
Service Platform for Rapid Development and Deployment of
Context-Aware, Mobile Applications

Stanislav Pokraev1, Johan Koolwaaij1, Mark van Setten1, Tom Broens2, Patrícia Dockhorn Costa2, Martin

Wibbels1, Peter Ebben1, and Patrick Strating1

1Telematica Instituut

P.O. Box 589

NL-7500 AN Enschede, The Netherlands

TEL:+31 53 485 0490

FAX:+31 53 485 0400

{firstname.lastname}@telin.nl

2Centre for Telematics and Information Technology,

University of Twente. P.O. Box 217,

NL-7500 AE Enschede, The Netherlands.

TEL:+31 53 489 4454

FAX:+31 53 489 5477

{broens, dockhorn}@ewi.utwente.nl}

Abstract

In this paper we present a web services-based platform
that facilitates and speeds up the development and
deployment of context-aware, integrated mobile speech
and data applications. The platform is capable of handling
different types of context and offers sophisticated
personalization mechanisms. To illustrate the usefulness of
the platform and to validate the claim that cross-platform
application development, in particular mobile, context-
aware applications, is easier and faster with web services
technologies, we present a demonstration application. It
serves tourists with interesting information and services in
their specific context, and contributes to the achievement
of their current goals. Finally, we present a number of
problems that we experienced in the implementation
process as well as the feedback that we received from real
users who tested our application.

1. Introduction
The development and deployment of context-aware

applications is driven by the increased mobility of the end-
users. This mobility urges applications - typically running
on mobile phones - to act situation-dependent, or in other
words to become aware of the end-users context and to
adapt to it. Take an emergency button as an example: for a
patient living in a nursery home pushing the button may
always trigger the same action: call a nurse. But for
someone moving freely, the action triggered by pushing
the button might be situation-dependent: call the neighbor
when an accident happens in a home environment, call an
emergency team when jogging around in the woods, or
alert a nearby police officer when walking in the city
center. In short, mobile applications have a natural need
for context information to make decisions for or on behalf

of the end-users. In addition, the actions, which follow
from these decisions, might again be context dependent.

Although the concept of context-aware applications
has been around for more than a decade, the first serious,
commercial applications are brought out just now. All
these applications share the functionality to retrieve
context information from heterogeneous sources, to reason
with about this information, and to offer services and
information that are relevant in this context.

This paper reports on a platform, whose first version
was developed in the Freeband WASP project [5] and is
now being improved in the Freeband AWARENESS
project[4]. The platform facilitates and speeds up the
development and deployment of context-aware, integrated
mobile speech and data applications. It is tailored towards
reuse of components and developer convenience. All
components are exposed as web services to the network.
One of the goals of the project was to validate the claim
that cross-platform application development, in particular
regarding flexible, mobile, context-aware applications, is
easier and faster when using web services technologies
such as SOAP, WSDL, UDDI, XML, etc. are used.

There are several aspects that make our work distinct
from the previous work in the field. First, the platform that
we present provides dynamic way to develop, deploy and
integrate mobile, context-aware services. Second, it
handles many, different types of context. Finally, the
platform offers sophisticated personalization mechanisms
to tailor the output of the different services to the current
user need.

This paper is organized as follows: Section 2 presents
a simple scenario to visualize the capabilities of our
platform and the demonstration application. Section 3
presents the architecture of our platform. Section 4

presents a demonstration application that shows the
usefulness of the platform. Section 5 presents web services-
related problems that we experienced while implementing
the platform and the demonstration applications. We also
describe our workarounds of these problems. Section 6
discusses the feedback that we received from real users
who tested our application. Section 7 presents related work
in this area. Finally, Section 8 summarizes our
contributions.

2. Scenario
The service platform, developed within the project, is

domain agnostic. That is to say using the platform,
context-aware capabilities can be added to new or existing
applications in domains, from business-to-employee
services to wireless services in tourism. However, to bring
the capabilities of the service platform to life we developed
a scenario of an American family with two children, Liddy
and Luke, that visits the Netherlands for holidays. The
scenario describe a context-aware application that assist
tourists in navigation in unfamiliar environments, in
suggesting interesting places to visit, and in
communicating with people and services in their vicinity.
This scenario guides the demonstration application
COMPASS (COMPASS is an acronym for COntext-aware
Mobile Personal ASSistant) that is presented in Section 4.
In the scenario an American family with two children,
Liddy and Luke, visits the Netherlands for holidays.

Dynamic navigation: On a Thursday afternoon, the
Stephenson family arrives in Enschede using a small size
MPV rented from Schiphol Airport. The rental car had the
top rank in the suggestion list of the automatic car rental
and reservation system, and really suits the needs and
wishes of the Stephenson family. They have booked a hotel
in the city center of Enschede. Since Mr. Stephenson has
never been in the eastern part of The Netherlands before,
he uses an on-line navigation guide to get to his
destination. The suggested route matches the usual driving
style of Mr. Stephenson during holidays: use main routes,
but suggest touristic detours. The guide correctly informs
him about construction works in the south of the city
center and proposes an alternate route without any
obstacles.

Meeting friends: During the drive to Enschede, his
son Luke has found out that the daughter of one of his
father’s old friends, Mr. Vaneden, is also in the
Netherlands, because she is on his ‘buddy list’ and he
received a notification once they were in each other’s
vicinity. He calls her by simply selecting the call option
that comes with the notification, and she tells him that her
family is staying in a hotel in the picturesque town of
Ootmarsum, about 20 km north of Enschede. Luke
proposes to his family to dine with them. Since they all

like the idea, Luke suggests a date in the schedule of the
Vaneden family. The place to dine will be decided by Luke
later, but he promises that it will be a restaurant that meets
the expectations and tastes of all of them.

Interesting Places: The hotel rooms are comfortable
and at the quiet side of the building. Although it is late in
the afternoon, Liddy wants to have a ‘sneak preview’ of
the touristic attractions of Enschede. It was her father’s
idea to visit Enschede because of the Aviation Museum
and some local railroads with running steam engines, but
she hopes that there are also some other attractions as well.
To search for interesting information, Liddy uses a
terminal provided by the hotel, because it has better
interaction capabilities than her PDA. Her portal offers a
personalized guide to the touristic attractions of Enschede.
To tailor the guide to the visitor’s interests, the site asks
the visitor to explicitly describe his interests or to give
permission to obtain (parts of) the profile of the visitor.
Liddy chooses for the last option. Taking into account the
information from her profile, the portal provides Liddy
with an interactive map with all relevant points of interests
in Enschede and the surrounding area. Liddy chooses for
all museums within walking distance. A map is shown
with a route, starting from Liddy’s current position, along
three museums: the Rijksmuseum Twente (Art), the
Natuurmuseum (Natural history) and the Jannink museum
(Textile). The maps shows estimations of the walking time
based on her average walking speed as well as the visiting
time for the different museums. Liddy is also notified that
there will be an art market on Saturday at the Van Heek
Plein starting at 10:00.

3. System architecture
The overall architecture of the platform and the

demonstration application is shown in Figure 1. Four main
groups can be identified in the architecture: third party
services, the platform, the demonstration application and
the recommendation service.

3.1 Third party services
The 3G (GPRS, UMTS) network services provide

network access capabilities, such as user identification, call
setup, messaging, charging, etc. These network
capabilities are accessible via web services interfaces and
offered by mobile network operators.

The context services provide information about the
context of a user, e.g. the user status (free or busy), his
location, etc. Some of this information is obtained from the
3G network via web services. Context services include
both services that provide information about the user such
as his shopping list or his schedule, as well as services that
are independent from the user but which might be relevant

when selecting a business service, e.g. weather or traffic
information services.

Business services offer information and services for
applications build on the platform. In the demonstration
application these are services that offer so-called points of
interest (POI): museums and their catalogues, monumental
buildings and historical information associated with them,
restaurants and their menus, shops and their current
promotions, hotels with reservation services, digitized old
postcards, etc.

Context
manager

Service
registry

Matchmaker

3G Network
Services

Recommendation
Service

Users

User profiler

Recommendation
engine

POI RetrieverInteraction
manager

Platform

Application

•Identification
•Charging
•Call setup
•Messaging
•etc.

Context
Services

•Location
•Time
•W eather
•Shopping list
•Agenda
•etc.

Business
Services

•Museums
•Restaurants
•Shops
•Cinemas
•etc.

Map
service

Request
dispatcher

Notification
manager

Figure 1

3.2 The platform components
The Request dispatcher is a component responsible

for forwarding user requests to the appropriate 3G-network
platform. This way, users can switch transparently to
different network operators or, for instance, use different
messaging services.

The Notification manager provides functionality for
applications to subscribe and receive notifications when
the context of a particular user changes. For example,
when a user moves around in a city, his location changes.
The notification manager notifies all applications that have
registered interest in this event and provides the new
location of that user. The application can then adapt itself
to this change of the user’s location.

The Context manager retrieves information about the
user’s context by contacting the appropriate context

services. It is also responsible for aggregating the context
or deriving new context based on domain specific rules.
For example, the context manager can infer whether a user
walks or drives given the speed of the user and the
geographical properties of his current location (city street,
highway, sea or river, etc) or simply from the fact that his
phone is attached to a car kit. The context manager is also
responsible to update the notification manager on changes
in the context.

The Service registry contains information about the
services provided by third parties. To improve the
semantics of the service descriptions we use semantic web
technology, notably OWL [12], to create additional
annotations of service elements (e.g. service types, data in
the input and output messages, etc.).

Most of the standard service search engines retrieve
service descriptions that contain particular keywords from
the user’s query. In most of the cases this leads to retrieval
of irrelevant service descriptions while services that are
useful for the user are left out. The reason for the first is
that the query keywords might be syntactically equivalent
but semantically different from the terms in the service
description (homonyms). The reason for the second is that
query keywords might be semantically similar but
syntactically different from the terms in service
descriptions (synonyms). In our approach we use
ontologies as one possible solution to this problem. This
way we enable retrieval based on service types rather than
just keywords.

Another drawback of the existing search engines is
that the query-service description matching score is
calculated taking only the keywords from the user’s query
and the terms in the service descriptions into account.
Thus, regardless of the context of the user and the context
of the services, the same list of results is returned in
response to a query. By definition, context is a situation of
an entity (person, place or object) that is relevant to the
interaction between a user and an application. Therefore,
taking the context into account in the query-service
description matching process can improve the quality of
the search results. However, contextual information is
highly interrelated and has many alternative
representations, which makes it difficult to interpret and
use. In our approach we use again ontologies to specify the
interrelations among context entities and ensure common,
unambiguous representation of these entities.

The Matchmaker uses the service registry to discover
the services that match the request received from an
application (in this case the point-of-interest (POI)
retriever). Once services are discovered based on their
types, capabilities and context attributes, the matchmaker
component filters out the services that do not match the
criteria set by the application. To perform this action, the
component uses the context ontology and domain-specific

rules provided by the application. It also interacts with the
context manager to retrieve the respective required
contextual information. The service registry and the
matchmaker components are presented in greater detail in
[2].

3.3 The demonstration application
The Interaction manager is a server side component

responsible for finding the most appropriate way to
communicate a user’s request and assist the interaction of
the user and the client side application (on the mobile
phone, PDA or other device). For example, if a user clicks
on a POI representing a restaurant, the interaction
manager can if available, retrieve the restaurant’s menu
automatically and present it to the user or prompt to setup
a phone call in order for the user to make a reservation.

The POI retriever receives a request from the
interaction manager when the user context changes or
directly by an action of the user. It creates a search request
that is sent to the matchmaker component. After the
matchmaker component returns the list of POIs matching
the issued request and the criteria of the user’s context, the
POI retriever sends this list together with the user’s
identity and the context information to the
recommendation service, which assigns scores to each POI
indicating the predicted relevance of the POI for the user.
The POI retriever then sends the list of POIs with scores to
the client side application, which displays them.

The demonstration application also uses an external
map service, such as Microsoft MapPoint [10] for regular
maps, a map service providing aerial photographs and a
map service providing old cadastral maps. These web
services are used to offer dynamic and interactive maps,
providing navigation support, etc. The demonstration
application allows the user to switch between the various
types of available maps, while keeping all other
functionality, such as displaying POIs on the map and
services associated with POIs.

3.4 The recommendation service
The recommendation engine uses multiple prediction

strategies to predict how interesting each POI is for the
user. A prediction strategy selects and/or combines
multiple prediction techniques by deciding which
prediction techniques are the most suitable to provide a
prediction based on the most up-to-date knowledge about
the current user, other users, the information for which a
prediction is requested, other information items and the
system itself[16]. Used prediction methods include social
filtering [14], case-based reasoning (CBR) [13] and
category learning[17]. For different classes of POIs,
different prediction strategies can be defined in the engine.
As the semantics of POIs are captured in an ontology, the

recommendation engine is aware of the class hierarchy of
each POI. If a prediction strategy exists for the actual class
of a POI that strategy is chosen, otherwise the engine
moves up the class hierarchy until it finds a parent class
that has a prediction strategy associated with it. In our
hierarchy, POI is the root class, which has a default
prediction strategy assigned to it.

For the demonstration application, prediction
techniques have also been developed that base their
predictions on contextual factors; e.g. one technique
predicts the relevance based on the time past since the last
time the user visited a POI of that class. The more recent
the user has visited such a POI, the lower its predicted
relevance.

The user profiler maintains the profiles of all users. It
is used by the recommendation engine to retrieve and store
knowledge about users, such as the interests of and ratings
provided by users. The interaction manager can also
directly access the profile manager; this way, the
interaction manager can store user preferences or it can
retrieve (parts of) the user profile and present it to the user.

The recommendation service is not part of the
platform as some prediction techniques are domain
dependent or need to be tuned to specific domains, e.g. a
similarity function had to be defined for the CBR-based
prediction technique that compares two POIs with each
other and returns a similarity score. However, the
recommendation service is also not part of the
demonstration application; this allows other applications
in the tourist domain to use the same recommendation
service. The recommendation service is described in
greater detail in [15].

4. The COMPASS application
The COMPASS application serves a tourist with

information and services (ranging from buildings to
buddies) needed in his specific context and interesting for
him given his goal at that moment. For example, a tourist
who has an interest in history and architecture is served
with information about nearby monuments built before
1890. A tourist who has wants to find a place for the night
gets a list of hotels and campsites in and around town that
match his preferences for accommodations.

After start-up, the application shows the user a map of his
current location. The location is either obtained from the
mobile network or from other devices such as GPS
receivers. Depending on the user’s profile and goal, a
selection of nearby buildings, buddies and other objects is
shown on the map and in a list. The map and the objects
shown are updated when the user moves or his profile or
goal changes. Other context changes might also force the
map to change. For example, an increase in the user’s

speed by starting to drive a car causes the map to zoom out
automatically as the user’s notion of nearness can be
defined by what he can reach in a certain amount of time.
Clicking on objects on the map usually means interacting
with services provided by that object, e.g. calling a buddy,
reserving a table at a restaurant, or booking tickets for a
show.

Figure 2

The platform is open, which means that third parties
can easily integrate their information and services with the
platform; these services can then transparently be found
and used by the application users. For example, an
organization that owns a collection of digitized old
postcards wrapped its database with postcards as an
internet-accessible web service, published the web service
description in the service registry of the platform and
related the web service’s interface to the registry’s
ontology. The net effect is that all application users with
an interest in such postcards are now able to view
postcards depicting objects near their location
instantaneously. Depending on the visualization, they see a
map of their environment with icons indicating the
location depicted on the old postcards (see the left image
in Figure 2) or a thumbnail list of the postcards. Clicking
on an icon displays the postcard, the date the picture was
taken and a short description. It makes it quite easy to get
an impression of the past atmosphere of while walking
through a street or neighborhood.

The demonstration application accomplishes this
functionality by querying the service registry for search
services that are bound to deliver objects related to the
user’s context. The underlying platform retrieves services
matching the criteria of the user’s context and goal. For
example, for someone located in Enschede and looking for
sightseeing attractions it delivers search services for
museums, landmarks, architectural buildings, etc. Next,
the relevant search services are queried to retrieve the

objects matching the context’s criteria, e.g. to be within a
certain radius from the location of the user. The retrieved
objects are then sent to the recommendation engine which
scores each object based on the other criteria, such as the
user’s interests and context. The retrieved objects and
scores are then displayed on the map and in the list of
objects. To process is depicted in Figure 3.

COMPASS

Platform

Recomendation
Service

POI
Information
Services

3
.
D
is
c
o
v
e
r

s
e
r
v
ic
e
s

4
.
L
is
t
o
f

s
e
r
v
ic
e
s

5. Request
POIs

6. List of
POIs

7. Request
predictions

8. Predictions

Context
provider

1
.
L
o
c
a
ti
o
n

o
f
t
h
e
 u
s
e
r

c
h
n
a
g
e
d

2
.
N
o
ti
fy

a
p
p
li
c
a
ti
o
n

9
.
P
r
e
s
e
n
t

in
te
r
e
s
ti
n
g

P
O
Is
 t
o

t
h
e
 u
s
e
r

Figure 3

5. Development experience
When implementing the COMPASS application and

the WASP platform we encountered a number of problems.
Given the scope of this conference, we focus on the
problems related to web services technologies and only
briefly present the general issues related to the
development of the platform and the demonstration
application.

The web service related problems come from the fact
that MapPoint service is implemented using Microsoft
.Net[11] technology while our implementation uses
Apache Axis[1] and is Java based.

The first problem we encountered was related to the
authentication mechanism that MapPoint service uses. The
MapPoint service uses HTTP digest authentication to
validate user accounts. Unfortunately, Axis supports only
basic authentication. The difference between basic and
digest authentication is that in the first method the
username and the password are sent as clear text, whereas
in the second method hash schemes are used to create an
encrypted string sequence combining the two values. To
overcome this problem, we replaced the default Axis
transport layer with a custom one (SimpleHTTPSender)
that supports digest communication. The deployment
description we used is shown below:

Another problem we experienced was that Axis does
not generate any java code for the default values from the
MapPoint WSDL. For example, the following segment
from the MapPoint WSDL file

resulted in a class that only contains the members defined
in the WSDL (like EarthRadiusInKilometers) but
does not contain their default values. We fixed this by
manually modifying the generated java stubs classes.

Finally, we discovered a problem in the way Axis
handles simple types and lists. For example, the following
segment from the MapPoint WSDL

resulted in an “empty” java stub class. That is, there were
no set or get methods generated for the values from the
list. Again we fixed this by manually modifying the
generated java stubs classes.

Our conclusion is that, although Web Services aim at
improving the interoperability among different
applications by defining standards for message exchange,
languages for interface definition and composition of

compound services, etc., there are still many open issues
that have to be solved first in order for web services
technology to reach its full potential.

Finally, we briefly present some general issues that we
encountered during the development of the COMPASS
application. The most important are:
• Most parties that have information about points of
interest in a city, like tourist offices and national heritage
institutions, do not have enough technical expertise to
expose that information via web services.
• Moreover, if their information can be made available
their information assets sometimes need heavy post-
processing to make them suited for application in location-
based services, e.g. by enriching data with latitude-
longitude information or by the normalization of old maps.
• We started developing with device independence in
mind, using the phone as an internet gateway to our web
application. However to enhance the user interaction and
experience we switched to a generic Java application. and
finally, we ended up with about 10% of our native code to
used to work with the phone camera and jog dial, which,
unfortunately, does not generalize to other devices.
• Battery life becomes a limiting factor for a P800
phone with active Bluetooth connection, continuously lit
screen, open GPRS connection and a few important
background processes running.,.

The platform offers functionality that is general
enough to support other context-aware applications. Using
the same platform, we also developed a “find-a-new-
home” application based on CellID positioning techniques
as well as some other applications.

6. User experience
We have exposed the COMPASS application to reality

tests in Enschede using small test teams, consisting of an
employee of the local tourist office, one tourist (or
someone who has not seen the application before) and a
researcher. Each test team had a P800 phone, the
COMPASS application and a bluetooth GPS receiver.
Some teams wandered through the city without a specific
goal, just like tourist tend to do, other teams were
instructed to simulate a young couple with child interested
in city architecture, or, to follow a particular predefined
city tour. These teams came up with a lot of comments and
experiences from the test walks. In general, the
inexperienced users were impressed by the new
possibilities of the application, but at the same time they
judged it as too complex for a normal tourist. In more
detail, the perceived complexity was related to the
following findings:
• Working with a PDA-type of mobile phone, such as

the P800, has a steep learning curve, especially
working with a stylus on a display of about 300 by 200

pixels. Therefore, interacting with the phone was
difficult, which in turn influenced the user experience
of interacting with the COMPASS application.

• The small screen size forced us to work with multiple
tabs (see Figure 2). For that reason, to obtain different
pieces of information, the users had to browse through
different tabs.

• The context-aware functionality of the COMPASS
application caused unpredictable behavior, which was
not always appreciated by the users. We see this as an
important research issue, since sometimes the
predictability is more important the adaptive behavior
imposed by the application. For example, nobody is
surprised that if he moves, the map changes, but he
can become vary confused if his favorite restaurant is
missing on the map because he has visited it recently.

• Having the GPS as a separate device causes some
undesired hassle.

• The thin client and the limited bandwidth of the
GPRS connection caused delays in the interaction.
Sometimes we were able to predict the need for new
data and preload it (e.g. a new map when the user is
moving in a certain direction) but that is not possible,
for example, for explicit user requests (e.g. for an
image of a monument).

It is clear that these observations have more to do with
mobile application development in general than with the
web services or context-aware aspects of those
applications. In general, the people liked the surprise effect
very much, for instance, that the system directs them to
unexpected places or provides new information about
already known places. They also appreciated that it was
possible to request information about nearby static points
of interest (e.g. monuments, shops or nearby toilets) as
well as dynamic point of interests (e.g. the location of their
friends in the city) at anytime. The local inhabitants
enjoyed the ability to browse through the different periods
in the history of their current locations very much.

7. Related work
The goal of Cyberguide[9] project was to investigate

future computing environments. It focuses on location and
orientation as contextual information and provides a
position-aware tour guide for tourists.

The CoolTown project[7] ties web resources to
physical objects and places, and allows users to interact
with these resources using their mobile devices.

The goal of GUIDE[3] project was to develop
electronic touristic guides for visitors of Lancaster. GUIDE
utilizes a cell-based wireless communications
infrastructure (e.g. GSM) in order to broadcast dynamic

information and positioning information to portable
GUIDE units that run a web browser.

Smart Sight[18] provides an intelligent tourist
assistants system that tries to remove the language
barriers, provides navigation assistance, and handles
queries posed and answered in natural language. The
system does that by correlatating information from
different sensors (e.g. GPS, video camera, sound recorder).

AccesSights[8] focuses on providing blind and
visually impaired people with touristic information, based
on their location. The proposed platform acts as
intermediary between the tourist application and the
application specific services such as map sources and
tourist information.

There are several aspects that make our distinct that
the previous work in the field. First, the platform provides
dynamic way to develop, deploy and integrate mobile,
context-aware services. Second, it handles many, different
types of context. Finally, the platform offers sophisticated
personalization mechanisms to tailor the output of the
different services to the user need.

8. Conclusions
We have demonstrated a specific context-aware

application targeted at tourists, built upon a generic
platform that facilitates the development and deployment
of context-aware applications. We have demonstrated the
applicability of the web service paradigm to improve
developer convenience, and to encourage re-use of
components, and transparency of interfaces and
functionality. We also scratched the surface of what is
possible with context ontologies. Once the ontologies are
in place, they offer substantial semantic expressive power,
which allows the definition of semantically rich queries,
smart processing of those queries and intelligent
interpretation of the query results. However, we
experienced that creation, maintenance and combination of
ontologies can be time-consuming. Substantial tooling
effort is needed on that part to make ontology management
more convenient.

Our work also shows how valuable data, buried deeply
down in different archives (e.g. cadastral maps, old aerial
pictures, museum databases, etc) can become “alive” for
the normal people, enabling them to learn more about their
current environment. Finally, the knowledge we acquire
generated a lot of awareness about context-aware service
development in the Dutch circle of application developers.

9. Acknowledgements
The first version of the platform was developed in

Freeband WASP[5] project. An improved version is being
developed in Freeband AWARENESS[4] project.

Freeband[6] is sponsored by the Dutch government under
contract BSIK 03025.

We would like to thank Rogier Brussee and Maarten
Steen from Telematica Instituut for providing us with
useful comments and suggestions to improve this paper.

References
[1] Apache Axis, http://ws.apache.org/axis/

[2] Broens, T., Pokraev, S., van Sinderen, M., Koolwaaij,
J. & Dockhorn Costa, P. Context-aware, ontology-
based, service discovery. In: Markopoulos, p. [et al.]
(eds): Proceedings of Second European Symposium on
Ambient Intelligence, Eindhoven, Netherlands, LNCS
3295, Springer-verlag, pages 363-367, 2004

[3] Cheverst, K., Davies, N., Mitchell, K., Friday,
A.,Efstratiou, C., Developing a Context-aware
Electronic Tourist Guide: Some Issues and
Experiences, Proceedings of Human Factors in
Computing Systems (CHI’00), the Hague, the
Netherlands, 2000

[4] Freeband AWARENESS, AWARENESS - context
AWARE mobile NEtworks and ServiceS,
http://awareness.freeband.nl/

[5] Freeband WASP, Web Architectures for Services
Platforms, http://wasp.freeband.nl/

[6] Freeband, http://www.freeband.nl/

[7] Kindberg, T., Barton, J. A Web-Based Nomadic
Computing System. Computer Networks, Amsterdam,
The Netherlands 1999.

[8] Klante, P., Krösche, J., Boll, S., AccesSights - A
Multimodal Location-Aware Mobile Tourist
Information System, Proceedings of Conference on
Computers Helping People with Special Needs
(ICCHP’04), Paris, France, 2004

[9] Long, S., Aust, D., Abowd, D., Atkenson, C.,
Cyberguide: Prototyping Context-Aware Mobile

Applications, Proceedings of Human Factors in
Computing Systems (CHI’96), Vancouver, Canada,
1996

[10] Micosoft Mappoint,
http://www.microsoft.com/mappoint

[11] Mictosoft .Net, http://www.microsoft.com/net/

[12] OWL, Ontology Web Language,
http://www.w3.org/2001/sw/WebOnt

[13] Riesbeck, C. K., Schank, R.: Inside CBR. Lawrence
Erlbaum Associates, Northvale, NJ, USA (1989)

[14] Shardanand, U., Maes, P.: Social information
filtering: algorithms for automated "Word of Mouth".
In: Proceedings of Human factors in computing
systems 1995 (New York, USA). ACM (1995) 210-
217

[15] van Setten, M., Pokraev, S., & Koolwaaij, J. Context-
Aware Recommendations in the Mobile Tourist
Application COMPASS, In Nejdl, W. & De Bra, P.
(Eds.). Adaptive Hypermedia 2004, Eindhoven, The
Netherlands, LNCS 3137, Springer-Verlag, pages
235-244, 2004

[16] van Setten, M., Veenstra, M., Nijholt, A., van Dijk,
B.: Case-Based Reasoning as a Prediction Strategy for
Hybrid Recommender Systems. In: Proceedings of the
Atlantic Web Intelligence Conference, Cancun,
Mexico, Springer-Verlag, LNAI 3034 (2004) 13-22

[17] van Setten, M.: Experiments with a recommendation
technique that learns category interests. In:
Proceedings of IADIS WWW/Internet, Lisabon,
Portugal (2002) 722-725

[18] Yang J., Yang, W., Denecke, M., Waibel, A., Smart
Sight: A Tourist Assistant System, Proceedings of
IEEE International Symposium on Wearable
Computers (ISWC’99), Victory, Canada, 1999

