
 1

Abstract— Pervasive Computing is the vision of technology that
is invisibly embedded in our natural surroundings. Users are
offered unobtrusive services that require minimal attention. In
this paper the Awareness and Notification Service (ANS) is
presented that enables to rapidly build applications that inform
users about their environment. Additionally, the service offers
notifications tailored to the user’s preferences and current
context. ANS takes a rule based approach based on the Event-
Condition-Action pattern. Users specify when and what should
be notified to them by using a convenient ANS rule language.
This flexible mechanism allows to rapidly develop applications
that provide context-aware notifications without the need to
write programming code to activate rules, nor to implement
personalized notifications.

I. INTRODUCTION

In pervasive computing environments, users are surrounded
with ubiquitous communication and information technology.
In this paradigm, the users and their requirements are central.
Pervasive computing environments offer unobtrusive services
that assist users in their daily live. The services automatically
adapt to them and provide support in their everyday activities.

Context awareness [1] has emerged as a key element in
pervasive computing. It facilitates applications that are aware
of their environment and enables them to adapt to the current
context. A key application that can benefit from context
awareness is a notification service. With context awareness a
notification service is able to keep track of changes in the
environment and can appropriately communicate these
changes to applications that users are currently using. The
notification of the users can even depend on their current
situation. For example, when users have a meeting, they
receive a less intrusive notification than in a non-meeting
situation.

In order the enable such a notification service, a flexible

This work was partially funded by the Amigo project in Ambient
Intelligence. The Amigo project is funded by the European Commission as an
integrated project (IP) in the Sixth Framework Programme under the contract
number IST 004182.

Richard Etter, Fraunhofer Institute IPSI, Germany; division AMBIENTE –

smart environments of the future. e-mail: richard.etter@ipsi.fraunhofer.de
Tom Broens, Centre for Telematics and Information Technology,

University of Twente, the Netherlands, e-mail: broens@ewi.utwente.nl
Patricia Dockhorn Costa, Centre for Telematics and Information

Technology, University of Twente, the Netherlands, e-mail:
p.dockhorncosta@ewi.utwente.nl

mechanism is required that allows user-applications to easily
specify what changes in the environment their users are
interested in. Current middleware for context-aware systems
[2][3][4] provides unified ways to subscribe to and manage
context data. But they fall short providing efficient and
convenient ways for application developers to specify what
context data they are interested in. Besides this, the
notification process is generally not tailored to the users’
context.

In this paper, we present a context-aware notification
service (coined Awareness and Notification Service – ANS)
which is based on a rule-based approach and provides
notifications depending on the users’ context. The following
section (II) gives an overview of the Awareness and
Notification Service. Section III describes the architectural
design of the service. Section IV introduces the ANS rule
language. Section V gives conclusions.

II. THE AWARENESS AND NOTIFICATION SERVICE
ANS provides the basic functionality required to develop

applications that allow applications and users to stay aware of
any significant change in their environment with minimal
effort. Changes that ANS is able to keep track off can be of
various nature such as the activities or presence of remote
people.

From the system perspective, ANS makes applications
aware of context changes by notifying them. Applications do
not have to take care about managing and monitoring context
data. Applications only have to register monitoring rules that
specify what changes in context should be notified to them. In
our approach, changes in the environment are modeled using
Event-Condition-Action (ECA) rules [5]. The developed
domain specific language explicitly defines the concepts of
context and context events that facilitates the specification of
context-aware reactive behaviors. Application developers
write ECA rules using this language in a scripting format.

From the user perspective, ANS provides notifications with
appropriate rendering of intensity, based on a user’s
preferences and current context. In order to be notified
appropriately, users create an individual user notification
profile. The profile describes how and when a user wants to
be notified. Before ANS sends a notification, the service
checks the notification profile of the user that is to be notified.
Based on this profile, ANS sends a notification with an
appropriate rendering of intensity. The application receiving

A Rule-Based Approach Towards
Context-Aware User Notification Services

Richard Etter, Patricia Dockhorn Costa, Tom Broens

 2

the ANS notification implements the notification of the user
according to the intensity. An example is an application that
changes the color of an ambient light in order to deliver a
notification with a low intensity.

III. ARCHITECTURAL DESIGN
The design of ANS is based on the principles of a service

oriented architecture. The service is implemented as a
webservice and is based on the standards SOAP, WSDL,
XML, and UDDI. All external services that ANS depends on
are implemented as webservices, too. Internally ANS follows
a component based approach based on the OSGi component
based framework [6]. Figure 1 shows the architectural design
of ANS.

Conceptually three main parts can be distinguished
following the Event-Control-Action Pattern [5]. The
EventMonitor provides the context data events received from

context sources offered by a Context Management Service
(CMS). The Controller monitors these events and evaluates
notification rules. If a notification rule evaluates to true the
Notifier is triggered, which represents the action part.

A. The EventMonitor
The EventMonitor is responsible to provide easy access to

context data. This includes searching for context sources,
selecting a context source, registering to the context source
eventing mechanism, and deregistering when a context source
is no longer needed.

The EventMonitor allows other ANS components to easily
subscribe to or query for context data. If a component needs to
know the location of a certain person, the Event Monitor
connects to a Context Management Service (CMS) and
subscribes to the requested location data. From then on the

Event Monitor provides the component with events containing
the requested data.

For every event that an ANS component has subscribed to,
the EventMonitor maintains a subscription to the
corresponding context source component. It keeps an
overview of the events it has subscribed to and makes sure
that in case of an overlap in requirements (i.e. when two
different events can be served by the same context source) no
redundant subscriptions are registered.

B. The Controller
The controller is the central entity in the ANS service. It is

responsible for retrieving and parsing user specified rules that
define a notification. Additionally, it monitors context events
that it receives from the EventMonitor. Every time, it receives
an event, it evaluates the notification rules and eventually,
when the rules condition turns true, initiates the notification of
a user.

The controller consists of two sub-components:
- RuleManager: this component is responsible for

translating entered user rules to notification rules
which can be handled by the controller.

- Controller: the task of the Controller is to monitor the
received context events and to evaluate the
notification rules. This is mainly done by applying a
generic rule-engine like JESS [7] (which is currently
used in ANS), Mandarax [8], or SweetRules [9]. The
Controller starts the notification process when a rule
is triggered.

In more detail, the RuleManager offers two main
functionalities: (i) (un)subscription of new rules and (ii)
management of existing rules. When a new rule is entered,
the rule manager checks if the rule is well-formed (using
the language meta-model). It extracts the relevant context
variables from the condition part of the rule and subscribes
to changes of these context variables via the EventMonitor.
The EventMonitor generates context events when these
context variables change.

 The RuleManager transforms the rules expressed in the
ANS domain-specific ECA language (see section IV) into a
rule that can be handled by the underlying rule-engine (in
this case JESS). These mappings are defined modularly
which offers a flexible mechanism to plug-in other rule-
engines. The management of rules consists of starting,
stopping, updating, and querying rules.

The Controller wraps a general purpose rule-engine. Its
main functionality is to transform events received from the
EventMonitor into changes in the knowledge base used by
the rule engine. Furthermore, it instantiates the rules
received from the RuleManager in the rule-engine. When a
rule is triggered a notification event is generated and send
to the Notifier. This notification event triggers the
notification of users.

C. The Notifier
The task of the Notifier is to send notifications to applications
and users. For each notification it determines the appropriate

Awareness and Notification Service

NotificationProfileManager

RuleManager

NotiferController

CMS

EventMonitor

Knowledge
Repository

Application

Fig. 1. Architectural Design of ANS

 3

level of intensity before sending the notification. The intensity
of notifications is based on the current context of users and
their personal notification preferences.

If users want to receive personalized notifications, they
create individual user notification profiles. A user notification
profile defines which level of intensity is appropriate in which
context. The intensity of notifications can be based on
availability of the user that is to be notified, or where the user
is currently located. A further option is to take the co-presence
of other persons into account. In general, the notification
profiles are dynamic and allow users to take into account all
available context data. When editing a personal user
notification profile, a user is free to combine the different
parameters in order to specify the appropriate level of
intensity for certain situations. In case a user defines settings
that are conflicting, an implemented conflict strategy
implemented in ANS resolves the issue. A user can use one of
the predefined profiles or refine one the profiles. If a user has
not created a notification profile, a standard profile is used.

The notification of a user works as follows. If a rule in the
Controller evaluates to true, the Controller sends a notification
event to the Notifier. The Notifier transforms the event into a
notification. An event encompasses the message, the UserIDs
of the users that are to be notified and references to
applications. First the Notifier determines the right intensity
for the notification. It does so by retrieving the relevant user
notification profiles. In case additional context parameters are
necessary in order to determine the intensity of the
notification, the Notifier queries the EventMonitor. This is for
example the case, if a user has specified not to be notified at
home. In this case the Notifier queries the EventMonitor for
the location of the user. Once the notification profiles are
evaluated and the intensity of the notification is determined,
the Notifier sends the notification to the application. It is then
the task of the application that receives the notification to
interpret the level of intensity, e.g. to change the color of an
ambient light in order to send a notification with a low level of
notification to a user.

IV. THE ANS RULE LANGUAGE
The ANS rule language allows application developers to

conveniently enhance their applications with reactive context-
aware behavior by using a scripting format. This relieves the
developer from writing programming code inside his
application to deal with notifications. This is handled by the
ANS service when initiating the rules.

Notification rules follow the Event-Condition-Action
(ECA) pattern [5][10]. A Context Data Event models an
occurrence of interest (e.g., a change in context), which may
or may not establish results; A Condition specifies what must
hold prior to the execution of the action; and Actions consist
of notification services.

When designing the ANS ECA rule language, high attention
has been paid to the following qualities:

- Expressive power: the language permits the
specification of complex event relations. It allows the

use of relational operator predicates (e.g., < , >, =),
and the use of logical connectives (e.g., AND, OR,
NOT) on conditions to build compound conditions.

- Convenient use for application developers: It
provides high-level constructs that facilitate event
compositions.

- Extensibility: The language allows the addition of
new predicates to accommodate events being defined
on demand.

A. Basic Concepts
Context changes are described as changes in situation

states. Situations represent specific instances of context
information, typically high level context information.
Situations may be defined upon other situations or Facts [11].

Facts define current “state of affairs” in the user’s
environment. Example of a Fact is Jerry is married to Maria.
The situation context abstraction allows application
developers and users to leverage on the fact abstraction in
order to derive high-level context information. Example of a
situation is isOccupied, derived from the fact “Maria is
cooking” or “Jerry is working”. Situations may be built upon
other situations, for example, isAvailable may be defined as
not isOccupied and isReachable. Facts and situations are
defined as part of the overall information models (ontologies),
which are not discussed in this paper due to lack of space.

There are three possible states (true, false and unknown)
and six state transitions (e.g., TrueToFalse and
FalseToUnknown). The unknown state accommodates
uncertainty of context information (when the value of context
information is unknown). Notification invocations are
associated with sequences of transitions and the validation of
pre-conditions.

B. Syntax and Semantics
The condition part of ECA rules comprises two parts: an

event part that defines a relevant situation change; and a pre-
condition part that defines a logical expression that must hold
following the event and prior to the execution of the
notification. Both events and pre-conditions are defined in
terms of situation and facts.

Each trigger rule is associated with a lifetime, which can be
once, from <start> to <end>, to <end>, <n> times,

frequency <n> times per <period>. Events, pre-
conditions and notifications are prefixed by the clauses Upon,
When and Do, respectively. The clause scope has been included
to parameterize an ECA rule. A scope clause defines a
collection of entities for which the rule should be applied. The
the clause select has also been included, which returns a
collection of entities respecting a given filtering expression.

Fig. 2 depicts the ECA language Metamodel in UML. In the
following some examples of rules are presented:
1) Maria would like to be notified when her kids enter home
with friends.
Upon EnterTrue (Pablo.isAtHome) OR EnterTrue
(Roberto.isAtHome)
When (Pablo.isAtHome AND Pablo.withFriends) OR
(Roberto.isAtHome AND Roberto.withFriends)

 4

Do Notify (Maria, “kids are home with friends”)
Always
The situations isAtHome and withFriends are defined
as follows:

- entity.isAtHome = entity’s current location is within
the home boundaries;

- person.withFriends = person is close to (e.g.,
within 20 meters) friends. In this scope, “friend
persons” may be known or unknown to the system.

Fig. 2: ECA language metamodel

2) Notify all family members (except Jerry) that Jerry is
arriving home.
Scope (Select (person.family.*, member,
member.isAtHome & “member.name <> Jerry”); p))
{
 Upon EnterTrue (Jerry.isAtHome)
 When True
 Do Notify (p, “Jerry is home”)
 Always

}

The previous scope clause defines a dynamic set of family
members (the ones inside the home), for which this rule
should be applied. The scope variable “p” has been defined in
the scope clause and has been used in the DO clause.

V. CONCLUSION
Pervasive computing environments provide new

opportunities to inform users about their environment. In this
paper, a rule-based notification service was presented. The
service enables developers to rapidly implement applications
that allow users to be aware of their environment.
Applications register monitoring rules (i.e. specification of
conditions based on context and corresponding notification
actions) that specify what their users are interested in, by
using a convenient rule language. Hereby, the management or
monitoring of context data is delegated to ANS. The entered
rules are evaluated continuously by ANS and relevant users
are notified when one of the rules evaluate to true.
Additionally, the service provides notifications that are
tailored to the user’s situation (context). Before the
notification service sends a notification, the appropriate
intensity for the notification is determined. This ensures that
the notification service provides notifications that are as

unobtrusive for users as possible and as intrusive as necessary.
An initial prototype of ANS has been implemented using

Java and the generic rule engine JESS [7]. The
implementation is based on the OSGi component based
framework [6] to get a clear separation of concerns between
the ANS sub-components. Additionally, OSGi facilitates the
exposure of the service to other services and applications.
Remotely ANS can be accessed using standard webservice
technologies.

The development of ANS is ongoing and the following two
future research issues will be tackled. First temporal aspects
will be considered. The ANS rule language currently does not
provide means to specify temporal ordering of events. The
language will be extended to support temporal aspects, such as
sequencing and concurrency of events. Secondly context
models will be considered. In parallel to the definition of the
ANS rule language, context models and context modeling
abstractions will be defined that facilitate the representation of
context information in a meaningfully and unambiguously
manner.
Besides enabling rapid development of context-aware
applications, the developed Awareness and Notification
Service successfully represents a pervasive service that
requires only as much attention of users as necessary. It is a
foray in an age where users are ubiquitously surrounded with
technology that unobtrusively assists them in their everyday
live.

REFERENCES
[1] Dey, A.K., and Abowd, G., “Towards a Better Understanding of Context

and Context-Awareness”, CHI Workshop, 2000.
[2] Bardram, J.E., “Applications of Context-Aware Computing in Hospital

Work–Examples and Design Principles” in Proceedings of the ACM
Symposium on Applied Computing, 2004, pp 1574-1579

[3] Chen, H., “An Intelligent Broker Architecture for Context-Aware
Systems”, PhD proposal in Computer Science, University of Maryland,
Baltimore County, USA, 2003.

[4] Dey, A.K., “Providing Architectural Support for Building Context-
Aware Applications”, Ph.D. thesis, College of Computing, Georgia
Institute of Technology, 2000

[5] Dockhorn Costa, P., Pires, F., Sinderen, M., “Architectural Patterns for
Context-Aware Services Platforms” in Proceedings of the Second
International Workshop on Ubiquitous Computing (IWUC 2005),
Miami, May 2005, pp 3-19

[6] OSGi consortium website, http://www.osgi.org/
[7] Jess – the Rule Engine for the Java Platform. Available at

http://herzberg.ca.sandia.gov/jess/
[8] Dietrich, J., The Mandarax 3.0 Manual, Version December 8th 2003,

Institute of Sciences & Technology, Te Kura Putaiao o Hangarau-a-
Mohiotanga, Massey University, Palmerston North, New Zealand.

[9] jDREW website, http://www.jdrew.org/jDREWebsite/jDREW.html
[10] Ipina, D., and Katsiri, E., "An ECA Rule-Matching Service for Simpler

Development of Reactive Applications". Published as a supplement to
the Proc. of Middleware 2001 at IEEE Distributed Systems Online, Vol.
2, No. 7, November 2001.

[11] Henricksen, K. and Indulska, J., “A software engineering framework for
context-aware pervasive computing” in Proc. of the 2nd IEEE
Conference on Pervasive Computing and Communications
(Percom2004), Orlando USA, 2004, pp 67-77.

