
Towards an Integrated Methodology to
Develop KM Solutions with the Support of Agents

Renata S. S. Guizzardi1, Virginia Dignum2, Anna Perini3, Gerd Wagner4

1Computer Science Department, University of Twente, Enschede – The Netherlands
Email: souza@cs.utwente.nl

2 Institute of Information and Computing Sciences, Utrecht University – The Netherlands
Email: virginia@cs.uu.nl

3 ITC-irst, Trento-Povo – Italy
Email: perini@itc.it

4 Institute of Informatics, Brandenburg University of Technology at Cottbus – Germany
Email: G.Wagner@tu-cottbus.de

Abstract – Activities related to Knowledge Management
(KM) processes require changes within the organizational
processes in order to accommodate new goals and tasks,
besides changing the way people view and do their work. In
this paper, we argue that agents are suitable for modeling
KM contexts, due to their cognitive characteristics, such as
goals, beliefs, and reactivity. However, besides a good
abstraction, the development of adequate solutions requires
a consistent software engineering methodology. To help fill
in this gap, we describe some results of our work on an
integrated agent-oriented methodology to develop KM
system, using a KM typical scenario. We consider all
humans, organizations and existing systems as agents. The
model enables the designer to understand and describe
relations between entities before development of the system.
Furthermore, different cognitive characteristics of agents
are used in different phases of the development cycle.

1. INTRODUCTION
Organizational processes have gone through profound

changes in the past years, becoming more dynamic and
knowledge intensive. These changes have been necessary
for businesses to maintain sustainable advantage on the
market. On the other hand, the new business models brought
about a wide variety of problems to be solved, and a
solution is many times based on the development of new
information systems. In parallel, the software engineering
field faces a big challenge in providing the right kinds of
abstractions and methods to model such systems.

Knowledge Management (KM) refers to the processes of
creating, codifying, sharing, maintaining and evolving
knowledge within an organization. Activities related to
these processes tend to require changes within the
organizational processes to accommodate new goals and
tasks, besides changing the way people view and do their
work.

Agents are suitable entities to model human and
artificial organizations due to their autonomous, reactive
and proactive nature, besides other cognitive characteristics.
This can support domain analysts and information systems
designers in understanding the current organizational setting

before proposing the development or adoption of particular
supporting systems. However, having an appropriate
abstraction is not enough for guaranteeing the development
of adequate solutions for the organization. For that, a
consistent software engineering methodology is needed.
Our main focus here regards an integrated agent-oriented
methodology to develop KM solutions, which represents as
agents all humans, organizations and information systems of
the domain. This enables the analyst to understand their
relations before actually thinking of developing a system.

Benefits as a result of the application of this
methodology may be attributed to our choice of using the
proper agent cognitive characteristics in the different phases
of the development cycle. Concepts such as agent’s beliefs,
goals, and plans are vastly discussed in literature and
different models have been proposed. However, it is hard to
know how to go from theory to practice. In this respect, our
work attempts to provide an answer to the following
questions: Should these concepts be considered all at once
in system development? If not, when are goals suitable, and
when should the developer start considering agent’s beliefs?
And, perhaps, the most frequent question of all: How can
these concepts be materialized in practical elements of an
information system? Although there is no final answer for
such questions, we aim at contributing to clarify these
important issues, by integrating two existing modeling
approaches: the Tropos methodology [2] and the Agent-
Object-Relationship Modeling Language (AORML) [9]. A
consistent transformation process guides the designer on
converting their different notations, merging both
approaches.

This paper illustrates the proposed methodology,
ARKnowD (Agent-oriented Recipe for Knowledge
Management System Development), using a KM typical
scenario. The remaining paper is organized as follows:
section 2 presents information systems as KM enabling
technology, describing the scenario we use as an example
for our modeling approach; section 3 introduces
ARKnowD’s main principles, presents Tropos and
AORML, and proposes a transformation method between
these two approaches; in section 4, the architectural design
of the scenario is presented and detailed; finally, section 5

mailto:virginia@cs.uu.nl
mailto:perini@itc.it

concludes the paper and presents some directions for future
work.

2. KNOWLEDGE COMMUNITIES
Information systems are key ingredients of a KM

solution, playing the role of “enabling technology”. Most of
the currently adopted KM systems rest on a centralized
repository of documents, organized around a single
ontology, or requiring the adoption of standardized
vocabularies, languages, and classification schemes.
Consequently, employees’ lack of trust and motivation often
lead to dissatisfaction. In other words, workers resist on
sharing knowledge, since they do not know who is going to
access it and what is going to be done with it. In addition to
that, a centralized view of KM processes are in contrast with
results coming from organizational and cognitive studies,
which support a distributed KM paradigm that better fits to
the distributed, subjective and inter-subjective nature of
organizational knowledge [1] The distributed view of KM is
based on the assumption that the members of an
organizations have their own natural way to share
knowledge. They usually gather in groups, based on similar
interests, personal affinity and trust. These groups are
commonly known as Communities of Practice (CoPs) [10].

The role of CoPs in KM characterizes the scenario that
we propose in this paper to illustrate our approach. As
emerging from this scenario, communities may be fostered
by the organization management, which provides these
communities with incentives and support them with
appropriate information systems and infrastructures.
Deciding which technology could enable CoPs’ creation and
management becomes a critical issue, which requires a deep
understanding of the organization, of the common and the
individual goals of its members. For example, the scenario
illustrates the case of a company's newcomer who would
like to understand better about the content as well as the
procedures that should be used in his work. Knowing about
the existence of CoPs, this newcomer decides to join one in
order to share knowledge with the other workers, thus
becoming a CoP member.

The design of a CoP support system must take into
account the different perspectives of the newcomer, the CoP
and the organization's management. Previous requirements
analysis of this scenario [3] has lead us to the proposal of a
socially-aware recommender agent named KARe
(Knowledgeable Agent for Recommendations). KARe’s
main feature regards finding, in a peer-to-peer distributed
base, possible answers to one’s knowledge explanation
requests (i.e. natural language questions), whenever
possible. The types of artifact contained in this distributed
base are both messages (i.e. answers given in natural
language by the network peers) and documents (such as
articles, spreadsheets, etc.). Consequently, when a previous
message or document is not found to answer to an
explanation request, KARe refers to someone as the most
able peer to fulfill that specific request.

3. AGENT-ORIENTED KM DEVELOPMENT
Towards facilitating the analysis of KM scenarios for the

consequent development of adequate solutions, this work
proposes ARKnowD (Agent-oriented Recipe for Knowledge
Management Systems Development). Note that systems
here have a broad definition, comprehending both
technology-based systems (e.g. information system,
groupware, repositories) and/or human systems, i.e. human
processes supporting KM using non-computational artifacts
(e.g. brainstorming, creativity workshops).

The basic philosophical assumptions behind ARKnowD
are: a) the interactions between human and system should be
understood according to structuration theory [7], which
claims that humans and communities are self-organizing
entities, and that structuration and re-structuration are
motivated by human-system interaction cycles, in which
humans shape systems and, at the same time, systems
constrain the ways humans act and change; b) KM enabling
systems should be built in a bottom-up approach, aiming at
the organizational goals, but understanding that in order to
fulfill these goals, some personal needs and wants of the
knowledge holders (i.e. the organizational members) also
need to be targeted; c) there is no silver bullet when
pursuing a KM tailoring methodology, so the best approach
is combining existing work according to the given domain
or situation. Here, we particularly adopt the agent-oriented
paradigm, for understanding that agents are appropriate
metaphors to represent humans, organizations, and
technology in a KM scenario.

In this paper, we show how the principles above may be
achieved by the integration of two existing work on agent-
oriented software engineering: the Tropos methodology [2]
for Requirements Engineering and the Agent-Object-
Relationship Modeling Language [9]. These two approaches
are merged to guide KM analysts and system developers
when conceiving KM solutions. This combination allows
the support of distributed approaches to KM, pointed-out in
the previous section as preferable, in contrast to centralized
solutions. Our integrated methodology emphasizes the
earlier phases of software development, the so-called
requirement analysis phase. In this way, we consider all
stakeholders (organizations and humans) as agents in our
analysis model, and start by understanding their relations
before actually thinking of developing a system. This
analysis may conclude, for example, that the problems in the
domain may be more effectively solved by proposing
changes in the business processes, rather than by making
use of new technology. And besides, in addition to humans
and organizations, existing systems are also included in the
model from start, helping the analyst and designer to
understand which functionalities are delegated to these so-
called artificial agents. Hence, a new technological solution
(if needed) may be developed on top of legacy systems. This
may lead to more satisfaction to end users, who are already
familiar with the interface and methods applied in the
systems in use. Besides, benefits as a result of the
application of ARKnowD may be also attributed to our
choice of using the proper agent cognitive characteristics in

the different phases of the development cycle, providing the
analyst and designer with a way of how to go from
theoretical definitions to practical analysis and design
elements.

In this respect, ARKnowD prescribes that: 1) in the
requirements analysis phases, the main focus should be on
the agent’s goals; and 2) in the phases of architectural and
detailed design, the following agent’s concepts should be
considered: plans, resources, beliefs, commitments, claims,
reactiveness, proactiveness, autonomy, and social ability.
This choice may be justified by intuition, i.e. in our daily
lives, goals are the motivators of our actions, besides
determining if we use specific resources instead of others, if
we talk to specific people, etc. In other words, goals
determine the processes an agent should pursuit. But this is
also supported by KM literature. For instance, Nonaka &
Takeuchi [5] mention intention as the first driving force for
the adoption of KM practices within organizations.
Nevertheless, these authors mainly focus on the
organization top management’s intention, defined as “an
organization’s aspiration to its goals”, facilitating KM
initiatives. Here, in contrast, we consider the goals of all
stakeholders involved, trying to understand the relations and
possible discrepancies between these goals. While in the
early phases of domain analysis, we may abstract from all
details, placing our attention mainly in understanding the
goals of the stakeholders (having also a feeling of the
relations between the goals and the agents), the design phase
is dedicated to fill all the gaps and provide us with the
biggest amount of details needed for system
implementation.

3.1. Tropos Methodology

The Tropos methodology [2] uses visual modeling
language and a set of techniques for goal analysis. Basic
constructs of the conceptual modeling language are: actor,
representing a stakeholder in a given domain, a role or a set
of roles played by an agent in a given organizational setting,
and actor’s goal, plan (or task) and resource. Moreover, a
dependency link between pairs of actors allows to model the
fact that one actor depends on another in order to achieve a
goal, execute a plan, or acquire a resource. Goal analysis is
conducted from the point of view of each individual actor,
that is for each actor's goal, we may consider: means to
satisfy it (means-end relationship); alternative ways to
achieve it (OR decomposition); possible sub-goals (AND
decomposition); goals or plans or resources that can
contribute positively or negatively to its achievement
(contribution). This type of information can be graphically
depicted in actor and goal diagrams. Linear temporal logic
specification can be used to constraint a model behavior (we
refer it as Formal Tropos - FT annotation)

Among the advantages of adopting Tropos visual
modeling for KMS requirements analysis is the possibility
of pointing out the idiosyncrasies of a given environment,
as, for instance: a) verifying inconsistencies between models
elaborated on the basis on interviews with different actors in
the organization; b) realizing that several actors perform the
same exact task, thus suggesting that the process can be

more efficient if that task is attributed to only one or two
actors; c) understanding that too much or too little time and
effort are dedicated to KM activities; and d) realizing the
problems behind the non-adoption of proposed KM methods
and systems [10], i.e. detachment of the system from the
daily practices of organizational members, lack of trust and
motivation to share knowledge, etc..

3.2. AORML

The Agent-Object-Relationship (AOR) modeling
approach [9] is based on an ontological distinction between
active and passive entities, that is, between agents and
objects. This helps to capture the semantics of complex
processes, having agents represent the actors of a given
scenario, and objects playing the role of the artifacts
manipulated by the domain actors.

In AORML, an entity can be an agent, an event, an
action, a claim, a commitment, or an ordinary object. Agent
and object form, respectively, the active and passive entities,
while actions and events are the dynamic entities of the
system model. Commitments and claims establish a special
type of relationship between agents. These concepts are
fundamental components of social interaction processes and
can explicitly help to achieve coherent behavior when these
processes are semi or fully automated. Besides AOR models
human, artificial and institutional agents. Institutional agents
are usually composed of a number of human, artificial, or
other institutional agents that act on its behalf.
Organizations, such as companies, government institutions
and universities are modeled as institutional agents,
allowing us to model the rights and duties of their internal
agents. For further reference, we refer to [9] and to the AOR
website: http://aor.rezearch.info/.

3.3. Integrating Tropos and AORML

Reading about Tropos’ and AORML notation provides a
first feeling on how these two approaches will be applied to
fulfill proposals 1 and 2 mentioned above, i.e. using goals in
the analysis, and the remaining agents content on design.
Table 1 shows ARKnowD viewpoints framework that can
be defined as a technique for suppressing unnecessary
details according to different abstraction levels, providing us
with an appropriate separation of concerns regarding system
analysis and design [6].

Table 1 shows for each abstraction level [6], which
models are used and for each modeling aspect, i.e. the
interaction, information and behavior aspects. These three
aspects are, in general, targeted in every system analysis and
design models. On the other hand, the division in three
abstraction levels provide us with an interesting view,
showing us that we naturally should target the modeling
task from different perspectives: the domain model (CDM),
a design model which can be reused, meaning that it is
independent of the implementation platform (PIM), and
finally a design model that depends on the implementation
platform of our choice (PSM). Regarding the PSM, if we
use Java, we may use UML Class Diagrams for this last
abstraction level. On the other hand, if we apply JADE or
other agent-oriented framework, we must use other models

http://aor.rezearch.info/

that comply with the constructs provided by this specific
framework.

Table 1 - ARKnowD Viewpoints
 Viewpoint Aspects

Abstraction
level

Interaction Information Behavior

Conceptual
Domain
Modeling
(CDM)

Tropos Actor
Diagram,
Tropos Goal
Diagram

Tropos
Actor
Diagram,
Tropos Goal
Diagram

Tropos Actor
Diagram, Tropos
Goal Diagram with
FT annotations

Platform-
independent
Computational
Design (PIM)

Tropos Actor
Diagram,
Tropos Goal
Diagram
AOR Interaction
Sequence
Diagrams, AOR
Agent Pattern
Diagrams

Tropos
Actor
Diagram,
AOR
Interaction
Sequence
Diagrams,
UML Class
Diagrams

Tropos Actor
Diagram, Tropos
Goal Diagram with
FT annotations,
AOR Agent Pattern
Diagrams, AOR
Internal Activity
Diagrams

Platform
Specific
Implementation
(PSM)

UML
Deployment
Diagrams,
others

UML Class
Diagrams,
others

UML Class
Diagrams, others

Among the advantages of adopting two existing work,
for instance, Tropos and AORML, is the existence of
supporting tools for both languages. But besides that, there
should be some kind of transformation model that can be
applied in order to go from Tropos to AORML in a
consistent way. In this way, we should provide the analysts
and designers with some guidelines on how to convert one
to the other, even using semi-automatic process for this
transformation. Table 2 depicts the transformation rules,
meaning that a concept in one column must be mapped to its
counterpart in the other column.

Table 2 - Mapping Tropos to AORML
Tropos Concepts AORML Constructs

actor agent
goal -
plan path for interaction modeling

(AOR Interaction Sequence
Diagram)

capability set path for interaction modeling
(set of AOR Interaction
Sequence Diagrams)

resource object
dependency AOR Agent Diagram association

relation

Table 2 shows an actor in Tropos, modeling an entity
that has strategic goals and intentions within the system or
the organizational setting. This concept directly maps to one
of the three types of agents in AORML: human, artificial or
institutional agent, depending on its nature. On the other
hand, Tropos’ plans may indicate paths for AORML’s
interaction modeling, with the use of AOR Interaction

Sequence Diagrams (ISDs). Capabilities in Tropos may be
seen as a set o plans and, therefore, could be mapped for the
set of interaction modeling paths, representing the agent’s
plans (i.e. a set of AOR ISDs). Analogously, Tropos
resources representing physical or information entities of the
domain become objects according to AORML
conceptualization. Additionally, Tropos prescribes that goal
dependencies between two actors indicate that one actor
depends on the other in order to attain some goal, execute
some plan, or deliver a resource. Such goal dependencies
will lead to the establishment of some kind of association
relations between these agents in an AOR Agent Diagram.

4. CASE STUDY
Here, we start presenting the model of our scenario, as

described in section 2. Note that the analysis model for the
same scenario has been previously published [3] and, here,
we move forward from the system architectural design. We
begin with a first architectural design model, still using
Tropos (sub-section 4.1) and, then, we present a refined
design model with the use of AORML (sub-sections 4.2).

4.1. The KARe System Architecture

The analysis of KARe’s requirements [3] leads to the
identification of a possible structure of the system-to-be
actor in terms of system’s roles (sub-actors), i.e. the global
architecture is identified through delegation of main
system’s goals to internal sub-actors. For instance, the roles
of Peer Assistant and User Model Engine may be
designed in order to take care of goals respectively related
to representing and searching knowledge on behalf of the
CoP members (i.e. the KARe Users), and providing
personalization and configurability, while a Broker role
may be proposed to achieve goals related to matchmaking
peers with similar interests as adequate knowledge sources
for specific requests. The emerging structure is that of an
agent organization (or more generally of a peer-to-peer
system [1]), whose high level architecture may be modeled
in terms of actor dependencies, according to Tropos, as in
the example depicted in Figure 1. Note that, in this model,
we use technology-oriented terminology, such as question/
answer service and peer-to-peer infrastructure.

In ARKnowD, actor and goal are the main elements of
requirements analysis. In architectural design, however, we
start placing plans and resources, considered here as design
elements. Fig. 2 presents only one plan and three resources,
mainly due to lack of space. However, they are enough to
exemplify the transformation from Tropos to AORML. Note
also that in this model, there is only one domain actor: the
CoP Member, while all others are system actors.

indicating
experts

providing
peer-to-peer
infrastructure

KARe

acting on
peer’s behalf

knowing who
knows what

allowing peers to
ask and answer

questions

providing peers
with personalized

help

allowing peers to
keep control of

their assets

making
recommendations

providing
question/answer

service

documents

messages

Peer
Assistant

Brokersubmitting
query to
experts

finding
experts

ranking peers

maintaining
peer models

User Model
Engine

peer
models

interacting
with peers

CoP
Member

supporting
request for
explanation

Legend

dependeedepender

goal dependency

goal

actor

plan

resource

Figure 1 - Actor diagram showing the high level architecture of the KARe system

4.2. The Detailed Architecture: AOR Agent Diagram’s
Agents, Objects and Relations

Figure 2 presents KARe’s AOR Agent Diagram (AD).
This diagram includes all human, artificial and institutional
agents (distinguished by UML stereotypes) involved in the
domain, the domain objects and the relationships between
all these entities. Note that this diagram is very similar to
the UML class diagram, having however specific notation
elements to represent agents and objects.

By referring to Fig.1, note that all actors in that model
are depicted as agents in the AD of Fig 2. And also, all
resources of the previous model are turned into objects here.
Moreover, the agents and objects are linked by several types
of relations, also derived from the Tropos model of Fig. 1
(dependencies there indicate relations here). In addition to
the derived elements, we can see some extra ones, added by
the designer. For instance, here, he defines an auxiliary
agent named Artifact Manager to help the users organize
their knowledge items. The Community of Practice
institutional agent was also added to provide contextual
information. In this case, the CoP Member is depicted
within it, showing that it is part of the community. Another
example of these additions is the specialization of the Peer
Model in Interaction and Personal Features. Inserting
new agents or objects is a common task in refining a design
model. Besides these additions, there are also suppressions
in the agent model of Fig. 2. For instance, according to our
transformation rules, there should be a relation between PA
and Broker, however Fig 2 does not show it. That is
because, in this particular case, the designer thought such
relation did not add much to the comprehension of the
system. It is also the responsibility of the designer to add all
cardinalities and relations’ name accordingly.

<<institutional>>
Community of Practice

Knowledge
Artifacts

CoP Member
<<human>>

0..* 1owns

1

Message

sender

receiver

1

1

0..*

reply

0..*1

Peer Assistant

recommends

recommends

Broker
<<artificial>>

Peer Model

UM Engine
<<artificial>>

describes

consults

Interaction
Features

Personal
Features

represents

Artifact
Manager

<<artificial>>

1

0..*

1

0..*
1

1

1

0..*

1 1

1

1

1

0..*

0..*

<<artificial>>

maintains

manages

manages

agent object generalization/
specialization

directed
association terciary relation

Legend

Figure 2 - Agent Diagram of the KARe System

Figure 3 shows a sketch of the AD that could be
suggested by ARKnowD’s CASE tool, applying the
transformation rules of Table 2 on the Tropos model of
Fig.1. By using these transformation rules, it is possible to
provide semi-automated support for designers, proposing
them initial models that they should then refine.

Knowledge
Artifacts

CoP Member

Message

Peer Assistant

Broker

Peer Model

UM Engine

Figure 3 - A sketch of KARe’s Agent Diagram

4.3. Interaction Modeling with AOR Interaction
Sequence Diagrams

The supporting request for explanation plan depicted in
Fig. 1 is an example of path for interaction modeling,
according to Table 2. This means that the process of
interactions among the agents in this model to comply with
this plan should be detailed using AOR Interaction
Sequence Diagrams (ISDs). These diagrams are similar to
UML Interaction Diagrams, depicting a prototypical
interaction sequence describing a specific process. However
the AOR ISD provides more than just interaction links
(which in UML generally mean method calls). In AORML,
these interaction links are differentiated, representing
agent’s messages, non-communicative actions, events, or
claims/commitments. To illustrate an ISD related to the
KARe’s system, we refer to [4], which presents the
information and interaction model of a previously proposed
system that inspired KARe’s development.

5. CONCLUSIONS AND FUTURE WORK
Here, we propose ARKnowD, an agent-oriented

modeling approach for KM scenarios, based on an
organizational theoretical framework. Besides that,
ARKnowD takes a distributed view on KM, supporting the
proposal of bottom-up KM systems, based on the
organizational goals as well as on the objectives of the main
stakeholders (i.e. the knowledge holders).

ARKnowD relies on the integration of existing work on
agent-oriented software engineering, exemplified with the
integration of Tropos and AORML. This specific paper
focus on the design of a recommender system to illustrate
how a transformation between these two approaches can be
achieved, allowing us to provide guidelines to designers
using ARKnowD. Such guidelines may also be given in a
semi-automated fashion, using a CASE tool. Future work
includes the implementation of our transformation rules in
an existing CASE tool [8].

Although the KM domain is here used to exemplify our
approach, it is our belief that the proposed methodology
may be generalized to solve other kinds of problems within
organizational settings. To assess if this assumption is true,
new case studies should be developed.

6. REFERENCES
[1] M. Bonifacio and P. Bouquet and P. Traverso,

“Enabling Distributed Knowledge Management.
Managerial and Technological Implications”, Novatica
and Informatik/Informatique,2002, 3,1.

[2] Bresciani, P., Giorgini, P., Giunchiglia, F.,
Mylopoulos, J., & Perini, A. (2004) Tropos: An Agent-
Oriented Software Development Methodology. In
JAAMAS – International Journal of Autonomous
Agents and Multi Agent Systems 8(3):203–236, May
2004.

[3] Guizzardi, R. S. S., Perini, A., Dignum, V. Providing
Knowledge Management Support to Communities of
Practice through Agent-oriented Analysis. In
Proceedings of the 4th International Conference on
Knowledge Management, Graz, Austria, June/2004.

[4] Guizzardi, R. S. S., Aroyo, L., Wagner, G. (2003)
Agent-oriented Knowledge Management in Learning
Environments: A Peer-to-Peer Helpdesk Case Study.
(eds) van Elst, L., Dignum, V., Abecker, A. “Agent-
Mediated Knowledge Management” Heidelberg:
Springer-Verlag. 2003.

[5] Nonaka, I., & Takeuchi, H. (1995). The Knowledge
Creating Company: How Japanese Companies Create
the Dynamics of Innovation. New York: Oxford
University Press.

[6] Mellor, S. J., Scott, K., Uhl, A., and Weise, D. MDA
Distilled (2004). Addison-Wesley Object Technology
Series

[7] Orlikowski, W., and Gash, G. Technological Frames:
Making Sense of Information Technology in
Organizations, ACM Transactions on Information
Systems, 1994, 12,2.

[8] Perini, A., and Susi, A. (2004) Developing tools for
Agent-Oriented visual modeling. In Proceedings of the
2nd German Conference on Multiagent System
Technologies, Erfurt, Germany, September 2004.

[9] Wagner, G. (2003) The Agent-Object-Relationship
Meta-Model: Towards a Unified View of State and
Behavior. Information Systems, 28:5.

[10] Wenger, E. (1998) Communities of Practice: learning,
meaning and identity. New York: Cambridge
University Press.

	Introduction
	Knowledge Communities
	Agent-oriented KM Development
	Tropos Methodology
	AORML
	Integrating Tropos and AORML
	Case Study
	The KARe System Architecture
	The Detailed Architecture: AOR Agent Diagram’s Agents, Objec
	Interaction Modeling with AOR Interaction Sequence Diagrams
	Conclusions and Future Work
	References

