
How this Book Is Organized

Programming technologies have improved continuously during the last decades
but, from an Information Systems perspective, some well-known problems associ-
atedwith thedesign and implementation of an Information Systemspersist: Object-
Oriented Methods, Formal Specification Languages, Component-Based Software
Production,Aspect-OrientedApproaches. This is only a very short list of technolo-
gies proposed to solve a very old and, at the same time, very well-known problem:
how to produce software of quality. Programming has been the key task during
the last 40 years, and the results have not been successful yet. This book will ex-
plore the need of facing a sound software production process from a different
perspective: conceptual model-based software production. There are several ways
to refer to that strategy. There are people dealing with the non-programming per-
spective where, by non-programming, we mean mainly modelling. Rather than
Extreme Programming, the issue is that an Extreme Non-Programming (Extreme
Modelling-Oriented) approach should be taken.

Other people focuson Conceptual Schema-Centred Software Production,based
on the assumption that, to develop an Information System (IS), it is necessary and
sufficient to define its Conceptual Schema. This is presented in (Olivé 2005) as a
grand challenge for Information Systems Research. This book is oriented to face
this challenge, providing concrete solutions. In particular, we will show how to
achieve the objective of generating code from a higher-level system specification,
normally represented as an Object-Oriented Conceptual Schema. Nowadays, the
interest in MDA has provided a new impetus for all these strategies. New methods
propose different types of model transformations that cover all the different steps
of a sound software production process from an Information Systems Engineering
point of view. This must include Organizational Modelling, Requirements Engi-
neering, Conceptual Modelling and Model-Based Code Generation techniques. In
this context, it seems that the time of Model-TransformationTechnologies is finally
here.

Under the push of this technological wave, and taking advantage of our years of
experience working on Model-Driven Development, we will defend the main idea
that, to have a software product of quality, the key skill is modelling; the issue is



XIV How this book is organized

that “the model is the code” (rather than “the code being the model”). Considering
this hypothesis, a sound Software Production Process should provide a precise
set of models (representing the different levels of abstraction of a system domain
description), together with the corresponding transformations from a higher level
of abstraction to the subsequent abstraction level. For instance, a Requirements
Model should be properly transformed into its associated Conceptual Schema,
and this Conceptual Schema should be converted into the corresponding Software
Representation (final program).

Assuming that, behind any programmer decision, there is always a concept,
the problem to be properly faced by any Model-Transformation Technology is that
of accurately identifying those concepts, together with their associated software
representations. A precise definition of the set of mappings between conceptual
primitives or conceptual patterns and their corresponding software representations
provides a solid basis for building Conceptual Model Compilers.

This is what we wish to do in this book. Our precise objective is to show how
an MDA-based Software Production Environment based on Conceptual Modelling
can be put into practice. To do this, three main goals need to be fulfilled. First, the
main concepts involved in such a method must be properly introduced.Second,how
to construct an adequate Conceptual Model has to be explained in detail. Third,
the process of transforming the source Conceptual Model into its corresponding
Software Product must be explained. In accordance with these goals, the structure
of this book is divided into three parts:

• The OO-Method and Software Production from Models
• Conceptual Modelling: About the Problem Space
• Conceptual Model Compilation: from the Problem Space to the Solution Space

Now it is time for the reader to explore how to put all these ideas into practice,
making Conceptual Model-Driven Development an affordable dream.


