
¤ Laboratoire d’Analyse et d’Architecture des Systèmes. 7, Av. du Colonel Roche, 31077, Toulouse, France.
⊕ This research is supported by the European IST project Lab@Future.
§ Researcher of the Universidad Veracruzana, México, financially supported by scholarship 70360 from CONACyT and by PROMEP, México.
+ Researcher financially supported by a scholarship from CNPq, Brazil.

1

CoLab: A Flexible Collaborative Web Browsing Tool⊕⊕⊕⊕

Guillermo de Jesús Hoyos-Rivera§
LAAS – CNRS¤
ghoyos@laas.fr

Roberta Lima-Gomes+
LAAS – CNRS¤
rgomes@laas.fr

Jean-Pierre Courtiat
LAAS – CNRS¤

courtiat@laas.fr

Abstract

Collaborative Web Browsing aims at extending
currently available Web browsing capabilities to allow
several users getting their browsing activity synchronized.
This is a new and promising research area whose
possibilities have not yet been exhaustively covered in
either, research or commercial solutions.

From our point of view a Collaborative Web Browsing
system should provide all the necessary facilities to allow
users to get synchronized and desynchronized in a flexible
way. This synchronization should rely on a simple
authorization protocol through which users can invite
other users to create and release browsing
synchronization relations. Additionally, special
synchronization operators are also proposed with the
purpose of overriding the authorization protocol. These
operators are intended to be used by users having special
privileges.

In this paper we present our proposal for modeling
and implementing of a Collaborative Web Browsing
system called CoLab [1] , which has been developed using
pure Java™ technology; we present the main features of
our current development prototype: CoLab 2.0 which
relies on the previously stated characteristics.

Keywords: Collaborative, Web, Browsing, Protocol,
Synchronization.

1. Introduction

Collaborative Web Browsing can be seen as an
extension of traditional Web browsing. The latter consists
essentially of users accessing resources that are available
in Web servers connected to a network (Internet or
Intranet). However at the present time when users browse
the Web they are completely isolated since they have no

way of sharing online their browsing activities with other
users. Collaborative Web Browsing overcomes this
problem allowing users to “browse together” .

There are several ways from which this issue can be
tackled. The one that we have chosen consists in offering
users the capability of easily creating and releasing
synchronization relations among them as they wish. We
understand a synchronization relation as the fact of
binding the Web browsing of one user, called a
synchronous user, to that of another one, called an
asynchronous user. In this way the browser of the
synchronous user will automatically retrieve and present
the same Web pages sequence than the one requested by
the asynchronous user.

This way of working opens new possibilities in
collaborative work since it breaks the currently existing
isolation of users associated with Web browsing activities.
As a result, collaboration relations can emerge
dynamically as users browse the Web, discover new
material, and share it online with other users. In this way a
new collaborative dimension is added to the Web
browsing paradigm.

The paper is organized in 6 main sections. In section 2
we present an overview of the Collaborative Web
Browsing concept and discuss other related proposals,
justifying then our approach. In section 3 we present the
architecture of our system and explain its main
characteristics giving an overview of the whole
specification. In section 4 we present the notions behind
the users’ synchronization model, and we explain its main
characteristics. In section 5 we present the current state of
implementation of our platform and we explain its
operation. Finally in section 6 we draw some conclusions
and discuss future work.

2

2. Overview of the Collaborative Web
Browsing Field

The Collaborative Web Browsing area has taken a
growing relevance in the last years due mainly to its
potential as a way of creating new ways of cooperation
among Web users. Accordingly several people in both,
research and commercial fields have developed different
models and proposals in this area. We have made a
detailed state of the art in this research area, leading us to
the following references which are the most
representative:
• Ariadne [2] is a system that allows collaboratively

indexing in bibliographical databases, that means that
while several users browse independently on
bibliographical resources they qualify them into
categories, and from these qualifications Ariadne
creates an indexation of them.

• CoBrow [3] is a system that creates logical
neighborhoods related to the contents of the document
currently being browsed by several users; this makes it
possible to ensure awareness among users browsing
similar documents, facilitating therefore their
interaction.

• E-CoBrowse [4] is a system that uses Chatpointer
(tele-pointers with chat-style conference capabilities)
which allow the users to communicate while they are
browsing.

• Let’s Browse [5] is an experiment in building an agent
to assist a group of people in browsing, by suggesting
new material likely to be of common interest. It is
built as an extension to the Web browsing agent
Letizia, which does a real-time, incremental breadth
first search around the user's current page, and filters
candidate pages through profiles learned from
observing the users’ browsing activity.

• PROOF [6] is a system that provides awareness of the
browsing activities executed by users registered in a
session, as well as browsing synchronization features
implemented in a centralized way.

• WebSplitter [7] is a system that offers adapted
versions, when available, of the retrieved resources
depending on the technical constraints of the device
used for accessing the Web (PC, PDA, etc.).

• WikiWikiWeb [8] is a system that contains a collection
of Web pages, and that allows its users to create,
delete and modify them from anywhere and at
anytime. Users interact via these pages.

• Commercial tools - NetDive [9], PlaceWare [10],
WebCT [11], WebEx [12] are integrated collaborative
environments that allow users to access a session and
communicate and interact by the use of several
available communication tools. All of them include a

synchronized browsing facility. A Floor Control
system is commonly used to control the exclusive
access to shared resources.
All these proposals offer alternatives for

collaboratively browsing the Web in some degree. The
main difference of our approach with respect to the
previous ones is that we focus on the dynamic creation
and release of synchronization relations among the users.
The creation of synchronization relations among users, as
we said in the introduction, leads to binding the Web
browsing of a user to that of another user. This way of
working can be seen as an extension to the classical Floor
Control, where in the presence of a synchronization
relation the user who has the floor is the asynchronous
one.

The creation of a synchronization relation implies
using an authorization protocol that takes the form of an
invitation, which may be accepted or refused. If accepted,
the synchronization relation creation succeeds and the
user that gets synchronized looses his floor; otherwise the
synchronization state of the concerned users keeps
unchanged.

Additionally to this basic synchronization protocol we
consider also to include a special synchronization mode
through which the authorization protocol can be
overridden. This is based on the notion of privileges, in
such a way that privileged users can unconditionally
create synchronization relations.

3. The Architecture of the Collaborative Web
Browsing System

In this section we will present the architecture of our
Collaborative Web Browsing system. In order to explain it
we present the architecture diagram in Figure 1.

R
ole

R
oleUserUser

Role
Information

Login/out &
Synchronization

Actions

Users
Browsing
Actions

Session
Information

Exchange

Resource
Retr ieval

Internet/IntranetInternet/Intranet

Web
Browsing

Synchronization
Behavior

BrokerBroker

Integration APIIntegration API

Collaborative
Web Browsing
Behavior

Session ManagerSession Manager

Browsing
Manager
Browsing
Manager

C
ol

la
bo

ra
ti

ve
 W

eb
B

ro
w

si
ng

 S
ys

te
m

External ToolsExternal Tools

Browsing
Requests

R
ole

R
oleUserUser

Role
Information

Login/out &
Synchronization

Actions

Users
Browsing
Actions

Session
Information

Exchange

Resource
Retr ieval

Internet/IntranetInternet/Intranet

Web
Browsing

Synchronization
Behavior

BrokerBroker

Integration APIIntegration API

Collaborative
Web Browsing
Behavior

Session ManagerSession Manager

Browsing
Manager
Browsing
Manager

C
ol

la
bo

ra
ti

ve
 W

eb
B

ro
w

si
ng

 S
ys

te
m

External ToolsExternal Tools

Browsing
Requests

Figure 1. Collaborative Web Browsing architecture

3

In this figure we can see the main components of our
model. These are the Session Manager, the Broker, and
the Browsing Manager.

The Session Manager is in charge of managing the
Collaborative Web Browsing session itself. It is
responsible for keeping track of the connected users, as
well as of the existing synchronization relations. It is also
responsible for the eventual integration of the system via
the Integration API presented at the top in this figure,
with other systems or additional modules.

The Browsing Manager is in charge of all the tasks
related to the retrieval of resources from the network. This
is not directly accessed by the users, but though the
Broker, which acts as an intermediary between these two.
The reason is that browsing requests are not to be
systematically satisfied, but they depend on certain
conditions verified at the level of the Session Manager. In
this way, when a browsing request arrives, the Broker asks
the Session Manager to verify whether or not a given
request is to be satisfied.

Aiming to give a more complete view of how all the
components of our model fit with each other, the UML
Class Diagram is presented in Figure 2.

����� �����
	���
 �������� �����
	���
 ���

����� ������������� �������� ������������� ���

����� ��������� ��� ��� ! ! " ����� ��������� ��� ��� ! ! "

#�$ ��%�� $#�$ ��%�� $ #&$ ��'(��� ��)�*+������)�� $#&$ ��'(��� ��)�*+������)�� $��������� ����*+������)�� $��������� ����*+������)�� $

����������	��
�������������	��
���
 ���� � �����
 ���� � �����

��, ��-���,��, ��-���, ��, ��.���� ��/�0�������/���,��, ��.���� ��/�0�������/���,����� ��� ����0�������/���,����� ��� ����0�������/���,

��1�1�� 2 � ������� 0&��1�3�� ���4 ! ! ��1�1�� 2 � ������� 0&��1�3�� ���4 ! ! � ��2 ��/�, ��2 � ���4 ! ! � ��2 ��/�, ��2 � ���4 ! !

��������� ����*+��5�6�� ���������� ����*+��5�6�� � �
	���7�8 $ ����� 9 ��
 � ����*:��5�6�� ��
	���7�8 $ ����� 9 ��
 � ����*:��5�6�� �

������0&��1�3�� �������0&��1�3�� � � ;���0���1�3�� �� ;���0���1�3�� �

< ��
 $ � ��=�� $< ��
 $ � ��=�� $>&$ ������� ��
 � $>&$ ������� ��
 � $����7�8���*(��5�6�� �����7�8���*(��5�6�� �

������?���0���1�3�� �������?���0���1�3�� � 2 , ����� � ��2 ��,2 , ����� � ��2 ��, , ��2 , � ��@���,, ��2 , � ��@���,

Figure 2. UML Class Diagram of our model

At the top of this diagram we can see the representation
of the Collaborative Web Browsing system itself. This is
capable of managing concurrently one or more
Collaborative Web Browsing sessions. Each of these
sessions has its own operation parameters defined (e.g.
initial URL, roles, privileges), and workspaces of the
sessions are disjoint. Each session is constituted of the
main components previously illustrated in the Figure 1;
here we go one step beyond in the model’s details since
we can see that the Session Manager and the Browsing
Manager are composed of sub-modules.

The Session Manager includes two main components:
the Synchronization Module, which is in charge of
treating all the synchronization actions, and guaranteeing
the overall consistency of the synchronization state (this

subject will be analyzed later in more detail), whereas the
Session Module implements the core functions of the
Session Manager itself.

The Browsing Manager includes three main
components: the Cache Module, the Retriever, and the
Translator. All these components interact among them in
order to satisfy incoming browsing requests.

The Cache Module corresponds to the implementation
of a cache system which allows storing locally a copy of
every retrieved resource, in such a way that it is not
necessary to retrieve the original resource if this is already
stored locally, and that the local copy has not expired with
respect to the original version. This module, as we will see
later, is systematically called when the browsing request
comes from a synchronous user.

The Retriever directly responsible of retrieving every
requested resource. It can be retrieved directly from the
network or from the Cache Module. In the case of a
resource retrieved from a Web server, the Retriever sends
it to the Translator in order to be treated before sending
the response to the user’s browser. In this case, once the
resource has been translated, the result is sent back to the
Retriever and also to the Cache Module to be stored for
subsequent use.

The Translator is responsible of modifying every
retrieved HTML resource. This is necessary due to the
fact that HTML resources must be modified before
sending them to the users’ browsers in order to allow our
system to track the users’ browsing actions.

Finally we can see the two optional components which
constitute the Integration API identified in the diagram as
Integration, and Additional Modules. The Integration
component takes in charge all the necessary tasks to allow
our Collaborative Web Browsing environment to be
integrated to other systems, for example external
communication tools, in order to enrich the Collaborative
Web Browsing behavior. On the other hand the Additional
Modules component helps to the integration of new
capabilities to the Collaborative Web Browsing behavior
(for instance, an Access Control Module for restricting the
access to some Web resources, an Adaptation Module for
adapting presentation of Web resources, etc.).

3.1. Operation behavior of CoLab

Aiming to graphically illustrate the operation behavior
of our proposal, and how the different components of our
model interact, we present in Figure 3 the case of a typical
browsing action executed by a user, and the resulting
synchronization of the browsing action to other user.

4

Control
Data

Browsing ManagerBrowsing Manager

BrokerBroker

RetrieverRetriever

TranslatorTranslator

Cache
Module
Cache

Module

CacheCache

Internet/IntranetInternet/Intranet

H
T

T
P

re
q.

1

H
T

TP

re
sp

.

11

6
HTTP req

uest

5

HTTP res
ponse

T
ra

ns
.

re
q.

7

T
ra

ns
.

re
sp

.8

Trans.

res
p.8

Caching
9

10, 19

12

Cached?

4, 16

Synchronize?

13
∀∀∀∀Slave �� ��

URL

HTTP req. 14

HTTP resp.

20

H
T

T
P

re

q.

3, 15

H
T

T
P

re

sp
.

Get cached18

Get cached
17

Can access?
2

Session
Manager
Session

Manager

Synchronization
Module

Synchronization
Module

Asynchronous UserAsynchronous User Synchronous UserSynchronous User

Control
Data
Control
Data

Browsing ManagerBrowsing Manager

BrokerBroker

RetrieverRetriever

TranslatorTranslator

Cache
Module
Cache

Module

CacheCache

Internet/IntranetInternet/Intranet

H
T

T
P

re
q.

1

H
T

TP

re
sp

.

11

6
HTTP req

uest

5

HTTP res
ponse

T
ra

ns
.

re
q.

7

T
ra

ns
.

re
sp

.8

Trans.

res
p.8

Caching
9

10, 19

12

Cached?

4, 16

Synchronize?

13
∀∀∀∀Slave �� ��

URL

HTTP req. 14

HTTP resp.

20

H
T

T
P

re

q.

3, 15

H
T

T
P

re

sp
.

Get cached18

Get cached
17

Can access?
2

Session
Manager
Session

Manager

Synchronization
Module

Synchronization
Module

Asynchronous UserAsynchronous User Synchronous UserSynchronous User

Figure 3. Synchronization of the browsing actions
The process can be logically separated in two

activities. The first one deals with the retrieval of a
resource for the asynchronous user, and the second, as
result of the synchronization of the browsing action, the
retrieval of that resource for the synchronous user.

The first step consists in the request of a resource
expressed by the asynchronous user (1), which is treated
directly by the Broker. Next the Broker contacts the
Session Manager to ask it whether the user can access the
requested resource (2). If so the Broker sends the request
to the Retriever (3), who asks the Cache Module if that
resource can be found in the local cache (4). Let’s assume
that this is not the case, so the resource is retrieved
directly from the remote Web server (5-6), and if it is
identified as a HTML one, it is sent to the Translator in
order to be modified (7). Once the resource has been
translated, it is sent back to the Retriever (8), and also to
the Cache Module in order to store it in the local cache (8-
9). At this moment in the process the Retriever sends the
resource back to the Broker (10), and this last sends it to
the user’s browser which has made the request (11).

Once the previous steps have been completed, the
Broker asks the Session Manager to synchronize this
browsing action for all the users that are currently
synchronized with the user who has just browsed (12).
Face to this request, the Session Manager sends this
command to every single browser of each synchronous
user (13). Each browser will then make its own request for
the indicated resource (14), which will be sent again to the
Broker. The Broker asks the retrieval of the resource to
the Retriever (15), which asks the Cache Module to verify
whether it is cached or not (16). As the resource has been
already stored in the local cache, and this browsing action
is the product of a synchronization, it is retrieved directly
from there (17) and sent back to the Retriever (18), which
sends it back to the Broker (19), for finally satisfying the
user’s request (20).

The process depicted in the Figure 3 can be viewed
also as a Sequence Diagram, which is presented in Figure
4. Here the steps marked as (A) and (B) represent the
login operations of two users, and the step marked as (C)

represents the operation through which both users get
synchronized (user “memo” gets synchronized with user
“beta”).

synModule[1]

synModule[1]

sesModule[1]

sesModule[1]

translator[1]

translator[1]

cacheModule[1]

cacheModule[1]

retriever[1]

retriever[1]

broker[1]

broker[1]

env[1]

env[1]

idleidle idleidle idleidle idleidle idleidleidleidle
� � ��� � � � 	�
 	�� �
 � ��� � �� � ��� � � � 	�
 	�� �
 � ��� � �

� � � �
 ��� � � � 	�
 	�� � �� � � �
 ��� � � � 	�
 	�� � �

idleidle
� � ��� � � � �
 � � �
 � � � � �� � ��� � � � �
 � � �
 � � � � �

� � � �
 � � � � � �
 � � � �� � � �
 � � � � � �
 � � � �

idleidle

� � � � � � � ��� �
 � � 	�
 	�� �
 � �
 � � � �� � � � � � � ��� �
 � � 	�
 	�� �
 � �
 � � � � � � � � � � � 	�
 	�� �
 � �
 � � � �� � � � � � � 	�
 	�� �
 � �
 � � � �

idleidle
� � � � �
 � � � 	�
 	�� �
 � �
 � � � �� � � � �
 � � � 	�
 	�� �
 � �
 � � � �

idleidle
� � � � � � � ��� �
 � � � 	�
 	�� �
 � �
 � � � �� � � � � � � ��� �
 � � � 	�
 	�� �
 � �
 � � � �

idleidle
� � � � �
 � � �
 � � �
 � � �!� " � � � � " # � � �� � � � �
 � � �
 � � �
 � � �!� " � � � � " # � � �

$
 � � # � % � � &'� � � �
 � � �
 � � �
 � �(� � " � � � � " # � � �$
 � � # � % � � &'� � � �
 � � �
 � � �
 � �(� � " � � � � " # � � �

idleidle
� �) � � � � � � ��� �
 � � � �
 � � � �� �) � � � � � � ��� �
 � � � �
 � � � �

idleidle
� �) � � � � � � ��� �
 ��*'� � � �
 � � � �� �) � � � � � � ��� �
 ��*'� � � �
 � � � �

idleidle� � ��&�� � � �
 � � �
 � � � �� � ��&�� � � �
 � � �
 � � � �

idleidle�
 � � �
 $
���
 � � � + � �
 � � �!� � " � � � � " # � � ��
 � � �
 $
���
 � � � + � �
 � � �!� � " � � � � " # � � �

idleidle � � % � � �
 � � � �!� �!" � � � � " # � � �� � % � � �
 � � � �!� �!" � � � � " # � � �

idleidle
� � *�� � % � � �
 � � � �(� � " � � � � " # � � �� � *�� � % � � �
 � � � �(� � " � � � � " # � � �

idleidle
�
 � � �
 $
�, � � 	-*�
 � � � �!� �!" � � � � " # � � ��
 � � �
 $
�, � � 	-*�
 � � � �!� �!" � � � � " # � � �

idleidle
�
 � � �
 $
 ��, � � 	-*�
 � � � �!�!��" � � � � " # � � ��
 � � �
 $
 ��, � � 	-*�
 � � � �!�!��" � � � � " # � � �

� � � � � � � �
 ��
 � � � + � �
 � � �!� � " � � � � " # � � �� � � � � � � �
 ��
 � � � + � �
 � � �!� � " � � � � " # � � �

idleidle�
 � � � + � �
 .�� � � � � � �
 � � � � �(� " � � � � " # � � ��
 � � � + � �
 .�� � � � � � �
 � � � � �(� " � � � � " # � � �
� � � �
 .�� � � � � � �
 � � � � �(� " � � � � " # � � �� � � �
 .�� � � � � � �
 � � � � �(� " � � � � " # � � �

idleidle�
 � � � + � �
���
 � � �
 $
 � � � � �!�!" � � � � " # � � ��
 � � � + � �
���
 � � �
 $
 � � � � �!�!" � � � � " # � � �

idleidle

idleidle�
 � � � + � �
 � � �
 � � �
 � �!�!��" � � � � " # � � ��
 � � � + � �
 � � �
 � � �
 � �!�!��" � � � � " # � � �
� �) � � � � � � ��� � � � � � � � � �
 � � �
 � �(�!��" � � � � " # � � �� �) � � � � � � ��� � � � � � � � � �
 � � �
 � �(�!��" � � � � " # � � �

idleidle
� �) � � � � � � �
 � � �
 � �!�!��" � � � � " # � � �� �) � � � � � � �
 � � �
 � �!�!��" � � � � " # � � �

idleidle��� �) � � � � � � 	�
 	�� �
 � �!�!� " � � � � " # � � ���� �) � � � � � � 	�
 	�� �
 � �!�!� " � � � � " # � � �

idleidle� ��&'� � � �
 � � 	�
 	�� �
 � �(�!��" � � � � " # � � �� ��&'� � � �
 � � 	�
 	�� �
 � �(�!��" � � � � " # � � �

idleidle
�
 � � �
 $
���
 � � � + � �
 � � �!� � " � � � � " # � � ��
 � � �
 $
���
 � � � + � �
 � � �!� � " � � � � " # � � �

idleidle � � % � � �
 � � � �!� �!" � � � � " # � � �� � % � � �
 � � � �!� �!" � � � � " # � � �

idleidle� � � �
 ����
 � � � + � �
 � � �(� � " � � � � " # � � �� � � �
 ����
 � � � + � �
 � � �(� � " � � � � " # � � �

idleidle
�
 � � � + � �
���
 � � �
 $
 � � � � �!�!" � � � � " # � � ��
 � � � + � �
���
 � � �
 $
 � � � � �!�!" � � � � " # � � �

idleidle
�
 � � � + � �
 � � 	�
 	�� �
 � �!�!� " � � � � " # � � ��
 � � � + � �
 � � 	�
 	�� �
 � �!�!� " � � � � " # � � �

� �) � � � � � � ��� � � � � � � � � 	�
 	�� �
 � �!� � " � � � � " # � � �� �) � � � � � � ��� � � � � � � � � 	�
 	�� �
 � �!� � " � � � � " # � � �

idleidle
� �) � � � � � � 	-
 	�� �
 � �!� �!" � � � � " # � � �� �) � � � � � � 	-
 	�� �
 � �!� �!" � � � � " # � � �

idleidle

idleidle

1

2

3

4

5

6 7

8

9

11

10

12

13

14

15

16-18
19

20

12’

A

B

C

synModule[1]

synModule[1]

sesModule[1]

sesModule[1]

translator[1]

translator[1]

cacheModule[1]

cacheModule[1]

retriever[1]

retriever[1]

broker[1]

broker[1]

env[1]

env[1]

idleidle idleidle idleidle idleidle idleidleidleidle
� � ��� � � � 	�
 	�� �
 � ��� � �� � ��� � � � 	�
 	�� �
 � ��� � �

� � � �
 ��� � � � 	�
 	�� � �� � � �
 ��� � � � 	�
 	�� � �

idleidle
� � ��� � � � �
 � � �
 � � � � �� � ��� � � � �
 � � �
 � � � � �

� � � �
 � � � � � �
 � � � �� � � �
 � � � � � �
 � � � �

idleidle

� � � � � � � ��� �
 � � 	�
 	�� �
 � �
 � � � �� � � � � � � ��� �
 � � 	�
 	�� �
 � �
 � � � � � � � � � � � 	�
 	�� �
 � �
 � � � �� � � � � � � 	�
 	�� �
 � �
 � � � �

idleidle
� � � � �
 � � � 	�
 	�� �
 � �
 � � � �� � � � �
 � � � 	�
 	�� �
 � �
 � � � �

idleidle
� � � � � � � ��� �
 � � � 	�
 	�� �
 � �
 � � � �� � � � � � � ��� �
 � � � 	�
 	�� �
 � �
 � � � �

idleidle
� � � � �
 � � �
 � � �
 � � �!� " � � � � " # � � �� � � � �
 � � �
 � � �
 � � �!� " � � � � " # � � �

$
 � � # � % � � &'� � � �
 � � �
 � � �
 � �(� � " � � � � " # � � �$
 � � # � % � � &'� � � �
 � � �
 � � �
 � �(� � " � � � � " # � � �

idleidle
� �) � � � � � � ��� �
 � � � �
 � � � �� �) � � � � � � ��� �
 � � � �
 � � � �

idleidle
� �) � � � � � � ��� �
 ��*'� � � �
 � � � �� �) � � � � � � ��� �
 ��*'� � � �
 � � � �

idleidle� � ��&�� � � �
 � � �
 � � � �� � ��&�� � � �
 � � �
 � � � �

idleidle�
 � � �
 $
���
 � � � + � �
 � � �!� � " � � � � " # � � ��
 � � �
 $
���
 � � � + � �
 � � �!� � " � � � � " # � � �

idleidle � � % � � �
 � � � �!� �!" � � � � " # � � �� � % � � �
 � � � �!� �!" � � � � " # � � �

idleidle
� � *�� � % � � �
 � � � �(� � " � � � � " # � � �� � *�� � % � � �
 � � � �(� � " � � � � " # � � �

idleidle
�
 � � �
 $
�, � � 	-*�
 � � � �!� �!" � � � � " # � � ��
 � � �
 $
�, � � 	-*�
 � � � �!� �!" � � � � " # � � �

idleidle
�
 � � �
 $
 ��, � � 	-*�
 � � � �!�!��" � � � � " # � � ��
 � � �
 $
 ��, � � 	-*�
 � � � �!�!��" � � � � " # � � �

� � � � � � � �
 ��
 � � � + � �
 � � �!� � " � � � � " # � � �� � � � � � � �
 ��
 � � � + � �
 � � �!� � " � � � � " # � � �

idleidle�
 � � � + � �
 .�� � � � � � �
 � � � � �(� " � � � � " # � � ��
 � � � + � �
 .�� � � � � � �
 � � � � �(� " � � � � " # � � �
� � � �
 .�� � � � � � �
 � � � � �(� " � � � � " # � � �� � � �
 .�� � � � � � �
 � � � � �(� " � � � � " # � � �

idleidle�
 � � � + � �
���
 � � �
 $
 � � � � �!�!" � � � � " # � � ��
 � � � + � �
���
 � � �
 $
 � � � � �!�!" � � � � " # � � �

idleidle

idleidle�
 � � � + � �
 � � �
 � � �
 � �!�!��" � � � � " # � � ��
 � � � + � �
 � � �
 � � �
 � �!�!��" � � � � " # � � �
� �) � � � � � � ��� � � � � � � � � �
 � � �
 � �(�!��" � � � � " # � � �� �) � � � � � � ��� � � � � � � � � �
 � � �
 � �(�!��" � � � � " # � � �

idleidle
� �) � � � � � � �
 � � �
 � �!�!��" � � � � " # � � �� �) � � � � � � �
 � � �
 � �!�!��" � � � � " # � � �

idleidle��� �) � � � � � � 	�
 	�� �
 � �!�!� " � � � � " # � � ���� �) � � � � � � 	�
 	�� �
 � �!�!� " � � � � " # � � �

idleidle� ��&'� � � �
 � � 	�
 	�� �
 � �(�!��" � � � � " # � � �� ��&'� � � �
 � � 	�
 	�� �
 � �(�!��" � � � � " # � � �

idleidle
�
 � � �
 $
���
 � � � + � �
 � � �!� � " � � � � " # � � ��
 � � �
 $
���
 � � � + � �
 � � �!� � " � � � � " # � � �

idleidle � � % � � �
 � � � �!� �!" � � � � " # � � �� � % � � �
 � � � �!� �!" � � � � " # � � �

idleidle� � � �
 ����
 � � � + � �
 � � �(� � " � � � � " # � � �� � � �
 ����
 � � � + � �
 � � �(� � " � � � � " # � � �

idleidle
�
 � � � + � �
���
 � � �
 $
 � � � � �!�!" � � � � " # � � ��
 � � � + � �
���
 � � �
 $
 � � � � �!�!" � � � � " # � � �

idleidle
�
 � � � + � �
 � � 	�
 	�� �
 � �!�!� " � � � � " # � � ��
 � � � + � �
 � � 	�
 	�� �
 � �!�!� " � � � � " # � � �

� �) � � � � � � ��� � � � � � � � � 	�
 	�� �
 � �!� � " � � � � " # � � �� �) � � � � � � ��� � � � � � � � � 	�
 	�� �
 � �!� � " � � � � " # � � �

idleidle
� �) � � � � � � 	-
 	�� �
 � �!� �!" � � � � " # � � �� �) � � � � � � 	-
 	�� �
 � �!� �!" � � � � " # � � �

idleidle

idleidle

1

2

3

4

5

6 7

8

9

11

10

12

13

14

15

16-18
19

20

12’

A

B

C

Figure 4. Collaborative Web Browsing sequence

diagram

4. The Synchronization Model

The core element of our Collaborative Web Browsing
proposal is the synchronization model. For the
representation of the synchronization relations between
the users we have decided to use a tree structure which is
called SDT (Synchronization Dependency Tree). In a SDT

5

the nodes denote the connected users, and the arcs denote
the synchronization relations currently existing among
them. For example for any pair of nodes A and B, if node
A is the father of node B, then the browsing actions of user
B are subordinated to those of user A. The root node of
each SDT represents an asynchronous user, that means, a
user who is free to browse. The other users belonging to
the same SDT are called synchronous users. That means
that their browsing actions are synchronized with the
browsing actions of their root node. In terms of Floor
Control, we can say that the root node of any SDT
corresponds to the user who actually has the floor. We
have chosen the tree structure given that a single user can
be synchronized with only one user at a time, however a
single user can have any number of users synchronized
with him. The basic notion of SDT is presented in Figure
5.

A

B

Asynchronous user

Synchronous user

Figure 5. Basic notion of SDT
In our representation the direction of an arrow denotes

where the propagation of the synchronization goes to. In
Figure 5, we have two connected users, A and B, and user
B is currently synchronized with user A.

At any moment in a given session there may be as
many SDTs as asynchronous users. Whenever two users
decide to get synchronized their SDTs merge becoming a
single SDT. The maximum number of possibly existing
SDTs in a session is the number of connected users when
all of them are working asynchronously. The minimum
number of SDTs in a session is one, and is the case when
all the users belong to the same SDT. The number of SDTs
actually existing in a session is called the SDT
Cardinality, and it is denoted by |SDT|.

In order to illustrate these notions we present in the
Figure 6 some possible configuration scenarios of the
SDTs in a session.

D

A

C E

B

|SDT|=5

D

A

C E

B

|SDT|=2

D

A

C E

B

|SDT|=1

Figure 6. Scenarios of configuration of SDTs in a
Collaborative Browsing session

The first scenario represents the case when every user
is working asynchronously (i.e. each one has his own
floor), so that |SDT|=5. As users create or destroy
synchronization relations, the number of existing SDTs
changes. In the second scenario we can see that users C, D

and E have got synchronized with user B (user B has the
floor for users C, D and E), which means that whenever
user B executes a browsing action, users C, D and E will
be forced to execute the same action. In this case |SDT|=2.
In the case of the third scenario we can see that a single
SDT may in fact have several levels. In this case user B,
who in scenario 2 was asynchronous, has decided (or has
been invited) to get synchronized with user A, (user A has
the floor for all the users of the session) so whenever this
last executes a browsing action, all the other users will
execute the same browsing action. In this last case
|SDT|=1.

4.1. The synchronization operators

In its basic operation mode, there are two operators
that allow the creation of synchronization relations among
users: I_Follow_You and You_Follow_Me. The first one
expresses the intention of a given user to get synchronized
with another user. The second one expresses an invitation
for another user to get synchronized. Given that a single
SDT node may have several children, the You_Follow_Me
operator has the characteristic that it can be applied to a
single user as well as to a set of users.

Whenever any of these two operators is applied, the
authorization protocol is started in such a way that the
user who the invitation was sent to is asked whether he
wants or not to accept it. The synchronization relation will
be created only if the user agrees; otherwise no
modification will be made to the existing SDTs.
Synchronization relations are released by using the
operator I_Leave, which is unconditional, that means that
any of the involved users can apply it, and it will always
succeed.

In order to illustrate the general behavior of the
synchronization process, in Figure 7 we use extended state
machine-style notation.

async(w)

x!I_Follow_You (and) ~loop(x,w)

x!I_Abort (or)
x?I_Refuse

sync(Follow,w,x)
(w->x)

x!I_Accept_You:
updateSDT(Follow,w,x)

x?I_Accept_You:
updateSDT(Follow,w,x)

x!I_Leave (or) x?I_Leave:
updateSDT(remove,w,x)

x?I_Abort (or)
x!I_Refuse

x?You_Follow_Me (and) ~loop(x,w)

Figure 7. Behavior of the users’ synchronization

process from the point of view of user W
In this figure the two main states in which user W can

be are async: the user is working asynchronously, and
sync(): the user is currently synchronized with another
user. When the user is in the async state he can either,
express the intention of getting synchronized with another

6

user (right colored area), or receive an invitation from
another user to get synchronized with him (left colored
area). In any of these two cases the preconditions to be
able to apply the operator are that: i). user W is
asynchronous, and ii). the tree structure is respected (e.g.
no loops are created). Then the system passes to an
intermediary state where the invitation is expressed, and
keeps waiting for an answer to the request: an acceptance,
a refusal or an abort. If operation does not succeed, user
W gets back to work in asynchronous mode, otherwise the
synchronization relation is created, and the involved SDTs
merged in a single SDT.

In order to validate our model we have implemented
the behavior of the operators I_Follow_You,
You_Follow_Me and I_Leave, as well as the Browse
operation, using Petri nets using the TINA tool developed
at LAAS-CNRS [13], and we have demonstrated that our
model is consistent. These demonstrations are beyond the
scope of this paper and are not presented here.

As previously said, we propose two additional
synchronization operators which are intended to allow
privileged users to create synchronization relations
without requiring any authorization. These are I_Spy_You
and You_Join_Me. The first one allows a given user to get
unconditionally synchronized with another user. In this
case the only user in the Collaborative Web Browsing
session who is aware of the creation of that
synchronization relation is the one who applied it. The
second one allows a given user to force another user, or a
set of users, to get synchronized with him. In both cases
the only user who can release the synchronization relation
is the one who created it.

5. CoLab’s current implementation

At the present time we have developed CoLab version
2.0, which implements almost all the concepts presented
in the previous sections. It has been implemented on a PC
with the Linux RedHat 7.2 OS. The software choice for
developing CoLab consists of the Java™ 2 SDK Standard
Edition release 1.3.1_05, Jakarta™ Tomcat release 3.3.1a
for the Servlets/JSP technology, and JSDT release 2.0 for
the CoLab’s internal communication facilities. On the
browser side the only technical requirement is that it
supports Java™ Applets, and that it can implement the
Automatic Proxy Configuration (PAC) facility. In the next
sub-sections we will present the main features of CoLab’s
implementation and describe its main characteristics and
operation behavior.

5.1. CoLab‘ s implementation architecture

In terms of implementation the Figure 8 illustrates the
Colab‘s implementation architecture, introducing its main
components: the CoLab Server, the Integrated
Applications Servers, the Clients, and the underlying
Communication Network.

Figure 8: CoLab’s implementation architecture
At the center of this diagram there is the

Communication Network, through which all the
components of the system communicate, and from which
the requested resources are retrieved. There is no a-priori
assumption about the underlying communication network,
with the exception that it should offer enough bandwidth
to ensure an adequate level of QoS. End to end
communication is based on TCP/IP (HTTP/TCP/IP for the
access to the Web pages, RTP/UDP/IP for the continuous
streams). Current experimentations are carried out on a
100 Mbps switched Ethernet local area network, however
future developments will address specifically the QoS
issue within the context of WAN/LAN communication
network.

One potential problem of the current CoLab
architecture, as presented in this section, is related to its
scalability, in particular at the level of the CoLab Server,
which plays a fundamental role. In the current
implementation, we consider a centralized architecture.
Further study dealing with the distribution of the CoLab
Server to balance the workload among distributed servers
will be initiated after a careful analysis of the performance
and scalability issues of the current architecture.

5.2. CoLab cur rent operational implementation

CoLab platform is oriented to non-expert users. As a
consequence, we have decided that it must be simple and
easy-to-use. The first step in order to use CoLab is to
configure the sessions that will be available.

7

Configuration is done via an XML file which contains the
specification of the default initial page, the available roles,
and the eventual existing privileges that can be associated
to each pair of them. An example of configuration file is
presented in Figure 9.

Figure 9. Typical session configuration file

In this file, for example, we can see that the home URL
for the session is http://www.laas.fr, and that there are
three available roles: Teacher, Assistant and Student.
Concerning the privileges, we can see that users having
assumed the role Teacher can apply the I_Spy_You and
the You_Join_Me operators on users having assumed the
role Student, and that users having assumed the role
Assistant can apply the I_Spy_You operator on users
having assumed the role Student. Once the sessions have
been configured, the CoLab server can be started.

On the users’ side, in order to be able to access the
available CoLab sessions, users must configure in their
preferred browser the Proxy Automatic Configuration
facility in order to point the place where the configuration
file can be found. This file contains a specification in
JavaScript™ that allows redirecting browsing request
depending on certain criteria. For example, in Netscape
this configuration can be made in the Preferences menu
option, as indicated in the Figure 10.

Figure 10. PAC file configuration

When accessing CoLab, the first step is to choose a
session from those available. Once a session has been

chosen, the roles available for that session are presented in
the login screen. Then the user must choose the role he
wants to assume, type the password associated to this role,
and choose a username, through which he will be
identified. The login screen is presented in the Figure 11.

Figure 11. CoLab’s login page

Once the user has been authenticated a new browser
window opens, the one where Collaborative Web
Browsing activities will take place. The other browser
window can be used for browsing the Web outside the
CoLab session.

The CoLab session window has two frames: one of
them contains the Control Frame where browsing and
synchronization controls are located, and the other
contains the Browsing Frame, where the browsed pages
will be presented. A screen capture of the browsing and
synchronization controls is presented in the Figure 12.

Browsing Controls

User ’s Identity and
Session Name

Awareness&
Synchronization State

Synchronization Controls
(for Usersand Roles)

Browsing Controls

User ’s Identity and
Session Name

Awareness&
Synchronization State

Synchronization Controls
(for Usersand Roles)

Figure 12. The browsing and synchronization
controls frame

The Control Frame contains a Graphical User
Interface (GUI) providing all the necessary components to
make Collaborative Web Browsing possible. On the left
side (presented at the top of Figure 12) are the Browsing
Controls, which are equivalent to those of a typical

<?xml version="1.0" encoding="ISO-8859-1"?>
<colab_session url="http://java.sun.com">
 <role_definition>
 <role role_name="Teacher"
 role_password="teachpass"/>
 <role role_name="Assistant"
 role_password="assistpass"/>
 <role role_name="Student"
 role_password="studpass"/>
 </role_definition>
 <role_privileges>
 <can_spy from="Teacher" to="Student"/>
 <can_force from="Teacher" to="Student"/>
 <can_spy from="Assistant" to="Student"/>
 </role_privileges>
</colab_session>

8

browser. The only special characteristic is that the
“Home” button will load the default initial web page for
the session, as it was defined in the session configuration
file. On the right side are the Awareness and
Synchronization Controls. There are presented: i). the
user and current synchronization state awareness, and ii).
the available synchronization controls associated with the
synchronization operators explained in the previous
sections. Here we can see which users are currently
present in the session, and which are the existing
synchronization relations. For example, in the image
presented in this last figure we can see that there are four
users currently logged in the session: ghoyos, rgomes,
valentim and courtiat and we can also see that the user
courtiat is currently synchronized with user valentim.
Concerning the synchronization controls we can see that
they are divided in two sections: User Synchronization
and Role Synchronization. The first one contains the
buttons representing the synchronization operators that
can be applied to single users, and the second has only the
buttons corresponding to the synchronization operators
that can be applied to the roles.

6. Conclusions and future work

In this paper, we have defined a general-purpose
Collaborative Web Browsing system, which provides a
new paradigm since it offers to the users the possibility of
easily creating and releasing browsing synchronization
relations among them. We think that this orientation gives
the users a lot of flexibility for establishing collaboration
relations while they are browsing, creating in this way an
environment where collaboration among users is greatly
facilitated by allowing them to synchronize their browsing
activities.

The current operational implementation of this system,
supporting only a subset of the whole functionality, has
been developed and is operational on a switched LAN.
Given that the only information that is exchanged between
the connected clients and the server consists only of short
messages associated with the synchronization protocol,
and URLs to achieve the synchronization of the browsing
activities, and that the synchronized resources are directly
retrieved from the local cache system, we can affirm that
there is practically no overload associated to the operation
of the system itself.

For the next future we will keep working in the
implementation of all the features of our model, as well as
identifying new opportunity areas where we can improve
CoLab’s capabilities, as the possibility of adding
annotations to the browsed resources in order to facilitate
the information exchange among the users.

We will also start working on the implementation of
the Integration API, identifying the possible requirements
to be satisfied in order to get CoLab integrated with other
collaborative systems and tools.

Another subject on which we will start working soon is
the implementation of the distributed version of our
platform in order to avoid any performance bottlenecks in
presence of heavy workload.

7. References

[1] Hoyos-Rivera, G.J.; Lima-Gomes, R. & Courtiat, J.P. “A

Flexible Architecture for Collaborative Browsing” , 11th
IEEE WetICE, Workshop on Web-Based Infrastructures
and Coordination Architectures for Collaborative
Enterprises, 2002, Carnegie-Mellon University, Pittsburgh,
PA, USA

[2] http://www.comp.lancs.ac.uk/computing/research/cseg/proj
ects/ariadne/

[3] Sidler, G.; Scott, A. & Wolf, H. “Collaborative Browsing
in the World Wide Web“,JENC8, 1998, pp. 221-1 – 221-8.

[4] Chong, S.T. & Sakauchi, M. “E-CoBROWSE: co-
Navigating the Web with Chat-pointers and Add-ins –
Problems and Promises” . IASTED ICPDS, Collaborative
Technologies Symposium, ACM, Las Vegas, Nevada,
USA, Nov. 2000.

[5] Lieberman, H.; Van Dyke, N.W. & Vivacqua, A.S. “Let’s
Browse: A Collaborative Web Browsing Agent” , IUI’99,
ACM, Redondo Beach, CA, USA, 1999.

[6] Cabri, G.; Leonardi, L. & Zambonelli, F. “A Proxy-based
Framework to Support Synchronous Cooperation on the
Web”, Software – Practice and Experience 29(14), John
Wiley & Sons, Ltd., 1999

[7] Han, R.; Perret, V. & Naghshineh, M. “WebSplitter: A
Unified XML Framework for Multi-Device Collaborative
Web Browsing” . CSCW’00, IEEE, Philadelphia, PA, USA,
Dec. 2000.

[8] http://c2.com/cgi/wiki
[9] http://www.netdive.com/
[10] http://main.placeware.com/
[11] http://www.webct.com/
[12] http://www.webex.com/
[13] http://www.laas.fr/tina

