R. Saaty. The analytic hierarchy process—what it is
and how it is used. Mathematical Modelling,
9(3–5):161 – 176, 1987.

[15] S. Sakai, M. Togasaki, and K. Yamazaki. A note on
greedy algorithms for the maximum weighted
independent set problem. Discrete Applied
Mathematics, 126(2–3):313 – 322, 2003.

[16] R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple
and minimum-cost satisfiability for goal models. In
A. Persson and J. Stirna, editors, 16th International
Conference on Advanced Information Systems
Engineering, volume 3084 of Lecture Notes in
Computer Science, pages 20–35, Riga, Latvia, June
2004.

[17] S. Skogestad. Multivariable feedback control : analysis
and design. John Wiley, Hoboken, NJ, 2005.

[18] V. Souza, A. Lapouchnian, K. Angelopoulos, and
J. Mylopoulos. Requirements-driven software
evolution (online first). Computer Science - Research
and Development, pages 1–19, 2012.

[19] V. E. S. Souza. Requirements-based Software System
Adaptation. Phd thesis, University of Trento, Italy,
2012.

[20] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos.
System Identification for Adaptive Software Systems:
a Requirements Engineering Perspective. In
M. Jeusfeld, L. Delcambre, and T.-W. Ling, editors,
Conceptual Modeling – ER 2011, volume 6998 of
Lecture Notes in Computer Science, pages 346–361.
Springer, 2011.

[21] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos.
Requirements-Driven Qualitative Adaptation. In
R. Meersman et al., editors, On the Move to
Meaningful Internet Systems: OTM 2012, volume
7565 of Lecture Notes in Computer Science, pages
342–361. Springer, 2012.

[22] P. Vromant, D. Weyns, S. Malek, and J. Andersson.
On interacting control loops in self-adaptive systems.
In Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’11, pages 202–207, New York, NY,
USA, 2011. ACM.

[23] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and
J.-M. Bruel. RELAX: a language to address
uncertainty in self-adaptive systems requirement.
Requirements Engineering, 15(2):177–196, 2010.

