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Abstract. Variability is essential for adaptive software systems, because
it captures the space of alternative adaptations a system is capable of
when it needs to adapt. In this work, we propose to capture variability
for an adaptation space in terms of a three dimensional model. The first
dimension captures requirements through goals and reflects all possible
ways of achieving these goals. The second dimension captures supported
variations of a system’s architectural structure, modeled in terms of con-
nectors and components. The third dimension describes supported sys-
tem behaviors, by modeling possible sequences for goal fulfillment and
task execution. Of course, the three dimensions of a variability model are
inter-twined as choices made with respect to one dimension have impact
on the other two. Therefore, we propose an incremental design method-
ology for variability models that keeps the three dimensions aligned and
consistent. We illustrate our proposal with a case study involving the
meeting scheduling system exemplar.
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1 Introduction

Adaptive software systems are expected to cope with uncertain environments
where requirements cease to be fulfilled now and then. When this happens, an
adaptive system needs to reconfigure itself to a different configuration one or
more times until fulfillment of its requirements is restored. Possible reconfigura-
tions define an adaptation space whose dimensions and size determine the degree
of adaptivity of the system-at-hand. Much of the literature on adaptive software
systems in the past 15 years has focused on variability that is grounded on re-
quirements or architectures [3, 22, 5, 18, 15, 8, 11]. In this respect, such proposals
are limited with respect to adaptivity in that they are blind to dimensions of
adaptation other than the native one.

The one and only objective of this paper is to go beyond this one-dimensional
view of adaptation spaces by defining adaptation spaces that accommodate three
complementary dimensions. The first dimension captures variability in fulfilling
requirements and represents variability in the problem part of the adaptation
space. The other two dimensions capture variability with respect to behavior and
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architecture. These dimensions capture variability in the solution space of the
system-to-be, representing how, by whom and in what sequence requirements are
to be fulfilled. Together, the three dimensions constitute the adaptation space
where an adaptive system searches for alternative reconfigurations.

More specifically, we propose a parametrized model for adaptation spaces
that is constituted by a requirements, an architectural and a behavioral di-
mension. Moreover, the paper proposes a technique for building such models by
adopting a three-peaks approach where an adaptation space is defined iteratively
by introducing some requirements, deciding on their architectural and behavioral
dimensions, and then going back and introducing more requirements, including
ones that are determined by architectural and behavioral decisions, extending
[14]. The requirements dimension is captured by extended goal models in the
spirit of [20].

The rest of the paper is structured as follows. Section 2 presents the research
baseline of this work. Section 3 proposes a notation for modeling behavioral and
structural variability. In Section 4 the three-peaks process is introduced, and it is
evaluated in Section 5 with an extended version of the meeting scheduling exem-
plar. Finally, in Section 6 we discuss and compare related work, while Section 7
concludes.

2 Preliminaries, With Motivating Examples

This section presents the research baseline for this paper.
Goal models. Following our previous work [1], we use goal models to repre-

sent requirements. Fig. 1 shows the goal model for a Meeting Scheduler system,
used as a case study in this paper. The main requirement for the system, Sched-
ule Meeting, is represented by the top goal G0: Schedule Meeting. AND/OR
refinements with traditional Boolean semantics, allow us to refine this goal into
finer levels of granularity, down to simple tasks that can be operationalized by
a component of the system-to-be. Alternatively, domain assumptions indicate
properties that must hold for the system to work, such as the availability of
local and hotel rooms [10].

Even though OR refinements indicate that one of the lower level goals needs
to be implemented to satisfy the parent goal, for an adaptive system it is useful to
implement all alternatives because this allows multiple reconfigurations during
adaptation. Hence, some (in our example, all) OR refinements can be marked as
variation points (see labels VP1 –VP3 in Fig. 1). In this case, all tasks associated
with each variation must be implemented and the system can switch from one
configuration to another during adaptation [19], as long as it adheres to its
behavior model (discussed next).

Awareness Requirements (AwReqs) [20] impose constraints on the failure of
other requirements, and trigger adaptation. They serve as requirements for the
monitoring component of the adaptive system’s feedback loop. The degree of
failure of other requirements is measured by variables named indicators. For
example, AR4 prescribes that G6 should never fail, whereas AR3 indicates that
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90% of the time schedules are produced within one day. Therefore, the restrictions
of the associated monitored indicators are I4 = 100% and I3 ≥ 90%. If the
indicators stray this range, then the associated AwReq fails.

Another source of variability along the requirements dimension consists of
control variables. These represent the amount of resources and effort allocated for
the system-to-be while it fulfills its requirements. For instance, FhM represents
from how many participants the system should collect time tables before goal G5
is considered satisfied (a percentage value). MCA is another control variable that
represents the maximum conflicts allowed for the timeslot chosen for the meeting
and participant time tables. RfM is yet another, representing how many local (on
the premises) rooms have been allocated for meetings, while, HfM represents how
many hotel rooms are reserved for meetings, and finally VPA indicates whether
the system has authorization to access personal time tables.

Control variables and variation points, hereafter requirement control param-
eters (ReqCPs), can be adjusted at runtime by the adaptation mechanism, to
fix failing AwReqs. The qualitative relation between AwReqs and parameters is
captured through a systematic process called system identification. During this
process the domain expert captures the positive or negative influence that a
parameter change can have on an AwReq . More specifically, the differential rela-
tionship ∆(I2/MCA) < 0 means that by increasing MCA by one unit the success
rate of AR2 will decrease. Similarly, ∆(I5/MCA) > 0 means that by increasing
MCA the success rate of AR5 will increase. Differential relations are symmet-
ric with respect to increases/decreases, meaning that if MCA is decreased the
success rate of AR5 will also decrease.
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Fig. 1: Goal model for the Meeting Scheduler case study with flow expressions.
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Behavioral models. We represent the behavior of the system using flow
expressions [17, 7] as attachments to each goal (in Fig. 1, goals G0 –G7 ). These
are extended regular expressions that describe the flow of system behavior, with
each atomic component of allowed sequences of fulfillment of sub-goals that lead
to the fulfillment of a parent goal.

The operators ; (sequential), | (alternative), opt() (optional), * (zero or
more), + (one or more), # (shuffle) allow us to specify sequences of system actions
that constitute a valid behavior. Shuffle specifies that its operands are to be
fulfilled concurrently. For example, G0 # G1 means that goals G0 and G1 are
to be fulfilled in parallel. Of course, each of these goals has its own flow expression
to describe in what order its own subgoals and tasks are to be fulfilled/executed.

Some of the operators presented above introduce behavioral variability that
cannot be captured with goal models. For example, the meeting scheduler may
send a number of reminders to participants before a meeting (NoR), thereby
lowering the chances any participant will forget, and increasing chances that
Good Participation will succeed. To this end, behavioral variability introduced
behavioral control parameters.

Software architecture. The software architecture of a system constitutes
a high-level representation of its structure. It depicts how system components
are interconnected and what properties they have. The software architecture
is highly coupled to the requirements of a system since the latter prescribes
what needs to be achieved and why , while the former describes how fulfillment
is achieved. Architectures are described in terms of the concepts of components
and connectors. A component constitutes the basic building block of architecture
and is responsible for carrying out operations towards the fulfillment of goals.
Components can be software, hardware components or human actors that inter-
act with the system through an interface. Components interact with each other
within an architecture using communication links, named connectors. For our
purposes, we use class diagrams to represent an architecture [9], where classes
model components, while associations model connectors. For example, the class
diagram in Fig. 2 shows the architecture of the meeting scheduler system.

Fig. 2: Architectural diagram for the Meeting Scheduler
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Variability is captured in architectural models in terms of alternative com-
ponents that can fulfill the same goal, but with different qualitative properties
(e.g., better performance but lesser usability). Variability here can also be intro-
duced by having a number of component instances participating in the runtime
architecture. For instance, the meeting scheduler may have an additional com-
ponent to what is shown on Fig. 2 that takes in meeting scheduling requests and
distributes them among one or more servers each of which consists of the archi-
tecture shown in Fig. 2. This kind of variability is exploited by the RAINBOW
framework [8].

3 Capturing and Exploring Variability

In the previous section we motivated the need to introduce variability along all
three dimensions – goals, behaviors, architecture – to ensure that the system
has a large space of adaptation options in trying to cope with one or more
requirements failures. In this section, we continue the line of research reported
in [19] by demonstrating how to elicit and capture behavioral and architectural
control parameters (CPs) and their impact on system requirements.

Variability in Behavior. The semantics of AND/OR refinements are clear
at design time: If goal G is AND/OR refined into sub-goals G1, ..., Gn, then the
functionality of the system-to-be needs to include functions that fulfill all/at
least one of G1, ..., Gn.

Behavior talks about the allowable sequences of fulfillment of G1, ...Gn at
runtime. Each sequence needs to include one or more of G1, ..., Gn, but not all.
So, it can be the case that for an AND-refinement we have sequences that fulfill
only some of G1, ..., Gn and for OR refinements we have sequences that fulfill all
of G1, ..., Gn. For example, the goal Manage Meeting : although all of its tasks
must be implemented, confirm meeting and cancel meeting are actually conflict-
ing and their use cannot coincide in the same execution sequence. Therefore, the
| operator indicates that only one of the two is allowed for any one execution of
the system as shown in Fig. 1.

The ; operator is useful when modeling the behavior of an AND-refinement
and prescribes the order in which sub-goals/tasks must be fulfilled. It is common
practice in software design to impose only one possible order, thereby limiting the
reconfiguration capabilities of the system-to-be. In our framework, the designer
is encouraged to select multiple alternative behaviors for fulfilling a goal. Ac-
cordingly, we introduce behavioral control parameters (BCPs) that are assigned
to the goal’s behavior and whose possible values are all the allowed sequences. A
BCP is defined as (|[parameter name]alt1 ... altn), using infix notation for the
alternative operator. For example, for the goal Book Meeting if the meeting or-
ganizers select a meeting room first and then find a date, participation might be
low because of conflicts with participant time tables. If they select the date first
and the room afterwards, participation may improve but it is not guaranteed
that the selected room will have all required equipment. A BCP defined by (|
[BCP1] G6;G7 G7;G6) takes as values the two possible sequences G6;G7 and
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G7;G6. It’s impact on the requirements is captured by the differential relations
∆(I2/BCP1)[G6;G7 → G7;G6] > 0 and ∆(I7/BCP1)[G6;G7 → G7;G6] < 0
while the new behavior for the goal Book Meeting is depicted in Fig. 3a.

Another variability factor of system behavior is related to the multiplicity
of the fulfillments of a goal or a task. When there is the option for the system
to fulfill multiple times a goal or a task, the designer must consider the impact
of this variability on AwReqs. For example, the task t17 send reminder is per-
formed by the system–to-be and can be executed multiple times if the goal Good
Participation is failing. To this end, as depicted in Fig. 3c, we substitute when
needed the operators * and + with a BCP (in this case named NoR) and based
on a differential relation such as ∆(I2/NoR) > 0 the adaptation mechanism can
adjust its value when Good Participation is failing. The range of values of NoR
varies from one to five executions of task t17.

The repetitive execution of a task or fulfillment of a goal raises the issue
of time synchronization. In the previous example, if NoR = 3 and all the re-
minders are sent one after the other within seconds, the outcome is likely to be
an unhappy one. Hence, we introduce a behavioral function wait() that takes as
argument a BCP with a range of values related to time units, in this case days.
This function is part of the behavioral model as shown in Fig. 3c and BCP3 is
defined as (| [BCP3] 1day 2days 3days).

Next, we revisit OR-refinements in order to extract additional variability. The
traditional perception of these refinements at runtime is that the satisfaction
of any subgoal would lead to the satisfaction of the parent goal. Therefore,
the ReqCPs associated to an OR-refinement have as candidate value one of
the subgoals. The system-to-be though may require in certain occasions the
fulfillment of all the subgoals to guarantee the satisfaction of the parent goal.
For example, scheduling a meeting requires the fulfillment of the goal G5: Collect
Timetables that can be achieved by either contacting the participants by phone,
by e-mail or collecting them automatically from a common system calendar.
However, when one or more of the invited participants do not use the system
calendar the third option could harm AR2 , since these participants will not
receive any invitation for the meeting. Dealing with such a situation requires
the utilization of all the alternatives under the OR-refinement. This means that
participants who do not have an account for using the system’s calendar and
therefore their timetables must be collected either by phone or by e-mail while
the timetables of the remaining participants can be collected automatically by
the system. To capture this additional variability a new BCP is introduced
defined as (| [BCP2] V P1 t5#t7 t6#t7), as depicted in Fig. 3b.

Variability in Architecture. We consider next the third peak, architec-
ture, looking for opportunities to introduce variability. In order to be fulfilled,
each goal or task must be assigned to at least one component3. For this peak,
as we mentioned before, there are two sources of variability. The first is related
to each component’s multiplicity. Certain components may be instantiated mul-
tiple times for requirements to be fulfilled. For example, as shown in Fig. 2, an

3 Each component must be able to satisfy on its own the assigned goal.
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Fig. 3: Behavioral Control Parameters (BCPs) elicitation

instance of the component TimetableCollector can be associated with multiple
instances of the component Secretary. The number of instances of the latter, is
an adjustable variable that affects the operational cost of the meeting scheduling
process (AR1), but also how fast the meetings are scheduled (AR3). We refer
to such variables as architectural control parameters (ACPs) following the same
definition construct as BCPs. In this case we introduce the number of secre-
taries NoS parameter defined as (| [NoS] 1..5) that will substitute the abstract
multiplicity notation, representing explicitly the presence of a new configuration
point. The impact of this ACP on the requirements is captured by the differential
relations ∆(I1/NoS) < 0 and ∆(I3/NoS) > 0.

The second source of architectural variability is related to the selection among
multiple candidate components that are assigned with the same goal/task. For
the goal Find Room we have two candidate software components that are both
part of the system and can be used interchangeably. The first component finds
the cheapest room reducing the overall cost of the meetings, but does not guar-
antee that all the required equipment will be present, while the other one finds
the best equipped room but might exceed the budget available for scheduling
meetings. These two components can be used either interchangeably or concur-
rently. The concurrent use of both components allows the users select which
result is more suitable for them. In specific occasions such as low budget pe-
riods, the system may switch to the exclusive use of the component that pro-
vides the best price. Therefore, as shown in Fig. 4b we add to the architecture
model an ACP named ACP1 with candidate values all the possible uses of these
components, with the following definition (| [ACP1] BestEquipRoomFinder
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BestPriceRoomFinder BestEquipRoomFinder#BestPriceRoomFinder). The
shuffle operator indicates concurrent use of the operand components.

(a) ACP for component instances (b) ACP for alternative components

Fig. 4: Architectural Control Parameters (ACPs) elicitation

Variability in the environment. In all previous cases we have seen that
factors from the system’s environment affect adaptation decisions. Accordingly,
our variability model needs to capture variability in the environment and its
impact on requirements. Towards this end, we introduce a domain model, as
shown in Fig. 5. Environmental variability is captured here with a new type of
parameter named environmental parameter (EP).

An EP can indicate the number of instances of a domain entity and there-
fore its multiplicity in the domain model. The difference from architectural mul-
tiplicity is that in the case of the environment the adaptation mechanism has
no control on the value of the EPs. For instance, there is no control on the
number of meeting requests (NoMR) the meeting organizers are sending, neither
the number of participants (NoP) attending a meeting, and therefore these are
represented as EPs.

Fig. 5: Domain model for the Meeting Scheduler environment

The attributes and the operations of domain entities constitute another
source for environmental variability. For example, participants may confirm their
participation, but in the end not attend a meeting. The EP percentage of con-
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sistency (PoC ) captures this, while the average hotel price captures the current
average cost for reserving a hotel room for meetings.

EPs influence the AwReqs in the same manner as CPs. However, the adap-
tation mechanism can only monitor them, identifying undesired situations and
change CPs to compensate for changes. For example, when the PoC is decreased
because participants tend to forget meetings they are supposed to attend and the
participation is harmed according to the differential relation ∆(I2/PoC) < 0,
then the adaptation mechanism can increase the NoR to compensate.

4 A Three-Peaks Modeling Process

The modeling process for three-peaks models is depicted in Fig. 6. It guides the
elicitation of all elements of a three-peaks model, including control parameters.
Our process is iterative and intertwined, analyzing and expanding problem and
solution spaces simultaneously.

The process starts by getting as input a goal or a task, which initially will
be the root goal such as G0: Schedule Meeting. The next step is to identify if
there are any AwReqs, softgoals or domain assumptions related to the input.
Then, if the input is a goal, it is refined into subgoals, otherwise the requirement
and behavior analysis are skipped. The designers, along with domain experts,
examine what needs to be fulfilled and how, starting from eliciting parameters
required for that inserted goal to be satisfied, such as how many conflicts are
allowed before finding a date or if the system can view private appointments.
These parameters are ReqCPs and their values may vary during alternative
executions of the system.

Continuing the analysis of how a goal can be fulfilled, designers provide
an initial behavioral model using the notation introduced in Section 2. If the
goal is OR-refined then each subgoal becomes a candidate value for a ReqCP
such as V 1 − V 3 in Fig. 1. Then, the behavioral model is refined by adding a
BCP with range of values according to existing ReqCP and shuffle combinations
of the refinements as in Fig. 3b. In the case of AND-refinement, the order in
which the operands of sequential behaviors (the parts of the model that include
only the ; operator) is examined. If a different order of the operands implies
influence to different AwReqs a new BCP is introduced with range of values, all
the potential orders. Concluding this iteration of behavior analysis, the process
examines every ∗ and + operators in order to substitute them with a BCP , if
needed, as described in Section 3. In that case also the wait(BCP) function with
its own BCP is added. The last step leads to a new refinement of the goal since
a wait task is added as a refinement of the examined goal.

Moving to the architecture peak, designers associate the input goal or task
to one or more components of the architecture. This determines who is respon-
sible for the satisfaction of the goal or task. When more than one component
is assigned, an ACP is added and can be tuned by the adaptation mechanism
at runtime in order to activate the most suitable component or a combination
of them for fixing failing requirements. Next, if the new component can be in-
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stantiated multiple times at runtime and this number has impact on the AwReqs
while under the control of the adaptation mechanism, the associated multiplicity
is substituted with an ACP . Then, the assigned components get as attributes
the ReqCPs and BCPs of the goal, as they must be aware of what behavior must
follow and what are the values of these parameters. Once the previously elicited
variability has been embedded in the assigned component, the designers of the
architecture, provided that the goal is fully or partially operationalized, add the
tasks produced by the refinement as operations. Finally, the designers may pro-
vide additional attributes and operations to the component of more technical
nature that are not related neither to requirements nor to behavior. For every
new attribute or operation, the process must investigate whether there is need of
adding new requirements. If the initial input was a goal then it is refined again,
but in case of a task then it is the parent goal that must be processed again.

The last step of the process inspects if the current set of configurations is able
to guarantee the the satisfaction of all the AwReqs related to the investigated goal
under any possible environmental condition. In case there are situations where
the system is not able to guarantee success of all the related AwReqs, then two
actions can be taken: a) perform further refinements, finding new CPs, goals
or tasks; or b) deal with conflicting requirements, using the conflict resolution
mechanism of our previous work [1]. When all goals and tasks are processed and
every goal is operationalized, the process terminates.

5 Evaluation

Following the three-peaks process presented in the previous section we produce a
goal model with annotated behavior (Fig. 7) and an architectural model (Fig. 8)
which includes several additional parameters over what was presented in Sec-
tion 2.

More specifically, six new CPs are derived from the behavioral model (BCP1−
BCP5 and NoR) and two from the architectural model (ACP1 and NoS ). More-
over, the three-peaks process resulted in eliciting three additional tasks (t22, t23
and t24). The task t23: be online along with AR9 are result of the attribute
assigned to the component Database that is responsible for the goal G4: Store
Data. This prescribes that the status of the Database must be monitored to en-
sure that it is constantly online. The task t24:wait is introduced by the assigned
behavior to goal G3: Manage Meeting. Finally, the task t22: do meeting online,
has been introduced to resolve situations where there are few suitable dates due
to many conflicts among participants, and there are not enough available rooms.

In our previous work [1] we did not take into account the holding conditions
of the environment. This carries the risk of choosing the wrong adaptation for
fixing failing requirements. For instance, consider the case where participants
forget to attend their meetings, resulting in the failure of AR2. The adaptations
offered by the original goal model (not generated by the three-peaks process)
for fixing AR2 are either to start viewing private appointments of participants
by setting VPA to true or decreasing MCA allowing fewer conflicts. Neither one
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anticipates the real cause of the failure. The three-peaks model though offers
the parameter NoR that increases the number of reminders thereby tackling the
source of the problem, and capable of increasing the success rate of AR4.

Fig. 8: The architecture model after the three-peaks process

Another case where requirements-only variability proves to be insufficient
concerns the room selection by the meeting organizers before or after finding
a date for their meeting. Each of the alternative orders works well in differ-
ent contexts. Selecting room first guarantees good quality meetings, since the
meeting organizers select a room that can provide all the required equipment,
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assuming that the invited participants are available the same date the room is
available, otherwise the success rate of AR5 is at risk. On the other hand, when
meeting organizers select date first, it is more likely that they will find a date
convenient to most invited participants, but a sufficiently equipped room might
not be found in periods with high workload for the meeting scheduler, decreas-
ing the success rate of AR7. Using behavioral variability, an adaptive meeting
scheduler executes the order that complies with the existing context by tuning
BCP1. Moreover, to maintain the equilibrium between the success rate of AR1
and AR7 when the system selects rooms automatically the system can use ei-
ther a component that finds the cheapest room available or the best equipped
respectively, exploiting architectural variability and more particularly ACP1.

The previous failure scenarios show that the high variability models of the
three-peaks process can handle better changes in the system’s environment where
the requirements-only model would provide ineffective adaptations. A limitation
of our approach is that dependencies among CPs are not captured. For instance,
it makes sense for MCA to be changed only if the value of V P3 is set first to
“schedule automatically”. In order to alleviate this obstacle, we are planning
to extend our notation in order to capture this kind of constraint. Another
limitation on the scalability of our proposal is that for every variable introduced
into the model, its impact on all AwReqs must be examined.

6 Related Work

Having as a starting point a goal model, Yu et al. [23] propose heuristics to de-
rive other models such as feature models, statecharts and component-connector
models. Their purpose is to express the same level of variability in different di-
mensions of the system. On the other hand, our approach intends to capture
the interaction of the system’s dimensions and incrementally elicit additional
variability along each one of them.

The STREAM-A approach presented in [16] derives ACME architectural
models from goal models using model transformations. The environment’s in-
fluence on the requirements is captured in terms of context. The main purpose
of this work is to relate the requirements to components and place accordingly
the actuators and the sensors of the adaptation mechanism. While this approach
provides a method for binding requirements and architecture, it overlooks the
factor of behavior in the adaptation process. In comparison to our proposal,
there is no effort of exploring and handling the variability of the derived model.

In the work of Kramer and Magee [12] goals and components are related with
reactive plans. When a failure takes place or a goal is changing, the proposed
adaptation mechanism generates a new plan of actions that needs to be carried
out and the available components that are required are reconfigured to the cur-
rent architecture. This approach, as well as ours, demonstrates the advantages
of architectural variability, by assigning goals to multiple components. However,
our work goes a step further by modelling the impact that every alternative has
on a goal’s satisfaction.
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Chen et al. [4] combine requirements and architectural adaptations. The
stakeholders state their preferences about the goals and clarify what expecta-
tions they have for their satisfaction. Then the adaptation framework monitors
the system and if expectations are not met it attempts to find a different archi-
tectural solution. In case the problem is still not solved, a new specification is
derived from the goal model attempting a reconfiguration at requirements level.
This approach doesn’t take into account the variability of the behavior which
we express by flow expressions. Furthermore, the priority is given to architec-
tural alternatives while in our work all the dimensions are candidates for offering
solutions.

Other approaches that derive architectures from goal models such as the work
of Chung et al. [6] and Lamsweerde [21], offer systematic methods for relating
goals, behaviors and architectures. Even though there is no notion of variabil-
ity for adaptation purposes within these approaches, they can by exploited to
elaborate the production of the three-peaks model as proposed here.

In [13], Lapouchnian et al. describe how to derive high variability business
process models from goal models and how softgoals can guide the reconfiguration
of a business process. Our approach follows the same line of research, adding a
richer notation and capturing behavioral variability that goes beyond the OR-
refinements of the goal models. Moreover, we introduce environmental variables
that can influence the satisfaction of our goals and drive the reconfiguration
process.

Finally another variability management approach that is related to our work
is Dynamic Software Product Lines (DSPLs). In [2] DSPLs are applied to service-
based system for adapting at runtime to the user’s requirements by adding and
removing features and reconfiguring the business process in order to support
these changes. Our work examines architectural variability at a component level,
where different components can satisfy the same goal(s) but may influence dif-
ferent indicators. The reason is that the components share common features,
while they differ to some others. Therefore, DSPLs could be complementary to
our work to express at a deeper level of detail our architectural variability.

7 Conclusions and Future Work

We propose a systematic process for extracting incrementally variability from
goal models. The source of variability lies in the three peaks of a software system:
requirements, behavior and architecture. We investigate how variability can be
elicited along each peak, introducing behavioral and architecture control param-
eters and how to model environmental variability. We also present a three-peaks
process to derive incrementally high variability requirements, behavioral and
architecture models. Finally, we have evaluated our models through execution
scenarios of the meeting scheduler exemplar, showing that offering adaptations
along three peaks enables the system to handle more failures.

Our future research includes the implementation of a tool that will support
the design of our three-peaks models, as well as further evaluation with real case
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studies. We also plan to experiment with a simulation of the meeting-scheduler
exemplar using the three-peaks model extending our previous work [1] on han-
dling multiple failures by exploring the quantitative form the differential relations
and applying control theoretical adaptation techniques for multivariable system
with multiple inputs and multiple outputs.
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