

Towards a Services
Platform for Context-Aware
Applications

Patrícia Dockhorn Costa

Thesis for a Master of Science degree in
Telematics from the University of Twente,
Enschede, The Netherlands

Graduation Committee:

Dr. José Gonçalves Pereira Filho

Dr. ir. M. J. van Sinderen

Dr. L. Ferreira Pires

Enschede, The Netherlands

August, 2003

i

Abstract

Context-aware computing deals with the ability of computer systems to take
advantage of information from or conditions in the dynamic environment to
provide added-value services or to execute more complex tasks. In addition
to dealing with explicit input, context-aware applications consider
contextual information (implicit input).

Context awareness has received attention in recent years with the
development of mobile computing and the appearance of a new generation
of mobile devices.

Building context-aware applications is challenging due to the fact that
contextual information is being manipulated. The challenges related to
gathering/sensing, modeling, storing, distributing and monitoring context
justify the need for proper architectural support.

This thesis proposes a generic and configurable services platform
architecture to support context-aware applications. The services platform
aims at providing support for application designers to conceive their
applications using services, mechanisms and interfaces that shield them
from the complexity introduced by handling contextual information.

A distinctive characteristic of our platform is that it enables the dynamic
deployment of a large range of context-aware applications that are
unanticipated during the design of the platform. We define a subscription
language that applications use to configure the platform to react to a given
correlation of events, potentially involving contextual information. In
addition, we use Web Services as a technology to enable the interactions of
the platform with its environment.

ii

Table of contents

1 INTRODUCTION .. 1
1.1 MOTIVATION 1
1.2 OBJECTIVES 4
1.3 APPROACH 4
1.4 STRUCTURE 5

2 CONTEXT AWARENESS .. 6
2.1 CONTEXT 6

2.1.1 What is context? 6
2.1.2 What is context-awareness? 7

2.2 GATHERING CONTEXT 8
2.3 MODELING CONTEXT 8

2.3.1 Nature of contextual information 9
2.3.2 Primitive contexts 10
2.3.3 Examples of Techniques to Model Context 11

3 CURRENT RESEARCH EFFORTS IN CONTEXT-AWARE COMPUTING......... 14
3.1 CONCEPTUAL FRAMEWORKS 14

3.1.1 Cooltown Project 14
3.1.2 Context Toolkit 15

3.2 SERVICE PLATFORMS 16
3.2.1 Platform for Adaptive Applications 17
3.2.2 M3 Architecture 18

3.3 APPLIANCE ENVIRONMENTS 18
3.3.1 A Universal Information Appliance (UIA) 18
3.3.2 Ektara Architecture 19

3.4 COMPUTING ENVIRONMENTS 20
3.4.1 Portolano 20
3.4.2 PIMA 21

3.5 DISCUSSION 22

4 THE WASP PLATFORM REQUIREMENTS.. 24
4.1 CONTEXTUAL INFORMATION 24

4.1.1 Context representation/modeling 24
4.1.2 Context storage/retrieval 25

4.2 PLATFORM INTERACTIONS 25
4.2.1 Support for different kinds of context providers 26
4.2.2 Reactive behavior 27
4.2.3 Coordination among different applications 29
4.2.4 Discovery and publishing of services 30

4.3 GENERAL REQUIREMENTS 31
4.3.1 Support for security and privacy services 31
4.3.2 Charging 31

4.4 CONCLUDING REMARKS 32

5 THE WASP PLATFORM ARCHITECTURE DESIGN.. 34
5.1 OVERVIEW OF THE ARCHITECTURE 34
5.2 THE WASP PLATFORM CONTEXT MODEL 36
5.3 CONTEXT INTERPRETER 38

iii

5.3.1 Information Provisioning Models of the Context Interpreter 40
5.3.2 Inferring Context 41

5.4 REPOSITORIES 43
5.4.1 Entity Type Registry 43
5.4.2 Function Type Registry 43
5.4.3 Action Type Registry 45
5.4.4 Service Registry 48
5.4.5 Entity Registry 49
5.4.6 User Profile Registry 49
5.4.7 ContextDB Registry 50

5.5 MONITOR 51
5.5.1 The WASP Subscription Language (WSL) 52
5.5.2 The Subscription State Machine 57
5.5.3 Scenarios 58
5.5.4 Parser 63
5.5.5 Subscription Manager (SM) 64
5.5.6 Coordinator 67

6 IMPLEMENTATION .. 69
6.1 APPROACH 69
6.2 APPLICATION-PLATFORM INTERACTION 71

6.2.1 WASP Application (client side) 73
6.2.2 WASP Platform (server side) 74
6.2.3 The WSL Parser 74
6.2.4 Web Services – Java implementation issues 74

6.3 PLATFORM-CONTEXT PROVIDER INTERACTION 74
6.3.1 Context Provider (server side) 74
6.3.2 WASP Platform (client side) 74

6.4 SCENARIOS 74
6.4.1 Policemen Scenario 74
6.4.2 Advertisement Scenario 74
6.4.3 Proximity Scenario 74

6.5 CONCLUDING REMARKS 74

7 CONCLUSIONS... 74
7.1 GENERAL CONCLUSIONS 74
7.2 FUTURE WORK 74

REFERENCES... 74

APPENDIX A WSL - XML SCHEMA... 74

APPENDIX B SUBSCRIPTION INTERFACE - WSDL ... 74

APPENDIX C USER LOCATION SERVICE - WSDL ... 74

APPENDIX D POLICEMEN SCENARIO (WSL-XML)... 74

APPENDIX E ADVERTISEMENT SCENARIO (WSL-XML) 74

APPENDIX F PROXIMITY SCENARIO (WSL-XML) .. 74

iv

Preface

This thesis describes the results of a Master of Science assignment at the
Architecture of Distributed Systems Group at the University of Twente.
This assignment has been carried out from December 2002 to July 2003 as
part of the WASP (Web Architectures for Services Platforms) project.

I would like to express my gratitude to all those who gave me the possibility
to complete this thesis. I want to thank the Architecture of Distributed
Systems Group for granting me with the opportunity to do the Master of
Science in Telematics at the University of Twente. I furthermore would like
to thank my supervisors José Gonçalves Pereira Filho, Marten van Sinderen
and Luís Ferreira Pires whose help, stimulating suggestions and
encouragement helped me throughout the development of this work.

I would also like to thank the colleagues at the Arch Lab for the pleasant
working environment and all friends for making my staying in the
Netherlands very joyful. In particular, I am very grateful to my family in
Brazil for their fundamental emotional support.

Especially, I would like to give my thanks to my boyfriend and future
husband João Paulo Andrade Almeida whose patient love enabled me to
complete this assignment.

Enschede, 22nd July 2003.

Patrícia Dockhon Costa.

1

1 Introduction

This chapter presents the motivation, the objectives, and the structure of this
thesis. It identifies the relevance of context-aware computing and draws special
attention to the support of services platforms in the context-aware computing
domain.

This chapter is further structured as follows: Section 1.1 briefly presents the
motivation of this work, Section 1.2 states the objectives of this thesis, Section 1.3
presents the approach adopted in the development of this thesis and Section 1.4
outlines the structure of this thesis by presenting an overview of the chapters.

1.1 Motivation

Computing is moving from the traditional desktop paradigm to a mobile
computing paradigm, in which new types of computing devices augment the
users’ workspace and the user environment changes dynamically as a
consequence of the user’s mobility.

This new paradigm has brought the possibility of exploring the dynamic context
of the user. However, most computer systems are still designed to ignore (or
assume fixed) contextual information and process their work based only on
explicit input (Figure 1). Therefore, these systems do not take advantage of
information from or conditions in the dynamic environment in order to provide
added-value services or to execute more complex tasks [30].

Application Input Output

Figure 1 - Traditional applications

Context-aware computing deals with the ability of computer systems to obtain
contextual knowledge in order to perform improved services. Rather than treating
mobility as a problem to be solved, context-aware computing seeks to exploit the

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

2

nature of it. As a consequence, it creates a new generation of applications in
which the user-application interaction is enhanced by perceiving/sensing the
surrounding environment. Contextual information of what, when and where the
user is, what the user knows and what the user and system capabilities are, can
greatly simplify the user scenario. Such manipulation of contextual information
can also be used to reduce the teaching needed for the user accomplishment of
tasks. Context-aware applications consider contextual information in addition on
explicit input, as illustrated in Figure 2. This contextual information is implicitly
gathered from the applications’ environment.

Context-Aware
Application

input outuput

 Implicit input (context):
§ State of the user
§ State of the physical environment
§ State of the computational

environment
§ History of user-computer-

environment interaction
…

Figure 2 - Context-Aware Applications

Context has been object of studies in different fields of computer science. As a
consequence, several definitions for context have been put forward in the
literature, serving different purposes. In Information Bases, for example, context
describes a group of conceptual entities from a particular standpoint [43]. In
Artificial Intelligence, context appears as means of partitioning a knowledge base
into manageable sets or as logical construct that facilitates reasoning activities
[32, 17].

In context-aware computing domain, important aspects of context that have been
initially explored by its research community were mostly related to where you
are, who you are with, and what resources are nearby [40]. In this thesis, we have
embraced the following informal definition of context, which has been used as a
reference in the literature of context-aware computing domain [10].

“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications themselves.”

Context awareness is being explored in several research efforts, particularly in
research communities such as Ubiquitous Computing and Human Computer
Interaction (HCI). This subject has received attention in recent years, with the
development of mobile computing and the appearance of a new generation of
mobile devices. Since then, a number of context-aware systems have been
proposed, ranging from specific context-aware applications to generic support
platforms.

Building context-aware applications involves the consideration of several new
challenges. Such challenges are related to gathering/sensing, modeling, storing,

3

distributing and monitoring contextual information. These challenges justify the
need for proper architectural support. Not surprisingly, this has been subject of
many projects at research centers such as the Lancaster University [14], IBM [15],
MIT [8], Hewlett-Package [26] and the University of Queensland [2], each project
tackling specific problems and aiming at specific characteristics, as will be
explored in Chapter 3 of this thesis.

Some of these initiatives propose the development of services platforms for
context-aware applications. Services platforms aim at providing support to
application designers to conceive their applications using services, mechanisms
and interfaces that shield them from the complexity introduced by handling
contextual information.

The current platforms, however, offer a limited level of configurability. Ideally, a
platform for context-aware applications should facilitate the creation and the
dynamic deployment of a large range of context-aware applications that are
unanticipated during the design of the platform. This specific issue is one of the
main concerns of this work.

Examples of applications that could profit from a flexible services platform are:

• Reminder applications that allow users to set reminders to be triggered
according to the occurrence of (a combination of) events;

• Advertisement applications that allow third parties to advertise to users
according to the occurrence of (a combination of) events;

• Medical applications that allow sending help to a user after detecting
medical emergencies;

• Security applications that allow policemen to be constantly informed (on
a map) about the location of other policemen (colleagues) around them;

• Parking place applications that allow a user to gather information about
the closest parking places around him/her. Such information can be
number of available parking places, opening/closing times, costs and
payment systems, the route (showed on a map) to get to the parking
places’ locations;

• Bus applications that allow users to keep track of the buses in service.
Therefore, it is possible to know when a bus is approaching the bus stop;

• Redirecting applications that allow users to enable the automatic
redirection of calls to their work places or homes (depending on their
current location);

• Taxicab applications in which users ask for a taxicab without the need to
specify their current location. Moreover, users can be informed when the
taxicab is approaching;

• Proximity applications that allow users to be informed when things
(objects, buildings, restaurants, etc.) or other users are close to them.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

4

Without a configurable and generic services platform, it may be impossible to
dynamically deploy such a large range of distinct context-aware applications or
this deployment may demand too much effort from application developers.

1.2 Objectives

The main goal of this thesis is to define a configurable services platform
architecture to support context-aware applications.

This work has been executed inside the WASP project [46]. In this sense, this
work aims at defining a high-level architecture of the WASP Platform. The
WASP project is concerned with the definition and validation of a services
platform to facilitate the development and deployment of context-aware
applications (called WASP applications) on top of 3G networks [27], using Web
Services [1] infrastructures. Figure 3 depicts a high level view of the WASP
Platform, as foreseen in the original project description.

3G Networks

 WASP Platform

WASP
Application

WASP
Application

WASP
Application

Service
Providers

Parlay
Web

Services

Figure 3- WASP platform

The WASP platform offers business opportunities to service providers that want
to expose their services to the users of the platform. Examples of services
providers are hospitals, restaurants, museums, etc. WASP applications are
intended to be used by mobile users and for this reason, the WASP Platform
makes extensive use of the capabilities offered by the underlying network, in this
case 3G Mobile Networks.

1.3 Approach

Our efforts towards the definition of the WASP platform architecture include:

• The investigation of essential user and application’ requirements for
building a context-aware services platform.; The platform should be able
to provide services for a large number of new and existing context-aware
applications;

5

• The derivation of architectural elements for some of the identified
requirements;

• The integration of the identified architectural elements forming the
platform architecture, whose functionality should be sufficient to provide
the expected services; and,

• The development of a prototype for the purpose of demonstration and
validation of such an architecture.

In our proposed architecture, interactions between WASP applications and the
WASP platform are configured during the platform run-time through the addition
of application subscriptions. Application subscriptions are written in a descriptive
language that allows applications to dynamically expose their needs to the
platform. With this language, it is possible to manipulate the representation of the
entities involved in the system (users, museums, restaurants, hospitals, vehicles,
etc), their attributes, and their context. For instance, it is possible to express that
an action involving an entity’s context (send an ambulance to John’s location)
should be taken if an entity (John) enters in a certain context (having a heart attack
or a stroke).

1.4 Structure

The structure of this thesis reflects the order in which these issues have been dealt
with throughout the research process. This thesis is structured as follows:

• Chapter 2 reports on the conducted literature study, presenting basic
concepts in context-aware computing. Issues such as the nature of
contextual information are addressed in this chapter;

• Chapter 3 presents several research projects that explore different
methodologies/approaches for developing context-aware systems showing
the contrast of those methodologies/approaches in terms of their main
characteristics;

• Chapter 4 identifies the essential requirements to be satisfied by the
WASP platform. The issues discussed in this chapter are used as a
reference for the architecture conceptual design phase

• Chapter 5 describes the design of the WASP platform architecture
proposed by this work. The chapter places special attention to the
applications-platform interaction. A subscription language (coined WASP
Subscription Language, WSL) is detailed in terms of its clauses, syntax
and semantics. Scenarios of platform usage are also presented in this
chapter;

• Chapter 6 describes the implementation of selected modules of the
proposed architecture. The prototype allows demonstrating and validating
the main proposed architectural elements. Examples of demonstrative
scenarios are also shown in this chapter;

• Finally, Chapter 7 presents our final conclusions, important remarks and
indicates topics for future work.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

6

2 Context Awareness

This chapter reports on the conducted literature study, presenting basic concepts
in context-aware computing. Issues such as the definition of the notion of context
and the nature of contextual information are addressed. Furthermore, this chapter
discusses two of the major issues related to the manipulation of contextual
information: Gathering Context and Modeling Context.

This chapter is further structured as follows: Section 2.1 presents definitions for
context and context-awareness. Sections 2.2 and 2.3 elaborate on the Gathering
Context and Modeling Context issues, respectively.

2.1 Context

The use of contextual information is essential to explore the possibilities of
context-aware computing. Nevertheless, while it is simple to form an intuitive
notion of context, elucidating a precise definition of it is challenging [10]. The
next two sections discuss some of the existing definitions for context and context-
awareness, from the perspective of ubiquitous computing. Results from the AI
research community, which analyses context in a more formal setting, are not
discussed here. However, it is important to mention that some of these results can
be used as a basis for achieving a common semantic understanding of contextual
information as well as to develop reasoning mechanisms in context-aware
platforms.

2.1.1 What is context?

Several definitions for context have been put forward in the literature, serving
different purposes. In Information Bases, for example, context describes a group
of conceptual entities from a particular standpoint [43]. In Artificial Intelligence,
context appears as means of partitioning a knowledge base into manageable sets
or as logical construct that facilitates reasoning activities [32, 17].

Although context has already been subject of investigation in different fields, only
recently this notion has been explored for ubiquitous computing. Most of the

7

initial efforts for defining context in ubiquitous computing were specific for
certain kinds of context - location and time being the more obvious examples.
Schilit and Theimer [40], in 1994, claimed that the important aspects of context
were the user location and identities of nearby people. Brown et al. [4] and Ryan
et al. [39] gave their definition in terms of examples of context information
instead of generalizing the concept. Since the number of examples that can be
given is limited, the application of this definition is also limited.

Schilit et al. claim that the important aspects of context are where you are, who
you are with, and what resources are nearby. They define context to be the
changing environment and the environment is composed by the following views:

• Computing environment: e.g., available processors, devices accessible for
user input and display, network capacity, connectivity, and costs of
computing;

• User environment: e.g., location, collection of nearby people, and social
situation; and,

• Physical environment: e.g., lighting and noise level.

Also this definition turned out to be too specific. It was necessary to give
definitions without having to enumerate examples of context because the user
experience changes from situation to situation. For those reasons, Dey and Abowd
[9] came up with a more generic definition of context, which is “Context is any
information that can be used to characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves”. In this
thesis, we adopt this informal definition as a reference.

2.1.2 What is context-awareness?

Context-awareness seeks to exploit human-computer interactions by providing
computing devices with knowledge of the users’ environment, i.e., with context.
Awareness of the context can potentially be used to diminish the amount of
explicit input a user is required to give to a computing system. Contextual
information of what, when and where the user task is, what the user knows and
what the user and system capabilities are, can greatly simplify the user scenario.
Such manipulation of contextual information can also be used to reduce the
teaching needed for the user accomplishment of tasks.

A context-aware application definition was given by Schilit and Theimer [40], in
1994, as software that adapts according to its location of use, collection of nearby
people and objects, as well as changes to those objects over time. Since then, the
definitions of context-aware applications were related to applications’ adaptation,
reactivity, responsiveness and sensitiveness to context. For instance, Pascoe et al.
[36] define context-aware computing to be the ability of computing devices to
detect and sense (sensitiveness), interpret and respond to (reactivity) aspects of a
user’s location environment and computing devices. In [4, 40], context-aware
applications are defined as applications that dynamically change or adapt their
behavior based on the context of the application and the user. Fickas et al. [16]
define context-aware applications (called environment-direct applications) to be
applications that monitor changes in the environment and adapt their operation
according to predefined or user-defined guidelines. Finally, Dey et al. [10] claim it

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

8

was necessary to give a more generic definition, which is not bound to a specific
characteristic (adaptation, reactivity, responsiveness or sensitiveness). Dey’s
definition states that a system is context-aware if it uses context to provide
relevant information and/or services to the user, where relevancy depends on the
user’s task. According to this definition, to be a context-aware application, the
only requirement is to respond to context and thus, detection, interpretation and
adaptation are not mandatory characteristics. This definition makes sense, for
instance, in applications that do not adapt to context but simply reflect the context
to the user or the ones that do not detect or sense context (detection and
interpretation can be performed by other computing entities). We consider this
informal definition of context-awareness as a reference for our work.

2.2 Gathering Context

Gathering Context includes three basic sets of activities: sensing the low-level
context, building higher-level context and sensing changes in the context. Sensing
the low-level context refers to techniques to measure context information from
physical sensors, for example, measuring the location of a user and the time or
temperature of a place. Building higher-level context refers to refinement
activities (context aggregation and interpretation), for instance, location in form of
latitude and longitude can be associated with a specific street or building.
Aggregation of different contextual information, for example, could be the
combination of current time, time zone of the user and his schedule might deliver
a hint of the user’s current activity. Sensing context changes refers to the constant
notification of context changes, for example, the location of a user constantly
changes and must be continuously measured and provided.

The quality of the context-aware services directly depends on the quality of the
information gathered from the context sources. For this reason, handling context
activities should be carefully explored in context-aware systems.

In order to provide a complete infrastructure covering most of the relevant
contextual information, context sources could come together to create a net of
cooperation in which one context source completes the information provided by
the other. Buchholz [5] suggests the agglomeration of context sources provides
services, designated by him as Context Information Service (CIS). CIS is a service
that finds, measures, interprets and aggregates the relations between context
information provided by different context sources. CIS decouples the tasks of
gathering, interpreting and aggregating context information from the manipulation
of context information for a specific purpose. Therefore, CIS (and cooperation
between CIS’s) alleviates context-aware systems from the burden of sensing the
context from sensors, whose locations and communication protocols are not
known in advance. Buchholz also suggests that a new business role, called
Context Provider, will be the one responsible for building and maintaining the
cooperation between CIS’s.

Details about Gathering Context activities can be found in [37].

2.3 Modeling Context

Context-aware systems based on ad hoc models of context lack in flexibility and
expressiveness to model contextual information. Therefore, researchers in
ubiquitous computing are looking for systematic approaches and models that

9

enable capturing the dynamic nature of contextual information, allowing better
expression of their main characteristics and complex interrelationships.

In the following sections, we discuss some issues related to context modeling. We
will present two fundamental aspects that should be considered when defining a
context model: nature of contextual information and primitives contexts.
Furthermore, we will briefly present two example techniques to model context:
the W3C approach (CC/PP) and Ontology-based approaches.

2.3.1 Nature of contextual information

According to [21] there are a number of observations about the nature of
contextual information, which determine the design requirements for the intended
model of context:

• Context information exhibits a range of temporal characteristics. Context
can be classified as static and dynamic. Static context information
describes invariant aspects such as person’s date of birth. The level of
dynamism influences the means by which context information must be
gathered. Frequently context-aware applications are interested in more
than the current state of the context. Accordingly, context histories will
frequently form part of the context description.

• Context information is imperfect. Ubiquitous computing environments are
highly dynamic, which means that information describing them can
quickly become out of date. Frequently, the sources, repositories and
consumers of context are distributed and information supplied by
producers requires processing in order to transform it into the form
required by consumer. These factors can lead to large delays between the
production and the use of context information. Another problem is that
context producers, such as sensors, derivation algorithms and users may
provide faulty information. This is particularly a problem when the
context must be inferred from crude input provided by sensors. For
example, when person’s activity must be inferred indirectly from other
context information such as location and sound level.

• Context information is highly interrelated. Several relationships are
evident between contextual information (for example, proximity between
users and their devices). Other less obvious types of relationships also
exist among context information. Context information can be related by
derivation rules which describe how information is obtained from one or
more pieces of information. Modeling concepts should exist to express
this fact.

• Context has many alternative representations. Much of the context
information involved in ubiquitous systems is derived from sensors. There
is usually a significant gap between sensor output and the level of
information that is useful to applications, and this gap must be bridged by
various kinds of processing of context information. Moreover,
requirements can vary between applications. Therefore, a context model
must support multiple representations of the same context in different
forms and at different levels of abstraction, and must be able to capture
the relationships that exist between the alternative representations.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

10

Considering these intrinsic features of contextual information is essential when
defining a context model approach. It is argued that some of these features cannot
be easily described using traditional techniques from information systems field,
such as ER or UML diagrams; accordingly special constructors should be
provided by the modeling approach. Some authors claim that commitment to an
ontology [41] forms the first step toward implementing this model within a
knowledge representation technology. Section 2.3.3 discusses ontology-based
approaches to model context.

Ideally, an architecture for context-aware applications should explore a complete
context model to support manipulation of contextual information. However, for
practical reasons, we have addressed a simple context model that supports the
minimum requirements needed for context representation in the scope of this
project.

2.3.2 Primitive contexts

Apart from the philosophical discussion on the semantic of context there are some
primitive forms of context taken from the user’s environment that designers agree
on. Examples are location, user, time, and object/device. We briefly comment on
the modeling requirements for these contextual factors in the following
paragraphs.

Location

Location can be described in different ways, depending on the application
requirements. From the modeling point-of-view, the user can choose to use
absolute versus relative location, location point versus location area, fixed
location versus moving location, according to the desired level of abstraction.
Current location models can be grouped in two categories, physical and
geographical models [11]. Physical location is related to a global geographic
coordinate system and provides an absolute, accurate, grid based position in a
form of a <latitude, longitude> pair. Geographical location is used to deal with
natural geographic objects, such as countries, cities, and also zip codes, postal
addresses and so on. The remarkable property of such objects is their clear
hierarchical organization. Such a position description is suitable for delivery of
spatial information to a human. It is important that the interpretation of these
representations is unique, and that appropriate transformations are supported, i.e.,
the parties using this representation must agree upon the semantics of the location
information.

User

In general, data about the user are stored in the so-called user profile (e.g., student
profile). Significant facts can be collected directly from the user profiles.
Knowing these facts enable applications to adapt to their users in many different
ways, and to set different system behaviors. The information contained in the
profile can be considered as contextual information in the sense that it describes
the environment in which the users desire to operate. As such, it represents just a
small part of the information domain of context-aware systems. Typically, a user
profile consists of the conceptual building blocks Identities (e.g. user Id,
password), Characteristics (e.g., place of birth, gender), Preferences (e.g.,
background color, food preferences), Interests (e.g., opera music, sports) and
History (e.g., log of actions). From the modeling point-of-view, what we need is a
generic way for describing metadata about the users.

11

Time

In handling a dynamic environment such as ubiquitous computing, the model
needs to support inferences on how objects have changed over time and
predictions on how they may change in the future. Also, different aspects of time
should be considered by the model (e.g., time point versus time interval, time
zones, schedules, etc.).

Object/device

For context-aware services, it is important to know which objects/devices are in
the user’s environment. Examples of physical objects are buildings, busses, trains,
shops and signs. Several of these objects are services providers. An example is a
hotel that provides services, such as reserving a room, having a public toilet,
offering food, etc. It is necessary to have a common vocabulary that allows us to
describe objects and device capabilities. Some of the existing approaches are
based on the use of the Resource Description Framework (RDF), which is a
technique for representing knowledge [47]. For example, the Composite
Capabilities/ Preference Profiles (CC/PP) technique, described in the next section.

The architecture proposed by this thesis supports a simple representation of all the
abovementioned primitive contexts. Location, users, time and objects/devices are
represented in a model, called the entity type model, which defines their main
characteristics and their relationship (Section 5.2). Our intention, in the first
moment, is to have a simple context representation, which is sufficient for the
platform operation. A more elaborated context representation, for example using
the techniques indicated in Section 2.3.3, is indicated for future work.

2.3.3 Examples of Techniques to Model Context

W3C Approach (CC/PP)

CC/PP (Composite Capabilities/Preferences Profiles) is a W3C proposed standard
for describing device capabilities and user preferences. Although the current focus
is on wireless devices such as PDAs and mobile phones, CC/PP is designed to
work with a wider variety of web-enabled devices. The proposal also intends to
support applications such as browsers, email, calendars, etc.

In technical terms, CC/PP is an RDF (Resource Description Framework)-based
framework for describing and managing software and hardware profiles that
include information on the user’s device capabilities (physical and programmatic),
the user's specified preferences within the user agent's set of options, and specific
qualities about the user agent that can affect content processing and display, such
as physical location. RDF [47] is a framework for describing metadata. RDF can
be serialized in many different ways, and CC/PP uses the XML serialization. An
example of location information modeling in CC/PP is showed below. The
specification shows an extension of CC/PP to structure a Location profile that
contains four components (PhysicalLocation, LogicalLocation, GeodeticLocation
and Orientation) [24]:

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

12

[LocationProfile
 [PhysicalLocation [Country, State, City, Suburb]]
 [LogicalLocation [IPAddress]]
 [GeodeticLocation [Longitude, Latitude, Altitude]]
 [Orientation [Heading, Pitch]]
]

There are, however, limitations in CC/PP which make this model not very suitable
as a context model for future ubiquitous systems. According to [19], it becomes
difficult and unintuitive to use CC/PP when the relationships and constraints in
the context model are complex. A novel representation format called
Comprehensive Structured Context Profiles (CSCP) has been developed by [19]
and it is claimed to overcome the shortcomings of the CC/PP specification
language regarding structuring.

Complex ubiquitous systems require much more sophisticated context models in
order to support seamless adaptation to changes in the computational
environment. The context models will need to specify a range of characteristics of
context information, including temporal characteristics (freshness and histories),
accuracy, resolution (granularity), confidence in correctness of context
information, as well as a variety of information types (including various types of
dependencies).

Ontology-based approaches

Ontologies are believed to be a key requirement for building context-aware
systems [6] because (i) a common ontology enables knowledge sharing in a
distributed system, (ii) ontologies with well defined declarative semantics can be
used by different systems to reason about contextual information and (iii)
explicitly represented ontologies allow devices and computer applications to
interoperate.

Using ontologies, context-aware services are able to (semi)automatically matching
users with content/services that are relevant to their context, such as locations,
activities and other contextual attributes. Examples of such services could be
context-aware message filtering, context-aware travel planning, context-aware
restaurant concierge, context-aware notification agents, etc.

An example of a context-oriented ontology approach being developed is CoOL
(Context Ontology Language), described in [41]. The code below shows an
example of the usage of the terminology introduced by CoOL, where a specific
context information (geographical position) with respect to a specific aspect
(Gauss-Krugger coordinates) characterizing a specific entity (mobile phone) is
expressed in an XML instance document:

13

<instance
xmlns="http://demo.heywow.com/schema/cool"
xmlns:a="http://demo.heywow.com/schema/aspects"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<contextInformation>

<entity system="urn:phonenumber">
+49-179-1234567

</entity>
<characterizedBy>

<aspect name="GaussKruegerCoordinate">
<observedState xsi:type="a:o2GaussKruegerType">
367032533074
</observedState>
<units>10m</units>

</aspect>
<certaintyOfObserver>90</certaintyOfObserver>
</characterizedBy>

</contextInformation>
</instance>

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

14

3 Current Research Efforts in Context-Aware Computing

The goal of this chapter is to discuss what has been proposed in the literature in
terms of methodologies and approaches supporting context-aware computing,
using example projects as basis for the discussion. The set of projects presented
here, form the literature basis used by this work to identify the essential issues
related to mobile context-aware computing.

The discussion is partitioned according to the primary aims of the research efforts
[23], which are Conceptual Frameworks, Service Platforms, Appliance
Environments and Computing Environments. Section 3.1 discusses two projects
which aim at presenting a Conceptual Framework for building context-aware
applications. Section 3.2 explores two projects committed to building context-
aware Services Platforms. Section 3.3 discusses the projects whose initiatives are
in the field of Appliance Environments. Section 3.4 explores projects in the area
of Computing Environments. Finally, Section 3.5 gives a comparative table
showing the differences between the identified initiatives in terms of a set of
context-awareness issues.

3.1 Conceptual Frameworks

Conceptual frameworks for context-aware systems define a conceptual basis to
support the development of context-aware and adaptive systems and applications
[23]. They aim at facilitating the gathering of information from sources such as
sensors and context providers; performing interpretation of data; carrying out
dissemination of contextual information to interested parties in a scalable and
timely fashion; and providing models for programming context-aware
applications. Examples of context models are the context toolkit [9], a project by
the University of Berkley, and the cooltown [26], a project by Hewlett-Packard.

3.1.1 Cooltown Project

The project proposes a web-based model for context [26]. Within this model,
physical entities are divided into three categories: people, places and things.
Examples of places are homes, offices, shopping malls, etc. Examples of things

15

are printers, radios and automobiles. People are the users of things and the
occupants or visitors of places. Places have a special role as the venue or container
for people and things.

The goal of the project is to expand the view of physical entities to a virtual world
of web content, in which people, places and things are web-present. Things
become web-present by embedding web-servers in them or by hosting their web-
presence within a web server. Places become web present by organizing web
things into collections under the management of a web service called
PlaceManager. People become web present by offering global web home pages
with WebLink services to facilitate communications between individuals and by
offering information via location-specific PlaceManagers.

Points of web presence of people, places and things are obtained through
discovery systems and by sensing URLs and identifiers. There are two approaches
to discovering the URLs of entities via a sensor: either to sense that URL directly
or to sense an identifier from the entity, which is then looked up to obtain the
URL.

A place is a context for service provision, based on an underlying physical
domain. For instance, a café covered by Bluetooth or a railway station covered by
WaveLAN connectivity. Web present places are hyperlinked collections of the
web presences of people, places and things, which create a physical and
contextual organization of place information. The PlaceManager is a service that
stores those hyperlinked collections. It is responsible for organizing the set of
resources present in a place and the services around them. The information that
the PlaceManager provides depends on the clients’ permissions and client
device’s functional capabilities.

Location awareness is based around the concept of a place. Beacons transmit
URLs corresponding to an entity (things, people or places), enabling devices near
the beacons to discover and access their local places. PlaceManagers virtually
organize the contents of a place, which are accessed through portals. Portals are
the gateways to space’s services. A PlaceManager keeps track of the current
devices within a place and generates dynamic web pages that reflect their current
context.

The Cooltown framework clearly has limitations. It does not allow defining a
common view of context; instead, it allows arbitrary web description of context.
Interpretation and subscription of context events are outside the scope of the
framework.

3.1.2 Context Toolkit

The context toolkit conceptual framework focuses on programming with context
rather than on context representation [9]. The toolkit was designed to tackle the
following requirements for dealing with context:

• Separation of concerns: separation of acquiring context and handling
context;

• Context interpretation: extend notification and querying mechanisms to
allow applications to uniformly retrieve context from distributed systems;

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

16

• Transparent, distributed communications: Application and sensor
designers do not need to bother with communication protocols and with
the design and implementation of encoding schemas for passing context
information;

• Constant availability of context acquisition: context-aware applications
should not instantiate individual components that provide sensor data, but
must be able to access the ones that are available. Furthermore, multiple
applications may need to access the same piece of context. Therefore,
components that acquire context must be executing independently from
the applications that use them;

• Context storage and History: constantly availability of context to maintain
historical information;

• Resource discovery: discovery of context providers (or rather its software
interfaces). For that, applications need to know what kind of information
a provider offers, where it is located and how to communicate with it
(protocol, language and mechanisms to use).

Context widgets, interpreters, aggregators, services and discoverers are the
categories of components in the conceptual framework, which are used to address
the aforementioned requirements. Their functionally is explained in the next
paragraphs.

Context Widgets are software components that provide applications with access to
context information from their operating environment; they hide the complexity of
the actual sensors used from the application; they abstract context information to
suit the expected needs of applications; they provide reusable and customizable
building blocks of context sensing. From the application’s point of view, the
widgets encapsulate context information and provide uniform operations to access
context.

Interpreters are for raising the level of abstraction of a given context. For
example, location may be expressed in the form of latitude and longitude or at
higher levels such as city or street. It is also possible to infer new pieces of
contextual information from more than one context source.

Aggregators collect multiple pieces of logically related context information into a
repository making it available within a single software component.

Services are provided by components that execute actions on behalf of the
application. When a certain combination of conditions is met, an action should be
taken by the application.

Discoverers are responsible for maintaining a registry of what capabilities exist in
the framework. Therefore, it keeps track of the available widgets, interpreters,
aggregators and services. When any of these components is started, it notifies a
discoverer of its presence and capabilities and how it can be contacted.

3.2 Service Platforms

Service platforms provide an infrastructure, which aims at the rapid creation and
deployment of context-aware services, while also offering dynamic service

17

discovery, dynamic deployment of adaptive applications addressing issues of
scalability, security and privacy. Examples of service platforms are the M3
architecture [25] from the University of Queensland, Australia and the platform
for adaptive applications [14] from the Lancaster University, U.K. We will
elaborate on them in the next sections.

3.2.1 Platform for Adaptive Applications

The main goal of this research is to build a unified architecture that support
multiple contextual attributes coupled with a user driven adaptation control
mechanism. It is believed that this approach is able of overcoming the limitations
of current approaches for supporting adaptive mobile applications, which are lack
of coordinated adaptation and lack of dynamic adaptation mechanisms.

Different adaptation policies, which coexist in an environment scenario in which
the system resources are shared among multiple applications, can result in
conflicting problems. Moreover, this scenario also requires global adaptation
mechanisms in the system level, not only in the application level, in order to
provide system’s consistency as whole, given the current context and the user
requirements.

The following system architectural requirements are addressed by this effort:

• Support to a common space for handling an extensible set of adaptation
attributes (new contextual attributes for triggering adaptation can be
added);

• Support the control of adaptive behavior across all components involved
in the interaction. One of the main problems of current approached is that
the applications themselves are responsible for triggering adaptive
mechanisms when the underling infrastructure notifies them about the
changes. In order to support flexible and coordinated adaptation it is
necessary to have triggering of adaptation on a system-wide level. The
ability of deciding when and how an application should adapt is pushed
into an external entity, with cross-application knowledge, while the
adaptive behavior is still a part of the application’s characteristics;

• Support the notion of system-wide adaptation policies. Such policies
should enable a mobile system to operate differently given the current
context and the requirements of the user.

The main characteristics of the architecture proposed by this project are (i)
discovery and control of services offering contextual information and (ii)
coordination of adaptive behavior of the system based on changes in context. In
summary, the platform discovers available context information in the system’s
environment and manipulates the contextual information in a context database.
Context-aware applications expose their adaptive mechanism to the platform by
registering with the application database. The adaptation control driven by
adaptation policies (as specified by the user) coordinates the coexisting
applications according to changes in the context.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

18

3.2.2 M3 Architecture

M3 is a proposal of an open architecture for ubiquitous systems. It aims at
defining an open component-based architecture, which is able to describe complex
computational context and handle different types of adaptation for a variety of
new and existing ubiquitous enterprise applications [25]. For that, the architecture
uses a component based modeling paradigm and an event-based mechanism,
which is able to give flexibility in terms of dynamic reconfiguration and
adaptation.

The following requirements were taken into account when designing the
architecture:

• Reactivity: the architecture should be easily programmed to react to
context changes;

• Open dynamic composition: the architecture should be open to allow
interoperation with other component, such as legacy applications or new
components. Dynamic Composition (plug and play) configuration and
customization of services is essential in a ubiquitous environment.

• Enterprise focus: the architecture should be able to understand the
existing roles, and the relationship among them, in an enterprise
environment. For that, it is necessary to have abstractions that capture the
purpose, scope and policies of the system in terms of behavior expected of
the system by other entities within the enterprise.

The main characteristic of this architecture is the possibility of programming the
platform based on a coordination specification language, called MEADL.
MEADL specifies the coordination of events. Its specifications provide means to
dynamically configure interactions between components, to change dynamically
the communication paradigm and to provide session management.

Events belong to roles; therefore MEADL specifies the coordination of roles.
Users, ERP (Enterprise Resource Planning) servers, network protocols or
dedicated managers can fulfill roles. A role’s description is the interface of tasks
that a component can provide. A role’s duty is described in a set of input/output
events.

3.3 Appliance Environments

The goal of appliance environments is to support interoperability among
collections of appliances [23]. Examples of such environments are the Ektara [8]
environment, project by MIT and the Universal Information Appliance [15],
project by IBM.

3.3.1 A Universal Information Appliance (UIA)

The goal of this project is to make a universal user interface deployed in a PDA-
like device or a wearable computer, to interact with any application, access any
information store, or remotely operate any electronic device [15].

The challenges overcome by this infrastructure are:

19

• Device Requirements: Users will want to use a range of different devices.
One solution to cope with device diversity is to define a common set of
elements the devices need to have in order to be a UIA. These elements
are output mechanism (visual, tactical or audio), input mechanism (touch
screen, speech recognition or visual sensor), local data storage and
network communication that will relay data and event messages among
devices and among devices and services;

• Communication Infrastructure: It is necessary to define an infrastructure
in which the UIA can communicate. This infrastructure should include
mechanisms of connecting the UIA to the various information, interface
and application servers. Moreover, this infrastructure should include some
kind of discovery and retrieving of services.

• Seamless Integration: Integration of the UIA in user’s daily lives.

In order to tackle the device requirements, a platform independent application and
interface language and local storage system were developed. These were
implemented on a standard PDA (the IBM WorkPad). For the wireless
connection, the existing standard messaging system was used. For the
communication middleware, TSpaces was used. TSpaces is the IBM middleware
capable of gluing system components together by combining data management,
computation and communication.

MoDAL is a platform independent language, which is used to describe remote
interfaces. MoDAL applications are uploaded dynamically into a user’s device
from their corresponding services, and are tailored to the user’s device and
preferences. The benefits of this communication model are that it offers
distribution transparency, can support a range of interaction types, including event
and stream interactions, and removes the need for resource discovery.

3.3.2 Ektara Architecture

The Ektara architecture [8] is a distributed computing architecture for building
context-aware ubiquitous and wearable computing (UWC).

The requirements of the system are:

• Centralized management of competing demands for the user’s attention;

• Decentralized contextual resource discovery and allocation;

• A uniform, decentralized mechanism for contextual information storage
and retrieval;

• Flexible context sensing and classification based on heterogeneous
sensors;

• Strong cryptography for authentication and privacy;

• Open standards for the seamless integration of wearable and ubiquitous
computing resources.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

20

The design philosophy of the architecture puts the user needs in the center of the
design process.

The components of the architecture are:

• Context-aware interaction manager (CAIM): provides a uniform
framework for interaction between applications and user trying always to
minimize the need for explicit user input while maximizing the relevance
of the information provided. The CAIM’s model becomes part of the
user’s personal profile and it is located in the wearable device being
available wherever the user goes.

• Dynamic decentralized resource discovery: this framework allows
applications and services to find and use resources that match semantic
descriptions of functionality and context. To make that possible, the
wearable application components need to be registered in a registration
service with their semantic descriptions, capabilities and any additional
contextual information it chooses to provide;

• Contextual information service (CIS): it is a distributed database service,
which provides the wearable applications and services a uniform means of
storing and retrieving contextual information.

• Perceptual context engine (PCE): it is capable turning sensor data and
other sources of information into symbolic context descriptions;

• Strong cryptographic security and authentication: communication
between CIS servers and clients is typically executed in non-trusted hosts
and across non-trusted networks. Therefore, security and authentication in
the wearable environment must be achieved with a decentralized public-
key cryptography infrastructure.

3.4 Computing Environments

Computing environments embrace the systems that broadly address the ubiquitous
computing goal of providing context-aware computing (anytime, anywhere) by
decoupling users from devices and viewing applications as entities that perform
tasks on behalf of the user [2]. There are several projects in this classification,
such as PIMA [2], project by IBM and Portolano [13], project by University of
Washington.

3.4.1 Portolano

The Portolano project defines an infrastructure for ubiquitous computing
addressing issues related to the areas of user interfaces, distributed services, and
networking infrastructure.

The main characteristics of this infrastructure include:

User Interfaces

It is believed that new models of users interactions have to be developed. User
movement, proximity of devices, and embodied information presentation will

21

augment the keyboard, pen, audio and video interface used nowadays. The focus
of the user interaction must shift to user intent and expectation and away form the
execution of explicit commands. Intelligent interpretation of data gathered from
different sensors, identification of tags, and on-line services will replace many
user explicit directives of today. The challenge is to make the UI fit so well into
the environment that it becomes invisible insomuch as the user is aware she is
interacting with a computing device.

Distributed Services

The emphasis must shift from abstract capabilities and specific infrastructure to
applications in which users can easily relate. Different user interfaces, appropriate
to their contexts, should be able to interact with the same service.

Networking Infrastructure

The network should provide robust data transfer with replication and discovery.
User must rely on their data arriving where it needs to go without their explicit
intervention. Therefore, the network must be data centric; transmission, routing,
authentication and resource reservation should be handled independently of the
location of the user who inserted the data.

3.4.2 PIMA

Unlike the Portolano project, whose emphasis is on the infrastructure, the PIMA
project proposes an application model for ubiquitous computing. The main idea is
that application logic must be decoupled from details that are specific to the run-
time environment. To achieve this vision, a new application model is proposed
considering the life-cycle of a ubiquitous application. This life-cycle is divided in
parts: design-time, load-time and run-time.

Design-Time

The time when the developer creates, maintains and enhances the application.
Applications should not be designed to a specific type of device. Moreover, the
user interface of the application must not include any information specific to a
device or set of services. Instead, the application front-end should be device-
neutral. Developer should not make assumptions about services as well. Services
should be specified in an abstract manner. Therefore, not known services at design
time will still be available at run-time.

Load-Time

According to the project envision, the traditional load-time approach is not
supported. Devices must dynamically discover what applications are available,
and the system must adapt the applications to the device resources available. An
application must be specific in terms of its requirements, the device must be
described in terms of its capabilities and some intelligence must be used to mach
the applications’ requirements and device capabilities. For those reasons, the
system must be dynamic at load-time. That is, the tasks that a user wishes to
perform may depend on the physical surrounding. Such tasks are enabled by
contextual services. The systems must be able to discover and compose those
services in order to perform specific tasks.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

22

Run-Time

Resources must be constantly monitored in a run-time environment, so that
application can appropriately adapt to those resources. In addition, the run-time
must respond to changes initiated by the user. Moreover, the run-time must allow
a user to initiate and constantly perform a task, despite of changes in the
environment. Hand-off of tasks from one environment to another should be
supported and finally, the run-time must be able to take advantage of services
provided by the environment.

3.5 Discussion

Table 1 shows a comparison between the initiatives addressing some of the issues
related to building a ubiquitous infrastructure, in special with respect to context-
awareness issues. The following topics are addressed in the comparison:

• Support for device heterogeneity: it is expected that device heterogeneity
in computer systems will no disappear in the future, but instead will
increase as the range of computing devices widens. Heterogeneous
devices will be required to interact seamlessly, despite differences of
hardware and software. This implies that the infrastructure has to provide
solutions that enable arbitrary device interactions;

• Support for device mobility: device mobility is a basic requirement to
allow user mobility, which is the pillar for mobile context-aware
computing. Nevertheless, device mobility introduces problems such as the
maintenance of connections as devices move between areas of differing
network connectivity, and the handling of network disconnections.
Therefore, it is the role of the computing infrastructure to cooperate with
applications in order to perform tasks related to device mobility;

• Management of application mobility and distribution: mobility and
distribution of software is a reality when dealing with mobile context-
aware computing. The supporting infrastructure should be able to provide
transparency of distributed communications addressing issues like
mobility, synchronization and coordination;

• Support for context-aware issues: handling context introduces problems,
especially when applied to distributed systems such as context storage,
context gathering, context management, context interpretation, etc. The
computing infrastructure should give support to the fundamental issues
related to context-awareness;

• Support for adaptation: context-aware computing relies on the adaptation
(reaction) of users and devices in response to context changes. It is the
role of the infrastructure to facilitate adaptation;

• Support for rapid development/deployment of applications: ideally, the
computing infrastructure should provide services, such as adaptation,
context gathering and management, resource discovery, transparency, so
that, application developers do not need to concern with these
fundamental issues;

23

• Management of user context: in order to provide added-value services to
users based on their context and their preferences, the infrastructure
should maintain context data related to users, including their capabilities,
preferences and current context (activity, location, time, etc);

• Support for user mobility: user mobility between devices should become
transparent. Software components should migrate transparently from one
device to another. The task of finding out if the migration is needed when
actually performing the migration, should ideally be performed by the
computing infrastructure.

Issue Conc.
Frameworks

Service
Platforms

Appliance
Environments

Computing
Environments

Support for
device
heterogeneity

 �

Support for
device mobility

 �

Management of
application
mobility and
distribution

Support for
context-aware
issues

� �

Support for
adaptation

 � �

Support for rapid
development /
deployment of
applications

 � �

Management of
user context

�

Support for user
mobility

Table 1 – Comparison between the initiatives

From the comparative table, we can conclude that some of the issues are present
in those research projects but a considerable amount of challenges have so far
been little addressed. It is still challenging to develop an infrastructure that
integrates solutions to all the presented issues.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

24

4 The WASP Platform Requirements

The WASP platform should provide generic functionality to address the basic
aspects and challenges of context-aware computing concerning a services
platform. The goal of this chapter is to identify, define and refine the essential
requirements that cover these aspects and challenges.

This chapter is structured as follows: Section 4.1 discusses the requirements
related to the manipulation of Contextual Information. Section 4.2 elaborates on
the requirements for the interactions between the platform and its environment.
Section 4.3 presents some General Requirements. Finally, Section 4.4 discusses
some final remarks.

4.1 Contextual Information

The WASP platform should be capable of gathering contextual information from
different sources and adapt to them according to the user needs and system
capabilities. For that, common understanding of contextual information is
required. Context Representation/Modeling and Context Storage are the main
requirements related to contextual information.

4.1.1 Context representation/modeling

As discussed in Section 2.3, there are different kinds of context with different
characteristics and complex interrelationships. The WASP platform should define
and use systematic approaches or context models that capture the nature of
contextual information.

Furthermore, interoperability and knowledge sharing in a distributed system
becomes challenging when the systems are based on ad hoc models of context.
The determination of the context model should consider interoperability issues,
since the platform is expected to operate in a distributed environment.

The WASP platform context model should be extendable to allow the deployment
of new kinds of contextual information that have not been anticipated during the

25

platform design. For instance, the determination of the model could consider,
initially, the categories location, users, objects and devices (Section 2.3.2). These
categories could be extended to future deployments of other types of context, for
example, time and user activity.

For the purpose of this thesis, we focus on the definition of a simple extensible
context model. More sophisticated context modeling approaches, for instance,
using ontology-based techniques, are to be considered elsewhere in the WASP
project.

4.1.2 Context storage/retrieval

Contextual information will be made available through the services platform. In
order to keep track of the information, the platform should gather context from
different sensors (or context providers), process it, and store the results. Some
applications may require that this information to be maintained and preserved
over time. For instance, an application could request the location of a person, in a
given date in the past. Furthermore, keeping history of contextual information is
particularly interesting to allow context inference based on past occurrences. For
example, the inference of the speed of a user from the latitude and longitude
changes over time.

Different representations can be used for communication, processing and storage,
each optimized for its own purpose taking into account the software and hardware
that are used for this. It is important that the interpretation of these representations
is unique, and that the transformations are supported, i.e., the parties involved in
the communication must agree upon the semantics of the information.

4.2 Platform Interactions

The platform interacts with three systems: WASP Applications, Services
Providers and Context Providers, as depicted in Figure 4.

WASP
Platform

WASP
Applications

Context
Providers

Service
Providers

Figure 4 - Platform interactions

The next paragraphs discuss those interactions and the challenges related to them:

• Interaction Platform-Context Providers: support for different kinds of
context providers (sensors or third party context providers);

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

26

• Interaction Platform-Application: reactive behavior and coordination
among different applications;

• Interaction Platform-Services providers: discovery and publishing of
services.

4.2.1 Support for different kinds of context providers

The platform should be open to new kinds of third party context providers and to
new kinds of sensing mechanisms, not only 3G Networks. Context providers
supply information using different communication protocols and in semantically
different formats. Therefore, components that hide the process of acquiring
context from sensors and providers are necessary.

For this reason, the design of the platform should take into account an adaptation
layer that makes contextual information form different providers uniformly
presented (well understood) to the rest of the platform. This component should be
able to hide the details of the provider (sensor or third party) and how to acquire
context from this process completely transparent to the other components in the
platform.

An example that gives an idea of a solution for this challenge can be found in the
Context Toolkit conceptual framework [9] (Section 3.1.2). Figure 5, shows an
example configuration of the context toolkit for two different sensors. Each of the
sensors provides contextual data to a widget, which encapsulates the sensor
storing the data and also looking for higher–level abstraction of contextual data.

For instance, a widget could be responsible for translating latitude and longitude
to a city and a street. An aggregator is able to collect context from the widgets that
provide relevant context for a given task. For example, an aggregator could collect
the location of several different users and check if they are crowded in the same
location in order to verify the possibility of a traffic jam.

Aggregator

Widget

Sensor

Widget

Sensor

Figure 5 - Example configuration of the context toolkit conceptual framework

In summary, the desired platform support for context manipulation should address
issues such as context gathering (the platform should be able of collecting context
from Context Providers and/or sensors), context aggregation (the platform should
be able of logically aggregating multiple pieces of related contextual information),
context inference (the platform should be able of inferring context from other
context(s)).

27

4.2.2 Reactive behavior

Applications should be able to respond to their dynamic environment. Therefore,
the platform has to support the applications in this process since the platform is
the one aware of the changes in the user environment. But how to support a large
and growing number of different context-aware applications without having to
upgrade the platform each time a new application is deployed? One possible
solution is to give some intelligence to the platform by exposing reaction
mechanisms, i.e., applications have to “teach” the platform how to react to certain
correlations of events [20]. Event correlation is the designation of relationships
between multiple events. Those relationships can be logical operators, such as
AND, OR and NOT. Suppose E1, E2, ..., En are known events to the platform. A
possible correlation of these events is ((E1 OR E2) AND E5) OR NOT E6. On one
hand, if the result of the formula turns to be true, it enables some kind of action to
be triggered. On the other hand, if the result turns to be false, it disables the action
to be triggered.

Figure 6 depicts the desired architectural models of interaction to be supported by
the WASP platform, abstracting from the 3G networks. The upper layer
represents the application layer and the lower, the supporting platform. The
request/response model (passive platform behavior) is the one where the reactive
behavior of the platform is just to respond to the applications requests. In the
event-driven model (event-driven platform behavior), applications expose to the
platform the desired reactive behavior by means of a subscription. The
subscription is based on correlation of events and programming of actions. The
models are also depicted in the sequence diagrams presented in Figure 7 and
Figure 8.

P la tfo rm

A p p lic a tio n

P la t fo rm w ith
p a s s iv e b e h a v io r

A p p lic a tio n

P la tfo rm w ith e v e n t-
d r iv e n b e h a v io r

A p p lic a t io n

R e q u e s t/re s p o n s e
m o d e l

E ve n t d r ive n
m o d e l

Figure 6 - Different models of interaction between application and platform

 Appl Platform

Request [1]

Response [2]

 Passive behavior:

 [1] Give me the
location of user A.
 [2] Location of user A

Figure 7 - Example scenario for platforms with passive behavior

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

28

 Appl Platform

Exposure of
Reactive behavior [1]

Action [2]

Action [2]

Time-Reactive behavior:
 [1] Give me the location of
user A every 5 minutes.
 [2] Location of user A.

Event-Reactive behavior:
 [1] Send me a message when
user A is passing close by a
bakery.
 [2] Message.

Figure 8 - Example scenario for platforms with event-reactive or time-reactive

behavior

For example, consider the simple user’s scenario “Send me a reminder of buying
bread when passing close by a bakery”. In this scenario, the user is manipulating
a reminder application, which is supported by the platform. In order to make of
use of the platform, the application needs to express that user John should receive
a reminder of buying bread when passing less than a 100 meters from a bakery. In
addition, this request should remain in the platform because John wants to be
reminded every day. The following expression is an abstract view of how the
platform could be programmed by an application.

ACTION sendMessage
GUARD closeBy
 (entity:user:ID:location, entity:bakery:any:location)

The platform understands the user and the bakery as entities. Close by is a
function that returns true if the physical location (context) of both entities are
close, for instance, less than 100 meters, and false otherwise. The combination of
this function and the user context location forms the logical condition for the
action to be triggered. Finally, “Send a reminder” is the action that should be
triggered every time the condition turns true.

The platform has to keep track of all possible entities (user, bakery, museum,
restaurant, etc.) involved in an event correlation as well as their context. In the
aforementioned case, based on the user location, the platform knows how to find
the bakeries in the user’s surroundings.

Ideally, the platform should support a large (and potentially growing) range of
context-aware applications. Therefore, it is necessary to embed flexibility in the
platform in order to make it suitable for most applications. Furthermore,
application-platform interactions should be dynamically configured allowing
application deployment during the platform run-time. To address this issue, we
need a solution that allows applications to expose their needs to the platform
during run-time. A possible way to address this requirement is to permit
applications to subscribe to the platform by means of adding application
subscriptions to the platform. Application subscriptions would be written in an
established (agreed) language and the main elements of an application
subscriptions would be a trigger (action) and a conditional expression (correlation
of events involving entities and their context). The basic semantics of this
language would state that when a conditional expression turns true, the action
should be triggered.

29

The UML diagram depicted in Figure 9 shows a possible representation of how
the event trigger, the conditional expressions and actions would relate: The
platform supports many applications and each of them would have several
subscriptions. Each subscription would contain at least one trigger and when the
conditional expression is satisfied, the action should be triggered.

PlatformApplication

Application Event Registration

TriggerAction Conditional Expression

1
*

1

*

1
*

* * * *

-AND *

*

*

-OR

*

1*

Figure 9 - Representation of reactive expression

4.2.3 Coordination among different applications

Different reaction mechanisms programmed by different application can give rise
to conflicting problems when providing a service for the same user. For instance,
take an example in which the user uses two different applications in his device, a
reminder and a sleep mode application. The sleep mode application turns the
device to a sleep mode in a certain situation, for example inside the movies, in a
meeting or when he/she is driving. The reminder sends reminder messages when a
correlation of events, determined by the user, happens.

A component with cross-knowledge capabilities, i.e., a component with
knowledge of different sources in the architecture, for example a monitoring
component [22], can be responsible for managing the coordination of events by
checking the user context and preferences. This way, side effects generated by
conflicting reaction mechanisms can be avoided.

The sequence diagram depicted in Figure 10 and Table 2 illustrate this scenario.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

30

 Platform User Appl 1

[1]

[3]

[4]

[2]
M
O
N
I
T
O
R
I
N
G

Appl 2

Figure 10 - Bakery scenario

Message
Number

Message Contents

[1] “Remind me of buying bread when passing by the bakery”

[2] ACTION
 sendMessage (entity:user:ID);
GUARD (entity:user:ID:location closeBy
 entity:bakery:all:location)

[3] “Sleep mode when I’m driving”

[4] ACTION
 action:sleepMode (entity:user:ID);
GUARD entity:user:ID:driving

[Monitoring] The scenario “the user is driving and passing by the bakery”
is a conflicting situation. The platform could monitor this
situation by checking the user preferences. By doing that,
the monitoring component would realize that the user
priority is to not be disturbed when driving (he/she has
concentration problems) even when passing by the bakery.

Table 2- Bakery scenario

4.2.4 Discovery and publishing of services

Service provision by third party service providers is the essence of the service
platform. Discovery and publishing of services can be done by internal elements
or/and by external elements, being opened and shared with others application
environments/platforms.

Entities like museums, restaurants, supermarkets, bakeries, schools and hospitals
want to expose their services to the platform, so that, depending on the user
necessity, taking into account his/her context (or correlation of), those services
can be used. In the aforementioned reminder application example, the platform
uses information about bakeries, in this case, their location. There are cases in
which the platform should be programmed to directly use the services of service
providers. For example, the platform could be programmed to immediately order
bread when the user is approaching the bakery. Therefore, the user does not need

31

to be bothered with selecting and paying activities; this could be automatically
done by the platform.

The platform should provide a mechanism to support discovery and publishing of
services. A centralized service discovery approach, which has been largely
explored in recent works, is Universal Discovery, Description and Integration
(UDDI) [49]. It provides a directory service where service providers and service
requestors come together to satisfy their needs.

Related work inside the WASP project intend to add functionality to the UDDI in
order to improve its capabilities [37]. It is claimed that UDDI lacks on semantic
description, process specification and ontology support. Their aim is to implement
an enhanced UDDI server, capable of storing, matching and retrieving
semantically rich service profiles that contain contextual information.

4.3 General Requirements

4.3.1 Support for security and privacy services

The platform should be able to gather important and perhaps private information
from different parties. Therefore, security and privacy services are clearly a
necessity in a context-aware environment. Which information can be published?
To whom? Can it be available forever or only for a defined period of time? These
are example questions that should be addressed when dealing with privacy aspects
of the platform.

Although it is a very important issue in context-aware computing, privacy has not
been properly enforced in available platforms. There has been very little attention
to this concern. Examples of relevant work can be found in [28, 29], which define
(i) guidelines on how to design a system based on a set of fair information
practices common in most privacy legislation and (ii) a privacy architecture that is
part of a compulsory security framework that allows the use of appropriate
security policies and authorization services.

The WASP project approach to address privacy concerns should be to study (and
prove the suitability of) the current developments in context-aware privacy
control, proposing improvements to existing solutions and/or developing of new
ones. For example, the WASP project could investigate the Privacy Preferences
Project protocol (P3P), which is a protocol primarily intended to describe privacy
policies of web sites. In order to translate P3P to web-services domain,
enhancements on P3P need to be proposed. Privacy and security concerns are to
be considered elsewhere in the WASP project.

4.3.2 Charging

There are important issues related to charging in a commercial service platform
such as: which parties are going to charge and for which services. A possible
model for the WASP platform could describe that users pay for the services
provided by applications. Similarly, applications pay the platform for services and
the platform pays for the usage of 3G Networks. This example charging
configuration (with three main levels of charging) is depicted in Figure 11.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

32

Once a basic charging model is chosen, a business model for the WASP platform
should be defined. This business model would define requirements for the
assignment of business responsibilities among the different parties involved in the
WASP project. An example of information defined by this business model could
be how to measure (and charge for) the service: per access, per information
quantity or per time.

3G Networks

Platform

Applications

Users

Level 1

Level 2

Level 3

Figure 11 - Charging levels

4.4 Concluding Remarks

In this chapter, we have discussed some of the essential requirements to be
satisfied by a context-aware services platform. Having elaborated on the essential
requirements and having knowledge on the existing solutions that overcome some
of the identified challenges, we are able to propose an architecture for the WASP
Platform. The design of the proposed architecture is reported on Chapter 5.

Issues of scalability, performance and the use of standards should also be
addressed as requirements for the WASP platform. Scalability concerns, in
particular, need to be considered since the platform will provide services to a large
number of applications, users and service providers. Therefore, the platform
should be able to manage a large volume of context information, user profiles and
preferences and it also has to keep track of a large number of event-correlated
rules, which means manipulation of data from different sources in the platform.
The platform should be scalable in order to cope with this heavy and potentially
growing load. Therefore, architectural decisions such as distribution of
components and separation of context sensing (and filtering) and context
processing, should be taken into account.

Furthermore, devices and applications from different vendors should interoperate
seamlessly with the platform. Therefore, interoperability issues should be taken
into account. One way to cope with diversity is the use of standards like CC/PP,
P3P and Web Services, which are focus of investigation in the WASP project.

In this thesis, we address a non-trivial subset of the identified requirements during
the design phase. In particular, the following challenges are directly explored by
the design:

• Support for gathering, interpreting and storing of contextual information;

• Reactive behavior. This challenge implicitly addresses dynamic
application deployment during the platform run-time;

33

• Coordination among different applications;

• Support for dynamic service discovery.

The following challenges are not explored by the design:

• Context representation/modeling;

• Security and privacy;

• Scalability and performance;

• Charging.

One of the most challenging requirements we identified is the Dynamic
application deployment during the platform run-time, which is associated to the
application-platform interaction. The architectures we have investigated do not
address this challenge with the level of configurability we require. As can be seen
in Chapter 5, we spend much of our efforts on developing a platform architecture
with a high level of configurability. The proposed solution includes the definition
of a subscription language which allows applications to dynamically expose their
needs to the platform. Embedding this level of flexibility into the platform
facilitates the creation and the dynamic deployment of a large range of context-
aware applications.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

34

5 The WASP Platform Architecture Design

This chapter reports on the design of the WASP platform architecture. Based on
the requirements discussed in Chapter 4, we have identified the components of the
architecture and the interactions between these components.

This chapter is structured as follows: Section 5.1 gives an overview of the
architecture, mentioning the main components and their main function. Section
5.2 presents the WASP platform context model. Section 5.3 details the Context
Interpreter component, which essentially allows the encapsulation of Context
Providers making contextual information uniformly available to the rest of the
platform. Section 5.4 explores the Repository components, which contains
essential information necessary to manage the application subscriptions. Section
5.5 discusses the heart of the platform, the Monitor component. This component is
responsible for managing the application subscriptions. This section also presents
the WASP Subscription Language (WSL), which is the language to represent
subscriptions.

5.1 Overview of the Architecture

Figure 12 depicts a high level view of the platform architecture together with the
platform interaction systems. Figure 13 shows a refined view of the components.

35

 WASP
Applications

Context
Providers

Service
Providers

Monitor

Repositories

WASP Platform

Context Interpreter

Figure 12 - WASP platform architecture

As aforementioned, the platform forms the system environment for context-aware
applications (WASP applications). Services Providers are business parties that
foresee opportunities to profit from offering their services through the platform.
Context Providers are the parties responsible for providing contextual
information.

The WASP platform architecture is composed by three main elements: Monitor,
Repositories and Context Interpreter. The Context Interpreter gathers contextual
information from Context Providers, manipulates context and makes it uniformly
available to the rest of the platform. The Repositories are responsible for
supporting the Monitor with knowledge of the elements involved in the platform.
For that, some of the elements in the Repositories module collect information
from the Context Interpreter and others use the services of Service Providers.

The Monitor is the core of the platform since it is the module responsible for
interacting with WASP Applications. Therefore, it is responsible for interpreting
and managing the application subscriptions. In order to perform its operations, it
gathers information from the Repositories module and from the Context
Interpreter.

In our architecture design, we give emphasis to the application-platform
interactions issues that deal with the dynamic deployment of applications.
Therefore, the design of the Monitor module is an outstanding part of this
Chapter. In particular, we have developed a language, called the WASP
Subscription Language (WSL), which allows application-platform interactions to
be dynamically configured. The use of this language greatly leverages the level of
the platform configurability. We will elaborate the abovementioned architectural
elements and the WSL in the next sections of this Chapter.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

36

 WASP PLATFORM

Repositories Monitor

Parser

Subscription
Manager

Coordinator

EntityType
Registry

FunctionType
Registry

Service
Registry

ContextDB
Registry

Context Interpreter

ActionType
Registry

Entity
Registry

User Profile
Registry

W
A
S
P

A
P
P
L
I
C
A
T
I
O
N
S

S
E
R
V
I
C
E

P
R
O
V
I
D
E
R
S

CONTEXT PROVIDERS
Figure 13 - WASP Platform architecture - refined view

We have defined a simple extensible context model to govern the contextual
knowledge of the WASP platform. This extensible model allows the further
deployment of new kinds of contextual information that have not been anticipated
during the platform design. Section 5.2 explores the WASP platform context
model.

Security and Privacy concerns are present across the whole platform, i.e., all
messages exchanged and all accesses to information are done respecting privacy
and security policies. The platform external and internal transactions are tracked
similarly to an audition system in order to support Charging issues. Security,
Privacy and Charging concerns are being explored in parallel works inside the
WASP project.

5.2 The WASP Platform Context Model

The WASP platform manipulates data entities. These entities represent objects of
the real world (users, restaurants, museums, roads, vehicles, etc). Attributes (age,
area, address, etc) and Context (time, location, activity, etc) are associated with
data entities. In order to effectively and consistently manipulate data entities,
attributes and context, we need to organize, represent, and describe them in a
model (context model). Once this model is defined, it is used as basis for common
understanding of data entities, context and attributes between platform,
applications and services providers.

37

The UML diagram depicted in Figure 14 describes a possible configuration of the
context model proposed for the WASP platform, called the Entity Model. The
model is not complete, since it shows only an example configuration with entities
restaurant and user and their relationship with context location. Along the
platform usage, this model can be extended by dynamically adding new entities
types (e.g., museum and supermarket) and context types (e.g., time and activity).

The model presents three instantiation levels, a metamodel, a model and an object
level. The metamodel level is embedded in the platform and it is defined during
the platform design-time, being unchangeable during run-time. The lower levels
of instantiations are called the model level and the object level. These levels are
dynamically changeable during the platform run-rime. They represent instances of
the Metamodel and the Model levels, respectively.

In the first level of instantiation (Metamodel level) it is defined that Entity Types
are associated with Context Types and AccessModelType is an attribute of this
association. The association class AccessModelType provides information over
how to gather the context from the Context Interpreter using the attribute
AccessModel. This attribute can be Request/Response model, Time-Driven model
or Event-Driven model. These models are discussed in Section 5.3.1.

Figure 14 presents a model configuration in which entities types Restaurant and
User (model) are instances of Entity Type (metamodel). Moreover, the context
Location (model) is instance of Context Type (metamodel). Similarly, Pinochio
and LosPonchos (object) are instances of entity Restaurant (model) and Alice and
John (object) are instances of entity User (model).

Once our context model is defined, it must be taken as a reference by the systems
that interact with the platform in order keep the common understanding of the
information semantics.

Entity Type Context Type

UserLocation

«instance»

«instance»

Restaurant

Model

Restaurant:Location

* *

Model

User:Location

* *

«instance»

AccessModelType

* *

«instance»

«instance»

Metamodel

Model

LosPonchos 123, 3425 John

«instance»

«instance» «instance»

Pinochio

«instance»

Alice

«instance»

Objects

Figure 14- Platform instantiation levels

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

38

A combination of entity type and context type is associated with an access model.
For instance, the combination user.location could be associated with any of the
first three models. With the Request/Response model, the location of the user is
provided upon a request. With the Time-Driven model, the location of the user is
provided from time to time. With the Event-Driven model, the location of the user
is only provided after the location value has been updated. The entity type
restaurant, in combination with context location, would be associated with the
Request/Response model since the location of a restaurant is unchangeable.

Instances of entity type user are stored in the User Profile repository. Instances of
entity types that are service providers (restaurants, museums, etc.) are stored in
the Service Discovery component. Instances of entity types that are not users and
not service providers (road, building, room, etc.) are stored in the Entity
Repository.

It would be possible to define (hierarchical) relations between entity types. This
could vary from simple categorizations of entity types to complex ontologies [6].
A common representation of this knowledge is essential for the interoperability of
the platform and its environment. Ontologies are believed to be a promising
modeling technique for building context-aware systems, as discussed in Section
2.3.3. Therefore, the WASP context model can potentially profit from the use of
ontologies. Ontology-based techniques to model contextual information are
currently being investigated by the WASP project.

5.3 Context Interpreter

The Context Interpreter gathers contextual information from Context Providers
(sensors or third parties context providers) which may use different
communication protocols and semantically different contextual representation,
making contextual information uniformly available to the platform. Therefore, it
is responsible for tackling the support for different kinds of context providers
requirement, mentioned in Chapter 4, Section 4.2.1.

The Context Interpreter is able of gathering and providing context in several
levels. This is illustrated in Figure 15. The rectangles represent the layers in which
contextual information is gathered/ provided.

Figure 15 – Layers of contextual information

Figure 15 does not show this explicitly, but the upper layers can access all the
layers below it, not just the one immediately below. In fact, the Context
Interpreter is able of taking raw context from the context provider, semantically
interpreting it and then, based on this interpretation, inferring new contexts. This
process can be performed as many times as necessary.

For example, suppose the latitude and longitude of a user is being pulled from a
Context Provider. The Context Interpreter is able to assess the speed of a user

39

from the latitude and longitude changes over time. Moreover, it may be able to
infer from this that the user is driving a car. In summary, the Context Interpreter’s
capabilities include:

• Context gathering: the Context Interpreter is able to collect context from
Context Providers;

• Context aggregation: the Context Interpreter is able to aggregate context
when needed. For instance, several Context Providers may be able to
offer context of a certain user, one providing the user’s location and the
other providing the current time;

• Context inference: the Context Interpreter is able to infer context from
other context(s). The inference rules are logic relationships between
users’ context and other information and they must be explicitly defined.
We elaborate on this issue in Section 5.3.2.

Figure 16 depicts a possible configuration for the Context Interpreter. The
Context gatherer is responsible for gathering context from the Context Providers.
The Aggregator and Inference Machine are responsible for context aggregation
and context inference, respectively. Both modules make use of the repositories to
access information that supports aggregation and inferring activities. This
example configuration shows three contexts being gathered by the Context
gatherer (c1, c2 and c3). Contexts c1 and c2 are aggregated because they are
associated with the same entity (e.g., time and location of a user). These
aggregated contexts and the context c3 are passed to the Inference Machine in
order to evaluate a certain inference rule. The result of this inference rule is the
context c4, which can be provided to the Repositories or to the Monitor
component.

Context Interpreter

1 2

1- Monitor Interface
2- Repository Interface
3- Context Provider Interface

3

2

2

Aggregator

C3:context

Inference
machine

C1:context

C2:context

 Context gatherer

C4:context

Figure 16 – Example configuration of the Context Interpreter

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

40

5.3.1 Information Provisioning Models of the Context Interpreter

The Context Interpreter uses three different models of information provisioning:
request-response, time-driven and also the event-driven model. In the request-
response model, the Context Interpreter provides context only on explicit request.
In the time-driven model, the Context Interpreter is programmed to provide the
context after specific time intervals. Finally, in the event-driven model, the
Context Interpreter is programmed to provide the context only when the context
value has been updated. In our design, the access model type is defined in the
association of an entity type and a context type, as presented in Section 5.2.

Similarly, Context Providers can provide information following the three
mentioned modes (request-respond, time-driven and event-driven). Therefore, the
Context Interpreter decouples the platform from Context Providers, allowing the
rest of the platform to use context information without worrying about different
communication protocols that are necessary to communicate with Context
Providers. Figure 17 depicts the different levels of information provisioning and
the possible models of interaction.

 Subscription
Manager

Context
Interpreter

Context
Provider

Possible models of
Information provisioning:

§ Request-Response;
§ Time-driven;
§ Event-driven.

Platform

Figure 17 - Models of information provisioning

Figure 18 depicts the Context Interpreter providing information to the
Subscription Manager, which is managing two subscriptions. Details about the
Subscription Manager are given in Section 5.5.5.

The first subscription involves the context location applied for users user1 and
user2. The second subscription involves the context location applied for users
user2 and user3. It is defined in the platform that the Access Mode of the
association of an entity user and context location (represented by the notation
user:location) is time-driven (in the entity type registry, Figure 14). Therefore, the
Context Interpreter must provide the context user:location in a time-driven way,
for instance, every 2 minutes (highlighted "pushes" in Figure 18). However, the
provision model for the Context Provider is the request-respond model. Thus, in
order to obtain context, the Context Interpreter needs to explicitly request for it
(highlighted "req" and "resp" in Figure 18).

41

Context Interpreter

User1:Location

User2:Location

User3:Location

Subscription Manager

Subscription1 involving
User1:Location and
User2:Location

Subscription2 involving
User2:Location and
User3:Location

push push push push

Context
Provider

req resp req resp req resp platform

Figure 18- Example of context provisioning

5.3.2 Inferring Context

Context can be derived from other context(s). For example, the context
user.driving is derived from consecutive verifications of context location. The
context user.working can be derived from the user location and the location where
he/she works. In order to be able to derive (infer) new contexts, it is necessary to
define inferring rules in the Context Interpreter. Informally, we could say that an
inferring rule defines logical relationships between information (context or not) in
order to derive a new information that we are not able to directly sense from the
environment. For example, an inferring rule looks like: if user’s current location is
inside his/her working place, we can infer that the user is working.

Inferring new contexts from existing ones, i.e., defining inferring rules can be
very complex. We could greatly profit from Artificial Intelligence techniques to
define and apply inference rules. The investigation and integration of such
techniques are indicated for future work. Furthermore, we foresee that there will
be third party context providers providing context at any desired level. This fact
alleviates the platform from the burden of inferring complex contextual
information.

Figure 20 depicts an example in which the context user.working is derived from
the context user.location and information over the user’s place of work and the
location of the place of work (building1.location). The push model (time or event-
driven model) is being used for both Context Interpreter-Subscription Manager
and Context Provider-Context Interpreter interactions. Figure 19 shows the
sequence diagram for this example of inferring context.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

42

Context Provider Gatherer Inference Machine User Profile Entities Repository Subscription Manager
(Monitor)

send(user1.location:Location)

getUserWorkPlace()

send(user1.workplace:String)

getArea(user.workplace:String)

send(user.workplace.area:Area)

send(user.working:Boolean)

send(user1.location:Location)

Figure 19 - Sequence of messages between modules for a context inference
scenario

The Context Gatherer receives the context user1.location from the Context
Provider. Following, the Context Gatherer forwards this context to the Inference
Machine, which holds the inference rule that involves this context. This inference
rule also involves the working place of the user and the working place area
information, which are provided by the User Profile and the Entities Repository
components, respectively. At this step, the Inference Machine possesses all the
information necessary to perform the inference rule, which produces the context
user.working (true or false).

The inferred context may be added by the subscription to redirect calls of user1 to
his secretary when he is working. We could even have a more specific redirection,
for instance, to the room where user1 is currently located.

Building1:
Location

Building1:
Area

User1 works
in Building1

Context Interpreter

User1:Location

Subscription Manager

 Subscription1 involving
 User1:working

push

push

User1:working Infer

User
Profile

Entities
Repository

Context
Provider

platform

Figure 20- Example of context inference

43

5.4 Repositories

The Repositories are the architectural components that contain and maintain the
information represented in the data entity model (Section 5.2). As we will see in
the next sections, entity types, entity instances, action types and function types are
essential information to allow dynamic deployment of applications through the
subscription language.

5.4.1 Entity Type Registry

The Entity Type Registry is the repository of entity types (and their attributes and
context types) registered in the platform. Examples of entity types are user,
bakery, hospital, restaurant, etc. Examples of Attributes are MobileNature
(mobile or fixed), age, address, etc., and examples of Context Types are location,
velocity, time, etc. It is possible to apply different kinds of context for different
entity types. Velocity, for instance, is a context that may be applied to entity type
user but may not be applied to hospital or bakery. The Entity Type Registry needs
to keep track of all possible combinations of context types and entity types.

The platform offers a programmatic interface to allow Entity types and Context
Types to be added (or modified) on demand, for example, by a platform
administrator. Examples of operations of this interface are:

addEntityType(String name, AttributeType[] attr, ContextType[] cont)
addContextType(String name, Value val)

The operation addEntityType adds an Entity Type with the specified name, list of
attributes and list of context types. The types AttributeType and ContextType also
have to be specified. The operation addContextType adds a Context Type with a
name and value.

5.4.2 Function Type Registry

Functions are operations that perform a computation with no side-effects, i.e., it
does not change the current status of the platform. Application subscriptions make
use of Functions (in combination with actions and data entities) to express what
they need from the platform. For instance, suppose that an application
subscription needs to express (and check) whether two entities are close to each
other. The platform should provide and/or support functions that perform this kind
of operation.

Function Type Registry is the registry for information about the types of
Functions supported by the platform. The characteristics of a Function are its
goals (what it intends to do), the number and types of parameters it accepts and its
return value. The platform retains as many Functions as necessary to perform its
operations.

The primitive function closeBy for example, returns true if two or more entities
are close to each other (for instance 20 meters) and false otherwise. This function
only makes sense when two or more entities are involved (proximity of a single
entity does not exist). Moreover, it only makes sense if the contextual information
location is applicable for those entities.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

44

Another example of Function is the Match function, which is able to say if the
personal profile of a user matches with an other entity. Match (user.user1,
restaurant.LosPonchos) returns true if user1 likes Mexican restaurants
(LosPonchos is a Mexican restaurant) and false otherwise. Sophisticated
approaches can be used in order to perform personalized services according to
user preferences. Although dynamic adaptation of services according to user’s
preferences is an important issue in context-aware computing, we do not explore
this issue in this work.

Other examples of functions are shown in Table 3:

Function Explanation

Inside (entity1, entity2) Verifies if entity1 is physically inside
entity2. Entity2 must designate a
geographical area.

List (entity, collection) Makes a list of kind <head, collection> in
which the first element is an entity and the
second element is a collection.

Count(collection) Counts the number of elements in a
collection.

InRoad(entity1, entity.road1) Verifies if entity1 (a user or a vehicle) is on
entity road1.

IsTraffic(entity.road1) Verifies if there is traffic jam on entity
road1.

GetTrafficInformation(entity.road1) Returns textual information about the traffic
situation on entity road1.

Table 3 - Examples of functions

From the application point of view, the combination of functions closeBy and
Inside can be used by application subscription to express that an action should be
taken if entity1 is closeBy entity2 and entity2 is Inside entity3.

The platform provides a set of embedded primitive functions (e.g., closeBy, Inside,
etc). Moreover, it provides configurability of functions in the sense that new
functions can be added on demand during platform run-time. Introducing this
level of configurability greatly increases the usability of the platform.

Using Web Services, which is the technology chosen by the WASP project to
implement the interactions of the platform with its environment, we were able to
design a solution for dynamic deployment of functions. This solution involves the
remote implementation of function as web service end-points. Furthermore, the
platform provides an interface that allows the dynamic addition of the functions’
signatures.

The following code represents the platform’s interface to add functions:

45

interface FunctionRegistry
{
 addFunction(String name, int number_parameters, URL function_service_url);
 addFunction(String name, type[] parameters, URL function_service_url);
}

The method addFunction receives the name of the function, the number of
parameters (or a list of parameters’ types) and a URL where the Web Service end-
point is located.

In order to be executed by the platform, the implementation of the Function needs
to provide the following interface:

interface Function
{
 ReturnValue execute(Value[] list);
}

class Value
{
 String name;
 String type; // optional
 String value;
}

class ReturnValue
{
 String type; // optional
 String value;
}

Therefore, a Function is executed by the platform by remotely calling the method
execute of the function’s web service with a list of parameters. The parameters are
identified by their names, types and values. The execute method returns a value
identified by its type and value.

The architectural element called Parser (Section 5.5.4) is responsible for
performing syntactic and semantic check of application subscriptions. Since
functions are basic operations used to write application subscriptions, the Parser
component constantly checks the Function Type Registry in order to verify the
correctness of functions.

5.4.3 Action Type Registry

Action Type Registry is the registry for keeping information about types of
Actions. Actions are tasks performed in response to an enabling application
subscription. Like Functions, characteristics of an Action are its goals (what it
intends to do), the number and types of parameters it gets and its return value.
However, Actions and Functions are semantically different. While a Function
performs a computation with no side-effects, an Action typically has side-effects
either on the application, users or platform. We will elaborate on this later in this
chapter.

An example is the action SendMessage mentioned in the bakery example. This
action should have the recipients of the message and the contents of the message:
SendMessage(entity.user.user1, “Bakery around. Don’t forget to by bread.”). The
SendMessage action, in particular, affects directly the user via the underlying 3G
Networks, i.e., the platform will use the message service of the 3G Networks to

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

46

send the message to the user. There are cases, however, in which the platform
does not affect directly the user but instead, it affects WASP applications.
Considering the bakery example but rather than receiving a text message, the user
wants to see the closest bakeries on a map. A map service is not located in the
platform but in a WASP Map Application (outside the platform). In order to show
the bakeries on the map, the application gathers the location of the user and the
locations of the bakeries surrounding the user from the platform.

Using the services of the platform, WASP Applications do not need to bother with
how to gather this information (but it does need to know how to interact with the
platform in order to expose its needs). Moreover, applications need to know the
right moment to show the user the map since the user only wants to see it in a
specific moment (only when there are bakeries close to him).

The sequence diagram in Figure 21 demonstrates the interaction between the
WASP Applications and platform and Table 4 depicts the messages exchanged.
Note that the user is not depicted in the Figure as well as the Context Provider.

 Appl Platform

Exposure of
Reactive behavior [1]

Action [2]

Action [2]

Figure 21 – Example of application-platform interaction

Message
Number Message Contents

[1] Application subscription using the action NotifyApp() and the
combination of functions CloseBy() and List() in order to gather
the bakeries that are around John. The action NofigyApp() will
be taken only when there exist bakeries around John.

[2] List with the close bakeries: {John, {bakery1, bakery10}}

Table 4 - Bakery example

Examples of application subscriptions and more details of the WASP Subscription
Language (WSL) are shown in Section 5.5.1.

Once the application has the locations of the user and the bakeries, it plots them in
a map to the user. Open attributes are the attributes that the application is allowed
to have access. Depending on the application, the access rights to attributes can
change. It is possible to the application to be more specific choosing in advance
the desired attribute, in this case location.

As already mentioned, actions can either affect applications, users or the platform
itself. In the application map example, the action directly affected the application
making the application to reconfigure the map according to the locations of the

47

user and bakeries. In the example in which the user gets a text message, the action
directly affects the user. Actions can be used to change data in the platform. For
instance, updating the User Profile and disabling another subscription could be
both actions.

Other examples of actions are depicted in Table 5.

Action Explanation

NotifyApp (expr) It stands that the result of expr must be
returned to the application that exposed
this subscription.

UpdateUserProfile (entity.user.id,
data)

Updates the User Profile of user
entity.user.id with information data.

MessageON (entity.user.id) Allows sending message to entity.user.id.
MessageOFF (entity.user.id) Prohibits sending message to

entity.user.id.
SendSMS (entity.user.id) Sends a message to entity.user.id.

Table 5 - Examples of actions

There are situations, in which actions are mutually exclusive, i.e., they cannot be
performed at the same time. For instance, the actions SendMessage and
MessageOFF applied to the same user can generate a conflicting situation. For this
reason, the platform needs to know which actions are conflicting and this
information is made available in the action type registry. Conflicting situations are
solved by the Coordinator component. We will elaborate on this in Section 5.5.6.

Similarly to Functions, Actions can also be added on demand during the platform
run-time. The platform provides an interface that allows addition of actions’
signatures. Moreover, those actions need to be remotely implemented as a Web
Service.

The following code represents the platform’s interface to add actions:

interface ActionRegistry
{
 addAction(String name, int number_parameters, URL action_service_url);
 addAction(String name, type[] parameters, URL action_service_url);
}

The method addAction receives the name of the action, the number of parameters
(or a list of parameters’ types) and a URL where the Web Service is located.

In order to be executed by the platform, the implementation of the Action needs to
provide the following interface:

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

48

interface Action
{
 void execute(Value[] list);
}

class Value
{
 String name;
 String type; // optional
 String value;
}

Therefore, an Action is executed by the platform by remotely calling the method
execute of the action’s Web Service end-point passing a list of parameters. The
parameters are identified by their names, types and values. The execute method
returns void.

5.4.4 Service Registry

The Service Registry component is responsible for storing, matching and
retrieving of service profiles. Therefore, it deals with the discovery and publishing
of services requirement, mentioned in Chapter 4, Section 4.2.4. The existing
approach for service discovery in Web Services technologies is called UDDI
(Universal Description, Discovery and Integration) [49]. UDDI specifications
define a way to publish and discover information about web services offering [1].

Information provided in a UDDI registry consists of three components:

• White pages including address, contact, and known identifiers for web
services providers;

• Yellow pages including industrial categorizations based on standard
taxonomies; and

• Green pages including the technical information about services that are
exposed by a web services provider. Green pages include references to
specifications for web services.

There are, however, limitations in UDDI such as [38]:

• Lack of semantic interoperability, explicit semantic models to understand
the queries and reason about the knowledge;

• Lack of ontology support. Service providers and service requestors might
have different knowledge about a service. Service descriptions and
service requests have to be understood and agreed upon the parties
involved by means of an external party. A common ontology is necessary
in order to facilitate an effective discovery process.

In order to overcome the lack of semantic interoperability and the lack of ontology
support, enhancements in UDDI are being proposed in the literature, such as the
Semantic Web UDDI [34]. The efforts of the WASP project towards an enhanced
UDDI (called UDDI+ [38]) mainly include service discovery based on semantic
information associated with the services. More specifically, the UDDI+ approach
proposes semantic enhancement for context-aware services. In order to achieve

49

semantic interoperability of context-aware services, a context ontology is used to
facilitate the context matching.

The UDDI+ works as follows: The service requestor creates a description of a
virtual, desired service. Furthermore, the service requestor provides contextual
information (location, temperature, etc). The matching then involves comparison
of the requested service description with the registered ones by using the
knowledge in the common service and context ontologies. Details about the
UDDI+ architecture can be found in [38].

There are two integration levels of the UDDI+ in the platform:

• Low integration level: applications directly interact with the UDDI+,
requesting services and providing context, which was previously gathered
from the platform and

• High integration level: applications do not directly interact with the
UDDI+ but only with the platform. The application-UDDI interaction is
shielded by making reference of the desired services in the subscription
added to the platform.

For instance, an application is interested in the services geographically close to a
certain user. Using the first mentioned approach, the application would have to
request the user location from the platform and then, request the UDDI+ for the
services around that location. Using the second approach, the application would
directly make the request through subscriptions. The Subscription Manager is
responsible for interpreting the subscription, gathering the user location and
requesting the component UDDI+ for the services around that location.

The initial goal is the integration of the UDDI+ to the platform supporting the first
approach. The next step, which is integrating the UDDI+ supporting the second
approach, is currently being developed by parallel works inside the WASP
project.

5.4.5 Entity Registry

The Entity Registry is the component responsible for storing instances of entities
that are neither services providers nor users. Examples of such entities are
vehicles, buildings, rooms, roads, etc. It is extensively used by the Monitor
module in order to parser and to perform application subscriptions that involve
these entities.

5.4.6 User Profile Registry

The User Profile Registry is the component responsible for storing data about the
user (instance of entity user and its profile). Significant facts can be collected
directly from the user profiles. Knowing these facts enable context-aware
applications to adapt to their users in many different ways, and to set different
system behaviors. As already mentioned in Section 2.3.2, the information
contained in the profile can be considered as contextual information in the sense
that it describes the environment in which the users desire to operate. As such, it
represents just a small part of the information domain of context-aware systems.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

50

The User Profile Registry includes the following conceptual building blocks:

• Identities: ways to identify the user. A person can have more than one
identity linked to the same user profile, where each identity is used in a
different context. For example, one may get access via a username and
password at home, whereas the IP address of the user’ computer is used at
work;

• Characteristics: aspects of a person that are completely objective and
independent of the context, such as date of birth, sex, first name, etc;

• Preferences: personal subjective settings of a user towards the system that
uses the user profile. Examples are the background color, sorting order of
search results, number of search results to return;

• Interests: describe how a user is interested in certain concepts. An
example is a user who is very interested in opera music;

• Ratings: ratings are explicit indications of how interesting a specific
object is for the user;

• History: the history is a log of all actions taken by the user when using a
system. All actions that somehow influence the user profile should be
stored in the history of the user profile.

The abovementioned characteristics of a user profile are particularly interesting to
allow adaptation of context-aware systems according to users’ needs and
preferences, which is a desirable behavior for the WASP platform.

Personalization services according to user preferences (user profile) can be
requested by applications through application subscription. Currently, the
platform offers an abstract primitive function to allow personalization, called
Match (entity.user, service). Although this function represents the possibility of
service personalization request (by applications), it is just a naïve representation
of what should be a complex definition of functions to allow a complete
specification of personalization services. Exploring this subject is indicated for
future work.

The User Profile is constantly checked by the Subscription Manager in order to
interpret the subscriptions, especially when adaptive services are requested.

5.4.7 ContextDB Registry

The ContextDB Registry is responsible for preserving entities’ contextual
information over time. Applications can greatly benefit from keeping history of
contextual information. In particular, keeping history of context is interesting to
allow context inference based on past occurrences.

The ContextDB receives contextual information from the Context Interpreter in
order to feed its contents and it is checked by the Subscription Manager in order
to resolve application subscriptions that request any historical contextual
information.

51

The following example applications are viable from the fact that the platform is
capable of maintaining the users’ location (an example of contextual information)
history.

• Applications interested in retrieving business information related to points
of interest, for instance, the profiles of users that visit a certain place
including constraints of time;

• Applications that help on crime investigations. For example, it is possible
to retrieve the history of the suspects’ locations.

An application that is interested in knowing the speed (context) of the user in a
given period of time (in order to check, for example, if the user really deserved a
speed fine), benefits from the history of users’ speed.

Information provisioning must strictly respect security and privacy policies.
Aspects such as consent, locality, anonymity, pseudonymity and security must be
addressed.

5.5 Monitor

The core of the platform architecture is the Monitor module. It is responsible for
interpreting and managing the application subscriptions. Therefore, it tackles the
requirements Reactive behavior and Coordination among different applications,
mentioned in Chapter 4, Sections 4.2.2 and 4.2.3, respectively. In order to perform
its operations, the Monitor makes use of the data available in the Repositories and
the contextual information provided by the Context Interpreter.

Application-platform interactions are dynamically configured through addition of
application subscriptions. By means of subscriptions, applications are capable of
dynamically exposing their requirements to the platform. Application
subscriptions are written in a descriptive language that allows them to expose their
needs to the platform, during run-time. This language, coined the WASP
Subscription Language (WSL), is discussed in Section 5.5.1.

The WSL manipulates entities (their context and attributes) and the combination
of actions and functions in order to express the desired service. The fact that those
elements are used through subscriptions makes the manipulation of the platform
very flexible, since entities, context, attributes, actions and function can be added
to the platform on demand (during run-time). The model that represents these
entities and their context and attributes is defined in Section 5.2.

Figure 22 depicts the Monitor component. The subcomponents Parser,
Subscription Manager and Coordinator are explored in Sections 5.5.4, 5.5.5 and
5.5.6, respectively.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

52

 Monitor

Parser

Subscription
Manager

Coordinator

W
A
S
P

A
P
P
L
I
C
A
T
I
O
N
S

Figure 22 - Monitor Component

5.5.1 The WASP Subscription Language (WSL)

Application subscriptions provide the means to dynamically configure interactions
between applications and platform. The platform model of operation (request-
response, time-driven or event-driven) can be dynamically configured through
subscriptions. In case of an event-driven platform behavior, the application
subscription is the method used to “teach” the platform on how to react to a
certain correlation of events. In case of a request-response platform behavior, it is
the means by which applications make requests.

We have developed a descriptive language, not based on formal descriptions, to
specify subscriptions. Initially, we identified two essential requirement with
respect to elements in this language: (i) a way to specify the reaction of the
platform and (i) a way to correlate events, which will eventually trigger the
specified reaction (Section 4.2.2 discusses these requirements). These two
requirements resulted in the clauses ACTION and GUARD of the language. The
moment the correlation of events specified in the GUARD clause turns TRUE, the
action specified in the ACTION clause is triggered. The clause GUARD does not
make sense when applied to the request-response model, which defines a simpler
way of interaction: first request and immediately after the response.

Subscriptions can be either parameterized or not. Parameterization is necessary
when the rule (subscription) is applied for a collection of entities. It would be
cumbersome to write a subscription for each target entity. To allow
parameterization, the clause SCOPE was introduced in the language.

Without this form of subscription parameterization, the application would be
forced to review all subscriptions that involve the kinds of entities for which the
subscription applies. For example, the application would have to add a
subscription for newly introduced entities.

The non-parameterized subscriptions are composed by the basic structure ACTION
actions GUARD expr for the event-driven model and ACTION actions for the
request-response model.

From the necessity of filtering entities’ collections respecting a certain condition,
we have defined the SELECT clause. It allows the selection of a subset of a

53

collection respecting the logical combination of entities’ contexts and attributes as
a condition.

Table 6 gives an overview of the clauses with their main objective. More details
are given in the following paragraphs.

Clause Function

ACTION-GUARD Allows specification of an ACTION which is
triggered when the GUARD turns true.

SCOPE Allows parameterization of subscriptions.
SELECT Allows the selection from a collection using

filtering expressions (logical expressions).

Table 6 - Clauses of the WSL

The EBNF syntax of the language is depicted in Figure 24. While this concrete
syntax is provided here, alternative representations could also be defined. For
example, XML schemas (Appendix A) and UML Metamodels (Figure 23) can be
considered as alternatives.

Subscription

SelectExpression

Expression

Action

Term

Variable EntityContext

*

+scoping

0..1

*

+occurrence triggering

0..1

*
*

*

+param*

Entity Literal Function

*

+param

*

-declares 1

*

+scoping declaration

1

*
*

*

+AND, OR

*

+NOT*

*

Figure 23- WSL syntax in UML representation

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

54

 subscr : subscrparam | subscraction
subscrparam : scope "{" subscraction "}"
subscraction : "ACTION" actions
 ["GUARD" expr]
scope : "SCOPE (" expr "; " var ")"
actions : action ";" [actions]
action : ident "(" [expr (","
 expr)*] ")"
expr : term | unop expr | expr binop
 expr | select | "(" expr ")"
select : "SELECT (" expr ";" var ";"
 expr ")"
term : entitycontext |
 entityattribute | entities |
 entity | literal | function |
 var
entities : "entity." ident ".*"
unop : "NOT"
binop : "AND" | "OR" | ">" | "<" |
 "==" | "<=" | ">="
entitycontext : entity "." context | entities
 "." context
entityattribute : entity "." attribute |
 entities "." attribute
function : ident "(" [expr (","
 expr)*] ")"
entity : "entity." ident "." ident | var
attribute : ident
context : ident
var : ident
literal : stringliteral | integerliteral
stringliteral : """ asciisequence """
asciisequence : ascii [asciisequence]
ascii : A..Z | 0..9
integerliteral : 0..9 [integerliteral]
ident : identcharacter [ident]
identcharacter : ascii | "_"

Figure 24- WSL syntax in EBNF

The following paragraphs detail the EBNF syntax depicted in Figure 24:

• An action has a name and possibly zero or more parameters, which are
defined as expressions. The actions are all registered in the Action Type
Registry (Section 5.4.3).

• An expression can be a term, a unary operation over an expression, a
binary operation over two expressions and a SELECT expression.

• A SELECT expression is composed by the keyword "SELECT" applied to a
collection restricting this collection some how. For example, SELECT
(entity.user.*; u; u.driving) returns the collection of all users that are
driving.

55

• A term can be the combination of an entity and context, the combination
of an entity and attribute, a collection of entities, an entity, a literal, a
function and a variable.

• An entity is an instance of an Entity Type. For example, a Restaurant is an
instance of Entity Type and LosPonchos is an instance of Restaurant
(Figure 14). According to the defined syntax, the way to specify an entity
is using the keyword "entity", the target Entity Type and the unique
identification of the entity (entity.entitytype.id). The restaurant Los
Ponchos is entity.Restaurant.LosPonchos. In order to give unique
identification for the entity, it may be necessary to give more specific
values since simple names are not good unique identifiers. However, we
are using this approach to facilitate the demonstration of the language.

• The word "entities" stands for a collection of all instances of a given
Entity Type. Entity.Restaurant .* is the collection of all restaurants
registered in the platform. If a more specific (filtered) collection is
needed, it has to be explicitly done with the SELECT clause.

• Entitycontext is the combination of an entity and one of its possible
contexts or the combination of entities and one of their possible contexts.
For example, it can be entity.user.John.location, which is referring to the
location (context) of a specific user (John) or it can be
entity.user.*.location, which is referring to the location of all users in the
collection.

• Similar to entitycontext, entityattribute is the combination of an entity and
one of its possible attributes or the combination of entities and one of
their possible attributes. For example, it can be entity.user.John.address,
which is referring to the address (attribute) of an specific user (John) or it
can be entity.user.*.address, which is referring to the address of all users
in the collection.

• Syntactically similar to an action, a function has a name and possibly zero
or more parameters, which are defined as expressions. The functions are
all registered in the Function Type Registry and the semantically
difference between functions and actions is explained in Section 5.4.3.

• A literal can be a string literal or an integer literal. A string literal is a
sequence of ASCII characters and an integer literal is a sequence of
integers.

• An identifier is a sequence of ASCII characters and may be in
combination with the symbol "_" (underscore).

• The unop (unary) operator is the NOT logical operator.

• The binop (binary) operators are the AND and OR logical operators and the
comparison operators > (greater than), < (less than), == (equal to), >=
(greater than or equal to), <= (less than or equal to).

The following paragraphs present the semantics of the WSL clauses.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

56

The SELECT clause

The SELECT clause returns a collection of entities respecting a given filtering
expression. Its abstract syntax is as follows:

SELECT (<collection-of-entities>; <var>;<filtering-expression-involving-var>)

A concrete example is SELECT (entity.user.*; u2; u2.location.city == "Enschede")
which returns a collection of users located in Enschede at that given moment.

The ACTION-GUARD clause

The ACTION-GUARD clause defines an action (or actions) that should be triggered
either immediately (request-response model) or in consequence of a correlation of
events (clause GUARD is present). Its abstract syntax is as follows:

ACTION <action>
[GUARD <correlation-of-events>]

A concrete example is:

ACTION
 SendSms (entity.user.John, "Hey John, coca-cola and film, a perfect
 combination!");
GUARD
 (
 count
 (
 SELECT (entity.cinema.*; c; (Inside(entity.user.John, c) AND
 (c.location.city == "Enschede"))
 // list of cinemas, where John is located, inv: 0 or 1
)>0
)

This subscription sends a message to user John if and only if, John is inside a
cinema and the cinema is located in Enschede. The SELECT clause is used to
select a collection of cinemas in Enschede where user John currently is. This
resulted collection has 0 or 1 element (either the user is in one or in zero cinemas).
If the user is in one, an advertisement will be sent to him, otherwise the action is
not triggered.

The SCOPE clause

The SCOPE clause defines a collection of target entities for which the subscription
should be applied. The ACTION-GUARD is nested in the SCOPE clause.

The SCOPE clause has the following abstract syntax:

SCOPE (<collection-of-entities>; var)
{
 ACTION
 <action-involving-var>;
 GUARD
 <correlation-of-events>
}

A concrete example is the scenario "Send an advertisement to every user in
Enschede when he/she is inside the movies (also in Enschede)":

57

SCOPE ((SELECT (entity.user.*; u2; u2.location.city == "Enschede")) ; u)
{
 ACTION
 SendSms (u, "Coca-cola and film, a perfect combination!");
 GUARD
 (
 count
 (
 SELECT (entity.cinema.*; c; (Inside(u,c) AND
 (c.location.city == "Enschede"))
 // list of cinemas, where u is located, inv: 0 or 1
)>0
)
}

As already mentioned, the SELECT clause returns a collection of users located in
Enschede in that given moment. For each of these users (named "u" by the scope
clause), the ACTION clause will be checked.

5.5.2 The Subscription State Machine

In order to govern the life cycle of a subscription, we represent it in a state
machine, as depicted in Figure 25. The state Initial represents the moment when
the subscription is added to the platform; the state False represents the state in
which the subscription’s GUARD clause is false and state True represents the state
in which the subscription’s GUARD clause is true.

A subscription takes a transition (changes state) when its GUARD clause changes
value (from false to true and vice-versa). We have defined that the actions (in the
ACTION clause) are only performed when subscriptions take the transitions from
state Initial to True and from False to True. This way, when the correlation of
events turns true (transition to state True), an action is triggered. If the correlation
of events stay true (stay in state True) or turn false (transition to state False), no
actions are performed.

Initial

ACTION

ACTION

False True

Figure 25- Subscription state machine

In the aforementioned cinema example, John will receive the advertisement once
the platform detects he is inside the movies (transition from state False to True).
While John stays in the movies (state True), no actions are triggered (for this
subscription). John, eventually, will leave the movies and the state machine goes
to the False state again (transition from state True to False). The state Initial was
introduced because the subscription can be included in the platform during the
platform run-time. John could be already in the cinema at that moment in time. In
this situation, the state machine goes from state Initial to state True and the action
is triggered. If the subscription is included (added to the platform) when John is

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

58

not in the cinema, the state machine goes from state Initial to False and no actions
are triggered.

5.5.3 Scenarios

The applicability of the WSL has been demonstrated by a number of application
scenarios. The flexibility of the language can be seen from the variety of
applications that it is capable of covering.

We have selected three scenarios in which we present sequence diagrams to show
the messages exchanged between users, applications, platform and context
provider. These scenarios involve a Taxicab company application, a Follow Me
application and a Policemen application. Furthermore, Table 10 briefly presents
some additional scenarios and the corresponding application subscriptions.

Taxicab company application

The user requests a taxicab using the taxi cab company's web site (Taxicab
application which is considered a specific WASP application). The taxicab
application, supported by the WASP platform, is able to find the location of the
user and the taxicabs in the vicinity of the user. With this information, the
application selects the closest taxi available to pick the user up. The application
also asks the platform to inform the user when the taxicab has arrived to his/her
current location.

Figure 26 shows the sequence diagram of this scenario and the Table 7 depicts the
interaction messages between the parties involved.

 [1]

[2] [3]
[3]

[3] [3]
[4]

[5]
[6]

User:
John

Appl:
TaxiCab

Platform Context
Provider

Figure 26- TaxiCab Application

59

Message
Number

Message Contents

[1] "I need a taxicab."

[2] ACTION
 NotifyApp(
 List(
 entity.user.John.location,
 SELECT (entity.taxicab.*; tc;
 (
 (CloseBy (tc, entity.user.John, 3000)) AND
 (tc.company = "ABC")
)
)
)
);

[3] John's location and taxicabs' locations

[4] Location of John and the taxicabs around him in format <head,
list>: {john's location, {cab1234, cab456, cab1789}}

[5] "It will be there in 5 minutes."

[6] ACTION
 SendSMS(entity.user.John, "Your taxicab has arrived.");
GUARD
 CloseBy(entity.user.John, entity.taxicab.cab1234, 50)

Table 7 - Taxicab scenario

The SELECT clause returns the collection of taxicabs that belong to company
"ABC" and is less then 3000 meters far from John.

List is a function previously registered in the Function Type Registry. It takes two
parameters, the first is the head and the second is the list to be appended to that
head, and forms a list out of them with format <heard, {list}>. In this case, John's
location is the first parameter and the list of taxis is the second.

NofifyApp is an action previously registered in the Action Type Registry. It returns
the list with John's location and list of taxicabs to the application.

Tourist map application (Follow Me)

A user on vacations wants to have the map of the city he/she is currently in and
wants to see the points of interest of the city placed on the map while he/she
walks.

Figure 27 shows the sequence diagram of this scenario the Table 8 depicts the
interaction messages between the parties involved.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

60

 [1]

[2] [3]
[3]

[3] [3]
[4]

[5]

User:
John

Appl:
MAP

Platform Context
Provider

[4]

[4]

Figure 27- Follow Me application

Message
Number

Message Contents

[1] "I want to have the Follow me application."

[2] ACTION
 NotifyApp(
 List(
 entity.user.John.location,
 SELECT (entity.POI.*; p;
 (
 CloseBy (p, entity.user.John, 200)
)
)
)
);
 GUARD
 OnEvery(180);

[3] John's location and points of interest around him.

[4] Location of John and the points of interest around him in format
<head, list>: {john's location, {museumA, museumB,
restaurantC, churchD}}

[5] Refresh map with user's location and points of interest.

Table 8 - Follow Me scenario

The platform notifies the application every three minutes (OnEvery(180)) the new
location of the user and the location of the points of interest around him.

Policemen application

Every policeman, for security reasons, should be aware of the colleagues close to
him/her. This application shows on a map, in the policeman device, the colleagues
around him/her.

Figure 28 depicts this scenario for three policemen that are close to each other the
Table 9 depicts the interaction messages between the parties involved.

61

[1] [2]
[2]

[2] [2]
[3]

User:
Poli3

Appl:
Policemen

Platform Context
Provider

[3]

[3]

User:
Poli2

User:
Poli1

 .
 .
 .

[4]

[5]
[6]

 .
 .
 .

 .
 .

Figure 28- Policemen application

Message
Number

Message Contents

[1] SCOPE (
 SELECT (user.policeman.*; p2; p2.working);
 p
)
 {
 ACTION
 NotifyApp(
 List(
 p,
 SELECT (entity.policeman.*; p3;
 (
 (CloseBy (p, p3, 300) AND
 p3.working
)
)
)
)
);
 GUARD
 OnEvery(900);
 }

[2] Location of the policemen

[3] Location of the policemen that are working and the colleagues
working around each of them. {poli1 {poli2, poli3}}, {poli2 {poli1,
poli3}}, {poli3 {poli1, poli2}}.

[4] Refresh map with the location of the colleagues poli1 and poli2.

[5] Refresh map with the location of the colleagues poli1 and poli3

[6] Refresh map with the location of the colleagues poli2 and poli3

Table 9 - Policeman application scenario

The SCOPE clause defines that the rule is applied to all policemen that are
currently working. The rule defines the application must be notified every 15
minutes about the location of the policemen and the colleagues working around
them.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

62

Table 10 shows some other additional examples of common user's scenarios and
the respective(s) application subscriptions written in WSL.

User's scenario Application Subscription

Send me a reminder of
doing the shopping when
passing close by a
supermarket.

ACTION
 SendSMS(entity.user.John,
 "Do not forget to do the shopping."
)
GUARD
 Count
 (
 SELECT (entity.supermarket.*; s;
 CloseBy(s, entity.user.John, 100)
)
) > 0

Send me a message
when Alice is close by
me.

ACTION
 SendSMS(entity.user.John,
 "Alice is close by."
)
GUARD
 CloseBy(entity.user.Alice, entity.user.John, 50)
ACTION
 MobileOFF(entity.user.John)
GUARD
 entity.user.John.driving

Set my mobile OFF
when I am driving.

ACTION
 MobileON(entity.user.John)
GUARD
 NOT (entity.user.John.driving)

Set my mobile OFF
when I am in the cinema.

ACTION
 MobileOFF(entity.user.John)
GUARD
 Count
 (
 SELECT (entity.cinema.*; c;
 Inside(entity.user.John, c)
)
) >0

I want to be informed of
traffic jams in the roads I
am currently driving.

ACTION
 SendSMS(entity.user.John,
 "Traffic Jam! " +
 GetTrafficInformation
 (
 SELECT (entity.Road.*; r;
 (InRoad(entity.user.John,r)
 AND
 IsTraffic(r)
)
)
)
)
GUARD
 Count
 (
 SELECT (entity.Road.*; r;
 (InRoad(entity.user.John,r)
 AND
 IsTraffic(r)
)
)
) >0

Table 10 - Different example scenarios

63

5.5.4 Parser

The parser component is responsible for verifying if the subscriptions are
syntactically and semantically correct having as a reference the syntax of the WSL
depicted in Figure 24. As soon as the application subscription is received by the
Subscription Manager, it is forwarded to the parser component to be resolved. In
order to check the semantics of the subscription, the parser makes extensively use
of the repositories Entity Type, Function Type, Action Type and the instances
repositories User Profile Registry, Entity Registry and Service Registry.

The result of the parsing is a tree composed by the primitive elements of the WSL.
The following subscription has its parsed tree depicted in Figure 29.

SCOPE (SELECT (user.policeman.*; p2; p2.working); p)
 {
 ACTION
 NotifyApp(
 List(
 p,
 SELECT (entity.policeman.*; p3;
 ((CloseBy (p, p3, 300) AND
 p3.working)
)
)
)
);
 GUARD
 OnEvery(900); }

Var: p2

SELECT

SCOPE

Collection:
entity.

policeman.* Enitity.context
: p2.working

ACTION

Action:
NotifyApp

Function:
List

Var: p

Collection:
entity.

policeman.*
Var: p3 AND

Var: p Var: p3

Literal: 300

Var: p

Function:
List

GUARD

Literal: 900

SELECT

Function:
CloseBy

Enitity.context
: p3.working

Figure 29 - Example of a parsed subscription

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

64

There are two levels of semantic checking:

• A model checking level using the platform entity metamodel as showed in
Figure 14. At this level, the parser verifies the existence of the entity
types and the combination of context type and entity type. For instance,
the combination entity.restaurant.driving should give an error because the
context driving is not applicable to entity.restaurant.The same holds for
the context velocity when applied to any non movable entity. Moreover,
the parser needs to verify the semantics of the Functions and the Actions.
Specific functions and actions have specifically defined number and types
of parameters. For instance the functions IsTraffic(), InRoad() and
GetTrafficInformation() are specific functions for dealing with entity
entity.road. IsTraffic(entity.user.John) should not be accepted because John
is not an entity.road and therefore, he does not have traffic jams. The same
sort of verification must be done with actions. For instance, the action
SendSMS should always have at least one entity user as a parameter
(recipient addresses).

• An instance checking level using the instance repositories to check the
existence of the entities (final instances). If an application subscription
uses entities entity.user.John, entity.user.Alice,
entity.restaurant.LosPonchos, entity.building.Informatica, the parser needs
to check the existence of such entities in the platform. In order to check
the existence of users John and Alice, the parser checks the User Profile
repository. In order to check the existence of the entity restaurant
LosPonchos, the parser accesses the UDDI+, and in order to check the
existence of the building Informatica, the parser examines the Entity
repository.

5.5.5 Subscription Manager (SM)

The SM provides an API for manipulation of the application subscriptions. This
API allows applications to add, remove or update subscriptions:

interface ApplicationPlatform
{
 SubsIdent addSubs (subs: String)
 void removeSubs (subs:SubsIdent)
 void updateSubs (id:SubsIdent, subs:String)
}

Moreover, applications should provide the Notify interface, so that, the platform is
able to send data (results of actions) back to applications when this is requested.
Results of actions, in this case, can be collections, an entity, an entity:attribute, an
entity:context, a structure with header and a collection, a collection of collections,
or just a string notification. A collection can be collection of entities, collection of
entity:contexts and collection of entity:attributes:

65

interface Application
{

void Notify (id: SubsId, data: <collection>)
void Notify (id: SubsId, data: <collections>)
void Notify (id: SubsId, data: <head, collection>)
void Notify (id: SubsId, data: <head, collections>)
void Notify (id: SubsId, data: entity)
void Notify (id: SubsId, data: entity:context)
void Notify (id: SubsId, data: entity:attribute)
void Notify (id: SubsId, data: string)

}

Figure 30 depicts the internal view of the Subscription Manager.

Subcription Manager (SM)

P
R
O
X
Y

Action
Executor

Events
Verifier

1

2

3

5

Req-resp
subscription

NotifyApp

Event-driven
subscription

Non-parsed
subscription

OK/
Error

Action (user)

GUARD
clause is true

Add,
Remove,
Update

subscription

NotifyApp

1

4

Metamodel and
model

information

Context

Context

1- Applications interface
2- Parser interface
3- Context Interpreter interface
4- Repositories interfaces
5- Parlay Web Services Interface

Figure 30- Subscription Manager

In order to perform the actions that directly affect the user, the platform needs to
use the services provided by the underlying network. The WASP platform
accesses the services of the underlying 3G Networks via the Parlay Web Services
API [35]. This API allows access to the actual user’s context, playing the role of a
Context Provider, and allows the user to be directly affected by some action
(SendSMS or MobileOFF), playing the role of the enabling underlying network.
Therefore, the SM must have knowledge of part of the Parlay Web Services API.
This part refers to the services that allow the user to be directly affected by some
action (SendSMS, for example). It is responsibility of the Context Interpreter
component to handle the Parlay Web Services API regarding context
provisioning. The definition and presentation of the API goes beyond the scope
of this work and, therefore, will not be explored in this report.

An application subscription is parsed (sent to the Parser component) when added
to the platform (AddSub operation) or when it is modified (UpdateSubs operation).
In case of mistakes (syntactic of semantic), exceptions must be raised. The
application should be able to check the exception.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

66

Once the subscription is parsed and it turns to be syntactically and semantically
compliant, the next step is to verity if the interaction is a request-response or an
event-driven interaction. This is done by checking the existence of the GUARD
clause. If the GUARD clause does not exist, it is a request-response interaction;
otherwise, it is an event-driven interaction.

If it is a request-response interaction, the SM has to immediately resolve the
subscription and trigger the specified Action. In order to resolve a subscription,
the SM has to examine different elements in the platform, such as the User
Profile, the UDDI+, Entity Repository and Context Interpreter. For instance, to
resolve the piece of code entity.user.*, the SM select all instance users in the User
Profile. For the piece of code SELECT (entity.user.*; u2; u2.location.city ==
"Enschede”), the SM selects all the users in the User Profile whose current
location is in the city called Enschede. To resolve the function CloseBy
(entity.user.John, entity.user.Alice, 100), the SM has to find out the current location
of John and Alice from the context interpreter and then it has to check if they are
less than (or equal to) a 100 meters far from each other. The sequence diagram
depicted in Figure 31 shows the messages exchanged between the users,
application and the SM elements in order to perform a request-response
subscription.

Figure 31 - Sequence of messages for request-respond subscription

In case of an event-driven interaction, the SM needs to constantly check if the
correlation of events defined in the GUARD clause is true. When the correlation of
events turns true, the action is triggered just like if it was a request-response
model of interaction. Figure 32 shows the messages exchanged between the users,
application and the SM elements in order to perform an event-driven subscription.
Events Verifier component will only send an action to be executed in the Action
Executor component if the GUARD turns true.

67

Figure 32- Sequence of messages for an event-driven subscription

In case of an event-driven model of interaction with SCOPE clause and with
GUARD clause involving the scoping variable, the SM needs to constantly check
the collection retrieved within the scope clause (it may change over time) and then
verify the GUARD clause for each of the elements defined in this collection.

In the following example, there is a SCOPE clause that defines the collection of
users (the ones that are in Enschede) with a GUARD clause involving the scoping
variable (u). Therefore, the SM constantly checks the collection retrieved by the
SCOPE clause because this collection may change since users may leave and
arrive in Enschede. For each user in this collection (declared as variable “u”), the
SM constantly checks whether the correlation of events defined in the GUARD
clause holds in order to trigger the action similarly to the request-response
interaction model.

SCOPE ((SELECT (entity.user.*; u2; u2.location.city == "Enschede")) ; u)
{
 ACTION
 SendSms (u, "Coca-cola and film, a perfect combination!");
 GUARD
 (
 count
 (
 SELECT (entity.cinema.*; c; (Inside(u,c) AND
 (c.location.city == "Enschede"))
 // list of cinemas, where u is located, inv: 0 or 1
)>0
)
}

5.5.6 Coordinator

This component is responsible for coordinating the conflicting application
subscriptions. A subscription is conflicting with another subscription when the
actions involved on it are mutually exclusive and they affect the same entity user
and GUARD is the same for both subscriptions. For example, suppose the
following two subscriptions are added to the platform:

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

68

Subs 1:
ACTION
 MobileOFF (entity.user.John)
GUARD
 entity.user.John.driving

Subs 2:
ACTION
 MobileON (entity.user.John)
GUARD
 entity.user.John.driving

Both define the same GUARD (entity.user.John.driving) and the actions MobileOFF
and MobileON (conflicting actions) are applied to the same user (John). In the
Action Type Registry should be specified which actions are conflicting and,
consequently, the Coordinator is able to verify which subscriptions are potentially
conflicting. A possible solution to solve the conflicting problems, is to have a
priority queue among the conflicting actions, in the Action Type Registry. For
instance, the action MobileOFF could have greater priority than MobileON.
Therefore, using the given example, when John is driving, only the action
MobileOFF is triggered.

69

6 Implementation

The goal of this chapter is to report the development of the prototype, which was
implemented for demonstrating and validating some of the concepts we have
proposed during the design of the platform architecture.

This chapter is structured as follows: Section 6.1 briefly states the approach we
have chosen to implement the prototype. Section 6.2 reports how the platform-
application interaction is implemented and gives special attention to the WSL
parser. Section 6.3 discusses the implementation of the platform-context provider
interaction. Section 6.4 presents three demonstrative scenarios and, finally,
Section 6.5 presents some concluding remarks.

6.1 Approach

The main objective of the prototype is to demonstrate the concepts with respect to
the application-platform interactions, as reported in Section 6.2. For that, we have
implemented the following parts of the architecture:

• The platform interfaces to allow manipulation of subscriptions (addition,
deletion);

• The platform Subscription Manager component which is responsible for
managing application subscriptions added to the platform;

• The Parser to interpret subscriptions. The WASP Subscription Language
(WSL) Parser is capable of reading application subscriptions in XML
format and mapping them into Java classes, which are automatically
compiled and executed during platform run-time;

• We have simulated some of the registries of the Repositories module,
such as the EntityType, ActionType and FunctionType registries in order
to support the subscription manager with knowledge of the entities
involved in the application subscriptions; and

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

70

• A simple Context Interpreter, which gathers contextual information from
a context provider (represented by the Location Simulator, Section 6.3).

Figure 33 depicts the abovementioned architectural elements in the WASP
Platform architecture.

 WASP PLATFORM

Repositories Monitor

Parser

Subscription
Manager

Coordinator

EntityType
Registry

FunctionType
Registry

Service
Registry

ContextDB
Registry

Context Interpreter

ActionType
Registry

Entity
Registry

User Profile
Registry

W
A
S
P

A
P
P
L
I
C
A
T
I
O
N
S

S
E
R
V
I
C
E

P
R
O
V
I
D
E
R
S

CONTEXT PROVIDERS
Figure 33 - Architectural elements implemented by the prototype

We have used Web Services technologies and Java language for implementing the
prototype.

A web service provider is a software entity that offers web services [1]. A web
service is a set of endpoints that operate on SOAP messages conveyed by internet
protocols, such as HTTP, FTP and SMTP. Each endpoint is identified by a
Uniform Resource Identifier (URI). A web service and its endpoints may be
described in Web Services Description Language (WSDL). WSDL allows one to
define the message types and message exchange patterns manipulated by web
service endpoints, as well as the concrete means to interact with the web service
endpoints, entailing concrete protocols for message exchange and the URIs that
identify the web service endpoints.

The WASP platform interface is offered as a web service end-point, which allows
the operations to be remotely called by the platform applications. Furthermore, we
also have implemented the users’ terminals as a web service end-point to allow
callbacks from the platform. We have used JAX-RPC [42] to automatically
generate the WSDL file from Java interfaces. JAX-RPC is an API that provides
support for mapping from WSDL to Java and vice-versa as part of the
development of web service clients and endpoints.

71

Moreover, we have used the W3C’s Document Object Model (DOM) [48] to
parser application subscriptions written in XML format.

For purposes of demonstrating the usability of the prototype, we present three
applications’ scenarios: a proximity application scenario, an advertisement
application scenario and a policemen application scenario.

6.2 Application-Platform Interaction

We have implemented the platform interface that allows application-platform
interaction (insertion, deletion of subscriptions and application notification) in
Java. The interface is available as a web service, such that, applications are able to
remotely call the platform operations. Figure 34 depicts the interaction between
WASP Application (service requester) and the WASP Platform (service provider).

WASP
Application

(Service
requester)

SOAP messages

WASP Platform
(Web Service

provider)

Subscription
Interface in
WSDL

Figure 34 - Interaction between WASP Platform and WASP Application

Since Java classes are more readable than the corresponding WSDL description,
we present the platform-application interface written in Java below and the
corresponding WSDL description in Appendix B.

public interface SubscriptionInterface
{

 /**
 * Adds a subscription.
 */
 public String addSubscription(SubscriptionDescription sub_descr);

/**
 * Adds a subscription, specifying callback interface for notifications.
 * @param sub_descr
 * @param callback_uri
 * @return
 */
 public String addSubscriptionCallback(SubscriptionDescription sub_descr, String
callback_uri);

Add a subscription with
poling notification

Add a subscription with
callback notification

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

72

 /**
 * Removes a subscription.
 * @param sub_id identifier of the subscription
 */
 public void removeSubscription(String sub_id);

/**
 * Return a notification for a given subscription. Blocks until notifications are
available.
 * @param sub_id identifier of the subcription
 * @return the notification for subscription with identifier sub_id
 */
 public SubscriptionNotification getNotification(String sub_id);

}

The operation addSubscription returns a String which represents the identification
of the subscription. For the operations removeSubscription and getNotification, the
identification of the subscription needs to be provided.

The type SubscriptionDescription represents the String serialization of the XML
subscription representation.

The following code defines the types used by the SubscriptionInterface:

public class SubscriptionNotification
{
 public SubscriptionNotificationElement[] notification_elements;
 public String subs_id;
}

public class SubscriptionNotificationElement
{
 // either text_element or entity_element will be nil

 public String text_element;
 public EntityElement entity_element;
}

public class EntityElement
{
 private String entityId;
 private String entityType;
 private EntityAttribute[] attributes; // attribute
 private EntityContext[] contexts;
}

public class EntityAttribute
{
 private String name;
 private String value;
}

public class EntityContext
{
 private String name;
 private String value;
}

Removes a subscription

Gets a notification for a
given subscription

Subscription
Notification Type

Subscription
Notification Element

Entity Element (with
attributes and context)

73

The type SubscriptionNotification type defines an array of notification elements,
identifying the subscription (subs_id) which they belong to.

The SubscriptionNotificationElement type defines that a notification element can
be a String element (e.g., just an entity name) or an EntityElement, which is the
serialization of an EntityType (Section 5.4.1).

6.2.1 WASP Application (client side)

Applications need to find the Subscription Interface Service (platform side) in
order to add and remove subscriptions. The following code depicts how it would
look in Java using JAX-RPC:

SubscriptionInterfaceServicePortType subs_service;
subs_service = (new
SubscriptionInterfaceServiceLocator()).getSubscriptionInterfaceServicePort();

Figure 35 depicts the basics activities of the WASP application in order to prepare
and add an application subscription to the platform.

 WASP Application

 SubsWriter

(1)

1 – user request
2 – writeSubscription
3 – Subscription in XML-format
4 – addSubs(subs in XML-format)
5 – getNotification(subs_id)

(2) (3)

(4)

(5)

Manager

Figure 35 - Preparing a subscription to be added to the platform

Message (1) indicates a user request to the application. Message (2) depicts the
application manager request to the SubsWriter to write a subscription in XML-
format corresponding to the user’s request.

In our approach, subscriptions are written by applications in XML format. The
following code shows an example of WSL subscription and the corresponding
XML representation.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

74

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Patricia Dockhorn
Costa (University of Twente) -->
<!--
Author: Patricia Dockhorn Costa (dockhorn@cs.utwente.nl)
Date: 15-06-2003

Corresponding WSL subscription description:

ACTION
 MobileOFF(entity.user.John)
GUARD
 entity.user.John.driving

-->
<subscription xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="wsl.xsd">
 <actions>
 <action name="mobileoff">
 <param>
 <entity name="entity.user.id2"/>
 </param>
 </action>
 </actions>

<guard>
 <entity_context entity_name="entity.user.id2" context_name="driving"/>
 </guard>

</subscription>

Once the subscriptions are written in XML format by the application (SubsWriter
responsibility), they can already be syntactically validated in the application
(client side) with the XML Schema presented in Appendix A (with help of a
validation tool).

Having a syntactically valid XML representation of a subscription, applications
are able to add it to the platform (remotely calling the operation addSubscription),
represented by message (4) in Figure 35.

We have implemented a polling solution to look for new notifications, i.e.,
applications need to call the operation getNofication (message (5)) in order to
receive subscriptions’ notifications. Therefore, for each added subscription, a
parallel process (a thread in Java) that looks for notifications is started. Once a
SubscriptionNotification is arrived, the application freely manipulates the received
information (e.g., plotting locations in a graph on the user’s terminal).

An alternative solution to polling notifications from the platform is to implement
the interface Notify on the application (to be available as a web service). This way,
subscriptions must be added to the platform with a callback address (the URI that
identifies the web service endpoint). Therefore, the platform is able to callback the
application, informing it of possible notifications.

6.2.2 WASP Platform (server side)

When subscriptions are added to the platform they need to be parsed and
executed. We have chosen a solution that parses a subscription written in XML
format and map it into a Java class, which is automatically compiled and executed
during the platform run-time. Figure 36 depicts the sequence of actions that are

Corresponding WSL
subscription

“ACTION” element of
a XML representation
of a subscription

“GUARD” element of
a XML representation
of a subscription

75

taken when a subscription is added to the platform. The numbers define the
sequence.

 Subscription Manager

Class Loader
(1)

Parser

P
R
O
X
Y

1 - addSubscription (subs_descr)
2 - parse(subs_descr)
3 - .java file
4 - loadClass (.javaFile)
5 - .class file
6 - creatThread (method runSubs)

(2) (3)

(4)

(5)

(6)

Figure 36 - Adding a subscription to the platform

Immediately after receiving a new subscription, the XML document is forwarded
to the parser (message 2), which creates a .java representation of that subscription
(message 3).

The .java files are sent to the Class Loader, which is responsible for compiling the
file (creating a .class) and loading the .class file into the Java Virtual Machine.
Once the class is loaded, it is possible to manipulate the operations and attributes
of this class by using Java reflection. Therefore, the method used to run the
subscription (runSubs) is called in a parallel process (thread) created for each
subscription.

6.2.3 The WSL Parser

In order to parse an XML document, we have used the W3C’s Document Object
Model (DOM) [48]. The DOM core defines a tree-like representation of the
document, also referred as the DOM tree, enabling traversing the hierarchy of
elements accordingly. Therefore, we are able to walk through the XML
representation of a subscription reading the node elements and mapping them into
correspondent commands in Java (using a recursive algorithm).

The structure of the generated .java file (class) is as follows (subscription without
SCOPE clause):

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

76

package subscriptions;
import java.util.ArrayList;
import wasp_platform.*;
import General.*;

public class subs1
{
 private static final int INITIAL = 0;
 private static final int TRUE = 1;
 private static final int FALSE = 2;
 private int state;

 private ArrayList list_entities;

 public subs1(ArrayList _list_entities)
 {
 list_entities = _list_entities;
 state = INITIAL;
 }

 public void runSubs()
 {
 boolean guard = // Definition of the guard clause
 if (guard && (state == INITIAL || state == FALSE))
 {
 action(params); //Trigger ACTION!!!
 state = TRUE;
 }
 else
 {
 if (!guard && !(state == FALSE))
 {
 state = FALSE;
 }
 }
 }

 public ArrayList Select1(ArrayList in)
 {
 ArrayList out = new ArrayList();
 EntityType c;
 for (int i=0; i<in.size();i++){
 c = (EntityType)in.get(i);
 if (select_condition)
 out.add(in.get(i));
 }
 return out;
 }
}

As mentioned in Section 6.2.2, each Java class representing a subscription has a
runSubs method which is continually called (inside an infinite loop) from a
thread. This method verifies the value of the GUARD clause (true or false) in order
to decide whether to trigger the ACTION. This way, the event-driven model is
implemented. In case of a request-response subscription, we define that the
GUARD is true. In case of a time-driven subscription, an internal timer has to be
implemented. This timer verifies the last time an ACTION was triggered and the
current system time. If the time interval between the two is bigger than (or equal
to) the interval defined by the OnEvery function, the ACTION should be triggered
again.

The recursive algorithm to parse subscriptions verifies the node elements, checks
the correspondence in the WSL Syntax, and returns a string representation of the

Variables to implement
the Subscription State
Machine.

Constructor of the class

Method to run the
subscription (trigger
the ACTION if the
GUARD is true)

Possible Select
methods. Each of them
generated from a
SELECT clause.

77

correspondent commands in Java, which are written in a .java file, using the
mentioned structure.

Parsing an AND (binary operation) element

<and>
 <operand_a>
 <function name="inside">
 <param>
 <entity name="entity.user.id1"/>
 </param>
 <param>
 <var name="c"/>
 </param>
 </function>
 </operand_a>

<operand_b>
 <equal>
 <operand_a>
 <entity_attribute entity_var="c"
 attribute_name="location"/>
 </operand_a>
 <operand_b>
 <literal value="Enschede"/>
 </operand_b>
 </equal>
 </operand_b>
</and>

For example, consider the parsing of the node <and> (binary operation AND),
described in the above written code. According to the WSL Schema (Appendix
A), the node <and> has two children nodes, <operand_a> and <operand_b>. The
recursive algorithm to parse the node (and translate it into java commands) looks
like:

String parse (Node node)
{

…
if (node = “AND”)

 return “(“ + parse(node.child(0)) + “) && (” + parse(node.child(1)) + “)”;
if (node = “OR”)

 return “(“ + parse(node.child(0)) + “) || (” + parse(node.child(1)) + “)”;
if (node = “NOT”)

 return “(!“ + parse(node.child(0) + “)”;
…

}

Parsing the other existing nodes (functions, actions, entities, etc.) works similarly.
The exit points of the recursion (leaves of the tree) are the nodes <entity>,
<entity_attribute>, <entity_context>, <entities>, <literal> and <var>.

For example, consider the parsing of the node <literal>:

parse(operand_a) parse(operand_a)

“Operand_a” element
of an “and” element

“Operand_b” element
of an “and” element

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

78

String parse (Node node)
{

…
if (node = “LITERAL”)

 {
 attribute_value = node.attribute(0);
 if (isNumber(attribute_value)
 return attribute_value;
 else
 return “\”” + attribute_value + “\””;
 }

…
}

Parsing the ACTION and FUNCTION elements

The <action> element (ACTION clause) declares a name and a list of <param>
elements.

<action name="sendsms">
 <param>
 <entity name="entity.user.id1"/>
 </param>
 <param>
 <literal value="Coca-cola and film, a perfect combination!"/>
 </param>
</action>

Parsing an action is similar to parsing an AND node. The first recursion step parses
the <action> element and the following steps parse the children nodes which are
the parameters of the action (in this case, nodes <entity> and <literal>). The
recursion stops in these nodes because they are leaves of the tree.

For this prototype, we have implemented internally in the platform some primitive
actions such as sendsms and notify. In future versions, actions should be available
as web services and the mapping needs to be slightly changed (we would have to
invoke a service end-point). Using primitive actions, hard coded in the platform,
the XML node <action> given as example, is represented in the Java file as
follows:

General.action.sendsms (General.util.getEntityType (“id1”), "Coca-cola and film, a
perfect combination”)

This invocation (located in the runSubs method) triggers the action sendsms
(from the static class General.action) passing an object (whose ID is “id1”) and a
string as parameters.

Parsing the element <function> is made similarly to parsing an <action>, except the
functions are invoked from the class General.function.

The General.function and the General.action classes simulate the Function Type
Registry and the Action Type Registry architectural elements, respectively.

Parsing the GUARD element

The <guard> element (GUARD clause) is just a logical combination (using logical
operators) of <function>, <entity>, <entity_attribute>, <entity_context>, <entities>,
<literal> and <var>. Therefore, this element is similarly parsed as depicted in the
<and> node example.

Name of the action
First parameter
of the action

Second parameter
of the action

79

Parsing the SELECT element

The <select> element (SELECT clause) contains a select variable, a collection and
condition involving this variable. For example, the following piece of XML code
represents a SELECT clause, which selects a collection of cinemas whose locations
are in Enschede.

<select var="c">
 <collection>
 <entities>entity.cinema.*</entities>
 </collection>

<condition>
 <equal>
 <operand_a>
 <entity_attribute entity_var="c" attribute_name="location"/>
 </operand_a>
 <operand_b>
 <literal value="Enschede"/>
 </operand_b>
 </equal>
 </condition>
</select>

Each select clause encountered in the XML document is mapped in a Select
method in the java class. This method filters out the desired entities (defined in
the child element <collection>) respecting the condition (defined in the child
element <condition>). The following Java code depicts how a generated Select
method looks like:

public ArrayList Select1(ArrayList in)
{
 ArrayList out = new ArrayList();
 EntityType c; //select variable

 for (int i=0; i<in.size();i++)
 {
 c = (EntityType)in.get(i);
 if (c.location.equals("Enschede"))
 out.add(in.get(i));
 }
 return out;
}

Parsing the SCOPE element

The <scope> element (SCOPE clause) declares a variable and a collection. For
each element of this collection (represented by the scope variable), the clause
ACTION-GUARD must be performed.

<scope var="u">
 <collection>
 <entities>entity.user.*</entities>
 </collection>
</scope>

The structure of the Java class subscription is different when a SCOPE clause is
present since the runSubs method should consider the scope collection (ACTION-
GUARD should be performed for each element of the scope collection). Moreover,
the scope variable is used not only inside the runSubs methods, but also inside the

Select variable

Select collection

Select variable

Select collection

Select condition

Select condition

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

80

Select methods. Therefore, the scope variable needs to be declared as a class
attribute.

The implementation of the Subscription State Machine is also different with a
SCOPE clause because it is necessary to hold a state for each element of the
SCOPE collection. Considering the example in which a scope subscription defines
that all entity users should receive an advertisement when inside a cinema
(located in Enschede). If John enters the cinema, the ACTION sendsms is trigged
and his state turns TRUE (and the ACTION is not triggered until his state goes to
FALSE and TRUE again). But Alice, another entity user part of the scope
collection, has not entered any cinema yet. Therefore, her state must remain
INITIAL. To address this issue, the class implements an array of states, one for
each element of the scope collection.

The structure of the Java class with SCOPE clause is as follows:

public class subs1
{
 private static final int INITIAL = 0;
 private static final int TRUE = 1;
 private static final int FALSE = 2;
 private int[] state;

 private ArrayList list_entities;
 private EntityType u;

 …

 public void runSubs()
 {
 ArrayList scope_collection = //Definition of the scope collection

 …

 for (int i=0; i< scope_collection.size(); i++)
 {
 u = (EntityType)scope_collection.get(i);
 boolean guard = // Definition of the guard clause (involving “u”)
 if (guard && (state[i] == INITIAL || state[i] == FALSE))
 {
 action(params); //Trigger ACTION!!!
 state[i] = TRUE;
 }
 }
 …
 }
…
}

6.2.4 Web Services – Java implementation issues

We have used the JAX-RPC API to map our SubscriptionInterface written in Java
to WSDL. This approach has facilitated exposing some interfaces of the platform
as Web Services. However, there are shortcomings of this technology which are
important to be mentioned:

JAX-RPC is not able to map a <choice> element of a XML schema to Java. This
has limited us with respect to the serialization of the application subscriptions in
XML-format. We were not able to define the WSL-XML-Schema (Appendix A)
as a serializable type in the SubscriptionInterface WSDL, because the <choice>

Method to run the
subscription with
scope collection

Array of states

Scope variable

81

element is used in the WSL-XML-Schema. This limitation has forced us to use an
opaque type (String) to serialize subscriptions written in XML-format.

Furthermore, JAX-RPC is not able to map class hierarchies from Java to WSDL.
Therefore, we had to create a serializable flat class (called EntityElement) which
represents our entity class hierarchy. Figure 37 depicts the serializable Entity
Element, whose attribute “Type” defines which class in the hierarchy this element
represents.

EntityType

User Restaurant

-Type : String

EntityElement

Figure 37 - Serializable EntityElement

6.3 Platform-Context Provider Interaction

In our prototype, the Context Provider is represented by the Location Simulator,
implemented by a parallel work, inside the WASP project.

The Location Simulator interface is offered as a Web Service end-point, which
allows the platform to remotely call the Location Simulator operations. Figure 38
depicts the interaction between the WASP Platform and the Location Simulator.

WASP Platform
(Service

requester)

SOAP messages

Location
Simulator (Web

Service
provider)

Location
Simulator
Interface in
WSDL

Figure 38 - Interaction between WASP Platform and Context Provider

(Location Simulator)

6.3.1 Context Provider (server side)

The Location Simulator provides a graphical interface to monitor the current users
in the system. Figure 39 depicts the monitor interface of the Location Simulator.
This monitor allows us to (i) add new users, (ii) set their locations, (iii) define a
route and (iv) define the user’s speed.

Figure 39 shows the user “John” in the center of Enchede. John is walking in the
defined route (blue line).

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

82

Figure 39- Location Simulator

The Location Simulator offers a Web Service end-point (WSDL file, Appendix C)
which allows the access to the locations of the users that are plotted in the map.
The following code represents the Location Simulator interface and the location
type it manipulates.

public interface UserLocation
{

/**
 * Gets the user location in the location simulator.
 * @param the name of the user
 * @return LatLong
 */
 public LatLong getUserLocation(String name);

}

public class LatLong
{
 private double latitude;
 private double longitude;
}

The method getUserLocation (String name) offered by this end-point, is used to get
the user location. It returns a LatLong type, which represents the latitude and
longitude coordinates of the user.

6.3.2 WASP Platform (client side)

At the platform side, we have implemented a simple Context Interpreter that is
able of gathering the users’ locations from the Location Simulator.

Operation to get
the user’s location

Type that defines
the user’s latitude
and longitude
coordinates

83

The platform’s Context Interpreter polls the Location Simulator (by invoking the
getUserLocation operation) in order to gather information on the location of the
platform’s users. The Context Interpreter refreshes the list of entities, which is the
simulation of the Entity Registry component, with the updated locations gathered
from the Location Simulator.

This list of entities is also manipulated by the runSubs operation (in the java class
that represents the subscription in the platform) in order to check the users’
current context. In particular, the list of entities is used to check the value of the
guard clause. Refreshing the list of entities with the updated contexts gathered
from the Location Simulator guarantees that the runSubs operation always
manipulates up-to-date locations.

6.4 Scenarios

We have demonstrated the prototype usage with several applications’ scenarios.
We discuss three of them in this Section: the policemen scenario discussed in
Section 5.5.3; an advertisement scenario and a simple proximity scenario.

6.4.1 Policemen Scenario

The policemen scenario (Section 5.5.3) is a time-driven subscription with scope
clause, which says that every working policeman, for security reasons, should see
his/her colleagues that are 300 meters close by, in a map.

A WASP Application should be responsible for gathering the locations of the
policemen from the platform and plotting them on the policemen’s terminals.
Moreover, the WASP Application needs to add the following subscription to the
platform (XML representation of this subscription is given in Appendix D):

SCOPE (
 SELECT (user.policeman.*; p2; p2.working);
 p
)
{
 ACTION
 NotifyApp(
 List(
 p,
 SELECT (entity.policeman.*; p3;
 (
 (CloseBy (p, p3, 300) AND
 p3.working
)
)
)
)
);
 GUARD
 OnEvery(10);
}

The application invokes the addSubscription operation passing the XML
representation of this subscription. A Java file is automatically generated,
compiled and loaded into the Java Virtual Machine. Furthermore, the method
runSubs of the generated file is constantly invoked. When the Action notify
(NotifyApp) is called (every 10 seconds) by the platform, a list of notification

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

84

elements is created. As mentioned in Section 6.2.1, the application polls for
notifications using the operation getNofication.

Figure 40 - Policemen scenario

Figure 40 depicts the policemen (poli1, poli2 and poli3) in the map and the Frame
positioned by the side of the location simulator shows the notifications received
by the application (sent by the platform) every 10 seconds. The notifications
contain the locations of the three policemen. Only poli3’s location is changing
because poli3 is the only policeman in movement.

6.4.2 Advertisement Scenario

In this scenario, user John receives an advertisement message when he is inside a
cinema and the cinema is located in Enschede. The event-driven application
subscription for this scenario is as follows (the XML representation of this
subscription is depicted in Appendix E):

ACTION
 SendSms (entity.user.John, "Hey John, coca-cola and film, a perfect
 combination!");
GUARD
 (
 count
 (
 SELECT (entity.cinema.*; c; (Inside(entity.user.John, c) AND
 (c.location.city == "Enschede"))
 // list of cinemas, where John is located, inv: 0 or 1
)>0
)

We have defined a route for John in which he passes inside the cinema located in
the center of Enschede (named Alhambra). John walks in this route and when he

85

passes inside the Alhambra, an advertisement message is received in his terminal
(Figure 41).

Figure 41 - Cinema scenario and John's terminal

The user terminal is implemented as a web service provider, i.e., every user
terminal is supposed to provide at least a web service end point (WSDL
description). In order to be able to callback users when needed (e.g., with the
action sendSMS), the platform needs to have the address (URI) of the user’s end-
points. For instance, it is known by the platform that John’s URI is
http://localhost:8080/axis/services/TerminalInterfaceServicePort, which allows the
platform to remotely call the writeMsg operation. This operation writes a text
message on the user’s terminal.

6.4.3 Proximity Scenario

In this simple proximity scenario, John is walking in the centre of Enschede and
he receives a message in case Alice is physically located less than 15 meters far
from him. The event-driven application subscription that represents this scenario is
as follows (XML-format of this subscription is depicted in Appendix F):

ACTION
 SendSMS(entity.user.John,
 "Hey John, Alice is close by.")
GUARD
 CloseBy(entity.user.Alice, entity.user.John, 15)

Figure 42 depicts that John receives a message when he is passing close by Alice.

Alhambra

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

86

Figure 42 - Proximity Scenario and John's terminal

6.5 Concluding Remarks

Our prototype was able to demonstrate some of the concepts we have defined in
the design of the platform. In particular, we have demonstrated the issues related
to the application-platform interaction, such as dynamically deployment of
applications during platform run-time through addition of application
subscriptions. Moreover, the prototype includes the WSL parser, which is able to
map application subscriptions written in XML-format to Java classes.

Further improvements and extensions of this prototype should address different
types of contextual information, not just location. Moreover, it should implement
a more elaborated Context Interpreter, which is capable of aggregating and
inferring contexts (Section 5.2).

Finally, our prototype can be used as a starting point for integrating security and
privacy, performance and scalability issues.

87

7 Conclusions

This chapter presents the main contributions of this thesis, draws some relevant
conclusions and identifies points where further investigation is necessary.

This chapter is further structured as follows: Section 7.1 presents our general
conclusions and summarizes the main contributions of this thesis, and Section 7.2
identifies some future work.

7.1 General Conclusions

We have proposed a high-level architecture of the WASP Platform, which is a
services platform that supports mobile context-aware applications. Our efforts
towards this architecture included (i) the study of the WASP project goals, (ii) a
literature survey in context-aware computing, (iii) the identification of the
essential challenges for building a services platform for context-aware
applications, (iv) the design of the architecture based on the identified
requirements and (v) the implementation of a prototype.

The proposed architecture tackles the following challenges: Support for gathering,
interpreting and storing of contextual information; Reactive behavior; Dynamic
application deployment during the platform run-time; Coordination among
different applications and Support for dynamic service discovery.

Most of the approaches for building context-aware services platforms we have
investigated do not explore the dynamic deployment of mobile context-aware
applications on top of a services platform. For this reason, we have explored this
aspect of the proposed architecture in more detail. Our approach provides means
to configure interactions between applications and platform at run-time.
Furthermore, the platform may be extended through the addition of functions,
actions and data entities. Embedding this level of flexibility in the platform makes
it appropriate for a large range of (unanticipated) context-aware applications.

In order to allow dynamic configuration of applications-platform interactions, the
proposed approach makes use of a descriptive language. This language, coined
WASP Subscription Language (WSL), is used to specify how the platform must

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

88

react to a given correlation of events, potentially involving contextual
information. A subscription in this language may specify different models of
application - platform interaction, namely request-response, time-driven and
event-driven.

We have used Web Services as a technology to enable the interactions of the
platform with its environment. As a consequence, third party applications may
access the services offered by the platform through widely-used Internet
protocols. In addition, Web Services facilitate the extension of the platform by
third parties, which may provide additional functions and actions as Web
Services.

For demonstration purposes, we have selected some of the proposed architectural
elements to be prototyped. These elements are the Subscription Manager, the
Parser and a simplified Context Interpreter. With respect to the WASP
Subscription Language, we have defined an XML Schema that represents the
WSL Syntax. Application subscriptions are written in XML structures and
validated using the Schema Syntax. The WSL parser is able to read the
application subscriptions in XML format and map them into Java classes, which
are automatically compiled and executed during platform run-time. We have
illustrated the use of our prototype in several different application scenarios with
different applications requirements.

Defining a complete architecture for a context-aware services platform is a non-
trivial assignment. It involves several issues related to different domains, such as
ubiquitous computing, artificial intelligence, human-computer interaction, and
other crosscutting issues such as security and privacy, scalability and
performance.

This thesis has identified basic architectural elements of the WASP platform,
giving emphasis to the extensibility of the platform’s generic functionality. A
number of additional issues still have to be explored. Some are being investigated
in parallel efforts and others are suggested for further investigation. Although the
scope of this project does not comprise an exhaustive definition of all the
identified architectural elements, the proposed architecture is a significant
contribution, not only with respect to the problems it overcomes but also with
respect to the elicitation of future work.

7.2 Future Work

The current WASP platform architecture does not explore all the identified
challenging issues. The following list presents the topics which are indicated for
further investigation:

• Exploration of ontology-based approaches to address Context Modeling
issues. As discussed in Section 2.3.3, ontologies are believed to be a
promising technology to model context. Parallel efforts inside the WASP
project are investigating ontology-based approaches;

• The Context Interpreter architectural element could be further explored,
especially with respect to the applicability of inference rules in order to
capture higher level contextual information. As discussed in Section
5.3.2, inferring rules define logical relationships between information
(context or not) in order to derive information that cannot be directly

89

sensed from the environment. This technique can greatly increase
applications’ context-awareness;

• Integration of Security and Privacy issues to the platform. As discussed in
Section 4.3.1, the applicability of security and privacy concerns is
essential for the success of a context-aware services platform. Parallel
efforts inside the WASP project are being carried out in order to explore
Security and Privacy concerns;

• Investigation of approaches to address a more integrated service discovery
through the subscription language. As mentioned in Section 5.4.4,
enhancements of our approach with respect to service discovery could be
implemented by shielding application-UDDI+ interactions with the
utilization of application subscriptions to specify UDDI+ services’
requests;

• Addressing scalability and performance requirements. As mentioned in
Section 4.4, scalability and performance issues are important crosscutting
requirements for a services platform;

• Support for Charging requirements. As mentioned in Section 4.3.2,
Charging requirements include the definition of a business model that
defines requirements for the assignment of business responsibilities
among the different parties involved in project. This is a relevant
requirement for the success of a commercial services platform;

• Incorporation of solutions to the aforementioned issues in the prototype,
for purposes of validation and demonstration.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

90

References

[1] Almeida, J., et al., Web Services Technologies. WASP Deliverable: D3.1,
January 2003.

[2] Banavar, G., et al., Challenges: An Application Model for Pervasive
Computing. Proceedings 6th Annual Intl. Conference on Mobile Computing and
Networking (MobiCom 2000), Massachusetts, USA, August 2000.

[4]Brown, P.J., et al., Context-Aware Applications: From the Laboratory to the
Marketplace. IEEE Personal Communications, 4(5) (1997), pp. 58-64.

[5]Buchholz, T., Context-aware Services for UMTS-Networks. Summer School on
Ubiquitous and Pervasive Computing, Germany, August 2002.
[http://www.inf.ethz.ch/vs/events/dag2002/program/ws/Buchholz.pdf].

[6] Chen, H., et al., An Ontology for Context-Aware Pervasive Computing
Environments. To appear in the Workshop on Ontologies and Distributed Systems
(IJCAI 2003), Mexico, 2003.

[7] Davies, N., et al., Developing a context-sensitive tour guide. 1st Workshop on
Human Computer Interaction for Mobile Devices, Scotland, 1998.

[8] DeVaul, R. W., et al., The Ektara Architecture: The Right Framework for
Context-Aware Wearable and Ubiquitous Computing Applications. MIT
Technical Report, 2000.

[9] Dey, K., et al., A Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction
Journal 16, 24 (2001), pp. 97-166.

[10] Dey, A. K., et al., Towards a Better Understanding of Context and Context-
Awareness. Technical Report 99-22, Georgia Institute of Technology, 1999.

[11] Domnitcheva, S., Location modelling: state of the art and challenges.
Distributed Systems Group Technical Report, Department of Computer Science,
ETH Zurich, Swiss Federal Institute of Technology.

[12] Ebben, P., Blueprint and design of the WASP application platform. WASP
Deliverable: D2.2, December 2002.

[13] Esler, M., et al., Next Century Challenges: Data-Centric Networking for
Invisible Computing. Proceedings 5th Annual Intl. Conference on Mobil
Computing Networking (MobiCom’99), August 1999.

[14] Efstratiou C., et al., An Architecture for the Effective Support of Adaptive
Context-Aware Applications. Mobile Data Management 2001, pp. 15-26.

[15] Eustice, K., et al., A Universal Information Appliance. IBM Systems Journal,
vol. 38 No. 4, 1999.

91

[16] Fickas, S., et al., Software Organization for Dynamic and Adaptable
Wearable Systems. First International Symposium on Wearable Computers, 1997,
pp. 155-160.

[17] Guha, R., Contexts: a formalization and some applications. Technical Report,
Stanford University, Stanford, CA, 1992. [http://www-
formal.stanford.edu/guha/guha-thesis.ps]

[18] Halpin, T., Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design. Morgan Kaufman, Mountain View, CA,
2001.

[19] Held, A., Modeling of context information for pervasive computing
applications. Proc. of the 6th World Multiconference on Systemics, Cybernetics
and Informatics (SCI2002), Orlando, FL, Jul 2002.

[20] Henderson, M. A Framework for Event Correlation. Master Thesis, October
1999.

[21] Henricksen, K., et al., Generating Context Management Infrastructure from
High-Level Context Models. Proc. of the 4th International Conference on Mobile
Data Management, Industrial Track Proceedings. January 2003, Melbourne,
Australia. pp. 1-6.

[22] Henricksen, K, et al., Modeling Context Information in Pervasive Computing
Systems. Proc. of the First International Conference on Pervasive Computing,
(Pervasive'2002), Zurich, August 2002.

[23] Henricksen, K., et al., Infrastructure for Pervasive Computing: Challenges.
Proc. of the Informatik 2001: Workshop on Pervasive Computing, Vienna,
September 2001, pp. 214-222.

[24] Indulska, J., et al., Experiences in Using CC/PP in Context-Aware Systems.
Proc. of the 4th International Conference on Mobile Data Management, January,
2003, Melbourne, Australia, pp. 247-261.

[25] Indulska, J., et al., An Open Architecture for Pervasive Systems. Proc. of the
3rd International Working Conference on Distributed Applications and
Interoperable Systems (DAIS 2001), Kraków, Poland, pp. 175-188.

[26] Kindberg, T. et al. People, Places, Things: Web Presence for the Real World.
Hewlett-Packard Labs Technical Report HPL-2000-16, 2000.

[27] Laar, V., Requirements for the 3G Platform. WASP Deliverable: D1.1,
January 2003.

[28] Langheinrich, M., Privacy by Design – Principles of Privacy-Aware
Ubiquitous Systems. ACM UbiComp 2001, Atlanta, GA, 2001.

[29] Langheinrich, M., A privacy Awareness System for Ubiquitous Computing
Environment. UbiComp 2002, Springer LNCS 2498, pp. 237-245.

[30] Leiberman, H., et al., Out of Context: Systems That Adapt to, and Learn
from, Context. IBM Systems Journal 39, 3&4 (2000), pp. 617-632.

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

92

[31] Long, S., et al., Rapid Prototyping of Mobile Context-Aware Applications:
The Cyberguide Case Study. Proc. of the 2nd ACM International Conference on
Mobile Computing and Networking (MobiCom'96), November 1996.

[32] McCarthy, J., Notes on formalizing context. Proc. of the Thirteenth
International Joint Conference on Artificial Intelligence (IJCAI-93), Morgan
Kaufmann, Mountain View, CA, 1993. [http://www-
formal.stanford.edu/jmc/home.html].

[33] Mansouri-Samani, M., Monitoring of Distributed Systems, Ph.D. Theses,
Department of Computing, Imperial College, London, UK, 173 pages, December
1995.

[34] Paolucci, M., et al., Importing Semantic web in UDDI. Proc. of Web
Services, E-business and Semantic Web Workshop, 2002, pp. 225-236.

[35] Parlay X Web Services White Paper. The Parlay Group white paper,
December 2002. [http://www.parlay.org/ about/parlay_x/ParlayX-WhitePaper-
1.0.pdf].

[36] Pascoe, J., The Stick-e Note Architecture: Extending the Interface Beyond
the User. Proc. of the 2nd international conference on Intelligent user interfaces,
Florida, United States, January, 1997, p. 261-264.

[37] Prokaev, S., et al., Context-Aware Services, WASP Deliverable: D2.3,
December 2002.

[38] Pokraev, S. et al., Extending UDDI with context-aware features based on
semantic service description. Proc. of the 1st Intl. Conf. on Web Services (ICWS
2003), Las Vegas, USA, June 2003.

[39] Ryan, N.S., et al., Enhanced reality fieldwork: the context-aware
archaeological assistant. Computer Application in Archaeology, (CAA97), Digest
of Papers, British Archaeological Report Series, Archaeopress, Oxford, UK,
1997.

[40] Schilit, B., et al., Disseminating Active Map Information to Mobile Hosts.
IEEE Networks, 8(5) (1994), pp. 22-32.

[41] Strang, T., et al., Service Interoperability on Context Level in Ubiquitous
Computing Environments. International Conference on Advances in
Infrastructure for Electronic Business, Education, Science, Medicine, and Mobile
Technologies on the Internet (SSGRR2003w), L'Aquila/Italy, January 2003.

[42] Sun Microsystems, Java API for XML-Based RPC (JAX-RPC) Specification
1.0, JSR-101. [http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec1].

[43] M. Theodorakis et al., Context in information bases. Proc. of the 3rd
International Conference on Cooperative Information Systems (IFCIS), New
York, USA, August, 1998, pp. 260-270.

[44] Want, R., et al., The Active Badge location system. ACM Transactions on
Information Systems 10(1) (1992), pp. 91-102.

93

[45] Want, R., et al., The ParcTab Ubiquitous Computing Experiment. Xerox Palo
Alto Research Center Technical Report CSL-95-1, 1995.

[46] WASP project [http://www.freeband.nl/projecten/wasp/ ENindex.html].

[47] World Wide Web Consortium. Resource Description Framework (RDF):
Concepts and Abstract Syntax. November, 2002. [http://www.w3.org/TR/rdf-
concepts/].

[48] World Wide Web Consortium. Document Object Model (DOM) Level 1
Specification. October, 1998. [http://www.w3.org/TR/REC-DOM-Level-1/].

[49] Universal Description, Discovery and Integration (UDDI) project. UDDI:
Specifications. [http://www.uddi.org/specification.html].

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

94

Appendix A WSL - XML Schema

This appendix depicts the XML Schema representing the WSL syntax described
in Section 5.5.1. It is used by applications and platform to syntactically check
subscriptions written in XML format.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="subscription">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="scope" type="scopeType" minOccurs="0"/>
 <xs:element name="actions" type="actionsType"/>
 <xs:element name="guard" type="expressionType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="scopeType">
 <xs:sequence>
 <xs:element name="collection" type="collectionExpressionType"/>
 </xs:sequence>
 <xs:attribute name="var" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="actionsType">
 <xs:sequence>
 <xs:element name="action" type="actionType" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="actionType">
 <xs:sequence>

 <xs:element name="param" type="expressionType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="collectionExpressionType">
 <xs:choice>
 <xs:element name="select" type="selectType"/>
 <xs:element ref="entities"/>
 <xs:element name="function" type="functionType"/>
 </xs:choice>
</xs:complexType>

<xs:complexType name="expressionType">
 <xs:choice>
 <xs:element name="var" type="varType"/>
 <xs:element name="literal" type="literalType"/>
 <xs:element name="entity" type="entityType"/>
 <xs:element name="entity_attribute" type="entity_attributeType"/>
 <xs:element name="entity_context" type="entity_contextType"/>
 <xs:element ref="entities"/>
 <xs:element name="not" type="expressionType"/>
 <xs:element name="and" type="binopType"/>
 <xs:element name="or" type="binopType"/>
 <xs:element name="equal" type="binopType"/>
 <xs:element name="greaterthan" type="binopType"/>
 <xs:element name="lessthan" type="binopType"/>
 <xs:element name="select" type="selectType"/>
 <xs:element name="function" type="functionType"/>
 </xs:choice>
</xs:complexType>

95

<xs:complexType name="binopType">
 <xs:sequence>
 <xs:element name="operand_a" type="expressionType"/>
 <xs:element name="operand_b" type="expressionType"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="varType">
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="literalType">
 <xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>

<xs:element name="entities" type="xs:string"/>

<xs:complexType name="entityType">
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="entity_attributeType">
 <xs:attribute name="entity_name" type="xs:string" use="optional"/>
 <xs:attribute name="entity_var" type="xs:string" use="optional"/>
 <xs:attribute name="attribute_name" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="entity_contextType">
 <xs:attribute name="entity_name" type="xs:string" use="required"/>
 <xs:attribute name="context_name" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="selectType">
 <xs:sequence>
 <xs:element name="collection" type="expressionType"/>
 <xs:element name="condition" type="expressionType"/>
 </xs:sequence>
 <xs:attribute name="var" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="functionType">
 <xs:sequence>
 .<xs:element name="param" type="expressionType" maxOccurs="unbounded"/>

 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

96

Appendix B Subscription Interface - WSDL

This appendix depicts parts of the WSDL description for the platform interface
that allows manipulation of subscriptions (addition, deletion and notification), i.e.,
that enables the application-platform interaction.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://wasp_platform"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:impl="http://wasp_platform-impl"
xmlns:intf="http://wasp_platform" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <schema targetNamespace="http://wasp_platform"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="SubscriptionDescription">
 <sequence>
 <element name="WslDescription" nillable="true" type="xsd:string"/>
 <element name="XmlWslDescription" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="SubscriptionDescription" nillable="true"
type="intf:SubscriptionDescription"/>
 <complexType name="SubscriptionNotification">
 <sequence>
 <element name="notification_elements" nillable="true"
type="intf:ArrayOfSubscriptionNotificationElement"/>
 <element name="subs_id" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="SubscriptionNotificationElement">
 <sequence>
 <element name="text_element" nillable="true" type="xsd:string"/>
 <element name="entity_element" nillable="true" type="intf:EntityElement"/>
 </sequence>
 </complexType>
 <complexType name="EntityElement">
 <complexContent>
 <extension base="intf:SubscriptionNotificationElement">
 <sequence>
 <element name="entity_id" nillable="true" type="xsd:string"/>
 <element name="entity_type" nillable="true" type="xsd:string"/>
 <element name="attributes" nillable="true" type="intf:ArrayOfEntityAttribute"/>
 <element name="contexts" nillable="true" type="intf:ArrayOfEntityContext"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="EntityAttribute">
 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 <element name="value" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfEntityAttribute">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="intf:EntityAttribute[]"/>
 </restriction>
 </complexContent>
 </complexType>

97

 <complexType name="EntityContext">
 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 <element name="value" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfEntityContext">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="intf:EntityContext[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOfSubscriptionNotificationElement">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="intf:SubscriptionNotificationElement[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <element name="SubscriptionNotification" nillable="true"
type="intf:SubscriptionNotification"/>
 </schema>
 </types>

 <wsdl:message name="addSubscriptionCallbackResponse">

 <wsdl:part name="return" type="SOAP-ENC:string"/>

 </wsdl:message>

 <wsdl:message name="addSubscriptionResponse">

 <wsdl:part name="return" type="SOAP-ENC:string"/>

 </wsdl:message>

 <wsdl:message name="removeSubscriptionResponse">

 </wsdl:message>

 <wsdl:message name="addSubscriptionCallbackRequest">

 <wsdl:part name="in0" type="intf:SubscriptionDescription"/>

 <wsdl:part name="in1" type="SOAP-ENC:string"/>

 </wsdl:message>

 <wsdl:message name="removeSubscriptionRequest">

 <wsdl:part name="in0" type="SOAP-ENC:string"/>

 </wsdl:message>

 <wsdl:message name="addSubscriptionRequest">

 <wsdl:part name="in0" type="intf:SubscriptionDescription"/>

 </wsdl:message>

 <wsdl:message name="getNotificationRequest">

 <wsdl:part name="in0" type="SOAP-ENC:string"/>

 </wsdl:message>

 <wsdl:message name="getNotificationResponse">

 <wsdl:part name="return" type="intf:SubscriptionNotification"/>

 </wsdl:message>

 <wsdl:portType name="SubscriptionInterfaceServicePortType">

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

98

 <wsdl:operation name="addSubscription" parameterOrder="in0">

 <wsdl:input message="intf:addSubscriptionRequest"/>

 <wsdl:output message="intf:addSubscriptionResponse"/>

 </wsdl:operation>

 <wsdl:operation name="addSubscriptionCallback" parameterOrder="in0 in1">

 <wsdl:input message="intf:addSubscriptionCallbackRequest"/>

 <wsdl:output message="intf:addSubscriptionCallbackResponse"/>

 </wsdl:operation>

 <wsdl:operation name="removeSubscription" parameterOrder="in0">

 <wsdl:input message="intf:removeSubscriptionRequest"/>

 <wsdl:output message="intf:removeSubscriptionResponse"/>

 </wsdl:operation>

 <wsdl:operation name="getNotification" parameterOrder="in0">

 <wsdl:input message="intf:getNotificationRequest"/>

 <wsdl:output message="intf:getNotificationResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="SubscriptionInterfaceServicePortSoapBinding"
type="intf:SubscriptionInterfaceServicePortType">

 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="addSubscription">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input>

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://wasp_platform" use="encoded"/>

 </wsdl:input>

 <wsdl:output>

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://wasp_platform" use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="addSubscriptionCallback">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input>

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://wasp_platform" use="encoded"/>

 </wsdl:input>

 <wsdl:output>

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://wasp_platform" use="encoded"/>

99

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="removeSubscription">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input>

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://wasp_platform" use="encoded"/>

 </wsdl:input>

 <wsdl:output>

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://wasp_platform" use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNotification">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input>

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://wasp_platform" use="encoded"/>

 </wsdl:input>

 <wsdl:output>

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://wasp_platform" use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SubscriptionInterfaceService">

 <wsdl:port binding="intf:SubscriptionInterfaceServicePortSoapBinding"
name="SubscriptionInterfaceServicePort">

 <wsdlsoap:address
location="http://localhost:8080/axis/services/SubscriptionInterfaceServicePort"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

100

Appendix C User Location Service - WSDL

This appendix depicts parts of the WSDL description for the User Location
Service which allows gathering users’ locations in a Location Simulator.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://usercontextmanager.wasp.freeband.nl"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns1="http://common.wasp.freeband.nl"
xmlns:intf="http://usercontextmanager.wasp.freeband.nl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:impl="http://usercontextmanager.wasp.freeband.nl"
xmlns="http://schemas.xmlsoap.org/wsdl/"><wsdl:types><schema
xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://common.wasp.freeband.nl"><import
namespace="http://schemas.xmlsoap.org/soap/encoding/"/><complexType
name="LatLong"><sequence><element name="latitude" type="xsd:double"/><element
name="longitude" type="xsd:double"/></sequence></complexType></schema></wsdl:types>

 <wsdl:message name="setUserLocationTriggerRequest">
 <wsdl:part name="in0" type="xsd:string"/>
 <wsdl:part name="in1" type="tns1:LatLong"/>
 <wsdl:part name="in2" type="xsd:double"/>
 <wsdl:part name="in3" type="xsd:boolean"/>
 <wsdl:part name="in4" type="xsd:boolean"/>
 <wsdl:part name="in5" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getUserLocationRequest">
 <wsdl:part name="in0" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="removeUserLocationTriggerRequest">
 <wsdl:part name="in0" type="xsd:int"/>
 </wsdl:message>
 <wsdl:message name="updateUserLocationTriggerResponse">
 </wsdl:message>
 <wsdl:message name="updateUserLocationTriggerRequest">
 <wsdl:part name="in0" type="xsd:int"/>
 <wsdl:part name="in1" type="tns1:LatLong"/>
 <wsdl:part name="in2" type="xsd:double"/>
 <wsdl:part name="in3" type="xsd:boolean"/>
 <wsdl:part name="in4" type="xsd:boolean"/>
 <wsdl:part name="in5" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="removeUserLocationTriggerResponse">
 </wsdl:message>
 <wsdl:message name="setUserLocationTriggerResponse">
 <wsdl:part name="setUserLocationTriggerReturn" type="xsd:int"/>
 </wsdl:message>
 <wsdl:message name="getUserLocationResponse">
 <wsdl:part name="getUserLocationReturn" type="tns1:LatLong"/>
 </wsdl:message>
 <wsdl:portType name="UserLocation">
 <wsdl:operation name="getUserLocation" parameterOrder="in0">
 <wsdl:input name="getUserLocationRequest"

message="intf:getUserLocationRequest"/>
 <wsdl:output name="getUserLocationResponse"

message="intf:getUserLocationResponse"/>
 </wsdl:operation>

101

 <wsdl:operation name="setUserLocationTrigger" parameterOrder="in0 in1 in2 in3
in4 in5">

 <wsdl:input name="setUserLocationTriggerRequest"
message="intf:setUserLocationTriggerRequest"/>

 <wsdl:output name="setUserLocationTriggerResponse"
message="intf:setUserLocationTriggerResponse"/>

 </wsdl:operation>
 <wsdl:operation name="updateUserLocationTrigger" parameterOrder="in0 in1 in2

in3 in4 in5">
 <wsdl:input name="updateUserLocationTriggerRequest"

message="intf:updateUserLocationTriggerRequest"/>
 <wsdl:output name="updateUserLocationTriggerResponse"

message="intf:updateUserLocationTriggerResponse"/>
 </wsdl:operation>
 <wsdl:operation name="removeUserLocationTrigger" parameterOrder="in0">
 <wsdl:input name="removeUserLocationTriggerRequest"

message="intf:removeUserLocationTriggerRequest"/>
 <wsdl:output name="removeUserLocationTriggerResponse"

message="intf:removeUserLocationTriggerResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="UserLocationServiceSoapBinding" type="intf:UserLocation">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getUserLocation">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getUserLocationRequest">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://usercontextmanager.wasp.freeband.nl"/>

 </wsdl:input>
 <wsdl:output name="getUserLocationResponse">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://usercontextmanager.wasp.freeband.nl"/>

 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="setUserLocationTrigger">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="setUserLocationTriggerRequest">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://usercontextmanager.wasp.freeband.nl"/>

 </wsdl:input>
 <wsdl:output name="setUserLocationTriggerResponse">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://usercontextmanager.wasp.freeband.nl"/>

 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="updateUserLocationTrigger">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="updateUserLocationTriggerRequest">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://usercontextmanager.wasp.freeband.nl"/>

 </wsdl:input>
 <wsdl:output name="updateUserLocationTriggerResponse">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://usercontextmanager.wasp.freeband.nl"/>

 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="removeUserLocationTrigger">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="removeUserLocationTriggerRequest">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://usercontextmanager.wasp.freeband.nl"/>

 </wsdl:input>
 <wsdl:output name="removeUserLocationTriggerResponse">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://usercontextmanager.wasp.freeband.nl"/>

 </wsdl:output>
 </wsdl:operation>

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

102

 </wsdl:binding>
 <wsdl:service name="UserLocationService">
 <wsdl:port name="UserLocationService"

binding="intf:UserLocationServiceSoapBinding">
 <wsdlsoap:address

location="http://client140.lab.telin.nl:8081/wasp/services/UserLocationService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

103

Appendix D Policemen Scenario (WSL-XML)

This is the XML format of the Policemen Scenario’s subscription.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Patricia Dockhorn Costa
(University of Twente) -->
<!--
Author: Patricia Dockhorn Costa (dockhorn@cs.utwente.nl)
Date: 19-06-2003

-->
<subscription xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="wsl.xsd">
<scope var="u">
 <collection>
 <select var="u2">
 <collection>
 <entities>entity.user.*</entities>
 </collection>
 <condition>
 <equal>
 <operand_a>
 <entity_attribute entity_var="u2" attribute_name="profession"/>
 </operand_a>
 <operand_b>
 <literal value="policemen"/>
 </operand_b>
 </equal>
 </condition>
 </select>
 </collection>
</scope>

<actions>
 <action name="notify">
 <param>
 <function name="list">
 <param>
 <var name="u"/>
 </param>
 <param>
 <select var="p">
 <collection>
 <entities>entity.user.*</entities>
 </collection>
 <condition>
 <and>
 <operand_a>
 <function name="closeby">
 <param>
 <var name="p"/>
 </param>
 <param>
 <var name="u"/>
 </param>
 <param>
 <literal value="200"/>
 </param>
 </function>
 </operand_a>
 <operand_b>

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

104

 <equal>
 <operand_a>
 <entity_attribute entity_var="p"
attribute_name="profession"/>
 </operand_a>
 <operand_b>
 <literal value="policemen"/>
 </operand_b>
 </equal>
 </operand_b>
 </and>
 </condition>
 </select>
 </param>
 </function>
 </param>
 </action>
</actions>

 <guard>
 <function name="OnEvery">
 <param>
 <literal value="10"/>
 </param>
 </function>
 </guard>

</subscription>

105

Appendix E Advertisement Scenario (WSL-XML)

This is the XML format of the Cinema Scenario’s subscription.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Patricia Dockhorn Costa
(University of Twente) -->

<subscription xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="wsl.xsd">
<actions>
 <action name="sendsms">
 <param>
 <entity name="entity.user.id1"/>
 </param>
 <param>
 <literal value="Coca-cola and film, a perfect combination!"/>
 </param>
 </action>
</actions>

<guard>
 <greaterthan>
 <operand_a>
 <function name="count">
 <param>
 <select var="c">
 <collection>
 <entities>entity.cinema.*</entities>
 </collection>
 <condition>
 <and>
 <operand_a>
 <function name="inside">
 <param>
 <entity name="entity.user.id1"/>
 </param>
 <param>
 <var name="c"/>
 </param>
 </function>
 </operand_a>
 <operand_b>
 <equal>
 <operand_a>
 <entity_attribute entity_var="c" attribute_name="location"/>
 </operand_a>
 <operand_b>
 <literal value="Enschede"/>
 </operand_b>
 </equal>
 </operand_b>
 </and>
 </condition>
 </select>
 </param>
 </function>
 </operand_a>
 <operand_b>
 <literal value="0"/>
 </operand_b>
 </greaterthan>
</guard>

</subscription>

TOWARDS A SERVICES PLATFORM FOR CONTEXT-AWARE APPLICATIONS

106

Appendix F Proximity Scenario (WSL-XML)

This is the XML format of the Proximity Scenario’s subscription.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Patricia Dockhorn Costa
(University of Twente) -->
<!--
Author: Patricia Dockhorn Costa (dockhorn@cs.utwente.nl)
Date: 01-06-2003
-->
<subscription xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="wsl.xsd">
 <actions>
 <action name="sendsms">
 <param>
 <entity name="entity.user.id1"/>
 </param>
 <param>
 <literal value="Hey John, Alice is close by!"/>
 </param>
 </action>
 </actions>

<guard>
 <function name="closeby">
 <param>
 <entity name="entity.user.id1"/>
 </param>
 <param>
 <entity name="entity.user.id2"/>
 </param>
 <param>
 <literal value="15"/>
 </param>

 </function>
 </guard>

</subscription>

