
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

Object/Relational Mapping with
Hibernate

Basic Tutorial

November 2007 Object/Relational Mapping with Hibernate

2

License for use and distribution

This material is available for non-commercial use
and can be derived and/or redistributed, as long as
it uses an equivalent license.

Attribution-Noncommercial-
Share Alike 3.0 Unported

http://creativecommons.org/licenses/by-nc-sa/3.0/

You are free to share and to adapt this work under the following
conditions: (a) You must attribute the work in the manner specified by

the author or licensor (but not in any way that suggests that they endorse
you or your use of the work); (b) You may not use this work for

commercial purposes. (c) If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or similar

license to this one.

November 2007 Object/Relational Mapping with Hibernate

3

About the author – Vítor Souza

Education:

Computer Science graduate, masters in Software
Engineering – Federal University of Espírito Santo
(Brazil).

Java:

Developer since 1999;

Focus on Web Development;

Co-founder and coordinator of ESJUG (Brazil).

Professional:

Substitute teacher at Federal University of ES;

Engenho de Software Consulting & Development.

Contact: vitorsouza@gmail.com

November 2007 Object/Relational Mapping with Hibernate

4

Goals

Learn about object/relational mapping, a “new”
way of persisting data;

Know the basic concepts of Hibernate;

Be able to build informations systems using
Hibernate.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

Object/Relational Mapping with
Hibernate

Part I: Object/Relational Mapping

November 2007 Object/Relational Mapping with Hibernate

6

What is persistence?

Ability to preserve user data after the software
has already been closed;

In Java, many ways to do it:

Writing directly to files (text or binary);

Serialization (with or without a framework);

Relational databases (RDBMS) with JDBC;

OO databases (OODBMS);

Etc.

For information systems, RDBMS is the most
common case.

November 2007 Object/Relational Mapping with Hibernate

7

Use of RDBMS in Java

Communication through SQL queries:

Create and alter tables;

Insert, update and delete data;

Constraints, projections and junctions;

Grouping, ordering, agregation functions;

Etc.

Connection to the database via driver;

Standardization of the JDBC API;

Tedious and error-prone task.

November 2007 Object/Relational Mapping with Hibernate

8

Object oriented software

Simple software can be built on top of the JDBC
access logic;

Business logic would work with lines and columns.

More complex software have a domain model:

Classes that represent objects from the problem
domain;

Utilization of OO concepts such as polymorphism;

Business logic works with objects.

November 2007 Object/Relational Mapping with Hibernate

9

The paradigm mismatch

Being discussed for 15 years;

Representing data in tables is very different than a
graph of interconnected objects;

The problems:

Granularity: limited to table and column;

Inheritance: storage and polymorphism;

Identity: == vs. equals() vs. primary-key;

Associations: transposition of primary-keys;

Navigation on the object graph: the n+1 SELECTs
problem.

November 2007 Object/Relational Mapping with Hibernate

10

The cost of incompatibility

Approximately 30% of the code is to manipulate
data using SQL/JDBC;

Similar structures are repeated in INSERT, UPDATE
and SELECT commands;

The domain model is twisted to adequate itself to
the data model;

Software becomes hard to maintain.

November 2007 Object/Relational Mapping with Hibernate

11

Alternatives to persistence

To divide in layers is common sense;

Alternatives to the persistence layer:

Serialization

OO Databases Low market acceptance, immature standard.

Hand- coded
SQL/ JDBC

Wasted effort, low productivity and high
maintenance, possibly lower performance
compared to existing solutions.

Access to entire graph, no searching,
concurrency issues.

Entity EJBs

Twists the object model, no support for
polymorphism and inheritance, not portable in
practice, not serializable, intrusive model that
makes unit testing very hard.

November 2007 Object/Relational Mapping with Hibernate

12

Object/relational mapping

An ideal solution to the problem;

Also known as:

ORM, O/RM, O/R mapping, etc.;

Gateway-based Object Persistence (GOP).

In a nutshell, object/relational mapping is the automated
(and transparent) persistence of objects in a Java

application to the tables in a relational database, using
metadata that describes the mapping between the objects
and the database. ORM, in essence, works by (reversibly)

transforming data from one representation to another.

Hibernate in Action

November 2007 Object/Relational Mapping with Hibernate

13

Components of an ORM solution

API for the execution of CRUD operations;

Language or API for the construction of queries
that refer to the classes and their properties;

Specification of the mapping metadata;

RDBMS interaction techniques, including:

Dirty checking;

Lazy association fetching;

Optimization functions.

November 2007 Object/Relational Mapping with Hibernate

14

The ORM solution should specify

How persistent classes and metadata should be
written;

How to map hierarchies of classes;

How do object identity and table line identity
relate;

What is the lifecycle of a persistent object;

How to retrieve data from associations in an
efficient way;

How to manage transactions, cache and
concurrency.

November 2007 Object/Relational Mapping with Hibernate

15

Why use ORM?

Productivity:

Eliminates plumbing code.

Maintainability:

Less lines of code, less maintenance;

Changes in data structure do not impact as much.

Performance:

More time to implement optimizations;

More knowledge of each RDBMS detail.

Vendor independence:

Use of SQL dialects.

November 2007 Object/Relational Mapping with Hibernate

16

The truth about ORM frameworks

They are not easy to learn;

To use them well, you should also know well SQL
and relational database technology;

Problems that come from their use are complex
and hard to solve;

They are not the “silver bullet” of persistence!

November 2007 Object/Relational Mapping with Hibernate

17

Conclusions of part I

Persistence is a common requirement in
information systems and there are many possible
solutions;

The relational/OO paradigm mismatch make the
issue more complex;

Object/Relational Mapping (ORM) is one of the
possible solutions for the issue:

Has a lot of advantages, such as productivity,
maintainability, performance, etc.;

Has costs of complexity;

Is not the “silver bullet” of persistence.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

Object/Relational Mapping with
Hibernate

Part II: Introduction to Hibernate

November 2007 Object/Relational Mapping with Hibernate

19

Overview

Hibernate is the most well-known ORM framework

Implements everything that is expected from a
complete ORM solution;

Steps for its utilization:

Download and install;

Write persistent classes;

Create tables on the RDBMS;

Define the O/R mapping;

Configure the framework;

Use its API to query and manipulate.

November 2007 Object/Relational Mapping with Hibernate

20

Download and install

Required files:

Hibernate distribution (www.hibernate.org);

Hibernate Annotations (idem);

HSQLDB database (www.hsqldb.org).

Using the Eclipse IDE:

The Hibernate Tools plug-in can help;

Not used in this tutorial, though.

Add the required libraries to the project's Build
Path in Eclipse (lib folder).

November 2007 Object/Relational Mapping with Hibernate

21

Required libraries

antlr: ANother Tool for Language Recognition;

asm-attrs: ASM bytecode library;

asm: ASM bytecode library;

c3p0: JDBC connection pool;

cglib: bytecode generation;

commons-collection: Commons Collection;

commons-logging: Commons Logging;

dom4j: parser for the mapping and configuration;

ehcache: cache provider;

November 2007 Object/Relational Mapping with Hibernate

22

Required libraries

hibernate3: Hibernate 3;

hsqldb: HSQLDB database;

jaxen: optional, use for the desserialization of the
configuration (performance increase);

jdbc2_0-stdext: Standard Extension JDBC APIs
(mandatory outside an Application Server);

jta: Standard JTA API (ditto);

log4j: logging tool;

ejb3-persistence e hibernate-annotations:
Hibernate Annotations.

November 2007 Object/Relational Mapping with Hibernate

23

Example system: Java Discs

We will use a CD store as example in this tutorial:

November 2007 Object/Relational Mapping with Hibernate

24

The persistent class

package hibernatetutorial.domain;

public class Artist {
private Long id;

private String name;

private Boolean band;

private String country;

/* Implicit construtor. */

/* Properties getters and setters. */
}

November 2007 Object/Relational Mapping with Hibernate

25

The persistent class

A common class (POJO);

Hibernate is not intrusive:

Only exception: the class must have a no-args
constructor (but it can be private);

There are some recommendations:

Each property should have a getter and a setter;

The class should have an identity property.

Not following the recommendations can
complicate Hibernate's use.

November 2007 Object/Relational Mapping with Hibernate

26

Running HSQLDB

server.database.0=file:javadiscs
server.dbname.0=javadiscs

Configuration (server.properties):

Running the server:

Running the manager:

java -cp hsqldb.jar org.hsqldb.Server

java -cp hsqldb.jar org.hsqldb.util.DatabaseManager

November 2007 Object/Relational Mapping with Hibernate

27

Connecting with HSQLDB Manager

November 2007 Object/Relational Mapping with Hibernate

28

The table on the RDBMS

CREATE TABLE Artist (
 id BIGINT NOT NULL IDENTITY,
 name VARCHAR(100) NOT NULL,
 band BIT NULL,
 country VARCHAR(50) NOT NULL,
 PRIMARY KEY(id)
);

Created manually;

Hibernate has tools for automatic generating
tables from classes (and vice-versa).

November 2007 Object/Relational Mapping with Hibernate

29

The class' O/R mapping

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping ... >
<hibernate-mapping>

<class name="hibernatetutorial.domain.Artist"
 table="Artist">

<id name="id" column="id">
 <generator class="native" /></id>

<property name="name" column="name"
 type="string" length="100" />

<property name="band" column="band"
 type="boolean" />

<property name="country" column="country"
 type="string" length="100" />

</class>
</hibernate-mapping>

November 2007 Object/Relational Mapping with Hibernate

30

The class' O/R mapping

XML file, preferably one per class;

Specifies class, table and each property with
respective column, type and constraints;

Avoiding the metadata hell:

Hibernate has sensible defaults;

We can replace by annotations (later).

By default, mapping files should be in the same
directory as the mapped class.

November 2007 Object/Relational Mapping with Hibernate

31

Use of sensible defaults

<class name="hibernatetutorial.domain.Artist">
<id name="id">

<generator class="native" />
</id>
<property name="name" length="100" />
<property name="band" />
<property name="country" length="100" />

</class>

Table name = class name;

Column name = property name;

Column type inferred through reflection.

November 2007 Object/Relational Mapping with Hibernate

32

Saving data with Hibernate

// Imports from org.hibernate.*

// Creates an object.
Artist artist = new Artist();
artist.setName("Dave Matthews Band");
artist.setBand(true);
artist.setCountry("USA");

// Obtains a session (implemented later).
Session session = HibernateUtil.openSession();

// Stores on database using Hibernate.
Transaction tx = session.beginTransaction();
session.save(artist);
tx.commit();
session.close();

November 2007 Object/Relational Mapping with Hibernate

33

Retrieving an object given its id

// Obtains a session (implemented later).
Session session = HibernateUtil.openSession();

// Retrieves the artist with id = 1.
Transaction tx = session.beginTransaction();
Artist artist = (Artist)
 session.load(Artist.class, 0l);

// Prints and closes the connection.
System.out.println(artist.getName());
tx.commit();
session.close();

November 2007 Object/Relational Mapping with Hibernate

34

Retrieving objects with queries

// Obtains a session (implemented later).
Session session = HibernateUtil.openSession();

// Retrieves all artists.
Transaction tx = session.beginTransaction();
Query query = session.createQuery(

"from Artist a order by a.name");
List result = query.list();

// Prints and closes the connection.
for (Object o : result) System.out.println(o);
tx.commit();
session.close();

// Artist must implement toString() for printing.

November 2007 Object/Relational Mapping with Hibernate

35

Configuring the framework

The missing piece for our example:

// Obtains a session (implemented later).
Session session = HibernateUtil.openSession();

public final class HibernateUtil {
private static SessionFactory sessionFactory;
private static SessionFactory getSessionFactory() {

if (sessionFactory == null) sessionFactory = new
Configuration().configure().buildSessionFactory();

return sessionFactory;
}
public static Session openSession() {

return getSessionFactory().openSession();
}

}

November 2007 Object/Relational Mapping with Hibernate

36

Alternatives for configuration

There are four configuration options:

Programatic (assembling a Properties object and
calling configuration methods);

System properties: java -Dkey=value;

The file hibernate.properties;

The file hibernate.cfg.xml.

Files (properties or XML):

Most common case;

Should be in the root of the classpath;

Automatically found by configure().

November 2007 Object/Relational Mapping with Hibernate

37

Configuration parameters

What is the database driver, URL, user and
password for the creation of JDBC connections?

Which connection pool is going to be used?

What is the SQL Dialect of the database?

Should Hibernate print the SQL commands it
generates?

Where are the classes' mapping files?

Etc.

November 2007 Object/Relational Mapping with Hibernate

38

hibernate.cfg.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration ... >

<hibernate-configuration>
 <session-factory>

<!-- RDBMS configuration. -->
<property name="connection.driver_class">

org.hsqldb.jdbcDriver
</property>
<property name="connection.url">

jdbc:hsqldb:hsql://localhost/javadiscs
</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>

November 2007 Object/Relational Mapping with Hibernate

39

hibernate.cfg.xml

<!-- Connection pool (using built-in). -->
<property name="connection.pool_size">1</property>

<!-- SQL Dialect. -->
<property name="dialect">

org.hibernate.dialect.HSQLDialect
</property>

<!-- Automatic session management. -->
<property name="current_session_context_class">

thread
</property>

<!-- Second-level cache is disabled. -->
<property name="cache.provider_class">

org.hibernate.cache.NoCacheProvider
</property>

November 2007 Object/Relational Mapping with Hibernate

40

hibernate.cfg.xml

<!-- Print SQL commands. -->
<property name="show_sql">true</property>

<!-- Mappings: -->
<mapping

 resource="hibernatetutorial/domain/Artist.hbm.xml"
/>

 </session-factory>
</hibernate-configuration>

Configuration cfg = new Configuration();

// Looks for hibernate.properties & hibernate.cfg.xml.
cfg.configure();

sessionFactory = cfg.buildSessionFactory();

November 2007 Object/Relational Mapping with Hibernate

41

About the connection pool

Managed set of JDBC connections;

Motivation:

Creating a new connection is costly;

Having an idle connection is waste of resources.

Provided by application servers;

Hibernate comes with C3P0, DBCP and Proxool;

There is a default connection pool, although not
recommended for production environments.

November 2007 Object/Relational Mapping with Hibernate

42

c3p0 configuration example

<property name="c3p0.min_size">5</property>
<property name="c3p0.max_size">20</property>
<property name="c3p0.timeout">1800</property>
<property name="c3p0.max_statements">50</property>

November 2007 Object/Relational Mapping with Hibernate

43

Logging

log4j.properties file, at the root of the
classpath:# File Appender:

log4j.appender.tmpFile = org.apache.log4j.FileAppender
log4j.appender.tmpFile.File = /tmp/info.log
log4j.appender.tmpFile.layout =

org.apache.log4j.PatternLayout
log4j.appender.tmpFile.layout.ConversionPattern =

 [%d] %c %5p: %m%n

Loggers:
log4j.rootLogger = warn, tmpFile
log4j.org.hibernate = info, tmpFile

$ tail -f /tmp/info.log

November 2007 Object/Relational Mapping with Hibernate

44

Let's try the examples!

November 2007 Object/Relational Mapping with Hibernate

45

Architecture

November 2007 Object/Relational Mapping with Hibernate

46

org.hibernate.Session

Data access session;

Main interface with the persistence system;

Light object: low creation cost;

Not threadsafe: should not be shared among
threads;

Obtained from the session factory;

Contains a collection of objects associated to that
unit of work.

November 2007 Object/Relational Mapping with Hibernate

47

org.hibernate.SessionFactory

Used to obtain sessions;

Heavy object: high cost of construction;

Threadsafe: can be shared by all threads;

There should be a factory for each database used
by the application;

Created from the configuration.

November 2007 Object/Relational Mapping with Hibernate

48

org.hibernate.cfg.Configuration

Allows for the configuration of the framework;

Creates the session factory.

November 2007 Object/Relational Mapping with Hibernate

49

org.hibernate.Transaction

Abstracts the transaction mechanism used by
JDBC in the background;

JDBC transactions, JTA transaction, CORBA, etc.;

Helps to make the code more portable;

Its use is optional:

Hibernate will assume begin and end of
transactions for each operation as the default
behaviour.

November 2007 Object/Relational Mapping with Hibernate

50

org.hibernate.Query

Execution of queries:

In HQL (Hibernate Query Language);

In SQL;

Programatically.

Used together with org.hibernate.Criteria.

November 2007 Object/Relational Mapping with Hibernate

51

Callback interfaces

Receive notifications when some important event
occurs (like listeners);

Intrusive interfaces (implemented by the domain
class):

org.hibernate.classic.Lifecycle;

org.hibernate.classic.Validatable.

Non-intrusive interface:

org.hibernate.Interceptor.

November 2007 Object/Relational Mapping with Hibernate

52

Types

Classes that map from OO types to database
columns;

Hibernate comes with several types ready to use:

org.hibernate.type.Type.

The developer can create his/her own type:

org.hibernate.usertype.UserType;

org.hibernate.usertype.CompositeUserType.

November 2007 Object/Relational Mapping with Hibernate

53

Extension interfaces

Features that can be customized:

Primary-key generation;

SQL dialect support;

Caching strategies;

JDBC connection management;

Transaction management;

ORM strategy;

Property access strategy;

Proxy creation.

November 2007 Object/Relational Mapping with Hibernate

54

Hibernate features

Persistent object management;

Dirty checking: checks if persistent objects have
changed and updates their data on the database;

Transaction write-behind: only sends the SQL
command when the transaction is commited;

Flexible mapping, polymorphic queries;

Two-level cache;

Lazy initialization: associations and properties;

Outer-join fetching;

Etc., etc., etc.

November 2007 Object/Relational Mapping with Hibernate

55

Conclusions of part II

Hibernate can be a good solution for persistence;

We learned how to install and provide its required
dependencies;

We passed quickly through configuration options
and basic usage;

We also summarized its architecture and general
features.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

Object/Relational Mapping with
Hibernate

Parte III: Class mapping

November 2007 Object/Relational Mapping with Hibernate

57

Which classes should I map?

All classes that need to store their state in
persistent media (database);

Usually, these are domain classes;

Domain model:

Constructed from the analysis of the domain of the
problem to be solved;

Contains classes that represent concepts of the real
world that are part of the business problem;

Let's analyze a little further some of its details...

November 2007 Object/Relational Mapping with Hibernate

58

Rules for domain classes

They're API-independent:

We shouldn't have JDBC, Swing, Web or any
external library code inside domain classes;

They don't worry about cross-cutting concerns:

Persistence, transaction management, loggin, etc.
are cross-cutting concerns;

It's not their goal to worry about these tasks;

We need transparent persistence.

November 2007 Object/Relational Mapping with Hibernate

59

Transparent persistence

≠ automated persistence (EJB);

Total separation between domain classes and
persistence logic;

Doesn't require interface implementation or
abstract class inheritance;

The class can be reused in other contexts.

November 2007 Object/Relational Mapping with Hibernate

60

Hibernate works with POJOs

Mandatory:

The class must have a default constructor (it can be
private);

For collection attributes (e.g.: lists), use the
interface (e.g.: List) and not a class (e.g.: ArrayList);

Optional, but recommended:

All attributes should have get/set methods;

The class should have a specific id attribute.

November 2007 Object/Relational Mapping with Hibernate

61

A POJO

package hibernatetutorial.domain;

public class Artist {
private Long id;
private String name;
private Boolean band;
private String country;

private Set cds;

/* Implicit construtor. */

/* Properties getters and setters. */
}

November 2007 Object/Relational Mapping with Hibernate

62

Implementing associations

public class Artist {
/* ... */

private Set<CD> cds;

public Set<CD> getCds() { return cds; }
private void setCds(Set<CD> cds) {

this.cds = cds;
}

}

Using the interface.
Hibernate provides

its own implementation

Setter is private.

November 2007 Object/Relational Mapping with Hibernate

63

Implementing associations

Hibernate doesn't manage associations for you;

Do your own convenience method:

public class Artist {
/* ... */

public void addCd(CD cd) {
if (cd == null) throw new

 IllegalArgumentException("null CD");
if (cd.getArtist() != null)

 cd.getArtist().getCds().remove(cd);
cd.setArtist(this);
cds.add(cd);

}
}

November 2007 Object/Relational Mapping with Hibernate

64

Implementing associations

Your convenience method should also guarantee
the cardinalities of the association;

It's good practice to implement behaviour and
check domain constraints.

The getCds() method should not return a copy of
the set:

It's a common encapsulation practice, so to avoid
artist.getCds().add(anyCd);

However, this causes a confusion on Hibernate's
dirty checking mechanism...

November 2007 Object/Relational Mapping with Hibernate

65

Mapping options

XML;

Markup files associated with a DTD/Schema;

Criticized by many (metadata hell).

XDoclet:

Tool that generates XML from JavaDoc annotations.

Good if Java < 5.

Hibernate Annotations:

Uses Java annotations to do the mapping on the
classes themselves;

Only if Java >= 5.

November 2007 Object/Relational Mapping with Hibernate

66

XML Mapping

Let's review our prior example:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-
3.0.dtd">

<class name="hibernatetutorial.domain.Artist">
<id name="id">

<generator class="native" />
</id>
<property name="name" length="100" />
<property name="band" />
<property name="country" length="100" />

</class>

November 2007 Object/Relational Mapping with Hibernate

67

XML Mapping

Header:

Mandatory use;

Indicates the DTD to be used.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-
mapping-3.0.dtd">

November 2007 Object/Relational Mapping with Hibernate

68

XML Mapping

Class e identifier:

One class per file is recommended;

Indicates which property is the object identifier and
how its value is generated (more on this later).

<hibernate-mapping>
<class name="hibernatetutorial.domain.Artist"

table="Artist">
<id name="id" column="id">

<generator class="native" />
</id>

</class>
</hibernate-mapping>

November 2007 Object/Relational Mapping with Hibernate

69

XML Mapping

Class attributes:

The use of sensible defaults are recommended;

We can indicate if an attribute can be null or not:

We can use the <column /> tag to detail the
configuration of the column:

<property name="country" column="country"
type="string" length="100" />

<property name="country" not-null="true" />

<property name="country" length="100">
<column name="country" />

</property>

November 2007 Object/Relational Mapping with Hibernate

70

XML Mapping

Derived properties:

Calculated by the DBMS (using SQL) during
runtime;

Used only on SELECT operations.

Property access strategy:

Indicates direct access (without get/set);

Default value is property (using get/set);

It's possible to define your own PropertyAccessor.

<property name="discountPrice" formula="price –
(0.1 * price)" />

<property name="pais" access="field" />

November 2007 Object/Relational Mapping with Hibernate

71

XML Mapping

Controlling INSERTs and UPDATEs:

Indicates if a property should participate in
sentences INSERT and UPDATE (default is true).

Dynamic insert: include only non-nulls on INSERT
statements (default is false);

Dynamic update: include only attributes that have
changed in UPDATE sentences (default is false);

<property name="readOnlyData" insert="false"
update="false" />

<class name="hibernatetutorial.domain.Artist"
 dynamic-insert="true" dynamic-update="true">

November 2007 Object/Relational Mapping with Hibernate

72

XML Mapping

Quoted SQL identifiers:

Adds quotes around an SQL identifier (table name,
column name, etc.);

In some databases, forces case-sensitivity;

Used commonly with legacy databases.

Namespace:

<property name="description"
column="'Item Description'" />

<hibernate-mapping
package="hibernatetutorial.domain">

<class name="Artist" table="Artist">

November 2007 Object/Relational Mapping with Hibernate

73

XML Mapping

Other possibilities:

NamingStrategy & SQL Schemas: determine
naming standards for tables and columns;

Meta-data manipulation during runtime:

// Use before cfg.buildSessionFactory()
PersistentClass metaData;
metaData = cfg.getClassMapping(Artist.class);

November 2007 Object/Relational Mapping with Hibernate

74

Understanding object identity

To understand Hibernate ids, first we need to
understand object id;

Two objects, A and B, can be:

Identical: (A == B) is true;

Equal: (A.equals(B)) is true;

Database-identical: they represent the same line,
i.e., they are on the same table and have the same
primary key value.

November 2007 Object/Relational Mapping with Hibernate

75

Hibernate IDs

package hibernatetutorial.domain;

public class Artist {
private Long id;

public Long getId() { return id; }

public void setId(Long id) {
this.id = id;

}
}

Should the get/set methods be public?

If they're private, only Hibernate has access.

November 2007 Object/Relational Mapping with Hibernate

76

ID mapping

DB identity can now be verified with
A.getId().equals(B.getId());

A class can have its ID managed by Hibernate:

Obtain it using session.getIdentifier(o);

Not recommended (performance loss).

<id name="id" column="id">
<generator class="native" />

</id>

<id column="id">
<generator class="native" />

</id>

November 2007 Object/Relational Mapping with Hibernate

77

Choosing an ID

It's the same as choosing a primary key:

(a) Set of attributes that uniquely identifies an object
(a person's tax code, a book's ISBN, etc.);

(b) Creation of a specific property as PK.

Option A:

Called “natural key”;

Can cause maintenance problems.

Option B:

Called “synthetic keys” or “surrogate keys”;

Recommended by Hibernate's authors.

November 2007 Object/Relational Mapping with Hibernate

78

Surrogate key generation

Hibernate provides some generators, which are
configured with <generator class="" />:

You can make your own IdentifierGenerator.

increment Automatic increment for non- concurrent use.

identity IDENTITY column for databases that support it.

sequence SEQUENCE column for databases that support it.

hilo Use of the high/ low algorithm by Scott Ambler.

native Chooses among identity, sequence e hilo, depending
on SGDB support.

uuid Generates an unique (inside a network) 32- char string.

assigned Manually set by the developer before saving.

November 2007 Object/Relational Mapping with Hibernate

79

Composite IDs

Two or more properties compose the object's ID;

Used more often with natural keys in legacy
databases;

Advanced use, not recommended for new projects.

November 2007 Object/Relational Mapping with Hibernate

80

Entities x value types

Hibernate allows us to have more classes than
database tables (granularity);

A class that doesn't have a table is a value type;

It exists only associated to an entity;

Its properties are stores in the associated entity's
table, it doesn't have an id and follows the life cycle
of its owner.

Other examples:
String, Integer,

Date, etc.

November 2007 Object/Relational Mapping with Hibernate

81

Components

On HBMs, value types are called components;

Not to be confused with software components!

<class name="User">
 ...
 <component name="home" class="Address">
 <parent name="user" />
 <property name="street" />
 ...
 </component>

 <component name="work" class="Address">
 ...
 </component>
</class>

November 2007 Object/Relational Mapping with Hibernate

82

Components

A component can:

Have as many properties as you wish;

Have components of his own;

Be associated with other entities.

Limitations:

Can't be shared (more than one owner);

There is no difference between a null component
and a component with all properties null.

November 2007 Object/Relational Mapping with Hibernate

83

Inheritance mapping

Inheritance distinguishes OO from Relational;

A conversion is necessary;

Scott Ambler proposed three possibilities:

A table for each class of the hierarchy;

A table for each concrete class of the hierarchy;

A single table for all the hierarchy.

November 2007 Object/Relational Mapping with Hibernate

84

Inheritance mapping

Example:

Artist is an abstract class;

Two concrete subclasses: Band and Singer.

November 2007 Object/Relational Mapping with Hibernate

85

A table for each concrete class

Bad support for polymorphism (e.g.: associations
in the superclass);

Inefficient polymorphic queries (several SELECTs);

Efficient concrete class queries;

Column duplication is bad for maintenance;

Use when polymorphism is not a requirement.

November 2007 Object/Relational Mapping with Hibernate

86

A table for each concrete class

<class name="Band">
<!-- Property mappings. -->

</class>

<class name="Singer">
<!-- Property mappings. -->

</class>

November 2007 Object/Relational Mapping with Hibernate

87

Single table

Efficient polymorphic queries;

No redundant columns;

Columns that belong only to subclasses must be
nullable (integrity constraint problem);

Waste of space;

Recommended for
most cases.

November 2007 Object/Relational Mapping with Hibernate

88

Single table

<class name="Artist" discriminator-value="a">
<id name="id"> ... </id>

<discriminator column="class" type="char" />

<property name="name" />

<subclass name="Band" discriminator-value="b">
...

</subclass>

<subclass name="Singer" discriminator-
value="s">

...
</subclass>

</class>

November 2007 Object/Relational Mapping with Hibernate

89

A table for each class

No problems with integrity constrains or
ambiguity;

Bad performance because of JOIN operations;

Recommended when integrity is a strong
requirement.

November 2007 Object/Relational Mapping with Hibernate

90

A table for each class

<class name="Artist">
<id name="id"> ... </id>

<property name="name" />

<joined-subclass name="Band">
<key column="id" />
...

</subclass>

<joined-subclass name="Singer">
<key column="id" />
...

</subclass>
</class>

November 2007 Object/Relational Mapping with Hibernate

91

Inheritance mapping

Inheritance mapping strategies can't be combined;

<subclass /> e <joined-subclass /> can be
declared:

Inside the super <class /> (as the examples);

In a separate mapping file (must specify <subclass
name="..." extends="..." />).

November 2007 Object/Relational Mapping with Hibernate

92

Association mapping

The most complex part of the mapping;

We will see only the simplest cases;

Hibernate associations aren't managed:

EJBs with CMP have container-managed
associations. Hibernate works with POJOs!

By default, associations are unidirectional.

November 2007 Object/Relational Mapping with Hibernate

93

Collections

Association cardinality:

November 2007 Object/Relational Mapping with Hibernate

94

Many-to-one mappings

<class name="CD">
...
<many-to-one name="artist"

class="hibernatetutorial.domain.Artist"
not-null="true"
cascade="none" />

</class>

<class name="Artist">
...
<many-to-one name="manager"

class="hibernatetutorial.domain.Manager"
not-null="false"
cascade="delete-orphan" />

</class>

November 2007 Object/Relational Mapping with Hibernate

95

Transitive persistence

Hibernate applies persistence by transitivity;

If an object X is persistent and an object Y is
associated to it, Y must become persistent also.

Configurable by the parameter cascade="...":

save-update: if X is saved, Y will also be;

delete: if X is deleted, Y will also be;

refresh: if X is refreshed (data retrieved from
database and refreshed in memory), Y will also be;

delete-orphan: if an Y has no associated X
anymore, it will be deleted;

all: all cascades combined.

November 2007 Object/Relational Mapping with Hibernate

96

One-to-many mapping

<class name="Artist">
...
<set name="cds" inverse="true" cascade="all">

<key column="artistId" />
<one-to-many class="[...].CD" />

</set>
</class>

<class name="Manager">
...
<list name="artists" lazy="false" inverse="true">

<key column="managerId" />
<list-index column="order" />
<one-to-many class="[...].Artist" />

</set>
</class>

November 2007 Object/Relational Mapping with Hibernate

97

Exercise

Write a single program that registers CDs, based
on our example domain model;

Choose the simplest
GUI available;

Check the database
for the modifications
made by Hibernate.

November 2007 Object/Relational Mapping with Hibernate

98

Conclusions of part III

Complex systems have a domain layer,
representing concepts of the business problem;

An interesting approach to data management is
the automatic persistence of POJOs;

We learned how to map simple classes,
hierarchies and associations using XML files;

We discussed object identity and saw how to
generate surrogate ids and how to map value
types.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

Object/Relational Mapping with
Hibernate

Part IV: Hibernate Annotations

November 2007 Object/Relational Mapping with Hibernate

100

Annotations

Meta-data added to source code to describe it;

This meta-data is then available during runtime;

It is seen as the main alternative to XML
configuration;

In Java, it's available since version 5.

November 2007 Object/Relational Mapping with Hibernate

101

Hibernate Annotations

Use of annotations to do O/R mapping;

Replaces the HBM XML files;

Follows the standard for EJB 3 persistence;

Libraries required:

hibernate-annotations;

ejb3-persistence.

November 2007 Object/Relational Mapping with Hibernate

102

Replacing XML with annotations

1) Annotate your domain class (you can delete
the .hbm.xml file after this step);

2) Change hibernate.cfg.xml to load the classes
themselves instead of the XML files;

3) Obtain a SessionFactory by means of an
AnnotationConfiguration.

November 2007 Object/Relational Mapping with Hibernate

103

Changes on hibernate.cfg.xml

Using XML:

Using Hibernate Annotations:

<mapping
resource="hibernatetutorial/domain/Artist.hbm.xml" /
>

<mapping class="hibernatetutorial.domain.Artist" />

November 2007 Object/Relational Mapping with Hibernate

104

Obtaining the SessionFactory

Using XML:

Using Hibernate Annotations:

Configuration cfg = new Configuration();
cfg.configure();
sessionFactory = cfg.buildSessionFactory();

Configuration cfg = new AnnotationConfiguration();
cfg.configure();
sessionFactory = cfg.buildSessionFactory();

November 2007 Object/Relational Mapping with Hibernate

105

Annotating the classes

Annotations are defined in javax.persistence;

We place them in specific points of the code:

Before a class definition;

Before a property definition;

Before a getter method definition.

@Entity
public class Artist {

@Id @GeneratedValue(strategy = GenerationType.AUTO)
public Long getId() { return id; }

@Column(length = 100)
public String getName() { return name; }

/* ... */
}

November 2007 Object/Relational Mapping with Hibernate

106

Entity Beans

A persistent class is an Entity Bean;

The name was inherited from EJB technology;

Use the @Entity annotation before the definition
of the class:

@Entity
public class Artist {

/* ... */

}

November 2007 Object/Relational Mapping with Hibernate

107

The entity's id

After defining an entity, we should define its id;

The annotations @Id and @GeneratedValue can be
used before the id property or its getter method:

@GeneratedValue allows us to define a generation
srategy (AUTO, IDENTITY, SEQUENCE, TABLE) or
class;

@Id @GeneratedValue(strategy = GenerationType.AUTO)
public Long getId() { return id; }

November 2007 Object/Relational Mapping with Hibernate

108

Annotating property x getter method

If you annotate the property, Hibernate will use
the field access strategy;

If you annotate the getter method, Hibernate will
use the property access strategy;

It's recommended not to mix the strategies.

November 2007 Object/Relational Mapping with Hibernate

109

Simple properties

There are many annotations for simple properties:

@Transient: not stored in the database;

@Basic: numbers, booleans, Strings;

@Temporal: date and time;

@Lob: large textual or binary object.

Attention: @Basic is the default!

@Transient
public String getValue() { return value; }

@Basic
public Double getSalary() { return salary; }

@Temporal(TemporalType.DATE)
public Date getBirthdate() { return birthdate; }

November 2007 Object/Relational Mapping with Hibernate

110

Column attributes

We can specify the characteristics of the column
where the property will be stored;

We use the @Column annotation:

@Basic
@Column(length = 50, nullable = false)
public String getName() { return name; }

November 2007 Object/Relational Mapping with Hibernate

111

Changing the default values

If you don't want to use the default values, you
can specify parameters on annotations:

Specifying the table:

Specifying the column:

@Entity
@Table(name = "ARTISTS")
public class Artist { }

@Basic
@Column(name = "ARTIST_NAME")
public String getName { return name; }

November 2007 Object/Relational Mapping with Hibernate

112

Inheritance mapping

A table for each concrete class:

@Entity
public abstract class Artist { }

@Entity
@Inheritance(

strategy = InheritanceType.TABLE_PER_CLASS
)
public class Band extends Artist { }

November 2007 Object/Relational Mapping with Hibernate

113

Inheritance mapping

Single table for all the hierarchy:

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(

name = "class",
discriminatorType = DiscriminatorType.CHAR

)
@DiscriminatorValue("A")
public class Artist { }

@Entity
@DiscriminatorValue("B")
public class Band extends Artist { }

November 2007 Object/Relational Mapping with Hibernate

114

Inheritance mapping

A table for each class (joined-subclasses):

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public class Artist { }

@Entity
public class Band extends Artist { }

November 2007 Object/Relational Mapping with Hibernate

115

Mapped superclasses

They are not entities:

Can't be stored, retrieved or used in any queries;

However, they define persistent properties that
can be inherited by subclasses;

It's a good way to build utility classes.

@MappedSuperclass
public class Artist { }

@Entity
public class Band extends Artist { }

November 2007 Object/Relational Mapping with Hibernate

116

Associations

There are four kinds:

@OneToOne;

@OneToMany;

@ManyToOne;

@ManyToMany.

Most commonly used properties:

cascade = CascadeType.___;

mappedBy = "___";

fetch = FetchType.___;

@JoinColumn(nullable="true|false").

November 2007 Object/Relational Mapping with Hibernate

117

Associations – examples:

public class CD {
@ManyToOne
public Artist getArtist() { return artist; }

@ManyToOne
public Label getLabel() { return label; }

}

public class Artist {
@OneToMany(

cascade = CascadeType.ALL,
mappedBy="artist"

)
public Set<CD> getCds() { return cds; }

}

November 2007 Object/Relational Mapping with Hibernate

118

Exercise

Change the XML mapping from the last exercise to
annotations.

November 2007 Object/Relational Mapping with Hibernate

119

Conclusions of part IV

Annotations are meta-data that are added to Java
classes, available only since version 5;

Hibernate Annotations allows us to replace the
HBM XML files with annotations using the EJB3
standard;

We saw how to do the simple mappings that we
learned on part III using EJB3 standard
annotations;

We also saw the changes we have to make in
Hibernate's configuration to use annotations.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

Object/Relational Mapping with
Hibernate

Part V: Working with persistent objects

November 2007 Object/Relational Mapping with Hibernate

121

The interface with the persistence

Hibernate is not a container (it uses POJOs);

Your application can work with objects
independently of knowing if they are persistent or
not.

To carry persistence tasks, we use:

The persistence manager (retrieving by id, saving
and excluding objects);

Query interfaces (retrieving with queries).

Before we go deeper into them, we need to know
the objects' life cycle and scope.

November 2007 Object/Relational Mapping with Hibernate

122

Object life cycle with Hibernate

November 2007 Object/Relational Mapping with Hibernate

123

Transient objects

Objects that haven't been persisted by Hibernate:
normal Java objects, unloaded with GC;

Can't have association with persistent objects
(transitive persistence);

Don't have any relationship with Hibernate.

November 2007 Object/Relational Mapping with Hibernate

124

Persistent objects

Objects that have database identity;

They were saved to or retrieved from the database
by Hibernate (directly or by transitivity);

They are always associated with a Session object.

November 2007 Object/Relational Mapping with Hibernate

125

Persistent objects are transactional

To be associated with a session means
participating in a transaction;

It means its state is updated at the end of the
transaction (or during syncs);

Only new objects or objects that have been
changed are updated (dirty checking);

If dynamic-update = true, Hibernate updates
only the properties that have been changed;

The application may not know about any of it
(transparent transaction-level write-behind).

November 2007 Object/Relational Mapping with Hibernate

126

Detached objects

When a session closes, its objects become
detached;

They are not longer managed by Hibernate:

There is no further guarantee that their state is in
sync with the database;

They can still be used if reattached with another
session;

Careful, because its data could be stale!

We can detach an object from a session with the
evict() method.

November 2007 Object/Relational Mapping with Hibernate

127

The scope of object identity

An ORM solution can have as scope:

None: there are no guarantees that the same object
is returned if the same query is made twice;

Transaction: the guarantee exists within a
transaction;

Process: it exists within the entire JVM (high cost).

Hibernate has session scope:

If A and B are objects from the same class, are
retrieved by the same Session object and
A.getId().equals(B.getId()), then A == B;

This is called “first level cache”.

November 2007 Object/Relational Mapping with Hibernate

128

Selective reassociation

In distributed applications (e.g.: Web), a session
can't be open all the time:

It's usual to obtain an object in a session and then
save it in another session;

The object (and all its associated graph of objects)
must be reassociated with a second session.

Hibernate performs selective reassociation:

Only objects that interest are reassociated;

This is made in an automatic, efficient way.

November 2007 Object/Relational Mapping with Hibernate

129

The impact of object equivalence

equals() and hashCode() are used in many
situations (e.g.: the Collections API);

The default implementation (Object class) uses
memory equality (a == b);

Hibernate does not guarantee this equality in
different sessions.

We have a problem...

November 2007 Object/Relational Mapping with Hibernate

130

The impact of object equivalence

Possible solutions:

Using database identity (PK): problem with
transient objects;

Compare property values: it's difficult to find
immutable values that uniquely define an object
(ex.: tax code, ISBN, etc.);

Using an UUID: generate a synthetic identifier
(there aren't two objects with the same UUID in the
same JVM).

November 2007 Object/Relational Mapping with Hibernate

131

The impact of object equivalence

UUID implementation:

@MappedSuperclass
public abstract class PersistentObject {

private String uuid;
private Long id;

public PersistentObject() {
uuid = java.util.UUID.randomUUID().toString();

}

@Column(nullable = false, length = 40)
public String getUuid() { return uuid; }
public void setUuid(String u) { this.uuid = u; }

@Id @GeneratedValue(strategy = GenerationType.AUTO)
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }

November 2007 Object/Relational Mapping with Hibernate

132

The impact of object equivalence

Implementing equals() and hashCode():

public boolean equals(Object obj) {
// Checks if they belong to the same class.
if (! getClass().equals(obj.getClass()))

return false;
PersistentObject o = (PersistentObject)obj;

// Compare UUIDs.
return uuid.equals(o.uuid);

}

public int hashCode() {
return uuid.hashCode();

}
}

November 2007 Object/Relational Mapping with Hibernate

133

The impact of object equivalence

Can the UUID be used as the primary key?

Yes, it is a String id with assigned generation
strategy.

What's the impact of this on DB performance?

Ask a DBA!

Joins and indexes are made using the primary key;

Something tells me numeric PKs perform better...

November 2007 Object/Relational Mapping with Hibernate

134

The persistence manager

An object that provides:

Basic CRUD operations;

Query execution;

Transaction management;

Cache management.

In Hibernate, it's composed by the objects:
Session, Query, Criteria and Transaction;

A session (light object) is obtained in the session
factory (heavy object). Each thread should obtain
its own session.

November 2007 Object/Relational Mapping with Hibernate

135

Making an object persistent

Four steps:

Create the object;

Obtain a Session object;

Call the method .save(obj) (the SQL command
will be sent to the database in the proper time);

Close the session.

Artist artist = new Artist(); /* ... */
Session session = HibernateUtil.openSession();
Transaction tx = session.beginTransaction();
session.save(artist);
tx.commit();
session.close();

November 2007 Object/Relational Mapping with Hibernate

136

Updating an object

Persistent objects are updated automatically until
the end of the sentence;

Detached objects need to be reassociated:

update(obj): forces the update (SQL command);

lock(obj): update is done only if necessary.

// artist was obtained in another session.
Session session = HibernateUtil.openSession();
Transaction tx = session.beginTransaction();
session.update(artist); // session.lock(artist)
tx.commit();
session.close();

November 2007 Object/Relational Mapping with Hibernate

137

Saving an object

Hibernate can distinguish between transient and
detached objects;

The method saveOrUpdate(obj) inserts or
updates and object in the database;

The decision is made checking the id (if it's null);

For this reason, the null value must be specified
for ids that are of primitive types:

<id name="id" type="long" unsaved-value="0">
<generator class="identity"/>

</id>

November 2007 Object/Relational Mapping with Hibernate

138

More on transitive persistence

Operation cascading:

none Does not cascade anything (default).

save-update Applies transitivity on saving
(insert/ update).

delete Applies transitivity on deletion.

all Equivalent to save-update + delete.

delete-orphan Deletes objects that are no longer
participating in the association (orphans).

all-delete-orphan Equivalent to all + delete-orphan.

November 2007 Object/Relational Mapping with Hibernate

139

Deleting an object

To delete an object is to make it transient (it stays
in memory until being garbage collected);

Use the method delete(obj);

Can be used on persistent or detached objects
(detached objects are automatically reassociated).

// artist was obtained in this or another session
Session session = HibernateUtil.openSession();
Transaction tx = session.beginTransaction();
session.delete(artist);
tx.commit();
session.close();

November 2007 Object/Relational Mapping with Hibernate

140

Exception handling

Many of these methods can throw a
HibernateException;

The exception handling code is not shown for
brevity, but it's supposed to be carried out.

Usually, DBMS errors are not recoverable (i.e.: get
another connection);

The recommendation is to discard the session and
obtain a new one when a DB error occurs;

Hibernate does the rollback of the transaction in
the database, but not in memory!

November 2007 Object/Relational Mapping with Hibernate

141

Retrieving objects

Several ways to do it:

Navigating by the object graph starting from an
object that has been retrieved before (the session
has to be open);

Obtaining the object using its ID (primary key);

Using Hibernate Query Language (HQL);

Using the Criteria API;

Query by example;

Using SQL.

Hibernate caches retrieved objects, avoiding
unnecessary hits to the DB.

November 2007 Object/Relational Mapping with Hibernate

142

Retrieving objects

Retrieving using the object's ID:

get(class, id): returns null if the object doesn't
exist on the DB and doesn't use proxies;

load(class, id): throws an exception if the object
doesn't exist on the DB and can use proxy.

Session session = HibernateUtil.openSession();
Transaction tx = session.beginTransaction();
Artist artist = (Artist)session.get(

Artist.class, new Long(1));
tx.commit();
session.close();

November 2007 Object/Relational Mapping with Hibernate

143

Retrieving objects

Hibernate Query Language:

SQL-like, object oriented query language;

Reminds OQL and EJB-QL 2.1;

Used as basis to EJB-QL 3.0;

Unlike SQL, it is used only for object retrieval.

// Session open/close not shown.
Query query = session.createQuery("from Artist a
where a.country = :country");

query.setString("country", "Italy");
List result = query.list(); // List of Artists

November 2007 Object/Relational Mapping with Hibernate

144

Retrieving objects

HQL examples:

-- Retrieves all artists:
from Artist;

-- Using criteria:
from Artist a where a.name like 'C%'

-- Using joins:
from Artist a inner join a.cds as cds

-- Navigating the object graph on criteria:
from Artist a where a.manager.nome = 'John Doe'

-- Sorting:
from Artist a order by a.name

November 2007 Object/Relational Mapping with Hibernate

145

Retrieving objects

HQL features:

Object oriented syntax;

Navigation of the object graph;

Polymorphic queries;

Retrieval of only some attributes of the objects
(instead of the entire entity);

Sorting and pagination of results;

Aggregation functions, group-by and having;

Joins and sub-queries;

Call native functions and stored procedures.

November 2007 Object/Relational Mapping with Hibernate

146

Retrieving objects

Using the Criteria API:

Use of objects instead of strings;

More OO, less readable, more extensible.

// Session open/close not shown.
Criteria criteria =
session.createCriteria(Artist.class);

criteria.add(Expression.eq("country", "Italy"));
List list = criteria.list(); // List of Artists

November 2007 Object/Relational Mapping with Hibernate

147

Retrieving objects

Query by example:

Creation of a criterion based on an semi-filled
domain object;

Good for searches with many options.

// Session open/close not shown.
Artist example = new Artist();
exemple.setCountry("Italy");
Criteria criteria =
session.createCriteria(Artist.class);

criteria.add(Example.create(example));
List list = criteria.list();

November 2007 Object/Relational Mapping with Hibernate

148

Object fetching strategy

When we use JDBC, we know exactly when an
object is retrieved from the database;

One of the main challenges of an ORM solution is
to determine this moment;

Retrieve all objects of the graph at once?

Retrieve a little bit at a time, on demand?

This decision has great impact on performance
and code readability.

November 2007 Object/Relational Mapping with Hibernate

149

Object fetching strategy

Hibernate allows us to specify the fetching
strategy on the mapping and also change it during
runtime:

Immediate fetching: sequential database reads;

Lazy fetching: on demant;

Eager fetching: use of outer joins;

Batch fetching: many objects at once.

November 2007 Object/Relational Mapping with Hibernate

150

Object fetching strategy

The mapping depends on the cardinality (one or
many);

For simple associations (cardinality 1):

Use of proxies.

<!-- Completely disables lazy loading. -->
<class name="Artist" lazy="false" />

<!-- Defines the interface that the proxy will
implement (can be the class itself). -->
<class name="Artist" proxy="ArtistProxy" />

November 2007 Object/Relational Mapping with Hibernate

151

Object fetching strategy

<!-- Use of a defined proxy. -->
<many-to-one name="artist" lazy="proxy" />
<!-- Use of bytecode instrumentation. -->
<many-to-one name="artist" lazy="no-proxy" />
<!-- Forces eager fetching. -->
<many-to-one name="artist" lazy="false" />

<!-- Lazy if it has a proxy, eager if not. -->
<many-to-one name="artista" outer-join="auto" />
<!-- Forces eager fetching. -->
<many-to-one name="artista" outer-join="true" />
<!-- Forces immediate fetching. -->
<many-to-one name="artista" outer-join="false" />

<!-- Batch fetching. -->
<many-to-one ... lazy="true" batch-size="9" />

November 2007 Object/Relational Mapping with Hibernate

152

Object fetching strategy

For collections (cardinality “many”):

Collections always have proxies;

Use of lazy and fetch on the mapping.

<!-- Lazy fetching (default and recommended). -->
<set ... lazy="true" />

<!-- Immediate fetching. -->
<set ... lazy="false" fetch="select" />

<!-- Eager fetching. -->
<set ... lazy="false" fetch="join" />

<!-- Batch fetching. -->
<set ... lazy="true" batch-size="9" />

November 2007 Object/Relational Mapping with Hibernate

153

Object fetching strategy

Eager fetching uses outer joins;

We can define its depth:

Indicates how many table joins will be performed in
a single SELECT command;

Default is 1, it's not recommended to use a number
greater than 4;

Global configuration on hibernate.cfg.xml:

<!-- Depth of eager fetching. -->
<property name="max_fetch_depth">3</property>

November 2007 Object/Relational Mapping with Hibernate

154

Object fetching strategy

About lazy fetching:

Objects and collections are initialized when used for
the first time;

At the moment of the object fetching, it must be
associated to an open session;

Can be manually initialized:

Hibernate.initialize(artist.getCds());

// We can also check if it is initialized:
if (Hibernate.isInitialized(artist.getCds())) {

// ...
}

November 2007 Object/Relational Mapping with Hibernate

155

Object fetching strategy

These configurations are complex and can
influence on the final result of your application;

If needed, ask for specialized help of a DBA to
understand performance impact;

Monitor your application and make tests with
various configurations to determine the best one.

November 2007 Object/Relational Mapping with Hibernate

156

Conclusions of part V

Objects managed by Hibernate have well defined
scope and life cycle;

This scope leads to a equivalence problem, with
many possible solutions;

With that understood, we learned about the
persistence manager:

Basic CRUD;

Many ways to retrieve an object.

The fetching strategy can also be configured,
which is as difficult as important.

November 2007 Object/Relational Mapping with Hibernate

157

Conclusions of the basic tutorial

In this basic tutorial, we have seen:

What is object/relational mapping (ORM);

How to install and configure Hibernate;

Hibernate's internal architecture;

Tips on how to write a domain layer;

How to map domain classes to tables using XML
and annotations;

How to save, delete and retrieve objects using
Hibernate's persistence manager.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157

