2

The Purpose of this Work

The main goal of Software Engineering is to obtain quality products that offer
high productivity. The way to achieve this goal with adequate software production
methods is, nevertheless, always a problem. To date, it has not been solved satis-
factorily, even though the multiple solutions that have appeared in the last decade
have always presented themselves as being the ultimate solution to the problem.

We could talk about the dozens of third- and fourth-generation programming
languages that have been proposed, or about the multitude of software production
methods, for a start the structured languages, then the object-oriented ones. We
could also discuss the most advanced programming techniques based on the use of
components (Component-Based Development, CBD), or the more recent Extreme
Programming proposals, the introduction of Agent-Oriented Programming and
Aspect-Oriented Programming.

We could talk about Agile Software Development Methods proposals, or about
techniques that are linked to Requirements Engineering. There is a true universe
of technologies that have repeatedly claimed to have found the Philosopher’s Stone
for developing an automated process to develop quality software. However, these
same technologies have taken us back to the starting point not long after their
introduction.

All the evidence shows that the development of software products (commonly
referred to as applications) has always been and still is a complex task, especially
in management environments (which are linked to Organizational Systems). What
is worse is that their complexity, rather than decreasing, continues to increase. This
has become a constant factor in Software Engineering and is due mainly to the
fact that the customers’ needs for products are always more sophisticated. Also, the
resulting applications are developed using highly dynamic, constantly changing
technologies, which are usually presented with a facade of simplicity.

Complexity also increases because development technologies must structure
the final software product according to protocols that are associated to differ-
ent architectures, which are usually based on object-oriented models and on the
development of distributed components and their associated software architec-



8 2 The Purpose of this Work

tures (DCOM, CORBA, multi-tiered architectures as an evolution of the traditional
client/server architectures, internet/intranet environments, etc.)

In most situations, the technological complexity ends with the software engi-
neer devoting more effort to getting to know the technical aspects of a particular
solution, rather than focusing on understanding the problem to be solved by the
application. This raises the following questions to pursue: modelling vs. program-
ming; understanding and representing the problem vs. implementing the solution;
focusing on the modelling (the problem space) and temporarily ignoring the tech-
nical aspects (the solution space).

We must bear in mind that only after we have a thorough understanding of what
the software product must do, will we be able to define how it should be built. It is
absolutely necessary to have production methods that allow us to specify and repre-
sent the Conceptual Schema of an Information System and to then transition to the
implementation phase, which is responsible for producing a software product that
is functionally equivalent to the specification created in the conceptual modelling
phase.

Therefore, the question arises as to why this “family of methods” is not common
practice in Software Engineering. Perhaps the answer is simply that we do not
possess methods and development environments that are advanced enough to allow
the construction of software applications from conceptual models, methods that
are advanced enough to allow the engineer to focus on what the system is, and
not on how the system will be represented in a given programming environment,
methods that are advanced enough to allow the use of notations that are close to
the problem space, and not the solution space.

These goals have guided the history of Software Engineering for years. In order
to obtain a quality software product in an effective manner, we have witnessed how
the level of abstraction in programming languages, tools and environments has
evolved, coming ever closer to the user space. This is only natural, if we take into
account that any analysis of an information system is characterized by the existence
of two fundamental actors:

1. The stakeholders, who know the problem to be automated by a software prod-
uct. They are the final users of this software product.

2. The software engineers, who must build a coherent model from the knowledge
of the stakeholders. The resulting Conceptual Schema must represent (in the
Problem Space) the concepts comprehended and captured during the inter-
action with the stakeholders. Naturally, the next step is to correctly represent
this Conceptual Schema by using the specific set of software representations
provided by a given programming environment, in what we have denoted the
Solution Space.

From the times of the first assembler languages to the modern conceptual modelling
environments and the production of software products driven by conceptual mod-
els, Software Engineering has tried to provide engineers with production methods
that are closer to the Problem Space with the twofold goal of:



2 The Purpose of this Work 9

1. Easing the specification of Information Systems to make it feasible in terms
that are close to the knowledge of the stakeholders.

2. Easing the conversion to the notation of the Solution Space in an organized and
precise manner by defining the corresponding transformation mechanisms
(the ideal case being the use of model compilation techniques).

As a result of this, one of the critical tasks in modern Software Engineering is
Requirements Specification, and the Conceptual Modelling tasks associated with
it that lead to building a Conceptual Schema where these requirements are ade-
quately represented. This phase of Conceptual Modelling is strongly related to the
final quality of the software product and to the productivity of the corresponding
software process because the requirements describe the goals of the effort to de-
velop the software, provide guidelines for the design of the software architecture,
and set the basis for measuring the quality of the final product.

In the late 1990s, several studies on software development in Client/Server and
Object-Oriented environments (Douglas et al. 1996) supported the thesis that the
most critical tasks in the software production process are still the specification and
analysis of requirements. They also recognized that errors produced in this phase
of the software development process could have a huge impact on the reliability,
costand robustness of the system. These errors are commonly attributed to the lack
of tools that offer integral support to the development process and that are closely
linked to the subsequent phases of the development process.

An immediate conclusion is that 21 century developers require new develop-
ment tools that provide them with higher-level constructs, so that they can specify
applications using concepts that are closer to the ones used by humans in our
cognitive and communicative processes. The “programs” that are built with these
conceptual primitives or conceptual patterns of a higher level should then be trans-
formed into the equivalent software product through a translation process that
associates each conceptual primitive to its corresponding software representation.
Under this hypothesis, the automatic generation of programs from Conceptual
Schemas is no longer an unreachable dream but a solid reality.

In accordance with what has so far been discussed, it is useful to analyse the
development methods that are currently being used in the software industry. This
analysis shows that these methods propose development processes that consider
software construction to be the completion of a high number of tasks in several
phases. In most of the cases, the resulting process is extremely complex and of little
use in day-to-day practice.

Another problem that is commonly observed in current approaches is that some
of the effort put into the completion of some of the tasks and in the production of
documentation has little or no effect at all on the final product. That is, in the line of
what we could refer to as “traditional CASE” methods, much of the effort required
to set up the model of a system is often nothing more than an elegant (in the best
of cases) documentation of it, but this then has to be manually transformed into a
software product by using a notation and concepts that are totally different from
those used to build the model.



10 2 The Purpose of this Work

This “semantic gap” between the model notation and the programming lan-
guage usually makes the use of a CASE tool a problem because engineers not only
have to obtain the software product but they have to model it as well. This ex-
plains the problems that have historically prevented the universal use of CASE. In
addition to this, when maintenance problems arise and there are changes to the
specification of the systems, it is almost impossible to avoid the temptation of per-
forming the modifications directly to the software product, so that the model and
its implementation usually are not synchronized.

To avoid this situation, the construction of information systems of a certain
size and complexity requires the use of methods to carry out the development
process in a rigorous and systematic way. These methods must perform the phases
that are strictly needed to obtain a quality software product in a practical and
productive manner. Experience shows that in Software Engineering, as in any other
discipline where the goal is to obtain a certain quality product, simplicity and
effectiveness are the two quality attributes that must be co-guaranteed. Software
production methods that are based on an exaggerated and unjustified number of
tasks and phases will simply not be used in day-to-day practice and will inevitably
be discarded by developers.

The goal of this book is to present a development method that provides a solu-
tion to these challenges. This introductory chapter will present some of the prob-
lems that application development faces today in an attempt to find a functional
and practical solution to these. To do so, we will focus on the most relevant features
that any advanced development method or environment should provide for the
software development process to be viewed as an iterative process of constructing
and refining conceptual schemas.

With such a process, the traditional implementation phase will play a secondary
role because the traditional role of the programmer is played by the higher-level
role of the modeller. That is, the level of abstraction of the artefact used as the
programming language is raised, following an evolution that is similar to the one
that took us from assembler languages to third-generation programming languages.
This evolution attempted to provide the programmer with languages of which the
notation was closer to the problem space and less linked to the solution space.

Within this context, the subsequent sections of this chapter will present three
fundamental ideas:

1. A justification of the need for new development environments that provide a
solution to the endemic problems that for the last two decades have typically
been associated with the term “Software Crisis”.

2. The use of a precise ontology of concepts that act as the foundations of our
proposal. Specifically, we will analyse why the Object-Oriented approach is the
candidate that is best suited to characterize our proposal.

3. The advantages of using patterns at three different levels:

- Conceptual primitives or conceptual patterns, which are appropriately cata-
logued and have a formal support.

- Architectural and design patterns,which are in charge of the definition of the
Software Architecture that is best suited for the resulting software product.



2 The Purpose of this Work 11

- Design patterns, which associate every conceptual pattern with the software
representation that is best suited in the solution space.

This book presents a software production method that has been created as a re-
sponse to all of these problems, the OO-Method. The OO-Method provides an
environment for object-oriented conceptual modelling and automatic generation
of the software product, which allows engineers to build applications from con-
ceptual models in an automated fashion. This introductory chapter is structured
in accordance with the three points stated above. It includes the introduction to
the most relevant features of the OO-Method, and also includes the analysis of
other approaches that share the goals of 00-Method in order to highlight the main
contributions of our approach.



