
The Many Faces of Operationalization in
Goal-Oriented Requirements Engineering

Fabiano Dalpiaz1, Vítor E. Silva Souza2 and John Mylopoulos3
1 Utrecht University, P.O Box 80125, 3508 TC, Utrecht, the Netherlands

2 Federal University of Espírito Santo, Av. Fernando Ferrari, 514/CT-7, Goiabeiras, Vitória ES, Brazil
3 University of Trento, Via Sommarive 5, I-38123, Povo, Trento TN, Italy

f.dalpiaz@uu.nl, vitorsouza@inf.ufes.br, jm@disi.unitn.it

Abstract. Goal models have been used in Requirements
Engineering (RE) to elicit, model and analyse stakeholder
requirements. In a goal model, stakeholder requirements
are represented as root-level goals that are iteratively
refined through AND/OR-refinements to eventually yield
a specification consisting of functions the system-to-be
needs to implement, as well non-functional requirements
and domain assumptions. The association of a function to
a goal is called operationalization in the sense that the
function specifies how a goal can be made operational.
We focus on the concept of operationalization and
propose several extensions to account for
operationalizations of non-functional and adaptation
requirements, as well as behavioural specifications..
Keywords: Goal-oriented requirements engineering, goal
model, operationalization.

1 Introduction
Goal orientation in Requirements Engineering (hereafter
RE) is founded on the premise that requirements are goals
that stakeholders want fulfilled by the system-to-be. Goal
orientation was proposed about 20 years ago in
(Dardenne et al., 1993) as an improvement over
traditional RE techniques that focused on the
identification of functions that the system-to-be needs to
implement. A goal model explains why are these
functions needed and how they contribute to the
fulfillment of what the stakeholders want. Moreover, each
goal model defines a problem space that includes
alternative ways of fulfilling root-level goals. Research
on goal-oriented requirements engineering has been
conducted in many research groups around the world, for
example (Anton and Potts, 1998), (Kaiya et al, 2002), Yu
and Mylopoulos, 1998), (Kavakli, 2002). An early survey
of research on the topic can be found in (van
Lamsweerde, 2001).

These ideas extended the software engineering process
upstream, so that it starts with stakeholder wants/needs,
rather than the functions the system-to-be needs to
perform. Thanks to its acknowledged advantages, goal
orientation has captured centre stage in RE research, as

Copyright (C) 2014, Australian Computer Society, Inc. This
paper appeared at the 10th Asia-Pacific Conference on
Conceptual Modelling (APCCM 2014), Auckland, New
Zealand, January 2014. Conferences in Research and Practice in
Information Technology, Vol. 154. Georg Grossmann and
Motoshi Saeki, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

the dominant technique for requirements elicitation,
modeling and analysis.

A goal model is constructed by iteratively refining the
goals elicited from stakeholders into simpler goals
through AND/OR refinements with obvious semantics: If
a goal G is AND/OR-refined into subgoals G1, G2, …, Gn,
then fulfillment of all/at least one of G1, G2, …, Gn, leads
to fulfillment of G. Eventually, the subgoals obtained
through refinements are simple enough (atomic or leaf-
level) that they can be fulfilled by a function (aka
action/task) that an external agent or the system-to-be can
perform. Such functions operationalize leaf-level goals.
Operationalizations cross the boundary between problem
space (requirements modeled as goals) and the solution
space (functional specification).

The main objective of this position paper is to focus on
the concept of operationalization and propose extensions
that have been found useful in using goal models to
capture non-functional requirements (rather than
functional ones) (Mylopoulos et al., 1992), also
requirements for adaptive systems (Souza et al., 2013a,b)
and behavioural specifications of requirements (Dalpiaz
et al., 2013).

Our study reviews the fundamental concepts that goal
models are founded on (Section 2), then sketches the
history of operationalization in Natural and Social
Sciences and proposes an extension intended to support
the operationalization of non-functional requirements
(Section 3). Section 4 proposes another extension to deal
with adaptation requirements that introduce the monitor-
analyze-plan-execute functionality that characterizes
adaptive/autonomic software systems. In Section 5 we
note the fundamental distinction between functional and
behavioural specifications and introduce a new form of
operationalization that maps a goal into a set of
behaviours. Finally, Section 6 concludes.

2 Goal Models
Figure 1 shows a simple example consisting of a goal
model obtained through refinements and
operationalizations for a meeting scheduling system with
a single stakeholder goal ScheduleMtg. In the example,
fulfillment of the root-level goal can come about by
fulfilling three subgoals. In turn, each one of these is OR-
refined into two alternatives.

The three OR-refinements define choice points in the
design and are labelled cp1, cp2, cp3 respectively. For
example, the fulfillment of goal CollectTMtables
might be done by assigning the responsibility to a person
who manually collects them, or to the system-to-be. In

Proceedings of the Tenth Asia-Pacific Conference on Conceptual Modelling (APCCM 2014), Auckland, New Zealand

3

the former case, the responsible person has to execute
function P-Collect with the system only providing
database support. In the latter case, the system has to
carry out S-Collect, which may involve automatically
generated email messages for all anticipated participants,
and sending reminders where appropriate.

The fulfillment of goal FindFreeRm also has two
alternatives. The first one is a domain assumption: we can
fulfill FindFreeRm by simply assuming that there will
always be free rooms for a requested meeting.
Alternatively, we can fulfill the goal GetRm that locates a
free room. Domain assumptions simplify the design
problem by assuming that some of the sub-problems will
be solved by actors in the system’s environment, so the
designer doesn’t have to worry about them.

Goal refinement (AND/OR) transforms a goal into one
or more simpler ones. Eventually, these goals need to be
operationalized (“made operational”) either through the
assignment of a function or the assignment of a domain
assumption. In the former case, the designer is taking a
proactive stance: “use this function to fulfill that goal”. In
the latter, the stance is opportunistic: “Something will
happen to fulfill the goal, so we need not worry about it
in our design”. Operationalizations relate functions/
domain assumptions to the goals they operationalize. We
call such operationalizations functional to distinguish
them from what will be proposed in latter sections.

Another kind of link in Figure 1 is a conflict link
(marked by “X”), which says that two goals/tasks/domain
assumptions are in conflict to each other, so they can’t be
together part of a single solution. For instance, having a
person collect timetables is in conflict with having the
system choose a schedule for the meeting because not all
collected timetables can be assumed to be in machine-
readable form.

The goal model of Figure 1 suggests 6 possible
solutions to the problem of scheduling meetings. The
prefix of each element of the solution indicates whether it
is a function (F) or a domain assumption (DA): {F:P-
Collect, DA:RoomsAv, F:P-Schedule}, {F:P-
Collect, F:GetRm, F:P-Schedule}, {F:S-
Collect, DA:RoomsAv, F:P-Schedule}, {F:S-

Collect, DA:RoomsAv, F:S-Schedule}, {F:S-
Collect, F:GetRm, F:P-Schedule}, {F:S-
Collect, F:GetRm, F:S-Schedule}. Such solutions
are known as functional specifications.

A critical feature of goal models is that given a
problem, e.g., fulfilling the goal ScheduleMtg, they
define a space of alternative solutions, rather than a single
solution. In this respect goal models (and feature models
used to specify product families) are unique among
models used in Software Engineering.

3 Qualitative Operationalization
The practice of operationalization (operationalism) was
first proposed in Physics by Percy Williams Bridgman in
1927 (Bridgman, 1927). In short, operationalism calls for
scientists to define their concepts, however abstract and
intangible, in measurable terms. For example, “mass”
might be operationalized in a gravity-oriented way as
affinity to gravity measured by a weight scale. It can also
be operationalized as resistance to force. Operationalism
was subsequently adopted by the Life and Social Sciences
where it provides measurable definitions for concepts
such as “health” and “free and fair judiciary”. For
instance, “health” might be operationalized into a
combined function of blood pressure, sugar level and
number of drinks per day. “Free and fair judiciary” might
be operationalized, on the other hand, in terms of the
number of times there is government interference to
judiciary functions, how often are members of the
judiciary convicted of crime, etc.

For our purposes, operationalization of non-functional
requirements amounts to adopting a precise measure by
which an ill-defined non-functional requirement
(“softgoal”) can be measured as to the degree of its
satisfaction. This is consistent with RE practice, where
non-functional requirements are supposed to be
“metricized” in terms of a metric. For example, a
performance non-functional requirement might be
metricized as “System shall process 1,000 transactions
per second”, and a usability requirement as “Users will be
able to use the system after 3 hours of instruction”.

Figure 1: a simple goal model for the meeting scheduler

CRPIT Volume 154 - Conceptual Modelling 2014

4

Figure 2 shows an extended version of the meeting
scheduler goal model with two softgoals representing
non-functional requirements LowCostSch and
GoodQuaMtg. These are operationalized into quality
constraints (“metrics”) ‘Each meeting scheduling will
cost ≤ €20’ and ‘Each meeting will have > 70%
participation’. We call this type of operationalization
qualitative, to distinguish it from its functional cousin.

4 Operationalizing Adaptation Requirements
The increasing complexity of software-intensive systems,
combined with the uncertainty of the environments
wherein they operate has made adaptive software systems
a popular topic for researchers and practitioners alike (De
Lemos et al., 2013).

To design adaptive systems, we need not only vanilla
functional and non-functional requirements, but also
adaptation requirements, such as “Meeting scheduling
should not fail more than 2% during any one month
period”, or “If the collection of timetables fails because
some participants did not respond, go ahead and schedule
the meeting with the timetables you have”. Such
requirements are operationalized by a feedback loop that
monitors the performance of the system and takes action
when the requirement is not being met, i.e., meeting
scheduling fails more than 2% of the time, or timetables
haven’t been collected from all participants.

Adaptation requirements come in two flavours.
Awareness requirements (Souza et al., 2013a) impose
constraints on the states (succeeded, failed, cancelled,
etc.) of other requirements (i.e., goal model elements).
For example, suppose that for the meeting scheduler three
elements were found to be critical: ChooseSched,
DA:RoomsAv and QC:70%Part. Further, each
requirement has a different level of importance:
ChooseSched should never fail, whereas we can tolerate
one failure per week for DA:RoomsAv and would like a
75% success rate for QC:70%Part. These requirements
for the monitoring component of the feedback loop are
represented in Figure 3.

At runtime, the meeting scheduler should log changes
of state of the instances of its goal model, e.g., “T:S-
Sched has started”, “T:S-Sched has succeeded/failed”,
etc. The feedback controller reads from this log,
propagating the information up the model (following
Boolean semantics of operationalization links), which
may cause other elements to also change their state.
These changes may eventually cause awareness
requirements to fail, thereby triggering the system’s
adaptation mechanism.

Evolution requirements (Souza et al., 2013b)
constitute another kind of adaptation requirement. Such
requirements specify changes to other requirements when
certain conditions apply. Evolution requirements are
defined as Event-Condition-Action rules, taking relevant
events from the monitoring component of the feedback
loop and applying adaptation actions to the managed
system, depending on certain conditions.

Figure 3 shows three evolution requirements for the
meeting scheduler example. The first one uses failures of
AR5 as the triggering event and is associated with two
possible actions: (a) have the system retry the function
that caused the failure; or (b) reconfigure the system. The
condition for (a) is that it can only be applied once,
whereas the condition for (b) is that (a) has been
attempted but has failed to solve the problem.

The above example illustrates two kinds of adaptation
action: evolution and reconfiguration. Evolution is used
when stakeholders know exactly what the system should
do in order to adapt. In this case, adaptation is defined as
a series of modifications to the goal model, evolving it to
represent a new problem space. Such modifications can
take place at the instance level, which changes the system
for a single user session (e.g., the retry case illustrated for
ChooseSched), or at the requirement/class level, which
changes the system from that point on (e.g., if
requirement R fails more than we can tolerate, replace it
with a less strict version R-).

Reconfiguration, on the other hand, can be applied
when stakeholders do not have a specific solution to the
problem, but would like the system itself to search in its
solution space for alternative solutions (or specifications,
as explained in Section 2). The three choice points of

Figure 2: a goal model with softgoals and their operationalizations

Proceedings of the Tenth Asia-Pacific Conference on Conceptual Modelling (APCCM 2014), Auckland, New Zealand

5

Figure 1 (cp1, cp2, cp3) allow the feedback controller to
try different ways of satisfying system goals, therefore
adapting to specific situations.

Control variables can also be identified as means for
system reconfiguration. Figure 3 shows variable FhM
connected to goal CollectTMtables. It prescribes From
how Many participants one should collect timetables
before moving on to schedule a meeting. It should be
clear that changing the value of this variable could affect
the satisfaction not only of goal CollectTMtables, but
also of other requirements (e.g., the less timetables you
collect, the higher the chance of poor quality meetings as
participants find they can’t attend a meeting they are
supposed to). The relation between changes in these
parameters (i.e., choice points and control variables) and
the effect in satisfaction of requirements should also be
elicited in order for the adaptation component of the
feedback loop to be able to use this information properly.

Different reconfiguration algorithms have been
proposed in the literature, each requiring different
information to be included in a requirements model.
(Dalpiaz et al., 2012) and (Souza et al., 2012) are two
such examples from our own work.

5 Behavioural operationalization
Specifying a function through which a goal is
operationalized is one way to move from the problem to
the solution space, but there are also others. Behavioural
specifications constitute one such alternative.
Behavioural operationalizations define the possible
behaviours of a system as the set of allowable sequences
of executions of its functions (Dalpiaz et al., 2013).

Behavioural and functional operationalizations are
complementary. Functional operationalization is applied
to every leaf goal of a goal model and it defines the
function through it can be fulfilled. Behavioural
operationalization, on the other hand, applies to non-leaf
goals and specifies in what order subgoals are to be

fulfilled. For example, If goal G is AND-refined into
subgoals G1, G2, a possible behavioural operationalization
is ‘G1 ; G2‘, meaning that G1 must be fulfilled first,
followed by G2. Alternatively, we may specify ‘G1 | G2‘,
exactly one of the two subgoals needs to be fulfilled.
More generally, we can use regular expressions of
subgoals for behavioural operationalization. For instance,
we may want to say that in order to schedule a meeting,
we need to collect timetables one or more times until all
timetables have been collected, then proceed with the
scheduling

 CollectTMtables+ ; Schedule

Here ‘+’ stands for Kleene closure of regular expressions,
while ‘;’ indicates temporal ordering.

Behavioural expressions are actually more than regular
expressions since we sometimes want to specify that two
subgoals need to be fulfilled concurrently. This is
indicated by the shuffle operator ‘#’. For example in
Figure 4, meeting scheduling (G1) is operationalized with
‘G2; (G3 # G4)’, indicating that CollectTMtables must
be fulfilled first, followed by the interleaved fulfillment
of G3 and G4. Likewise, the goal for collecting timetables
(G2) is annotated with ‘(G4 | G5)#’, indicating that 1 or
more versions of G4 and G5 can be fulfilled concurrently.

Functional operationalization tells us how to fulfill a
leaf goal in terms of a function. On the other hand,
behavioural operationalization tells us how to fulfill a
non-leaf goal by using together solutions for its subgoals.

6 Discussion
Operationalization is about making something
operational, either by providing a function that defines its
operation, or by making it measurable. For goal models,
these forms of operationalization cover the two basic
types of requirements: functional and non-functional. In
this paper we have examined other forms of
operationalization that account for adaptation
requirements and non-leaf goals.

Figure 3: adaptation requirements operationalized by Awareness and Evolution Requirements

CRPIT Volume 154 - Conceptual Modelling 2014

6

These extensions reflect different stances that a
designer can take to the fulfillment of a requirement. A
proactive stance amounts to providing the means to
fulfillment through a function. An opportunistic stance
assumes the problem away. A scientific stance delivers
the means of measuring its degree of fulfillment. Finally,
a reactive stance amounts to offering a mechanism
(feedback loop) to cope with failures.

In conclusion, operationalization is a rich concept that
has been in use in the Sciences for almost a century. It
manifests itself in different ways for different classes of
requirements. More importantly perhaps, it reflects
multiple strategies to problem solving and design that go
far beyond what has been explored and deployed in
Requirements Engineering.

Acknowledgements
This work was supported in part by ERC advanced grant
267856, titled “Lucretius: Foundations for Software
Evolution", http://www.lucretius.eu.

References
Anton A.I. and Potts C. (1998): The Use of Goals to

Surface Requirements for Evolving Systems. Proc. of
the 20th International Conference on Software
Engineering, Kyoto, Japan, 157-166, IEEE.

Bridgman P.W. (1927): The Logic of Modern Physics.
New York, Macmillan.

Dalpiaz, F., Giorgini, P. and Mylopoulos, J. (2012):
Adaptive socio-technical systems: a requirements-
based approach. Requirements Engineering 18(1):1-24.
Springer.

Dalpiaz, F., Borgida, A., Horkoff, J. and Mylopoulos, J.
(2013): Runtime Goal Models. Proc. of the 7th IEEE
International Conference on Research Challenges in
Information Science (RCIS), Paris, France, 1-11, IEEE.

Dardenne, A., van Lamsweerde, A. and Fickas, S. (1993):
Goal-directed Requirements Acquisition. Science of
Computer Programming 20(1-2):3-50.

De Lemos, R., Giese, H., Müller, H.A. and Shaw, M. eds.
(2013): Software Engineering for Self-Adaptive
Systems II. Berlin Heidelberg, Springer.

Kaiya H., Horai H., Saeki M. (2002): AGORA:

Attributed Goal-Oriented Requirements Analysis
Method. IEEE Requirements Engineering Conference,
Essen, September 2002.

Kavakli E. (2002): Goal-Oriented Requirements
Engineering: A Unifying Framework. Requirements
Engineering 6(4):237-251. Springer.

Mylopoulos, J., Chung, L. and Nixon, B. (1992):
Representing and using nonfunctional requirements: a
process-oriented approach. IEEE Transactions on
Software Engineering 18(6):483-497. IEEE.

Souza, V.E.S., Lapouchnian, A. and Mylopoulos, J.
(2012): Requirements-Driven Qualitative Adaptation.
In On the Move to Meaningful Internet Systems: OTM
2012. 342–361. R. Meersman et al., (eds). Springer.

Souza, V.E.S, Lapouchnian, A., Robinson, W.N. and
Mylopoulos, J. (2013a): Awareness Requirements. In
Software Engineering for Self-Adaptive Systems II.
133–161. De Lemos, R., Giese, H., Müller, H.A. and
Shaw, M. (eds). Springer.

Souza, V.E.S., Lapouchnian, A., Angelopoulos, K. and
Mylopoulos, J. (2013b): Requirements-driven software
evolution. Computer Science - Research and
Development 28(4):311-329. Springer.

van Lamsweerde A. (2001): Goal-Oriented Requirements
Engineering: A Guided Tour. Proc. of the 5th IEEE
International Sysmposium on Requirements
Engineering, Toronto, Canada, 249-262, IEEE.

Yu E. and Mylopoulos J. (1998): Why Goal-Oriented
Requirements Engineering. Proc. of the 4th
International Workshop on Requirements Engineering
for Software Quality, Pisa, Italy.

Figure 4: a runtime goal model that includes goal annotations

Proceedings of the Tenth Asia-Pacific Conference on Conceptual Modelling (APCCM 2014), Auckland, New Zealand

7

