
Paulo Sérgio dos Santos Júnior

From Continuous Software Engineering
Reference Ontologies to the Integration of Data

for Data-Driven Software Development

Vitória, ES

2023

Paulo Sérgio dos Santos Júnior

From Continuous Software Engineering Reference
Ontologies to the Integration of Data for Data-Driven

Software Development

Tese de Doutorado submetida ao Programa de
Pós-Graduação em Informática da Universidade
Federal do Espírito Santo, como requisito parcial
para obtenção do Grau de Doutor em Ciência
da Computação.

Universidade Federal do Espírito Santo – UFES

Centro Tecnológico

Programa de Pós-Graduação em Informática

Supervisor: Profa. Dra. Monalessa Perini Barcellos

Co-supervisor: Prof. Dr. João Paulo Andrade Almeida

Vitória, ES

2023

Ficha catalográfica disponibilizada pelo Sistema Integrado de
Bibliotecas - SIBI/UFES e elaborada pelo autor

S237f
Santos Junior, Paulo Sérgio, 1983-
SanFrom Continuous Software Engineering Reference
Ontologies to the Integration of Data for Data-Driven Software
Development / Paulo Sérgio Santos Junior. - 2023.
San210 f. : il.

SanOrientadora: Monalessa Perini Barcellos.
SanCoorientador: João Paulo Andrade Almeida.
SanTese (Doutorado em Informática) - Universidade Federal
do Espírito Santo, Centro Tecnológico.

San1. Engenharia de Software Continua. 2. Ontologias. 3. Rede
de Ontologias. 4. Interoperabilidade Semântica. 5. Integração de
Dados. I. Barcellos, Monalessa Perini. II. Almeida, João Paulo
Andrade. III. Universidade Federal do Espírito Santo. Centro
Tecnológico. IV. Título.

CDU: 004

 From Continuous Software Engineering
Reference Ontologies to the Integration of Data for

Data-Driven Software Development
Paulo Sérgio dos Santos Júnior

Tese de Doutorado submetida ao Programa de Pós-Graduação em Informática da Universidade
Federal do Espírito Santo como requisito parcial para a obtenção do grau de Doutor em Ciência da
Computação.

Aprovada em 20 de dezembro de 2023.

Profa. Dra. Monalessa Perini Barcellos
Orientador, participação remota

Prof. Dr. João Paulo Andrade Almeida
Coorientador, participação remota

Prof. Dr. Breno Bernard Nicolau de França
Membro Externo, participação remota

Prof. Dr. Gleison dos Santos Souza
Membro Externo, participação remota

Prof. Dr. José Maria Parente de Oliveira
Membro Externo, participação remota

Prof. Dr. Vitor Estêvão Silva Souza
Membro Interno, participação remota

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO
Vitória/ES, 20 de dezembro de 2023

Documento assinado eletronicamente nos moldes do art. 10 da MP 2200/01 e Lei 14063/20
[Hash SHA256] 548786fcfe873ba1ec3e471ecf7bb83f17d93bd12a3184294ddb5617612c1210

Datas e horários baseados em Brasília, Brasil

Sincronizado com o NTP.br e Observatório Nacional (ON) em

Os registros de assinatura presentes nesse documento pertencem única e exclusivamente a esse envelope.

Documento final gerado e certificado por

Documento em conformidade com o padrão de assinatura digital ICP-Brasil e

validado de acordo com o Instituto Nacional de Tecnologia da Informação

Universidade Federal do Espírito Santo

21/12/2023 às 06:29:54

SantosJr.DefesaDoutoradoAprovacao
Data e Hora de Criação: 20/12/2023 às 16:43:47

Documentos que originaram esse envelope:

- SantosJr.DefesaDoutoradoAprovacao.pdf (Arquivo PDF) - 1 página(s)

Hashs únicas referente à esse envelope de documentos
[SHA256]: 548786fcfe873ba1ec3e471ecf7bb83f17d93bd12a3184294ddb5617612c1210

[SHA512]: 2796058bc314864abcb002d71cc5edec475ac89b9ed86861b6019a59550ad4078232d18ad7a63740a087dfcfd4bf63350430e86688c3509fa954e4c3e5c5b3e6

Lista de assinaturas solicitadas e associadas à esse envelope

ASSINADO - Breno Bernard Nicolau de França (bfranca@unicamp.br)

Data/Hora: 20/12/2023 - 16:47:48, IP: 143.106.58.11, Geolocalização: [-22.814949, -47.064614]

[SHA256]: 56978c57348227d44758aad595a7f5d64b57f87dcdf1ea7d815ddf15ee17196a

ASSINADO - Gleison Santos (gleison.santos@uniriotec.br)

Data/Hora: 20/12/2023 - 17:23:07, IP: 191.162.171.42

[SHA256]: 3ad00ca0161b307b12c630877ba8a2dfd5fabdc2d96eb02afe069d9f5840d03e

ASSINADO - João Paulo Andrade Almeida (joao.p.almeida@ufes.br)

Data/Hora: 20/12/2023 - 17:35:16, IP: 187.36.219.45, Geolocalização: [-20.257740, -40.271672]

[SHA256]: 21c4171f622eef1e1750dd43089188705ad92f3542ed1f15494a05afa03e5d35

ASSINADO - Monalessa Perini Barcellos (monalessa.barcellos@ufes.br)

Data/Hora: 20/12/2023 - 16:47:39, IP: 200.137.65.103

[SHA256]: c9ca8e5e05faaad5bd7cfcebf6eb9a8c5d1821488c15977fe52cb6687fd9bff5

ASSINADO - José Maria Parente de Oliveira (parente@ita.br)

Data/Hora: 20/12/2023 - 17:44:40, IP: 191.19.195.214, Geolocalização: [-22.725266, -45.128404]

[SHA256]: 556c7e6471fa2584192273e9c51a9d79e916de2ea4509d768565d1130c133763

ASSINADO - Vítor Estêvão Silva Souza (vitor.souza@ufes.br)

Data/Hora: 21/12/2023 - 06:29:54, IP: 187.36.171.219, Geolocalização: [-20.289238, -40.292067]

[SHA256]: 58ffda908ebdea0d504656cf2afa1960c72c9351e28c166d6cdd51cf86f56887

Histórico de eventos registrados neste envelope

21/12/2023 06:29:54 - Envelope finalizado por vitor.souza@ufes.br, IP 187.36.171.219

21/12/2023 06:29:54 - Assinatura realizada por vitor.souza@ufes.br, IP 187.36.171.219

21/12/2023 06:29:50 - Envelope visualizado por vitor.souza@ufes.br, IP 187.36.171.219

20/12/2023 17:44:40 - Assinatura realizada por parente@ita.br, IP 191.19.195.214

20/12/2023 17:44:26 - Envelope visualizado por parente@ita.br, IP 191.19.195.214

20/12/2023 17:35:16 - Assinatura realizada por joao.p.almeida@ufes.br, IP 187.36.219.45

20/12/2023 17:23:07 - Assinatura realizada por gleison.santos@uniriotec.br, IP 191.162.171.42

20/12/2023 17:22:59 - Envelope visualizado por gleison.santos@uniriotec.br, IP 191.162.171.42

20/12/2023 16:47:48 - Assinatura realizada por bfranca@unicamp.br, IP 143.106.58.11

20/12/2023 16:47:43 - Envelope visualizado por bfranca@unicamp.br, IP 143.106.58.11

20/12/2023 16:47:39 - Assinatura realizada por monalessa.barcellos@ufes.br, IP 200.137.65.103

20/12/2023 16:45:08 - Envelope registrado na Blockchain por monalessa.barcellos@ufes.br, IP 200.137.65.103

20/12/2023 16:45:08 - Envelope encaminhado para assinaturas por monalessa.barcellos@ufes.br, IP 200.137.65.103

20/12/2023 16:43:48 - Envelope criado por monalessa.barcellos@ufes.br, IP 200.137.65.103

To my wife (Debora, a.k.a. Lindinha/Bicudinha), my dogs (Thorzinho, Nininha, Melzinha,
Florzinha, Costelinha, and Bluezinho), my parents, and everyone that supported me on this

journey, giving me love and happiness.

Acknowledgements

When I stopped to reflect on what I would like to express in this section, I found myself
pondering which words I could use to convey my gratitude to the people who have helped me
reach this moment. The word that came to mind was “opportunity”.

At the beginning of my university journey, Crediné and Dedê provided me with the op-
portunity to join LIED (Computer in Education Laboratory). For nearly four years, I benefited
from their scholarships and came to understand how education can transform reality.

Giancarlo, João Paulo, and Renata graciously gave me the opportunity to join NEMO
(Ontology and Conceptual Modeling Research Group) and collaborate on a project with them.
It was through this opportunity that I gained the valuable experience of applying research
knowledge in practical, real-world situations. I genuinely believe that this opportunity played
a pivotal role in shaping my academic career and had a significant impact on my future
endeavors, as well as my perspective on how academia contributes to the progress of society1.

Years later, when I passed the exam to become a professor at the Federal Institute of
Education, Science and Technology of Espírito Santo (IFES), Vítor Souza assisted me through
the process and offered me several insights into the IFES admission process. When I went to
thank him and asked how I could repay his kindness, he shared with me the following wisdom:
“Do good for someone else.” Since then, I have tried to follow this principle. Thank you for the
opportunity and the valuable lesson.

Monalessa gave me the opportunity to work put into practice a crazy idea that became
the focus of my doctoral research. Working with her all these years, Mona gave me the chance
to learn what the process, vision, and significance of being a top-notch researcher and making
an impact on society truly entails. She did this without uttering a single word, simply by
setting an example. Furthermore, she showed me through numerous examples how a good
mentor should motivate and treat everyone around them with respect and honesty. Finally, she
demonstrated that hard work, a bit of chocolate, and unwavering focus always yield positive
results on the journey.

João Paulo gave me the opportunity to work with him on my doctorate, years after I
had completed my master’s degree. Like Monalessa, he showed me how a quality researcher
should produce impactful results and develop people to reach their potential.

During my doctorate, I had the opportunity to work with several friends who helped
me at different points in my journey. Among these friends, Rodrigo Fernandes Calhau, and
1 João Paulo got me hooked on a heavy addiction: Model-Driven Design. To this day, I’ve been trying to break

free from that habit, but I can’t.

Fabiano Borges Ruy contributed to works related to my thesis. While other friends (Cadu,
Simone, Glaice, Jordana, Alexandre and others) gave me the opportunity to learn in other
areas of computing that also helped me on my journey.

I thank all the members of the doctoral committee for evaluating my work and con-
tributing to this journey of mine. Lastly, I want to express my gratitude to everyone who has
been part of my journey, which was made in a quality public institution (Federal University of
Espírito Santo - UFES).

I firmly believe that the person I am today is a result of the opportunities and valuable
lessons provided to me over these years by all those mentioned above. Thus, I would like to say,
“Thank you for the opportunities you’ve given me. I hope to do the same for someone someday.”

“We have to dream, otherwise things don’t happen.” (Oscar Niemeyer)

Resumo
Contexto: As organizações de software têm enfrentado vários desafios, como a necessidade
de entregas mais rápidas, mudanças frequentes nos requisitos, menor tolerância a falhas
e a necessidade de se adaptar aos modelos de negócios contemporâneos. As organizações
devem evoluir para o desenvolvimento contínuo e orientado por dados em uma abordagem de
engenharia de software contínua. A Engenharia de Software Contínua (ESC) consiste em um
conjunto de práticas e ferramentas que suportam uma visão holística do desenvolvimento de
software com o propósito de torná-lomais rápido, iterativo, integrado, contínuo e alinhado com o
negócio. As organizações de software frequentemente utilizam diferentes aplicativos para apoiar
a CSE (e.g., ferramentas de gerenciamento de projetos, repositórios de código e ferramentas
de avaliação de qualidade), que armazenam dados úteis para um processo orientado a dados.
No entanto, os dados muitas vezes permanecem dispersos em diferentes aplicativos, cada um
adotando modelos de dados e comportamentais diferentes, representando uma barreira para o
uso integrado de dados. Como consequência, o desenvolvimento de software orientado por
dados é incomum, perdendo oportunidades valiosas para melhoria de produto e processo, bem
como identificação de novas oportunidades de negócios. Objetivo: Considerando a necessidade
de possibilitar o desenvolvimento de software orientado por dados no contexto da CSE, nosso
objetivo é fornecer uma abordagem baseada em ontologia que possa auxiliar na identificação
das necessidades de informação da organização, recuperar dados de aplicativos e fornecer dados
integrados que atendam às necessidades de informação.Método: Seguindo o paradigma daDesign
Science Research organizando estudos experimentais como learning iterations, desenvolvemos
a abordagem Immigrant, que contém três componentes: California (um processo baseado em
Pensamento Sistêmico), Zeppelin (um instrumento diagnóstico de CSE) e The Band (uma solução
de integração baseada em ontologia que integra semanticamente dados de aplicativos). The Band
é baseado em Continuum, uma (sub)rede ontológica desenvolvida neste trabalho para abordar
aspectos da CSE (particularmente, desenvolvimento ágil, integração contínua e implantação
contínua) e que é usada como um modelo de referência para construir artefatos de software na
arquitetura de integração. Resultados: Estudos realizados em organizações de software avaliaram
cada componente separadamente. Os resultados demonstram a utilidade de California, Zeppelin
e The Band fornecendo dados que ajudaram identificar problemas relacionados à alocação
de equipes, gerenciamento de produtividade de equipe e desempenho do projeto. A proposta
completa Immigrant foi avaliada em um estudo de caso, identificando problemas relacionados à
alocação de tarefas, sobrecarga de papéis e qualidade do código. Conclusão:Os resultados obtidos
até agora sugerem que Immigrant é uma abordagem útil para possibilitar o desenvolvimento
de software orientado por dados na CSE.

Palavras-chaves: Engenharia de Software Contínua, Rede de Ontologias, Interoperabilidade
Semântica, Integração de Dados.

Abstract
Context: Software organizations face several challenges, such as the need for faster deliveries,
frequent changes in requirements, lower tolerance to failures, and the need to adapt to contem-
porary business models. Agile practices have allowed organizations to shorten development
cycles and increase customer collaboration. However, this has not been enough. Organizations
should evolve to continuous and data-driven development in a continuous software engineering
approach. Continuous Software Engineering (CSE) consists of a set of practices and tools that
support a holistic view of software development with the purpose of making it faster, iterative,
integrated, continuous, and aligned with the business. Software organizations often use dif-
ferent applications to support CSE (e.g., project management tools, source repositories, and
quality assessment tools). These applications store useful data to enable a data-driven software
development process. However, data items often remain spread in different applications, each
adopting different data and behavioral models, posing a barrier to integrated data usage. As a
consequence, data-driven software development is uncommon, missing valuable opportunities
for product and process improvement as well as new business opportunities identification.
Objective: Considering the need to enable data-driven software development in the CSE context,
we aim to provide an ontology-based approach that can aid in: identifying the organization’s
information needs, retrieving data from applications, and providing integrated data that meets
the information needs. Method: By following the Design Science paradigm and organizing
experimental studies as learning iterations, we developed the Immigrant approach, which
contains three components: California (a System-Thinking-based process), Zeppelin (a CSE
diagnostic instrument, which helps identify the organization information needs), and The Band
(an ontology-based integration solution that semantically integrates data from applications
and, thus, provides integrated data to support data-driven software development). The Band is
based on Continuum, an ontology (sub)network developed in this work to address CSE aspects
(particularly, agile development, continuous integration, and continuous deployment) and that
is used as a reference model to build software artifacts in the integration architecture. Results:
Studies performed in software organizations evaluated each component separately. Results
demonstrate California and Zeppelin’s usefulness and show that the integrated solution (The
Band) contributed to improving estimates, provided data that helped allocate teams, manage
team productivity and project performance, and allowed to identify and fix problems in the
software process execution. The complete proposal Immigrant was evaluated in a case study.
As a result, it was possible to identify problems related to the allocation of tasks, role overload,
and code quality. Conclusion: The results obtained so far suggest that Immigrant is a useful
approach to enable data-driven software development in CSE.

Keywords: Continuous Software Engineering, Ontology Network, Semantic Interoperability,
Data Integration.

List of Figures

Figure 1 – Overview of the Design Science cycles in this research (based on (BARCEL-
LOS et al., 2022)). 29

Figure 2 – Stairway to Heaven Model (StH) (OLSSON; ALAHYARI; BOSCH, 2012) . . 32
Figure 3 – Continuous * (FITZGERALD; STOL, 2017). 33
Figure 4 – The Eye of CSE (JOHANSSEN et al., 2019). 33
Figure 5 – Framework for Continuous Software Engineering (BARCELLOS, 2020). . . 34
Figure 6 – Continuous Integration based on (DUVALL; MATYAS; GLOVER, 2007). . . 36
Figure 7 – Remote and Local Source Repository. 38
Figure 8 – Staging Area and Source Repository, based on (CONSERVANCY, 2023). . . 39
Figure 9 – Commits and their parents (CONSERVANCY, 2023). 39
Figure 10 – Relation between branch and commits (CONSERVANCY, 2023). 39
Figure 11 – Branches, based on (ATLASSIAN, 2023). 40
Figure 12 – Merge Commit, based on (CONSERVANCY, 2023). 40
Figure 13 – The relationship between CI, CDE, and CD, based on (SHAHIN; BABAR;

ZHU, 2017). 42
Figure 14 – A UFO fragment. 45
Figure 15 – SEON’s Architecture (RUY et al., 2016) . 48
Figure 16 – A EO, SPO, and SysSWO fragment. 49
Figure 17 – A SPO fragment focuses on Resource concepts. 51
Figure 18 – CMPO fragment. 52
Figure 19 – ROoST fragment. 54
Figure 20 – A QAPO fragment. 55
Figure 21 – A OSDEF fragment. 56
Figure 22 – A RSRO fragment. 57
Figure 23 – A general three-tier architecture of a FIS (BUSSE et al., 1999). 59
Figure 24 – Continuum’s architecture. 62
Figure 25 – SRO’s architecture. 64
Figure 26 – Scrum Process Subontology. 65
Figure 27 – Scrum Stakeholders Subontology. 66
Figure 28 – Scrum Stakeholders Participation Subontology. 68
Figure 29 – Product and Sprint Backlog Subontology. 70
Figure 30 – Scrum Deliverables Subontology. 72
Figure 31 – CIRO’s architecture. 80
Figure 32 – CMPO fragment focusing on Checkout. 80
Figure 33 – CMPO fragment focusing on Checkin. 81
Figure 34 – Continuous Integration Process Subontology. 83

Figure 35 – Continuous Build Process Subontology Modularization. 85
Figure 36 – Continuous Build Environment model from CI Building Environment package. 85
Figure 37 – Continuous Build Process model from Continuous Build Process package. . 86
Figure 38 – Continuous Test Process Subontology. 88
Figure 39 – Continuous Inspection Process Subontology Modularization. 89
Figure 40 – Continuous Inspection Environment model from CI Inspection Environment

package. 90
Figure 41 – Continuous Inspection Process Subontology. 91
Figure 42 – CDRO’s Architecture. 95
Figure 43 – Continuous Delivery Activity Subontology. 96
Figure 44 – Continuous Deployment Process Subontology. 98
Figure 45 – Learning Iteration (BARCELLOS et al., 2022). 107
Figure 46 – Overview of the LIs performed to develop Immigrant. 108
Figure 47 – Process followed to develop the integration solution (SANTOS et al., 2021). 110
Figure 48 – Fragment of the dashboard showing integrated data (SANTOS et al., 2021). 111
Figure 49 – Fragment of Systemic map (SANTOS; BARCELLOS; CALHAU, 2020). . . . 116
Figure 50 – California: A System Theory-Based Process (SANTOS; BARCELLOS; CAL-

HAU, 2020). 122
Figure 51 – Fragment of the Diagnosis Questionnaire with practices related to Continu-

ous Integration (SANTOS; BARCELLOS; RUY, 2021). 127
Figure 52 – Fragment of Analytic Report (SANTOS; BARCELLOS; RUY, 2021). 127
Figure 53 – Immigrant overview. 133
Figure 54 – Transformation of ON into FIS. 134
Figure 55 – Journey overview. 136
Figure 56 – Fragment of SRO Information Model (SANTOS et al., 2021). 137
Figure 57 – Fragment of Microsoft Azure DevOps data model (SANTOS et al., 2021). . . 137
Figure 58 – Fragment of the class diagram of a lib to access Microsoft Azure DevOps data. 139
Figure 59 – Fragment of SRO OBDR. 139
Figure 60 – SRO’s OBS using a REST interface. 140
Figure 61 – SRO’s OBS using a GraphQL interface. 140
Figure 62 – Concept added to OBDR to allow data traceability. 141
Figure 63 – Example of ETL components and OBDRs. 141
Figure 64 – Example of an interface provided by a data access component. 143
Figure 65 – The Band architecture overview. 143
Figure 66 – Application Integration Layer architecture. 144
Figure 67 – Internal Data Communication Layer architecture. 145
Figure 68 – Federated Ontology-based Service Layer architecture. 146
Figure 69 – Federated Data Access Layer Architecture. 147
Figure 70 – SRO Data View. 148

Figure 71 – Fragment of systemic map. 166
Figure 72 – Fragment of the dashboard focusing on User Story Wait Time. 170
Figure 73 – Fragment of the dashboard showing number of US (per type) defined over

time. 171
Figure 74 – Fragment of the dashboard showing the Task Cycle Time by the projects. . 171
Figure 75 – Fragment of the dashboard showing the Number of Code Smells (per type

and artifact). 172
Figure 76 – Fragment of the dashboard showing data regrading CI Pipeline Success Rate

in a project. 172
Figure 77 – Fragment of the dashboard focusing on CI Pipeline Success Rate in all projects. 172
Figure 78 – Diagnostic Questionnaire - Context Form. 204
Figure 79 – Diagnostic Questionnaire - Instruction Form. 204
Figure 80 – Diagnostic Questionnaire - Organization Profile Form. 204
Figure 81 – Diagnostic Questionnaire - Participant Profile Form. 205
Figure 82 – Diagnostic Questionnaire - Agile Organization Form. 205
Figure 83 – Diagnostic Questionnaire - Continuous Integration Form. 206
Figure 84 – Diagnostic Questionnaire - Continuous Deployment Form. 206
Figure 85 – Diagnostic Questionnaire - R&D as Innovation System Form. 206

List of Tables

Table 1 – SRO Verification. 74
Table 2 – SRO Validation. 77
Table 3 – Verification of CIRO. 92
Table 4 – Validation of CIRO. 93
Table 5 – Verification of CDRO. 99
Table 6 – Validation of CDRO. 101
Table 7 – Fragment of GUT Matrix. 118
Table 8 – Causes of Undesirable Behaviors. 119
Table 9 – Strategies, Causes, and Agile Concepts. 120
Table 10 – Some terms present in Dictionary based on SRO. 120
Table 11 – Effort spent on development and bug-fixing tasks in different projects. . . . 123
Table 12 – Effort spent on development and bug-fixing tasks before and after applying

the strategies in the project. 123
Table 13 – Examples of Semantic Mappings between SRO Information Model and Mi-

crosoft Azure DevOps Data Model (SANTOS et al., 2021). 137
Table 14 – Federated Information System’s Criteria on The Band. 149
Table 15 – Example of the Information Needs. 151
Table 16 – Examples of measures defined to meet the information needs. 151
Table 17 – Measurement formulas defined based on Continuum concepts 152
Table 18 – Adoption Degree by StH stage. 161
Table 19 – Adoption Degree by Eye of CSE category. 161
Table 20 – CSE Practices Adoption Degree by StH’ Stages, before and after interview. . 163
Table 21 – CSE Practices Adoption Degree by Eye of CSE, before and after interview. . 163
Table 22 – Information needs identified based on the use of Zeppelin. 164
Table 23 – Some of the identified undesirable behaviors 167
Table 24 – Causes of Undesirable Behaviors. 167
Table 25 – Strategies and Causes. 168
Table 26 – Information needs identified based on the use of California. 168
Table 27 – Measures defined to meed the Information Needs. 169
Table 28 – Contributions versus Specific Objectives. 184
Table 29 – Agile Organization Stage‘s Statements. 207
Table 30 – Continuous Integration Stage‘s Statements. 208
Table 31 – Continuous Deployment Stage‘s Statements. 208
Table 32 – R&D as Innovation System Stage‘s Statements. 209

List of abbreviations and acronyms

ASA Application Software Artifact

CD Continuous Deployment

CDE Continuous DElivery

CDDRO Continuous Deployment and Delivery Reference Ontology

CI Continuous Integration

CIRO Continuous Integration Reference Ontology

CMPO Configuration Management Process Ontology

COM Core Ontology on Measurements

CSE Continuous Software Engineering

DaD Disciplined Agile Delivery

DSR Design Science Research

EO Enterprise Ontology

ETL Extract, Transform, and Load

FCSE Framework for Continuous Software Engineering

FIS Federated Information Systems

GUT Matrix Gravity, Urgency, and Tendency Matrix

LeSS Large-Scale Scrum

LI Learning Iteration

NO Networked Ontology

OBDR Ontology-Based Data Repository

OBS Ontology-Based Service

ON Ontology Network

OSDEF Reference Ontology of Software Defects, Errors and Failures

OWL Web Ontology Language

QAPO Quality Assurance Process Ontology

ROoST Reference Ontology on Software Testing

RSRO Reference Software Requirements Ontology

Safe Scaled Agile Framework

SE Software Engineering

SEON Software Engineering Ontology Network

SPO Software Process Ontology

SRO Scrum Reference Ontology

StH Stairway to Heaven

SysSwO System and Software Ontology

UFO Unified Foundational Ontology

UML Unified Modeling Language

XP Extreme Programming

Contents

1 INTRODUCTION . 19
1.1 Context and Motivation . 19
1.2 Research Hypothesis . 22
1.3 Objectives . 23
1.4 Research Method . 24
1.4.1 Relevance Cycle . 24

1.4.2 Design Cycle . 25

1.4.3 Rigor Cycle . 28

1.5 Organization of this Thesis . 28

2 BACKGROUND . 31
2.1 Continuous Software Engineering (CSE) 31
2.1.1 Agile Development and Scrum . 34

2.1.2 Continuous Integration (CI) . 36

2.1.3 Continuous DElivery (CDE) and Continuous Deployment (CD) 41

2.2 Ontology and Ontology Network . 43
2.2.1 Unified Foundational Ontology (UFO) . 44

2.2.2 Software Engineering Ontology Network (SEON) 47

2.2.2.1 SPO, EO, and SysSwO . 48

2.2.2.2 Configuration Management Process Ontology (CMPO) 51

2.2.2.3 Reference Ontology on Software Testing (ROoST) 53

2.2.2.4 Quality Assurance Process Ontology (QAPO) 54

2.2.2.5 Reference Ontology of Software Defects, Errors, and Failures (OSDEF) 55

2.2.3 Reference Software Requirements Ontology (RSRO) 56

2.3 Semantic Integration . 57
2.4 Federated Information Systems . 58
2.5 Final Considerations . 60

3 CONTINUUM - A CONTINUOUS SOFTWARE ENGINEERING ON-
TOLOGY (SUB)NETWORK . 61

3.1 Continuum Overview . 61
3.2 Scrum Reference Ontology (SRO) . 63
3.2.1 Scrum Process subontology . 63

3.2.2 Scrum Stakeholders Subontology . 66

3.2.3 Scrum Stakeholders Participation Subontology 67

3.2.4 Product and Sprint Backlog Subontology 69

3.2.5 Scrum Deliverables Subontology . 71

3.2.6 Evaluation . 73

3.3 Continuous Integration Reference Ontology (CIRO) 79
3.3.1 Extension of the Configuration Management Process Ontology (CMPO) . 79

3.3.2 Continuous Integration Process Subontology 82

3.3.3 Continuous Build Process Subontology . 84

3.3.4 Continuous Test Process Subontology . 87

3.3.5 Continuous Inspection Process Subontology 89

3.3.6 Evaluation . 91

3.4 Continuous Deployment Reference Ontology (CDRO) 95
3.4.1 Continuous Delivery Activity Subontology 95

3.4.2 Continuous Deployment Process Subontology 97

3.4.3 Evaluation . 99

3.5 Related Work . 101
3.6 Final Considerations . 104

4 LEARNING ITERATIONS TOWARDS IMMIGRANT 106
4.1 Learning Iterations . 106
4.2 First Learning Iteration: Towards an Ontology-Based Approach to

Integrate Data Application . 107
4.2.1 Execution and Results . 109

4.2.2 What did we learn? . 112

4.3 Second Learning Iteration: California 114
4.3.1 Theoretical Background . 115

4.3.2 Execution and Results . 116

4.3.3 Threats to Validity to the Study Results . 123

4.3.4 What did we learn? . 124

4.4 Third Learning Iteration: Zeppelin . 125
4.4.1 Execution and Results . 125

4.4.2 Threats to validity to study results . 129

4.4.3 What did we learn? . 130

4.5 Final Considerations . 131

5 IMMIGRANT . 132
5.1 Immigrant Overview . 132
5.2 The use of an Ontology Network and Federated Information Systems

in The Band . 133
5.3 Journey: The Band Development Process 135
5.4 The Band Architecture . 142
5.4.1 Application Integration Layer . 144

5.4.2 Internal Data Communication Layer . 144

5.4.3 Federated Ontology-based Service Layer 145

5.4.4 Federated Data Access Layer . 146

5.5 Implementing The Band . 148
5.6 The Band as FIS . 149
5.7 Using Immigrant . 151
5.8 Related work . 153
5.9 Final Considerations . 155

6 FINAL LEARNING ITERATION: APPLYING IMMIGRANT IN A SOFT-
WARE ORGANIZATION . 157

6.1 Context . 157
6.2 Study Planning . 158
6.3 Study Execution, Data Collection, and Results 159
6.3.1 Identifying Information Needs from Zeppelin 160

6.3.2 Applying California to complement the Information Needs 165

6.3.3 Identifying the Available Sources . 169

6.3.4 Defining Measures . 169

6.3.5 Providing Integrated Data using The Band 170

6.3.6 Getting Feedback about Immigrant . 173

6.4 Discussion . 175
6.5 Threats to Validity . 176
6.6 What did we learn? . 177
6.7 Final Considerations . 178

7 FINAL CONSIDERATIONS . 180
7.1 Summary of the Research . 180
7.2 Research Contributions . 182
7.3 Research Limitations . 186
7.4 Perspectives of Future Works . 187

BIBLIOGRAPHY . 190

APPENDIX 202

APPENDIX A – ZEPPELIN . 203
A.1 DiagnosticQuestionnaire . 203

19

1 Introduction

Yes, there are two paths you can go by, but in the long run, there’s still time to change

the road you’re on.
Led Zeppelin, Stairway to Heaven

This chapter presents an overview of this thesis and defines the basis for the following
chapters. It discusses the research context and motivation, research hypothesis, objectives,
and methodological aspects that have guided the work. Last, it presents the structure of this
document.

1.1 Context and Motivation

Characteristics and demands of the modern and digital society have transformed the
software development scenario and presented new challenges to software developers and
engineers, such as the need for faster deliveries, frequent changes in requirements, lower
tolerance to failures, and the need to adapt to contemporary business models (BARCELLOS,
2020). Some of the difficulties that need to be overcome when dealing with these challenges
are due to the lack of connection between important software development activities such as
planning, implementation, and deployment (FITZGERALD; STOL, 2017). These difficulties are
usually accentuated when development adopts a traditional sequential approach, prescribed by
the waterfall life cycle model.

Agile methods, such as Scrum (SCHWABER; KEN, 2013), XP (KNIBERG, 2015), and Kan-
ban (KNIBERG; SKARIN, 2010), have been increasingly adopted in software development to deal
with some of the aforementioned issues, because they enable organizations to deliver valuable
products to clients in short iterative cycles, increase customer collaboration, and improve the
organization responsiveness to change (JULIAN; NOBLE; ANSLOW, 2019; SCHWABER; KEN,
2013; BARCELLOS, 2020). However, this has not been enough. Continuous actions of planning,
construction, operation, deployment, and evaluation are necessary to produce products that
properly meet customers’ needs, make well-informed decisions, and identify business oppor-
tunities. Thus, organizations should evolve from traditional to continuous and data-driven
software development in a Continuous Software Engineering (CSE) approach (BOSCH, 2014;
FITZGERALD; STOL, 2017; BARCELLOS, 2020).

CSE consists of a set of practices and tools that supports a holistic view of software
development to make it faster, iterative, integrated, continuous, and aligned with the business.
It understands the development process not as a sequence of discrete activities, performed
by distinct and disconnected teams, but as a continuous flow, considering the entire software

Chapter 1. Introduction 20

life cycle. It is a recent topic that seeks to transform discrete development practices into more
iterative, flexible, and continuous alternatives, keeping the goal of building and delivering
quality products according to established time and costs (FITZGERALD; STOL, 2017). For that,
CSE involves agile practices and goes beyond them by emphasizing the need for continuity,
alignment to business and a broader view of software development.

In this context, some initiatives have emerged aiming to speed up the development
process and improve the connection between its activities. For example, Continuous Integration
(BECK, 2000) seeks to eliminate discontinuities between development and delivery. In a similar
approach, DevOps (DEBOIS et al., 2011) recognizes that the integration between software
development and system operation must be continuous. Extending the need for integration to
other levels, BizDev (FITZGERALD; STOL, 2017) advocates that continuity should exist not
only in the software process context, but also between software and strategic processes of the
organization.

Software organizations often use different applications to support different aspects of
software development (FITZGERALD; STOL, 2017). For example, agile management practices
can be supported by project management and time-tracking applications, while continuous
development and continuous integration can be supported by integrated development environ-
ments, version control, and code quality tools. The intensive use of applications in software
development creates opportunities involving the various kinds of data they store, enabling
data-driven software development (BRYNJOLFSSON; HITT; KIM, 2011), which is characterized
by the use of data to drive software engineering activities and decision-making. For example,
data regarding code quality (e.g., number of defects, smells, etc.) and rework (e.g., effort spent
fixing errors made during the development process) can provide useful information to support
decisions about testing and coding strategies. In the CSE context, the use of development
and customer-related data to support daily activities and decision-making is of key relevance
(OLSSON; ALAHYARI; BOSCH, 2012; BOSCH, 2014; FITZGERALD; STOL, 2017).

Although applications employed throughout the software lifecycle store useful data
to support data-driven software development, data items often remain spread in different
applications, each of which adopts different data and behavioral models, posing a barrier
to integrated data usage. As a consequence, using data to drive software development has
been relatively uncommon, wasting valuable opportunities for informed decision-making.
Particularly in agile software development, decisions related to software development have
been commonly based on subjective aspects, such as previous experiences of the managers and
stakeholders, intuitions, or a combination of these (SVENSSON; FELDT; TORKAR, 2019). A
recent study in which we investigated CSE adoption in Brazilian organizations corroborates
this perception as it revealed that only 17% of software organizations have used data to drive
software development (SANTOS et al., 2022).

One of the reasons organizations fail to leverage data stored in applications is the

Chapter 1. Introduction 21

difficulty to access, integrate, analyze, and visualize data handled by heterogeneous applications.
In general, each application implements its own data and behavioral models and focuses on
specific aspects of the software process, with little concern for sharing and integration aspects,
leading thus to several conflicts (CALHAU; FALBO, 2010). Particularly in the agile development
context, the challenge is to use data to support the development process in such a way that does
not represent a bottleneck to process agility. There is a need to extract useful information from
data stored in applications and to present it to the team within their development environment,
effectively and proactively (WACHE et al., 2001), without requiring extra effort from the
development team.

One source of difficulty for data integration is semantic heterogeneity, which can result
in conflicts whenever the same information item is given divergent interpretations, a situation
that may not even be detected (WACHE et al., 2001). Neglecting these “semantic conflicts”
can lead to poorly integrated solutions that fail in achieving their purposes (e.g., providing
incorrect information) (POKRAEV, 2009). To reduce these conflicts, integration should address
semantic issues (CALHAU; FALBO, 2010; FONSECA; BARCELLOS; FALBO, 2017). A means for
that is to employ ontologies to establish a common conceptualization about the applications’
subject domains in order to support communication and application integration. An ontology
is a formal, explicit specification of a shared conceptualization (GRUBER, 1993). Thus, it can
be used as an interlingua to map the concepts used by different applications, enabling data
and services understanding (CALHAU; FALBO, 2010). In fact, ontologies have become the
predominant way to deal with semantic aspects in semantic integration initiatives (NARDI;
FALBO; ALMEIDA, 2013).

For large and complex domains, such as Software Engineering, representing all concepts
in a single ontology could result in a large and monolithic artifact that would be hard to
manipulate, use, and maintain (RUY et al., 2016). In such cases, using an ontology network
(ON) is a better solution (RUY et al., 2016). An ON is a set of ontologies connected to each
other through relationships (e.g., dependency and alignment) to provide a comprehensive and
consistent conceptualization (SUÁREZ-FIGUEROA; GÓMEZ-PÉREZ; FERNÁNDEZ-LÓPEZ,
2012). The integration of data from applications that address different subdomains of a (super)
domain such as Software Engineering (e.g., Software Requirements, Coding, Design, Testing,
and Software Quality) has the same problem. Therefore, a Software Engineer can explore a
combination or a fragment—but nevertheless aligned— of networked ontologies to integrate
data from different applications. This mitigates the risks of developing a single large ontology
or integrating ontologies that are not consistent with each other.

In this work, we propose to use ontologies from an ON to integrate application data
aiming at data-driven software development. More specifically, we propose to develop on-
tologies that address CSE aspects (agile development, continuous integration, and continuous
deployment), add them to the Software Engineering Ontology Network (SEON) (RUY et al.,

Chapter 1. Introduction 22

2016) and explore the use of the ON to support application data integration. SEON is an ON that
(i) describes various subdomains of the Software Engineering domain (e.g., Software Process,
Software Requirements, Software Testing, Software Measurement); (ii) offers mechanisms to
facilitate building and integrating new Software Engineering subdomain ontologies into the
network; and (iii) promotes integration by keeping a consistent semantics for concepts and
relations along the whole network (RUY et al., 2016). Since existing ontologies in SEON describe
general concepts in Software Engineering, the ontologies to be added to it in this work can
focus on specifics of CSE, while reusing established notions such as “software project”, “project
team”, “requirement”, among others.

In the literature, there are some approaches using ontologies to integrate software
development data (e.g., tasks, deadlines, and team members’ skills), including those of Calhau &
Falbo (2010) and Fonseca, Barcellos & Falbo (2017). However, none of them explore ontologies
from an ON or address CSE aspects. Our proposal also differs from software repository mining
approaches, such as those of Cubranic et al. (2005) and Mattila et al. (2017), because they usually
do not consider the use of ontologies (thus, with little attention to data semantics) and their
integration solutions are devoted to solving integration problems in a specific context (e.g.,
using data from a particular software repository). By using ontologies from an ON, our proposal
aims to provide an integration solution based on a common domain conceptualization. As a
result, it can be used to integrate data from different applications, possibly involving different
subdomains covered by the ON.

1.2 Research Hypothesis

Considering, as previously discussed that:

• To perform CSE, organizations use different applications to support different aspects of
the software development process;

• A vast amount of data stored in applications is currently not put to use in the support of
data-driven software development;

• There is a significant difficulty in accessing, integrating, analyzing, and visualizing data
handled by heterogeneous applications;

• One source of difficulty for data integration is semantic heterogeneity, which can result
in semantic conflicts;

• It is necessary to integrate applications considering semantic aspects to provide useful
information;

• Ontologies can be used to establish a common conceptualization about a domain of
interest and have become a way to deal with semantics in integration initiatives;

Chapter 1. Introduction 23

• Ontology networks allow organizing ontologies, providing comprehensive, consistent,
and integrated knowledge;

We formulate the following research hypothesis:

The use of ontologies in an ontology network that addresses Continuous Software Engi-
neering (CSE) aspects facilitates the semantic integration of data stored in diverse applications,
and can thereby enable data-driven software development.

1.3 Objectives

The general objective of the work reported here is to propose an ontology-based approach
that uses networked ontologies to integrate application data aiming at enabling data-driven
software development in the CSE context. This general objective is broken down into the following
specific objectives (SO):

• SO1. Establish mechanisms to identify an organization’s information needs: the
successful use of data to support software development and decision-making depends on
providing useful information corresponding to organizational needs. Therefore, we aim
to propose mechanisms to help organizations identify information needs that will guide
data integration in the CSE context;

• SO2. Develop networked ontologies on CSE subdomains: ontologies on a number of
subdomains of CSE such as Agile Development, Continuous Integration, and Continuous
Deployment are required to establish a consensual, shared, and comprehensive conceptu-
alization that can be used to assign semantics and facilitate the integration of data from
different applications. The various CSE subdomain ontologies should be organized in an
overarching ontology network as motivated earlier;

• SO3. Create an ontology-based approach to integrate application data: creating
an approach based on an ontology network (SO2) and that considers the organization’s
information needs (SO1) and the available data helps provide integrated data for enabling
data-driven software development. Many of the ontology-based approaches focus on
conceptual integration (e.g., (CALHAU; FALBO, 2010; FONSECA; BARCELLOS; FALBO,
2017)), without supporting the integration solution design and implementation. An
approach addressing the development of the integration architecture through reusable
components can provide a flexible solution to cover a diversity of subdomains considered
in the ON;

• SO4. Apply the proposed approach in a real context: the use of the proposed
approach (SO3) in software organizations can offer evidence of the proposal’s usefulness
and feasibility considering its support to data-driven software development and its

Chapter 1. Introduction 24

contribution to improving software products (e.g., reducing defects) and processes (e.g.,
improving estimates).

1.4 Research Method

The research method adopted in this work follows the Design Science Research (DSR)
paradigm, which concerns extending “human and organizational capabilities by creating new
and innovative artifacts” (HEVNER, 2007). DSR was selected as the research approach because
the object of study is an artifact— specifically, an approach that uses networked ontologies
to integrate application data to support data-driven software development in CSE—and its
evaluation is possible in a real organizational environment.

DSR comprises the following steps (PEFFERS et al., 2007): (i) Problem identification
and Motivation, (ii) Definition of the objectives for a solution, (iii) Design and Development, (iv)
Demonstration, (v) Evaluation, and (vi) Communication. These steps are organized in an iterative
process, with three cycles: Relevance Cycle, Design Cycle, and Rigor Cycle (HEVNER, 2007).

A DSR project begins with the Relevance Cycle, which involves defining the problem to
be addressed, requirements, and criteria for evaluating the results (HEVNER, 2007), including
steps (i) and (ii). The Design Cycle involves developing and evaluating artifacts or theories to
solve the identified problem (HEVNER, 2007), comprising steps (iii), (iv), and (v). The Rigor
Cycle refers to using and generating knowledge (HEVNER, 2007), comprising step (vi), and the
use of knowledge and foundations along with the work.

1.4.1 Relevance Cycle

In the Problem identification and motivation step, the problem was identified from the
literature, e.g., as reported by Karvonen et al. (2015), Svensson, Feldt & Torkar (2019), Kasauli
et al. (2020), and was also observed first hand by the doctoral candidate when working as a
Scrum master and consultant in some software organizations. The problem refers to the need
for integrating application data considering semantic issues to provide useful information that
enables data-driven software development in CSE.

Considering the identified problem, in the Definition of the objectives for a solution step,
we decided to develop an ontology-based approach to integrate application data aiming at
supporting data-driven software development in the CSE context. As requirements for the
approach, we defined that it must:

• R1. Support identifying an organization’s information needs to enable data-driven soft-
ware development in CSE;

• R2. Address semantic issues involved in data integration in such a complex domain;

Chapter 1. Introduction 25

• R3. Consider data available in the organization’s applications; and

• R4. Provide integrated and meaningful data, considering the organization’s information
needs and available data.

In order to evaluate the proposed approach, we foresee an assessment of the usefulness
(C1) and feasibility (C2) of the solution.

1.4.2 Design Cycle

In the Design and development step, we developed the Immigrant approach, the main
artifact produced in this work. The development involved three empirical studies. As suggested
in (BARCELLOS et al., 2022), they were organized as learning iterations, i.e., studies performed
in iterations that allow the researcher to learn something about the research, by providing
useful knowledge to understand the problem, develop the artifact, and evaluate or improve
it. Each one of the three learning iterations aimed to answer specific questions and provided
knowledge and results that helped us to better understand the problem and contributed to
developing the proposed artifact.

The first learning iteration was an exploratory study performed to evaluate our design
choice of using networked ontologies to meet requirement R2. The study aimed to answer the
following question: Is it useful and feasible to use an ontology network to integrate existing data
stored in applications to meet organizations’ information needs aiming at data-driven software
development in CSE?

The study was performed in a public software organization that adopted agile practices.
We added a new ontology— the Scrum Reference Ontology— to SEON (RUY et al., 2016)
and used it and other SEON ontologies as a basis for a solution that integrated data from
two applications (Microsoft Azure DevOps1 and Clockfy2), presented it in dashboards and
supported data-driven software development. The main results were published in (SANTOS et
al., 2021).

In that study, an initial version of the proposed approach was defined and we learned
how networked ontologies can be used to integrate, share, and exchange data from different
applications to support data-driven software development. Moreover, we confirmed in practice
the necessity of properly identifying the organization’s information needs to guide data in-
tegration, and we noticed that organizations face a number of difficulties to recognize such
information needs.

Thus, we performed the second learning iteration, a participative case study that aimed
1 Microsoft Azure DevOps: is a project management application. It can be accessed at <https://azure.microsoft.

com/en-us/products/devops/>.
2 Clockify: is a time-tracking application. It can be accessed at: <https://clockify.me/>.

https://azure.microsoft.com/en-us/products/devops/
https://azure.microsoft.com/en-us/products/devops/
https://clockify.me/

Chapter 1. Introduction 26

at answering the following question: How to understand the way an organization works and,
thus, help identify its information needs relevant to data-driven software development in the CSE
context?

The study was performed in a Brazilian software house interested in implementing CSE
practices gradually, by following the Stairway to Heaven model (StH) (OLSSON; ALAHYARI;
BOSCH, 2012; KARVONEN et al., 2015), which defines five stages that organizations should
follow to implement CSE until achieving data-driven software development. The study resulted
in a Systems Theory-based process called California3 (SANTOS; BARCELLOS; CALHAU, 2020)
(SANTOS; BARCELLOS; CALHAU, 2022), which helps organizations identify strategies to
implement CSE practices, using Systems Theory (MEADOWS, 2008), GUT Matrix (KEPNER;
TREGOE, 1981), and Reference Ontologies (GUIZZARDI, 2007).

With that study, we learned that knowing the organization’s current state and defining
strategies for improving it helps identify information needs that integrated data should meet
(e.g., the information needed to evaluate the strategies’ effectiveness). We also learned that,
although the proposed process (California) is useful, it involves a lot of tacit knowledge and
judgment as well as knowledge of Systems Thinking tools and GUT matrix. Moreover, it
may demand much time to be applied. In a software organization under study (SANTOS;
BARCELLOS; CALHAU, 2020; SANTOS; BARCELLOS; CALHAU, 2022), two months were
required to understand the CSE process present in that organization.

3 The name California was inspired by the Going to California song by the Led Zeppelin band because the
process allows organizations to choose which CSE practices (Made up my mind to make a new start) to improve
aiming at achieving a new quality level (Going to California).

Chapter 1. Introduction 27

Considering the conclusions of the second iteration, and aiming to further examine
the question it addressed, we performed a third learning iteration, in the form of a multiple
case study in five organizations. The main purpose was to obtain an easier means to establish
a panorama of an organization’s current state of CSE practices adoption, identify potential
improvements and derive information needs. In this iteration, we developed Zeppelin4 (SANTOS;
BARCELLOS; RUY, 2021), a diagnostic instrument that provides a panorama of CSE adoption
in an organization by identifying the CSE practices it presently performs. Thus, it supports the
identification of weaknesses and strengths, and helps identify information needs. From this
study, we confirmed that knowing the organization’s current state helps identify information
needs that integrated data should meet and we learned that a diagnostic instrument like Zeppelin
is a good way to apply at first hand to obtain an overview of the organization state and needs.

Considering the knowledge and the results obtained from the three learning iterations,
we have developed Immigrant5, an ontology-based approach to integrate application data
aiming at supporting data-driven software development in CSE. In order to meet requirement
R4, the approach considers a top-down and a bottom-up perspective. From the top-down per-
spective, information needs are used to drive data integration. From the bottom-up perspective,
data available in the application repositories is considered to identify the information needs
that can be met (R3). Thus, based on the information needs and available data, Immigrant
integrates application data and provides meaningful dashboards to enable monitoring and
insights aiming at data-driven software development.

To satisfy R1, Califonia (SANTOS; BARCELLOS; CALHAU, 2020) and Zeppelin (SAN-
TOS; BARCELLOS; RUY, 2021) were integrated into Immigrant. As for R2, the approach uses
ontologies from SEON to deal with semantic aspects. For that, we have developed new ontolo-
gies addressing CSE (specifically agile development, continuous integration, and continuous
deployment) and added them to SEON as a subnetwork called Continuum. In order to satisfy
R4, a data integration solution based on ontology, called The Band, was created and integrated
into Immigrant. It provides integrated data, considering data available in the applications used
by the organization to support the software development process.

After developing Immigrant, in the Demonstration step, a proof of concept was per-
formed to show the feasibility of the proposed approach and, thus, in the Validation step, we
performed a new learning iteration to answer the question: Is Immigrant useful and is its use by
software organizations feasible? For that, the approach was applied in a case study in a software
organization to evaluate and refine Immigrant.

4 The name Zeppelinwas chosen because the diagnosis instrument allows viewing an organization in a panoramic
way, as if we were in a zeppelin seeing a city.

5 The name Immigrant was inspired by the Immigrant Song by the Led Zeppelin band because the approach

Chapter 1. Introduction 28

1.4.3 Rigor Cycle

All the aforementioned steps have been based on the relevant literature, which includes
papers, books, theses, standards, and other materials about Ontology, Ontology Network, CSE,
Semantic Integration, Federated Information Systems, and Experimental Software Engineering.
Therefore, the foundation of this work was based on the areas of knowledge mentioned above.
Finally, the Communication step involves presenting the research results to the academic and
industry communities. Some results have already been published in the following papers: (SAN-
TOS; BARCELLOS; CALHAU, 2020; SANTOS et al., 2021; SANTOS; BARCELLOS; RUY, 2021;
SANTOS; BARCELLOS; ALMEIDA, 2021; SANTOS; BARCELLOS; CALHAU, 2022; SANTOS et
al., 2022).

Figure 1 summarizes the DSR cycles performed in this work.

1.5 Organization of this Thesis

This chapter presented the Introduction of the work, involving the general aspects,
namely: the context and motivation for this research, the research hypothesis and objectives,
and the adopted methodological approach. The next chapters are organized as follows:

• Chapter 2 (Background) presents the foundations required for grounding this research.
It briefly reviews Agile, Continuous Software Engineering, Semantic Integration, Fed-
erated Information Systems, and the most relevant ontological notions applied in the
work, including ontology classification and ontology networks. An introduction to the
Software Engineering Ontology Network (SEON) (RUY et al., 2016) portions used in this
work is also presented in this chapter.

• Chapter 3 (Continuum: A Continuous Software Engineering Ontology (Sub)
Network) presents the current version of an ontology (sub)network that describes
concepts and relationships of Continuous Software Engineering, called Continuum, which
is integrated to SEON (RUY et al., 2016). The chapter presents Continuum’s architecture
and its networked ontologies covering Scrum, Continuous Integration, and Continuous
Deployment.

• Chapter 4 (Learning Iterations Towards Immigrant) presents the three learning
iterations performed in the Design Cycle of this work to help us design the proposed
approach.

• Chapter 5 (Immigrant): presents the ontology-based approach to support data-driven
software development proposed in this work. It provides an overview of the approach,

allows organizations to migrate from a non-data-driven software development process (land of ice and snow)
to a data-driven software development (western shore).

C
hapter

1.
Introduction

29

Figure 1 – Overview of the Design Science cycles in this research (based on (BARCELLOS et al., 2022)).

Chapter 1. Introduction 30

discusses howON and Federated Information System architectures influence the proposed
integration solution architecture, describes the process followed to create the integration
solution architecture, and presents its components.

• Chapter 6 (Final Learning Iteration: Applying Immigrant in a Software Organi-
zation) presents the fourth, and last, learning interaction performed in this thesis. Its
purpose was to evaluate Immigrant in a real-context.

• Chapter 7 (Final Considerations) summarizes the general ideas discussed in this thesis
and the achieved results. It also describes the limitations and outlines some future work.

• Appendix A (Zeppelin) presents details about the Zeppelin‘s Questionnaire.

31

2 Background

Oh, let the sun beat down upon my face and stars fill my dream. I’m a traveler of both

time and space to be where I have been.
Led Zeppelin, Kashmir

This chapter presents an overview of the background for this work. It refers to the
Rigor Cycle in the DSR approach adopted in this work, particularly to the use of existing
and consolidated knowledge to ground the research and the proposed artifact. Section 2.1
concerns Continuous Software Engineering concepts and some proposals relevant to this work.
Section 2.2 addresses Ontologies and Ontology Networks, presenting the parts of the Unified
Foundation Ontology (UFO) (GUIZZARDI, 2005) and the Software Engineering Ontology Network
(SEON) (RUY et al., 2016) used in this work. Section 2.3 regards basic notions of Semantic
Integration. Section 2.4 introduces Federated Information Systems concepts considered to
define the Immigrant architecture. Last, Section 2.5 closes the chapter.

2.1 Continuous Software Engineering (CSE)

Continuous Software Engineering (CSE) involves practices and tools that aim at estab-
lishing an end-to-end flow between customer demands and the fast delivery of a product or
service. The ‘big picture’ by which this might be achieved goes beyond agile principles and
surfaces a more holistic set of continuous activities (FITZGERALD; STOL, 2017). According to
Johanssen et al. (2019), in CSE, customers are proactive, and users and other stakeholders are
involved in the process, learning from usage data and feedback. Planning is continuous, so as
requirements engineering, which focuses on features, modularized architecture and design,
and fast realization of changes. Agile practices are employed, including short development
cycles, continuous integration of work, continuous delivery and continuous deployment of
releases. It relies on version control of code, branching strategies, fast commit, code coverage,
and code reviews. Quality assurance involves automated tests, regular builds, pull requests,
and audits. Knowledge is shared and continuous learning happens, capturing decisions and
rationale.

In the last years, some works have addressed CSE processes and practices, providing an
overview of CSE. We highlight four of them: Stairway to Heaven Model (OLSSON; ALAHYARI;
BOSCH, 2012; KARVONEN et al., 2015), Continuous * (FITZGERALD; STOL, 2017), Eye of
CSE (JOHANSSEN et al., 2019), and Framework for Continuous Software Engineering (FCSE)
(BARCELLOS, 2020).

Chapter 2. Background 32

The Stairway to Heaven Model (StH) (OLSSON; ALAHYARI; BOSCH, 2012) describes a
five-stage evolution path organizations follow to successfully move from traditional to customer
data-driven software development. Figure 2 shows StH’s stages. In summary, organizations
evolving from traditional development start by experimenting with one or a few agile teams.
Once these teams are successful, agile practices are adopted by the organization, turning it
into an agile organization. As the organization starts showing the benefits of working agile,
system integration and verification become involved and continuous integration is adopted.
Once continuous integration runs internally, lead customers often express an interest to receive
software functionality earlier than through the normal release cycle. They want continuous
deployment of software. The final stage is R&D as innovation system, when the organization
collects data from its customers and uses the installed customer base to run frequent feature
experiments to support customer data-driven software development.

Figure 2 – Stairway to Heaven Model (StH) (OLSSON; ALAHYARI; BOSCH, 2012)

Fitzgerald & Stol (2017) argue that continuous activities go beyond software engineer-
ing activities. They introduce ‘Continuous *’ as a set of activities from business, development,
operations, and innovation that provides a holistic view of the software life cycle. Continuous
planning, continuous security, continuous use, continuous trust, and continuous experimenta-
tion are some of the considered Continuous * activities. They introduce BizDev, analogous to
DevOps, but referring to the continuity and alignment between business strategy and software
development. Figure 3 presents Continuous * activities.

From interviews performed with CSE practitioners, Johanssen et al. (2019) defined the
Eye of CSE, consisting of 33 elements (e.g., practices) organized in nine categories, as presented
in Figure 4. According to the authors, the Eye of CSE can serve as a checklist for practitioners
to tackle the subject of CSE by incrementally applying CSE elements and keeping an eye
on potential next steps. The proposal differs from the sequential nature of the StH model
(OLSSON; ALAHYARI; BOSCH, 2012) as the authors argue that even if some CSE elements,
such as Continuous Integration and Delivery, require a step-wise introduction, CSE should be

Chapter 2. Background 33

Figure 3 – Continuous * (FITZGERALD; STOL, 2017).

approached from multiple angles simultaneously.

Figure 4 – The Eye of CSE (JOHANSSEN et al., 2019).

Finally, Barcellos (2020) proposed the Framework for Continuous Software Engineering
(FCSE). FCSE includes a set of processes to be performed in the CSE context (e.g., agile devel-
opment, continuous integration, continuous deployment, continuous software measurement,
continuous knowledge management, and others) and the main relations (information flows and
data flows) between them. Activities suggested in FCSE (BARCELLOS, 2020) were based on the
elements from the Eye of CSE (JOHANSSEN et al., 2019) and StH stages (OLSSON; ALAHYARI;
BOSCH, 2012; KARVONEN et al., 2015). Differently from StH, FCSE considers that processes
can be performed simultaneously and gradually. Figure 5 presents FCSE.

Chapter 2. Background 34

Figure 5 – Framework for Continuous Software Engineering (BARCELLOS, 2020).

In this work, we focus on three CSE processes, namely: Agile Development, Continuous
Integration and Continuous Deployment. A brief background about them is presented in the
next sections.

2.1.1 Agile Development and Scrum

Different flavors of the agile methods (e.g., Kanban (KNIBERG; SKARIN, 2010), Scrum
(SCHWABER; KEN, 2013), Disciplined Agile Delivery (DaD) (AMBLER; LINES, 2012), eXtreme
Programming (XP) (KNIBERG, 2015), Scaled Agile Framework (Safe) (PUTTA; PAASIVAARA;
LASSENIUS, 2018), and Large-Scale Scrum (LeSS) (LARMAN; VODDE, 2016)) have become
the de facto way of working in the software industry (RODRÍGUEZ et al., 2012). In allowing
for more flexible ways of working with an emphasis on customer collaboration and speed of
development, agile methods help organizations address many of the problems associated with
traditional development (DYBÅ; DINGSØYR, 2008). The successful adoption of agile methods
has also provided evidence of the need for greater flexibility and adaptation in the software
development environment (PAPATHEOCHAROUS; ANDREOU, 2014).

In agile software development, the notion of cross-functional, multidisciplinary teams
plays a central role. These teams have the different roles necessary to take a customer need all

Chapter 2. Background 35

the way to a delivered solution. Moreover, the notion of small, empowered teams, the backlog,
daily stand up meetings, and sprints guide software development through shorter cycles, and
bring the software development closer to the client (BOSCH, 2014).

Scrum is a software development process framework created with the assumption that
software development is too complex and unpredictable to be fully planned at the beginning of
a project. Therefore, it employs an iterative, incremental approach to optimize predictability
and control risk (SCHWABER; SUTHERLAND, 2011). A Scrum team is a flexible, adaptive
and small team (usually up to 7 people). Scrum teams are self-organized, cross-functional
and capable of delivering products iteratively and incrementally, maximizing opportunity for
continued feedback. A Scrum team is composed of a product owner, which is the role played
by a person acting on behalf of the client and responsible for maximizing the value of the
developed product, and a development team, which is responsible for developing the product.
The development team, in turn, is composed of developers and a Scrum master. The Scrum
master is a facilitator who ensures that the development team is provided with an adequate
environment to complete the project successfully (SCHWABER; SUTHERLAND, 2011).

The Scrum process starts with initial planning to establish the product requirements
and record them ordered in the product backlog (RISING; JANOFF, 2000). The product backlog
is a document that contains the product requirements and it is never complete, and it can
constantly change (SCHWABER; SUTHERLAND, 2011). The project is developed through
incremental time-boxed cycles (usually lasting one month or less) called sprints. For each sprint,
there is a sprint planning meeting, when the team selects from the product backlog the items
to be addressed in the sprint and plans the work to be done. The planning result is recorded in
the sprint backlog. A sprint produces a visible, usable, deliverable product that implements one
or more user interactions with the system. The key idea behind a sprint is to deliver valuable
functionality. Each product increment builds on previous increments. The goal is to complete
the tasks defined in the sprint backlog by the sprint’s delivery date and deliver an increment
of a done product. An increment is said done if it is in conformance to established acceptance
criteria and, thus, it can be delivered to the client.

As a time-boxed event, the end date for a sprint does not change. The team can reduce
functionality to be delivered at the end of the sprint, but the delivery date cannot change
(RISING; JANOFF, 2000). During the sprint, the team holds daily stand-up meetings aiming at
optimizing the probability of the development team meeting the sprint goal. Before delivering
the increment produced during a sprint, the team performs a sprint review meeting to inspect
the increment and adapt the product backlog if needed. At the end of the sprint, there is a
sprint retrospective meeting, when the team evaluates and reflects on itself and the project,
regarding people, relationships, processes, and tools. As a result, a plan for improvement can
be created. The meetings that occur during a sprint are known as ceremonies (SCHWABER;
SUTHERLAND, 2011).

Chapter 2. Background 36

Agile methods, with their iterative approach, have transformed the way teams develop
software, prioritizing continuous delivery of value to the customer. However, it is also necessary
to connect different practices in a continuous and holistic software engineering flow. Thus, by
integrating other approaches such as Kanban (KNIBERG; SKARIN, 2010) into agile practices, a
new perspective focusing on continuity complements the agile view of software development.
Kanban emphasizes fluidity and continuous workflow. Thus, it contributes to enhancing the
effectiveness of agile practices, allowing for more adaptable and transparent management of
the development process, and resulting in higher-quality and more efficient deliveries.

2.1.2 Continuous Integration (CI)

Continuous Integration (CI) is a widely established development practice in software
development in which members of a team integrate and merge development work (e.g., code)
frequently, for example, multiple times per day (DUVALL; MATYAS; GLOVER, 2007; HUMBLE;
FARLEY, 2010; FOWLER, 2011; SHAHIN; BABAR; ZHU, 2017). CI enables software organiza-
tions to have shorter and more frequent releases cycle, improve software quality, reduce risk,
and increase teams’ productivity (FITZGERALD; STOL, 2017; SHAHIN; BABAR; ZHU, 2017).
Figure 6 provides an overview of CI. The CI process is composed of the following activities (DU-
VALL; MATYAS; GLOVER, 2007; SHAHIN; BABAR; ZHU, 2017): Building, Testing, Inspection,
and Feedback. Each activity is performed by a CI Server without human interaction.

Figure 6 – Continuous Integration based on (DUVALL; MATYAS; GLOVER, 2007).

The CI process can be started by on-demand, scheduled, or check-in events. On-demand
events happen when a stakeholder (e.g., developer) starts a CI process manually due to project
needs. Scheduled events, in turn, start the CI process when a specific date or time is achieved.
Check-in events occur when a developer creates, updates, or deletes a software artifact (e.g.,
source code of program, scripts, or database’s configurations), in a local environment, and

Chapter 2. Background 37

sends a new/modified software artifact to a source repository used by a CI Server (DUVALL;
MATYAS; GLOVER, 2007).

After the start event, the CI server executes the Build activity. First, Building creates
a candidate version of the software, using the most recent version of the software artifacts
(DUVALL; MATYAS; GLOVER, 2007; HUMBLE; FARLEY, 2010) in a branch (e.g., Master or
Development). A candidate version is a new software that was built using a new version of
software artifacts that were committed in a branch.

The CI server runs a set of automated tests (e.g., Unit Test and Integration Test) on
the candidate version. Testing activities are essential for CI because without these activities
the stakeholders (e.g., developers, clients, and sponsors) cannot trust the changes made in the
software artifacts (DUVALL; MATYAS; GLOVER, 2007; HUMBLE; FARLEY, 2010). If there is no
automated, continuous testing, there is no true CI. Without automated tests, it is difficult for
developers or other project stakeholders to have confidence in software changes (HUMBLE;
FARLEY, 2010). After Testing, Inspection is carried out to perform static or dynamic quality
analysis of the software artifacts considering established quality rules/criteria (e.g., a class
cannot have more than 300 lines of code without comments (MARTIN, 2009)).

One of the main purposes of CI is to produce feedback for the stakeholders involved in
the development process. After all, the stakeholders want to know, as soon as possible, about
problems in the build and, thus, fix them quickly. Therefore, along the other CI activities, the
Feedback activity aims to inform (e.g., via email) the stakeholders about the status of the CI
process. A predominant characteristic of a CI process is its running speed. This is necessary
for CI to provide feedback in the shortest possible time (HUMBLE; FARLEY, 2010).

Modern source repositories (e.g., Github1 and Gitlab2) are distributed, which means that
a developer locally creates a “clone” of the entire repository (CONSERVANCY, 2023), via a git
pull command. This means that each developer has a local copy, in the local source repository,
of the remote source repository. The local copies can be “pushed” up to replace the remote
repository, in the event of changes but also a crash or corruption, using a git push command
(CONSERVANCY, 2023). Figure 7 illustrates different developers that have a local copy of the
remote source repository in their machines.

A Source Repository, also called Version Control Repository, manages the changes in
source code and other software artifacts (e.g., documentation or database scripts). In addition,
it defines a single point of access to the project’s software artifacts and allows a developer
to view different versions of the various artifacts over time (DUVALL; MATYAS; GLOVER,
2007). A Remote Source Repository is a source repository that is located in a server while a Local
Source Repository is a source repository in a developer’s computer, which is typically a clone of
a remote source repository.
1 https://github.com/
2 https://gitlab.com/

Chapter 2. Background 38

Figure 7 – Remote and Local Source Repository.

A developer executes the git pull command when he/she wants to incorporate changes
from a remote repository into the local source repository (CONSERVANCY, 2023). After that, a
developer creates, updates, or deletes a software artifact of a local branch, in a working directory,
and takes a snapshot of the contents of one or more files under the local branch, executing git
add command (CONSERVANCY, 2023). The snapshot is stored in a temporary called Staging
area. This way, it is possible to stage only the change that a developer needs for the current
commit and stage the changes in the code, made before the current commit, for the next commit.
Staging Area is an intermediate area where commits can be formatted and reviewed before
completing the commit (CONSERVANCY, 2023).

A Commit represents a snapshot of the source repository (GitHub, 2023). Changes,
present in the staging area, are “committed” to the source repository, via git commit command.
Commits should tell a story of the history of a source repository and how it came to be the
way that it currently is. Figure 8 presents the relations between the add and commit commands
with the staging area and source repository.

A commit contains the author’s name and email address, a message the developer uses
to explain the commit, and pointers to the commit, or commits, that directly came before this
commit (its parent or parents): (i) zero parents for the initial commit, (ii) one parent for a
normal commit, and (iii) multiple parents for a commit that results from a merge of two or
more commits (CONSERVANCY, 2023). When a developer makes some changes and commits

Chapter 2. Background 39

Figure 8 – Staging Area and Source Repository, based on (CONSERVANCY, 2023).

again, the next commit stores a pointer to the commit that came immediately before it. Figure 9
illustrates an example of a commit and its parents.

Figure 9 – Commits and their parents (CONSERVANCY, 2023).

A branch in the source repository is simply a lightweight movable pointer to one of
these commits. The default branch name is usuallymaster (ormain). A developer starts making
commits and he/she is given a master branch that points to the last commit he/she made. Every
time a developer commits, the master branch pointer moves forward automatically. Figure 10
shows the relation between a branch and commits.

Figure 10 – Relation between branch and commits (CONSERVANCY, 2023).

A developer can create a new local branch from an existing local branch (GitHub, 2023)
to work isolated from changes, as shown in Figure 11, using git checkout command. For example,
a developer can make changes in the software artifacts in the “Little Feature” and “Big Feature”
branches without impacting the “main” branch.

Chapter 2. Background 40

Figure 11 – Branches, based on (ATLASSIAN, 2023).

A developer uses the git merge command when he/she wants to apply the changes
(e.g., create, delete, or update a source artifact) made in a source branch into a target branch
(CONSERVANCY, 2023). For example, the changes made in “Big Feature” branch (source branch)
are applied in the “Main” branch (target branch) when a developer uses git merge command
between “Big Feature” branch (source branch) and “Main” branch (target branch). Observe in
Figure 12 that “Big Feature” branch diverges from “Main” branch from since “C” commit until
“I” commit. When a git merge is performed on these branches, the changes made in “Big Feature”
(source branch) are applied in “Main” branch (target branch) then creating a new commit “H”.

Figure 12 – Merge Commit, based on (CONSERVANCY, 2023).

The source repository verifies whether significant divergences (which prevent an
automated merge) exist (e.g., the same software artifact with different content) between the
artifacts present in the source and target branches, before executing the merge operation. Thus,
the merge is not executed if any divergence is found. Otherwise, if no divergence was found,
the source repository executes the merge. For example, if the “Little Feature” branch is behind
the “main” branch, then by default it will fast-forward the “Little Feature” branch to match the
“main”. If the “Little Feature” and the “main” branch have diverged, then the source repository
informs the developer about it and does not execute the merge between them.

A developer executes the git push command when he/she desires to update a remote
branch using information about the local branch’s changes (e.g., new branches or delete a
software artifact). This way, a developer can synchronize the remote branch of the same local
branch’s name with local changes, and, thus, a developer shares the branch’s changes with
other project’s developers. The remote source repository executes the git pull and git merge

Chapter 2. Background 41

commands to update the software artifacts. If the remote source repository finds a divergence
between the updated and remote software artifacts, the merge process is stopped, and the
developer is informed about the divergences and, thus, the remote software artifact is not
updated.

Sometimes a developer desires that other developers evaluate the changes made in a
branch, before it is incorporated into a remote branch. Then, a developer starts a process called
Code review. A Code review is a process in which a developer sends local changes to the remote
source repository via a review command3 and another developer reviews the changes that were
sent. A developer that receives and evaluates the updated changes is called Reviewer. A reviewer
approves4 the changes, in case he/she did not find any problems. The remote source repository
executes git pull and git merge, after the changes be approved by a reviewer. Otherwise, the
changes are not approved and the developer receives a message with reasons for non-approval.
Finally, a Check-in event happens when a change is integrated into a remote branch without
divergence, after a git push command or a code review process.

2.1.3 Continuous DElivery (CDE) and Continuous Deployment (CD)

Together with CI, Continuous DElivery (CDE) and Continuous Deployment (CD) are
the software development industry practices that enable organizations to frequently and
reliably release new features and products (SHAHIN; BABAR; ZHU, 2017). Continuous DElivery
(CDE) aims at ensuring an application is always in a production-ready state after successfully
passing automated tests and quality checks (WEBER; NEPAL; ZHU, 2016; HUMBLE, 2010). CDE
employs a set of practices (e.g., CI practices), and deployment automation to deliver software
automatically to a production-like environment (PUPPET, 2015). According to Chen (2015) and
Humble (2022), this practice offers several benefits such as reduced deployment risk, lower
costs, and shorter user feedback cycles. Continuous Deployment (CD), in turn, goes a step
further and automatically and continuously deploys the application to production or customer
environments (WEBER; NEPAL; ZHU, 2016). Figure 13 illustrates CI, CDE and CD. As shown,
continuous delivery practices presuppose continuous integration practices.

There is a robust debate in academic and industrial circles about defining and distin-
guishing between Continuous Deployment and Continuous Delivery (FITZGERALD; STOL,
2017; WEBER; NEPAL; ZHU, 2016; HUMBLE, 2010). What differentiates Continuous Deploy-
ment from Continuous DElivery is the relation to a production environment (i.e., how actual
customers are impacted): the goal of continuous deployment practice is to automatically and
steadily deploy every change into the production environment (SHAHIN; BABAR; ZHU, 2017).

An other distinction between CD and CDE lies in the decision of when a new candidate
3 In GitHub, this is called pull request while in GitLab this is called merge request.
4 It is possible to configure a remote source repository to automatically approve updated changes, in case no

divergence is found between the updated changes and remote software artifacts.

Chapter 2. Background 42

Figure 13 – The relationship between CI, CDE, and CD, based on (SHAHIN; BABAR; ZHU,
2017).

version of an application should be deployed to a production-like environment. A candidate
version of an application is a new version of an application that a new code was integrated and
approved in a CI process (HUMBLE; FARLEY, 2010). In the CDE, the deployment decision is
driven by the needs of the business area. In other words, in the context of CDE, deploying a
candidate version of an application is directly tied to decisions that can bring significant benefits
to an organization. For example, introducing a new feature related to a marketing campaign of
an organization, and launching it outside the campaign period, can have a direct impact on the
company’s revenue. Therefore, synchronizing the deployment cycle with business demands
is a fundamental consideration in CDE. This concern is not present in the CD process, it is
addressed to deploy a candidate version of an application in a production-like environment
when a new candidate version of an application is approved in a CI process (HUMBLE; FARLEY,
2010; SHAHIN; BABAR; ZHU, 2017).

It is important to note that CD practice implies CDE practice but the inverse is not true
(HUMBLE, 2010). Whilst the final deployment in CDE is a manual step, there should be no
manual steps in CD. Typically, as soon as developers push commits to a remote source reposi-
tory, the latest version is deployed to production through a deployment pipeline (SKELTON;
O’DELL, 2016). The scope of CDE does not include frequent and automated release, and CD
is consequently a continuation of CDE. Whilst CDE practice can be applied for all types of
systems and organizations, CD practice may only be suitable for certain types of organizations
or systems (HUMBLE, 2010; SKELTON; O’DELL, 2016; MUKHERJEE, 2016).

Finally, as continuous deployment is a critical aspect of software development process,
various deployment strategies were developed to achieve the project and business needs:

• Rolling/Ramped Deployment: gradually replace instances of the old version with
the new one, typically one at a time. This method ensures a smooth transition while
monitoring the impact of the update on each instance before moving on to the next
(FOWLER, 2014).

Chapter 2. Background 43

• Blue-Green Deployment: two identical environments, one “blue” (the current produc-
tion) and one “green” (the new version), coexist. The new version is deployed to the
green environment and tested thoroughly. The switch from blue to green is quick and
reversible, allowing for minimal downtime and easy rollback if issues arise (HUMBLE;
FARLEY, 2010; FOWLER, 2014).

• Canary Deployment: a strategy where a small subset of users or servers is selected to
receive the new version of the software. This “canary” group serves as an early indicator
of how the new release performs in a production environment. If the canary group
experiences no issues, the deployment gradually expands to the entire user base or server
pool (HUMBLE; FARLEY, 2010).

• Feature Toggles (Feature Flags): toggles are a way to control specific features or
functionalities within the software. These toggles can be turned on or off dynamically, en-
abling selective release of features without deploying an entirely new version (RAHMAN
et al., 2016; FOWLER, 2023).

• Shadow Deployment: the new version runs alongside the existing one, with live traffic
directed to the current version. The new version is primarily used for testing and com-
parison, allowing developers to identify issues and ensure compatibility before a full
switch (BERCLAZ, 2023).

• A/B Testing: involves deploying different variations of a feature or user interface to
different user groups. This strategy helps gather user feedback and performance data to
make informed decisions about which variation to deploy to all users (HUMBLE; FARLEY,
2010; SHAHIN; BABAR; ZHU, 2017).

2.2 Ontology and Ontology Network

An ontology “is a formal, explicit specification of a shared conceptualization” (GRUBER,
1993). Here, “conceptualization” refers to an abstract model of some phenomenon in the real
world that identifies the relevant concepts of this phenomenon; “explicit” means that the types
of concepts used and the constraints imposed on their use are explicitly defined; “formal”
refers to the fact that an ontology should be interpretable by machines; and “shared” reflects
that ontologies must capture consensual knowledge accepted by a community (STUDER;
BENJAMINS; FENSEL, 1998).

According to Scherp et al. (2011), ontologies can be organized in a three-layered archi-
tecture that discriminates among foundational ontologies, core ontologies, and domain ontologies.
Foundational ontologies aim at modeling the very basic and general concepts and relations that
make up the world (e.g., objects, events, participation, and parthood). They are generic across
any area and are highly reusable in different modeling scenarios. Core ontologies provide a

Chapter 2. Background 44

refinement to foundational ontologies by adding detailed concepts and relations in a specific
area (such as service, process, organizational structure) that still spans across various domains.
Domain ontologies concern a particular domain in reality, such as a domain-specific medical
ontology describing the anatomy of the human body. Domain ontologies can make use of, or
be based on, foundational ontologies and core ontologies, by specialization of their concepts.

Another important distinction sets apart ontologies as conceptual models, called ref-
erence ontologies, from ontologies as computational artifacts, called operational ontologies
(GUIZZARDI, 2007). A reference ontology is constructed with the goal of making the best
possible description of the domain in reality, representing a model of consensus within a
community, regardless of its computational properties. Once users have agreed on a common
conceptualization, operational versions (machine-readable ontologies) of a reference ontology
can be implemented. Differently from reference ontologies, operational ontologies are designed
with the focus on guaranteeing desirable computational properties (FALBO, 2014).

For a complex domain, representing its knowledge as a single ontology results in a large
and monolithic ontology that is hard to manipulate, use, and maintain (SUÁREZ-FIGUEROA et
al., 2012). On the other hand, representing each subdomain in isolation is a costly task that
leads to a very fragmented solution that is again hard to handle (RUY et al., 2016). In such
cases, building an ontology network is a suitable approach (SUÁREZ-FIGUEROA et al., 2012).
An Ontology Network (ON) is a collection of ontologies related together through a variety
of relationships, such as alignment, modularization, and dependency, sharing concepts and
relations with other ontologies (SUÁREZ-FIGUEROA et al., 2012). A Networked Ontology (NO),
in turn, is an ontology included in such a network, sharing concepts and relations with other
ontologies (SUÁREZ-FIGUEROA et al., 2012).

As discussed in Chapter 1, this works aims to develop an ontology-based approach
to integrate application data in the CSE context. For that, we have developed an ontology
network called Continuum, which will be introduced in Chapter 3. Continuum uses concepts
present in the Unified Foundational Ontology (UFO) (GUIZZARDI, 2005) (GUIZZARDI; FALBO;
GUIZZARDI, 2008) (GUIZZARDI et al., 2013) and the Software Engineering Ontology Network
(SEON5) (RUY et al., 2016). The next sections 2.2.1 and 2.2.2 describe, respectively, the fragments
of UFO and SEON that were used to develop Continuum.

2.2.1 Unified Foundational Ontology (UFO)

The Unified Foundational Ontology (UFO) was developed based on a number of theories
from Formal Ontology, Philosophical Logics, Philosophy of Language, Linguistics and Cognitive
Psychology (GUIZZARDI, 2005). UFO is divided in three parts: (i) UFO-A, an ontology of
endurants (objects) (GUIZZARDI, 2005; GUIZZARDI et al., 2015; GUIZZARDI et al., 2022), UFO-
5 SEON specification is available in https://dev.nemo.inf.ufes.br/seon/

Chapter 2. Background 45

B, an ontology of perdurants (events) (GUIZZARDI et al., 2013; ALMEIDA; FALBO; GUIZZARDI,
2019), and UFO-C, an ontology of social entities (GUIZZARDI; FALBO; GUIZZARDI, 2008;
GUIZZARDI; GUIZZARDI, 2011). The next paragraphs are dedicated to introducing the concepts
of UFO that are adopted in this work. Details about UFO and its application are available
in (GUIZZARDI, 2005; GUIZZARDI; FALBO; GUIZZARDI, 2008; GUIZZARDI et al., 2013;
GUIZZARDI et al., 2022). In the sequel, UFO’s concepts are written in italics.

UFO presents a fundamental distinction between the ontological categories of Types
and Individuals. Types are patterns of features that are repeatable across different entities
(GUIZZARDI et al., 2022). Individuals are particular entities that cannot be instantiated. Figure 14
shows a fragment of UFO with the concepts used in this work.

Figure 14 – A UFO fragment.

Endurants (e.g., Mick Jagger, the Moon, John’s headache, Mary’s marriage to Paul) are
individuals that exist in time with all their parts (GUIZZARDI et al., 2022). They have essential
and accidental properties and, hence, they can qualitatively change while maintaining their
numerical identity (i.e., while remaining the same individual). The sorts of changes an endurant
can undergo while maintaining its identity are defined by the unique Kind it instantiates
(GUIZZARDI et al., 2022).

Substantials are existentially independent individuals. Examples include ordinary meso-
scopic objects such as an individual person, a dog, a house, a hammer, a car, Alan Turing, and
The Rolling Stones. Moments are Endurants that existentially depend on other individuals, i.e.,
Moments are ‘parasitic’ entities and can only exist by inhering in other entities (e.g., color,
height, weight, electrical charge) (GUIZZARDI, 2005).

Intrinsic moments are existentially dependent on a single individual. Intrinsic moments

Chapter 2. Background 46

also includemodes (GUIZZARDI, 2005).Modes can bear their ownmoments, including their own
qualities, which can vary in independent ways. The category of modes includes Dispositions
(e.g., functions, capabilities, capacities, vulnerabilities, etc.) as well as externally dependent
entities (e.g., the love of John for Mary, the commitment of Paul towards Clara to meet for
lunch next Friday). Dispositions are moments that may be manifested through the occurrence
of events (possibly actions of intentional agents, such as Anna’s speaking English) (CALHAU;
AZEVEDO; ALMEIDA, 2021).

Perdurants (Events) are individuals that unfold in time accumulating temporal parts
(GUIZZARDI et al., 2022). Examples of events are a conversation, a football game, a symphony
execution, a birthday party, the Second World War, and a particular business process (GUIZ-
ZARDI, 2005). Events can be Atomic or Complex, depending on their mereological structure,
i.e., whilst atomic events have no proper parts, complex events are aggregations of at least two
events (that can themselves be atomic or complex). Events are possible transformations from a
portion of reality to another, i.e., they may change reality by changing the state of affairs from
one (pre-state) situation to a (post-state) Situation. Situations can be used to represent certain
configurations of entities that can be comprehended as a whole (ALMEIDA et al., 2020).

There are types that a substantial also instantiates in some circumstances, but not in
others. This is the case of Roles (e.g., student and husband). A Role is a type instantiated in
the context of a given event participation or of a given relation. A Relator is a Moment (i.e.,
an existentially dependent entity) that is an aggregation of qua individuals. A Qua individual
is a Mode composed of other externally dependent modes that share the same bearer, the
same source of external dependence, and the same foundational event (GUIZZARDI, 2005;
GUIZZARDI et al., 2022). For example, the sum of all commitments and claims of John towards
Mary form such a complex mode that we could call John-qua-husband-of-Mary, as they all
inhere in John, are externally dependent of Mary, and are created in that particular wedding
event (GUIZZARDI et al., 2022).

A Relator is, hence, existentially dependent on multiple individuals, namely, the bear-
ers of its constituting qua individuals. Examples of relators include marriages, enrollments,
employments, contracts, and presidential mandates (GUIZZARDI et al., 2022). Derived from
relators we have material relations, which have material structure of their own and include
examples such as ‘working at’, ‘being enrolled in’, and ‘being connected to’.

UFO-C makes a distinction between Agent and Non-Agentive Objects. Agents can also
be further specialized into Human Agents (Person) and Social Agents, which can be represented
respectively, by human beings, computationally-based agents, and organizations or organiza-
tional units (departments, areas, and divisions). Social agents are composed by a number of
other agents, which can themselves be human agents, artificial agents, or other institutional
agents.

Agents are substantials that can bear special kinds of moments named Intentional

Chapter 2. Background 47

Moments. Intentionality should be understood in a much broader context than the notion of
“intending something”, but as the capacity of some properties of certain individuals to refer
to possible situations of reality. Every Intentional Moment has a type (e.g., Belief, Desire, and
Intention) and a propositional content. The latter being an abstract representation of a class of
situations referred by that intentional moment. Thus, “intending something” is a specific type
of intentionally termed Intention. Non-Agentive Object can also be further categorized in Social
Objects (e.g., money, language, and Normative Descriptions).

Social Moments are Intentional Moments that are created by the exchange of commu-
nicative acts and the consequences of these exchanges (e.g., goal adoption, and delegation).
For instance, suppose that John rents a car at a car rental agency. When signing a business
agreement, John performs a communicative act (a promise), thereby creating commitments
(social moments) for him and correlative claims (also social moments) for the rental agency.

Socials Relators are those composed of two or more pairs of associated commitments/-
claims (Social Moments). A Commitment (internal or social) is fulfilled by an agent if this
agent performs an action such that the post-state of that action is a situation that satisfies the
propositional content of that commitment.

Actions are intentional events, i.e., events which instantiate a Plan with the specific
purpose of satisfying (the propositional content of) some intention. Examples of actions include
writing this thesis and the execution of a business process. As Events, Actions can be Atomic or
Complex.

A Complex Action is composed of two or more participations. These participations can
themselves be intentional (i.e., be themselves actions) or unintentional events. For example,
the stabbing of Caesar by Brutus includes the intentional participation of Brutus and the
unintentional participation of the knife. In other words, following philosophical action theories,
we take that it is not the case that any participation of an agent is considered an action, but
only those intentional participations— termed here Action Contributions (GUIZZARDI; FALBO;
GUIZZARDI, 2008). Only agents (entities capable of bearing intentional moments) can perform
actions, possibly with the partition of Non-Agentive Objects.

Finally, a Complex Action composed of action contributions of different agents is termed
an Interaction. Two artists collaborating to create a sculpture is an example of an interaction.
In the former case, the sculpture as well as the tools and raw materials used to create it are
examples of Non-Agentive Objects. Non-Agentive Objects can participate in actions in different
ways.

2.2.2 Software Engineering Ontology Network (SEON)

The Software Engineering Ontology Network (SEON) (RUY et al., 2016) is an ontology
network that describes various subdomains of the Software Engineering domain. SEON orga-

Chapter 2. Background 48

nizes its ontologies according to the layers defined by Scherp et al. (2011), namely: foundational,
core, and domain layers. Figure 15 presents SEON’s Architecture.

Figure 15 – SEON’s Architecture (RUY et al., 2016)

At the Foundational Layer there is theUnified Foundational Ontology (UFO) (GUIZZARDI,
2005) whose distinctions are used for classifying SEON concepts, e.g., as objects, actions,
commitments, agents, roles, goals, and so on. UFO provides the necessary grounding for the
concepts and relations of all networked ontologies. At the Core Layer providing the SE core
knowledge for the network, there are the Software Process Ontology (SPO) (BRINGUENTE;
FALBO; GUIZZARDI, 2011; RUY, 2017) and the System and Software Ontology (SysSwO)
(DUARTE et al., 2018b) (COSTA et al., 2022). SPO establishes a common conceptualization
on software processes while SysSwO is about the nature of system and software, including,
software artifacts, software constitution, software execution, computer system and hardware
equipment. There are also two more general core ontologies, namely: the Enterprise Ontology
(EO) (FALBO, 2014), and the Core Ontology on Measurements (COM) (BARCELLOS; FALBO;
FRAUCHES, 2014). EO deals with aspects related to organizations, such as team membership,
while COM defines concepts related to the measurement domain. Over the foundational and
core layers, Domain Ontologies are grounded in core ontologies and in UFO, and encompass
several SE subdomains (e.g., software requirements, design, configuration management, and
software measurement).

For developing the Continuous Software Engineering Ontology (sub)Network (Continuum)
proposed in this work, we reused concepts from the core ontologies SPO, EO and SysSwO, and
also from the following domain ontologies: Reference Software Requirements Ontology (RSRO)
(FALBO; NARDI, 2008), Configuration Management Process Ontology (CMPO) (CALHAU;
FALBO, 2012), Reference Ontology on Software Testing (ROoST) (SOUZA; FALBO; VIJAYKU-
MAR, 2017), Quality Assurance Process Ontology (QAPO) (RUY, 2017), and Reference Ontology
of Software Defects, Errors, and Failures (OSDEF) (DUARTE et al., 2018a). In the following, we
present the SEON fragments reused to develop Continuum.

2.2.2.1 SPO, EO, and SysSwO

Figure 16 shows a fragment of SEON representing concepts from the three core ontolo-
gies relevant to this work. In the figure and in the following ones referring to SEON fragments,
red double-dashed horizontal lines separate the layers of SEON architecture, describing depen-

Chapter 2. Background 49

dency between the layers, while black single-dashed lines separate concepts from different
ontologies at the same layer. Concepts represented in soft gray are from UFO, in yellow belong
to EO, those in green are from SPO, and in light blue are from SysSWO. In the text, SEON
concepts are presented in underlined italics, UFO concepts are shown in italics.

Figure 16 – A EO, SPO, and SysSWO fragment.

An Organizational Role is a Social Role recognized by the Organization, assigned to
Agents when they are hired, included in a team, allocated or participating in activities. Project
manager, designer, and programmer are examples of Organization Roles existing in an Organi-
zation.

A Team Member is a Person that plays an Organizational Role in a particular Team. A
Team can be related to a Project (Project Team), e.g., the development team of a particular project
at Software Organization, or to an Organization (Organizational Team), e.g., the marketing
team of Software Organization. The allocation of a Team Member to play an Organizational
Role in a Team is made through the social relation Team Membership. For example, a team
membership can allocate John as a team member to play the programmer organizational role
in the development team of a particular project in a software organization.

In the software domain, a Software Project is a Project related to software development
or maintenance. An Agent interested in a particular Software Project is a Project Stakeholder.

Chapter 2. Background 50

It can be a Project Person Stakeholder (e.g., the project manager) or a Project Team Stakeholder
(e.g., the project development team).

An important distinction in SPO is between Intended and Performed Project Process. The
former refers to a process intended to be performed in the project, i.e., the process planned
for that project. The latter refers to the process as actually executed in the project. Therefore,
an intended process is understood as an intention to execute certain types of actions; in its
turn, a performed process is understood as a complex action (an “occurrence”) which may not
correspond to the original intention.

An Intended Project Process can be a General Intended Project Process, which refers to the
whole process defined for a project, or a Specific Intended Project Process, which is defined with
a specific purpose for a project. The Project Management and the Requirements Engineering
processes defined for a particular project in a software organization are examples of Specific
Intended Project Process. The whole process comprising the Project Management, Requirements
Engineering, Design, Implementation, and Test specific processes defined to that project is
an example of General Intended Project Process. A Specific Intended Project Process is composed
of a set of Intended Project Activities that support the achievement of the process purpose.
For example, Requirements Elicitation and Requirements Documentation could be intended
activities of the Requirements Engineering intended process.

Analogous to Intended Project Process, a Performed Project Process can be a General
Performed Project Process or a Specific Performed Project Process, which is composed of Performed
Project Activities. Performed processes and activities can be caused by intended processes and
activities. For example, the intended activity Requirements Elicitation defined to a particular
project could cause the execution of the Requirements Elicitation activity in that project, in
the sense that the intention to perform an activity can result in performing the activity. A
Specific Performed Project Simple Process is a Specific Performed Project Process that contains
only activities while a Specific Performed Project Composite Process is a Specific Performed Project
Process that contains two or more Specific Performed Project Process6.

A Project Stakeholder can participate in or be in charge of a Performed Project Activity.
The relation in charge of indicates that the Project Stakeholder was responsible for performing
the Performed Project Activity. On the other hand, the relation participates in means that the
Project Stakeholder contributed with the execution of the Performed Project Activity. For example,
in a particular project, the system analyst can have been in charge of Requirements Elicitation,
while the client can have participated in that activity.

Performed activities create, use or change Artifacts such as Software Products, Software
Items, Information Items and Documents. Software Product refers to one or more computer
programs together with any accompanying auxiliary items, such as documentation, delivered
6 A Specific Performed Project Simple Process and Specific Performed Project Composite Process were developed in

this work to support Continuum’s ontologies.

Chapter 2. Background 51

under a single name and ready for use (e.g., Eclipse IDE and MSWord). Software Item is a piece
of software considered an intermediary result of the software process (e.g., a program, script,
and database schema). Code is a Software Item representing a set of computer instructions and
data definitions expressed in a programming language or in a form output by an assembler,
compiler, or another translator.

Information Item refers to relevant information for human use in the software process
context (e.g., a bug reported and a documented requirement). Document is any written or
pictorial, uniquely identified, information related to the software process, usually presented
in a predefined format (e.g., a Design Specification). Finally, Documents can describe other
Artifacts (e.g., a Design Specification describes a software architecture).

Software System is a Software Item representing a set of computer instructions and data
definitions expressed in a programming language or in a form output by an assembler, compiler,
or other translator. A Software System is composed of one or more Program. A Program is a
Software Item which aims at producing a certain result through execution on a computer, in a
particular way, given by the Program Specification. A Program is constituted by Code, but it is
not identical to code. Code can be changed without altering the identity of its program, which is
anchored to the program’s essential property: its intended specification (Program Specification).
A Loaded Software System Copy is a Disposition that is a materialization of a Software System,
inhering in a Machine.

Resource is a Software Product or Hardware Equipment (e.g., a smartphone being used by
a Testing activity) when used by a process activity. A Software Resource and Hardware Resource
occur when a Software Product and Hardware Equipment, respectively, are used as Resource of
some process activity. Figure 17 shows a fragment of SPO presents the Resource concepts.

Figure 17 – A SPO fragment focuses on Resource concepts.

2.2.2.2 Configuration Management Process Ontology (CMPO)

CMPO aims at representing the activities, artifacts and stakeholders involved in the
software Configuration Management Process. Since CMPO can be applied in the context of
several SE subdomains, it describes some general notions applicable for diverse SEON concepts.

Chapter 2. Background 52

Figure 18 shows a fragment of SEON with CMPO, using a UML class diagram. Concepts
represented in purple are belong to CMPO, those in green are to SPO, in light blue to SysSWO.

Figure 18 – CMPO fragment.

Configuration Management Process is a Specific Performed Project Process for conducting
the activities related to software configuration management, ensuring the completeness and
correctness of software Configuration Items. It is composed of: Change Control and Baseline
Establishment activities. A Change Control is a Performed Composite Activity for formally
controlling the modification of Configuration Items, in a process of requesting, evaluating,
changing and reviewing. A Change Control is composed of following activities: Change Accom-
plishment and Change Request Closing. A Change Request Closing is Performed Simple Activity
for closing a reviewed and approved Change Request.

Change Implementer is a Stakeholder responsible for implementing a change in the
Configuration Items under Version Control in a Change Accomplishment (Performed Composite
Activity) activity. A Change Accomplishment is a Composite Performed Project Activity that

Chapter 2. Background 53

performs authorized changes in a set of Configuration Items under version control. A Configura-
tion Item is an object whose configuration is being managed, i.e., artifacts, process descriptions,
tools under Configuration Management.

Change Accomplishment activity is composed of the following Performed Composite
Activities: Checkout and Checkin. For example, a developer creates or updates a source code
that implements a project’s requirement. Checkout is an activity for accessing defined versions
of a Configuration Item (CI) from a version control repository, usually for changing purposes,
creating an Artifact Copy in an environment while a Checkin is an activity for including new
Versions of Configuration Items into a Source Repository. Artifact Copy is a copy of an artifact
(e.g., code or database script) that is under version control. A Source Repository is a Loaded
Computer System Copy (e.g., an instance of GitLab installed in a Continuous Integration Server)
whose purpose is to handle the changes of an Artifact Copy (e.g., copy of a source code).

Finally, a Baseline Establishment is a Performed Composite Activity for establishing a
Baseline embracing a planned set of Configuration Items’ Versions. A Baseline is an Information
Item packaging a set of Configuration Items’ Versions at a specific time in the product’s life (for
product delivery or to establish a relevant point in the Project).

2.2.2.3 Reference Ontology on Software Testing (ROoST)

ROoST is partially integrated to SEON, representing the activities, artifacts, and stake-
holders involved in the Software Testing Process, considering only dynamic tests. Since the
testing process is a technical process in software development, ROoST shares concepts with
other SEON networked ontologies. Figure 19 shows a fragment of SEON with ROoST and
SysSwO. The concepts represented in green belong to SPO, and those in light blue to SysSwO,
light red belongs to ROoST.

Testing Process is a Specific Performed Project Process for planning and executing the
dynamic testing activities for the software in development. A Testing Process has different
Level-Based Testing activity (e.g., Unit Testing, System Testing, and Integration Testing). A
Level-Based Testing activity is composed of the following Performed Project activities: Test Coding
and Test Execution.

A Test Coding is a Simple Performed Activity for implementing the Test Cases as Code
artifacts (Test Code) to be used during Test Execution. A Test Case is a Document containing the
input data, expected results, steps, and general conditions for testing some situation regarding
a Code To Be Tested. A Test Code is a Code produced for implementing a Test Case while a Code
To Be Tested Portion of Code (software module) to be tested by a Test Case.

A Performed Test Execution is a Performed Simple Activity for effectively executing the
Test Cases, by running the Test Code and producing the Test Results. A Test Result is a Document,
containing the actual results, that describes Fault (Runtime Defect), and identified issues relative

Chapter 2. Background 54

Figure 19 – ROoST fragment.

to a Test Case execution.

A Test Process is composed of the Level-Based Testing. A Level-Based Testing is a Per-
formed Composite Project Activity consisting of testing activities and classified by the different
levels they can be performed that can use a Testing Environment. Unit Testing is a Level-based
Testing focusing on the unit or the individual components that have been developed, ensuring
that the unit functions correctly in isolation. A System Testing is a Level-based Testing focusing
on the behavior of the entire system, ensuring that it is in conformance with its requirements.
An Integration Testing is a Level-based Testing focusing on larger components, ensuring that a
collection of units functions as desired.

A Testing Environment is a set of resources (Test Hardware Resources and Test Software
Resources) that are used to perform testing activities of a Project. A Test Hardware Resource is a
Hardware Resource (e.g., a computer) while a Test Software Resource is a Software Resource (e.g.,
a continuous integration application) that comprises the Testing Environment of a Software
Project.

2.2.2.4 Quality Assurance Process Ontology (QAPO)

QAPO aims at representing the activities, artifacts, and stakeholders involved in the
Quality Assurance Process. Since QAPO can be applied in the context of several SE subdomains,
it represents some general notions applicable for diverse SEON processes and artifacts. Fig-
ure 20 shows a fragment of SEON with QAPO and SPO, using a UML class diagram. Concepts
represented in orange belong to QAPO and those in green belong to SPO.

Quality Assurance Process is a Specific Performed Process for conducting the activities

Chapter 2. Background 55

Figure 20 – A QAPO fragment.

related to software quality assurance, assessing and assuring adherence of the performed
processes and produced artifacts to the applicable requirements. A Quality Assurance Process
is composed of one or more Adherence Evaluation activities for objectively evaluating the
adherence of processes and products to the applicable requirements, registering the identified
issues, creating an Evaluation Report. An Evaluation Report is a Document describing the
evaluation results and identified issues.

An Adherence Evaluation is composed of the Performed Project Activities: Artifact Eval-
uation and Noncompliance Identification. An Artifact Evaluation is an activity for objectively
evaluating the adherence of products and deliverables (Evaluated Artifact to the applicable
requirements while an Noncompliance Identification is an activity for registering the noncom-
pliances identified in processes and artifacts in a Noncompliance Register. A Noncompliance
Register (e.g., a neglected activity in a process, a document wrongly specified) is an Information
Item describing a noncompliance (a failure or refusal to conform to an applicable requirement)
in a process or artifact, and related information to solve it.

2.2.2.5 Reference Ontology of Software Defects, Errors, and Failures (OSDEF)

OSDEF is a domain ontology that provides a conceptualization about defects, errors,
and failures in a software. Figure 21 shows a fragment of SEON with OSDEF, SysSWO, ROoSt,
and SPO, using a UML class diagram. Concepts represented in dark yellow belong to OSDEF,
those in green to SPO and those in light blue to SysSWO.

Failure is defined as an Event in which a program does not perform as intended, i.e.,
an event that hurts the goals of stakeholders. As Events, Failures are directly related with two
distinct Situations, the first one is the Situation that exists prior to the occurrence of that Failure
and that triggers the Failure. This Situation is represented in the ontology as a Vulnerable State

Chapter 2. Background 56

Figure 21 – A OSDEF fragment.

and denotes the situation that activates the Disposition that will be manifested in that Failure
(DUARTE et al., 2018a). The second one is the Situation that is brought about by the occurrence
of the Failure, which is defined in OSDEF as a Failure State (DUARTE et al., 2018a).

The occurrence of the failure transforms a portion of reality to another: in its pre-
situation, the software is executing, it has the disposition to manifest the failure but the failure
has not occurred yet, since the disposition was not yet activated; in its post-situation, the
(failure) event was triggered and reality was “transformed” to a situation in which the software
is not executing its functions (at least not as intended by stakeholders).

A Defect is a type of Vulnerability that can exist in Programs (DUARTE et al., 2018a).
Some Defects can (accidentally) refrain from being manifested across software executions.
When a Defect is manifested in a Failure, we term that Defect a Fault (Runtime Defect) (DUARTE
et al., 2018a).

2.2.3 Reference Software Requirements Ontology (RSRO)

RSRO aims at being a reference for software requirements notions. RSRO is centered in
the conception of requirement as a goal to be achieved and addresses the distinction between
functional and non-functional requirements, how requirements are documented in proper
artifacts, among others. Since RSRO provides the technical concepts for requirements, it is
reused in other SEON networked ontologies. A Document composed of Requirements Artifacts
that describe Requirements is said a Requirements Document (e.g., a Requirements Specification).

Chapter 2. Background 57

Requirements are goals to be achieved, representing a condition or capacity needed for the user
(e.g., create service order). Figure 22 presents the RSRO fragment relevant to this work.

Figure 22 – A RSRO fragment.

Finally, a Functional Requirement is a Requirement defining a function to be available in
the product being built (e.g., The need for the system to control client orders) and a Non-Func-
tional Requirement is a Requirement defining criteria or capabilities for the product (e.g., Being
accessible from some specific browsers, Being in conformance with a standard, and Performing
a function in an established time).

2.3 Semantic Integration

Integration can be defined as the act to incorporate components into a complete set,
conferring it some expected properties. The components are combined in a way to form a
new system constituting a whole and creating synergy (IZZA, 2009). Interoperability, in turn,
is the ability of application components to exchange or share data and services (WEGNER,
1996). Interoperability provides two or more business entities with the ability of exchanging or
sharing information and of using functionality of one another in a distributed and heterogeneous
environment. It preserves component systems as they are (VERNADAT, 2007). In this work, the
term integration is adopted in broader sense, covering both integration and interoperability.

For integrating applications and properly supporting software-related processes, it is

Chapter 2. Background 58

necessary to create a coherent information system architecture in which the various software-
related processes, data storages and applications are integrated so that they appear seamless
from the point of view of the individual user (VERNADAT, 2007).

Integration is a complex task (THEMISTOCLEOUS; IRANI, 2004). Organizations have
used an increasing number of applications to support software processes (FONSECA; BARCEL-
LOS; FALBO, 2016). In general, these applications are based on different models, computing
languages, platforms, and operating systems, which leads to integration challenges.

Integration can address different layers, namely: data, service, and process (IZZA,
2009). Data integration deals with moving or federating data between multiple data storages.
Integration at this layer is based on bypassing application logic and manipulating data directly
in the data store (e.g., a database, through its native interface). Message or service integration
addresses messages exchange between the integrated applications. Any tier of an application,
such as GUI, application logic or database, can originate or consume the message. Process
integration views enterprises as a set of interrelated processes and it is responsible for handling
message flows, implementing rules and defining the overall process execution. It constitutes
the most complex integration approach.

Finally, integration can also consider different levels (IZZA, 2009). Integration at syn-
tactical level addresses the way the data model and operation signatures are written down.
Integration at semantic level, in turn, deals with the intended meaning of the concepts in a data
schema or operation signature. Semantic integration requires us to contrast and harmonize the
conceptualizations underlying applications to be integrated. In this setting, ontologies have
an important role to play. For example, Calhau & Falbo (2010) proposed an Ontology-Based
Approach for Semantic Integration (OBA-SI) that deals with the integration of applications at
the data, services and process layers using ontologies to assign semantics to the structural and
behavioral conceptual models of applications.

2.4 Federated Information Systems

The architecture of the Immigrant approach proposed in this work is inspired by some
notions related to Federated Information Systems (FIS). A Federated Information System (FIS)
is a set of distinct and autonomous information system components, the participants of a
federation. Participants in first place operate independently, but have possibly given up some
autonomy to participate in a federation (BUSSE et al., 1999). Figure 23 presents an example of
the general three-tier architecture of a FIS.

As it can be observed in Figure 23, applications and users access a set of heterogeneous
data sources through a federation layer. A federation layer is a software component that offers
a uniform way to access data stored in different data sources. The uniformity is reached
with a specific interoperation strategy, e.g. this layer can offer a federated schema, a uniform

Chapter 2. Background 59

Figure 23 – A general three-tier architecture of a FIS (BUSSE et al., 1999).

query language, or a uniform set of source and content descriptions as metadata sets. The data
sources are usually integrated into the infrastructure with wrappers that resolve some technical
differences.

There are several types of FIS (BUSSE et al., 1999): Loosely Couple Information Systems,
Federated Database Systems, and Mediator-based Information Systems. We are focused on the
first two types of FIS. A Loosely coupled information system does not offer a federated schema,
but only a multi-database query language to access the components. This has the advantage
that components do not give up autonomy to participate in a federation. But no location and
schema transparency is offered (the user has to address the respective component and the
particular element in the schema of the component within her/his queries).

The federation layer is independent of the logical design of components. Since no global
schema exists, changes of component schemas do not affect the system. But the missing logical
integration leads to various dependencies between applications and component systems with
all the negative effects on evolution known from two-tier systems (BUSSE et al., 1999).

A Federated Database system (FDBS) provides classical database system functionality.
This includes read-and-write access for data management. The term ‘database’ indicates the
relationship to classical database systems: components of federated database systems are
structured sources, which are accessed through query languages (BUSSE et al., 1999).

Finally, Federated database systems are tightly coupled information systems. They are
built bottom-up applying some schema integration techniques. The federated schema has to
fulfill the requirements of completeness, correctness, minimality, and understandability, which
is only possible with collection or fusion integration.

Chapter 2. Background 60

2.5 Final Considerations

This chapter presented the necessary background for this research. It was divided into
four topics. The first one introduced concepts related to Continuous Software Engineering,
presented some works that provide an overview of CSE by means of its stages, processes, activ-
ities, practices, and discussed the CSE processes that are the target of this work: Agile Software
Development, Continuous Integration, Continuous Delivery, and Continuous Deployment.
This background is particularly important to understand the conceptualization provided by
Continuum.

The second topic was dedicated to presenting concepts related to Ontology andOntology
Network that were used to ground and create Continuum. Thus, we introduced fragments of
UFO and SEON that were reused to create the Continuum’s networked ontologies.

In the third topic, we explored the foundations of semantic integration, pointed out
different integration layers (data, service, and process), and the need to address semantics.
Finally, in the last topic, we introduced concepts related to Federated Information Systems,
which were used to define the architecture of Immigrant, our ontology-based approach to
enable data-driven software development.

In the next chapter, we present Continuum, the ontology network developed in this
work and used as a basis for Immigrant.

61

3 Continuum - A Continuous Software En-

gineering Ontology (sub)Network

As it was, then again it will be; though the course may change sometimes, rivers

always lead to the sea.
Led Zeppelin, Ten Years Gone

This chapter presents the Continuous Software Engineering ontology (sub)network pro-
posed in this work. It is related to the Design Cycle, since it proposes the ontologies that
will be used as a basis for Immigrant (the proposed approach). The chapter is organized as
follows: Section 3.1 provides and overview of Continuum and its architecture and discusses
how Continuum was designed for assuring the necessary grounding for the networked ontolo-
gies. Section 3.2, Section 3.3, and Section 3.4 present the Scrum Reference Ontology (SRO), the
Continuous Integration Reference Ontology (CIRO), and the Continuous Deployment Reference
Ontology (CDRO), respectively. Section 3.5 discusses some related work and how Continuum
contributes to the Continuous Software Engineering domain. Last, Section 3.6 presents the
final considerations of the chapter.

3.1 Continuum Overview

Continuous Software Engineering (CSE) is a complex domain that involves Business,
Software Engineering, Operations, and Innovation domains to deliver products or services that
fulfill the customers’ demand. Aiming to provide knowledge about CSE, we have worked on an
ontology network, called Continuum1, which aims at representing the conceptualization related
to the processes involved in CSE. In the SE big picture, CSE appears as a (large) subdomain
involving other subdomains. Thus, we developed Continuum as a subnetwork of SEON (RUY et
al., 2016). In this sense, we reused some elements of SEON (such as its architecture, integration
mechanisms, and networked ontologies) to develop Continuum.

Continuum can be used as a reference conceptual model to support different knowledge-
related and interoperability solutions, such as communication, learning, standards harmo-
nization, semantic documentation, and applications integration, among others. In this work,
Continuum is used to aid data integration. It provides the conceptualization necessary to sup-
port semantic integration defined in Immigrant, i.e., Continuum has the conceptual models and
axioms that are important to create some components of Immigrant (e.g., federated database
1 Continuum: something that changes in character gradually or in very slight stages without any clear dividing

points, from https://dictionary.cambridge.org/dictionary/english/continuum.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 62

and federated services) and support semantic data integration aiming at data-driven software
development.

Figure 24 shows the architecture of the current version of Continuum. Being a subnet-
work of SEON, Continuum has the same three-layer architecture used in SEON. Thus, UFO
(GUIZZARDI, 2005; GUIZZARDI et al., 2022) grounds core ontologies that, in turn, are used
to define domain-specific ontologies. Domain-specific concepts can also be directly grounded
in UFO. In Figure 24, each circle (network’s node) represents an ontology. We represent only
SEON ontologies directly used to develop the Continuum networked ontologies as presented
in Chapter 2. Arrows denote the dependency relationships between networked ontologies,
indicating that concepts from the target ontology are reused by the source ontology.

Figure 24 – Continuum’s architecture.

Continuum’s domain ontologies proposed in this work are the CSE Domain Ontologies
shown in Figure 24. They were developed following SABiO (FALBO, 2014), a systematic ap-
proach that guides the development of reference ontologies. As proposed in SABiO, functional
requirements were established by means of competency questions, which are questions that
the ontology must be able to answer and are used as a basis to build the ontology conceptual
model.

The following sections present the three networked ontologies developed so far: Scrum
Reference Ontology (SRO), which addresses aspects related to agile software development with
Scrum, and Continuous Integration Reference Ontology (CIRO), which regards practices and
other concepts related to continuous integration, and The Continuous Deployment Reference
Ontology (CDRO), which concerns aspects related to continuous deployment. The following

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 63

conventions are used: SRO, CIRO, and CDRO concepts are written in bold, SEON concepts are
written in underlined italics, UFO concepts are shown in italics, and examples are shown with
underline. The colors used in models indicate the (sub)ontology to which a concept belongs.
The black single-dashed horizontal lines separate concepts from different ontologies at the
same layer. Red double-dashed lines separate the layers of SEON architecture. In the conceptual
models, for better visualization, we omit UFO concepts that ground SEON concepts already
presented in Chapter 2.

3.2 Scrum Reference Ontology (SRO)

The Scrum Reference Ontology (SRO) consolidates reference literature on the topic, using
as main sources the works of Schwaber & Beedle (2002), Cohn (2010), Schwaber & Sutherland
(2011), Rubin (2012), Satpathy et al. (2016). SRO is organized into five subontologies:

• The Scrum Process subontology, which addresses the events that occur in a project that
adopts Scrum, such as the Scrum ceremonies;

• The Scrum Stakeholders subontology, which concerns the teams, agents, and roles involved
in a Scrum project;

• The Scrum Stakeholders Participation subontology, which deals with the participation of
stakeholders in the events of a Scrum project;

• The Product and Sprint Backlog subontology, which addresses aspects related to the
requirements established in a Scrum project and activities planned to materialize them;

• The Scrum Deliverables subontology, which focuses on the results produced during a
Scrum project.

Figure 25 shows an overview of SRO. In the figure, each package inside the SRO package
represents a subontology of SRO. A Dependency relationship indicates that one (sub)ontology
reuses concepts from another. This convention is also used in the other ontologies presented in
this chapter.

3.2.1 Scrum Process subontology

The Scrum Process subontology aims to answer the following competency questions:

• CQ01. Which processes and activities make up a Scrum process?

• CQ02. In a Scrum project, onwhich other activities/processes did a certain activity/process
depend?

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 64

Figure 25 – SRO’s architecture.

• CQ03. How many sprints were performed in a Scrum project?

• CQ04. What ceremonies were performed in a sprint?

• CQ05. What development tasks were performed in a sprint?

• CQ06. When did a Scrum project start?

• CQ07. When did a Scrum project end?

• CQ08. When did a Scrum process start?

• CQ09. When did a Scrum process end?

• CQ10. When did a Scrum project activity start?

• CQ11. When did a Scrum project activity end?

CQ01 and CQ02 regard processes and activities involved in a project adopting Scrum.
They aim to provide knowledge about the Scrum process structure and the order in which its
subprocesses and activities occured. CQ03 to CQ05 concern information about a particular
project or sprint. For example, from CQ04 a Scrum master can identify whether a ceremony
was not performed in a sprint and thus can verify the reasons and act accordingly (RUBIN, 2012;
SATPATHY et al., 2016). Moreover, by answering these CQs for many projects, it is possible to
get consolidated information, such as the average number of sprints performed in projects of a
certain organization. CQ06 to CQ11 refer to temporal aspects (RUBIN, 2012; SATPATHY et al.,
2016). They provide information about processes and activities duration and allow for project
performance analysis. Figure 26 shows the Scrum Process subontology conceptual model. In
the figures depicting SRO conceptual models, a red double-dashed line separates SEON and
SRO concepts. This convention is also used in the other conceptual models presented in this
chapter.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 65

Figure 26 – Scrum Process Subontology.

Since Continuum was developed to support CSE data integration, each Continuum’s
ontology concerns events performed in the CSE context (e.g., activities carried out in a project,
people who carried out such activities, and results that were produced in the performed
activities). Because of this, in the Continuum ontologies, the verbs used to describe relationships
are in the past tense. After all, Immigrant integrates data about events that already occurred
in software projects. (The same convention was not applied in the reused SEON ontologies,
retaining their original terminology.We avoid changes in terminology to maintain compatibility
among Continuum and other works that used SEON.)

A ScrumProject is a Software Project that adopts Scrum in its process (ScrumProcess).
A Scrum Process is a General Performed Project Process (i.e., it is an overall process performed
in a project) composed of two types of Specific Performed Project Process: Product Backlog
Definition, which aims at defining and prioritizing the functionalities to be produced in the
Scrum Project, and two or more Sprints, which occur after the Product Backlog Definition
and aims at developing the product.

A Sprint is composed of following types of Performed Project Activities: Ceremonies
and Performed Scrum Development Tasks. The ceremonies that compose a Sprint are
PlanningMeeting,Daily StandupMeeting,ReviewMeeting, andRetrospectiveMeeting.
Dependency relations (depends on relation between Performed Project Activities) establish the
order in which these ceremonies occured. For example, Performed Scrum Development
Task depends on Planning Meeting, because a Performed Scrum Development Task
refers to the execution of a task planned in a Planning Meeting. Daily Standup Meeting, in
turn, depends on Performed Scrum Development Task, because a Daily Standup Meeting
occurs after the execution of the development tasks discussed in that meeting.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 66

3.2.2 Scrum Stakeholders Subontology

The Scrum Stakeholders subontology aims to answer the competency questions CQ12 to
CQ16:

• CQ12. What roles are involved in a Scrum project?

• CQ13. What teams are involved in a Scrum project?

• CQ14. Which roles are involved in a team in a Scrum project?

• CQ15. Who are the members of a team in a Scrum project?

• CQ16. Which role is played by a team member in a Scrum project?

CQ12 to QC14 focus on roles and teams involved in Scrum projects. CQ15 and CQ16,
in turn, allow identifying who is allocated to a certain team and the role he/she plays in that
team (SATPATHY et al., 2016). This information is important to identify the team members
of Scrum projects and avoid over-allocation to the same person. Moreover, when performing
new allocations, it is possible to look at allocation historical data to verify people’s profiles and
allocates them to play roles accordingly. The diagram of the Scrum Stakeholders subontology
is shown in Figure 27.

Figure 27 – Scrum Stakeholders Subontology.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 67

A Scrum Team Member is a Project Person Stakeholder interested in a Scrum Project.
A Scrum Team Member is allocated to a Scrum Team (a Project Team Stakeholder interested
in a Scrum Project) to play the Organizational Role of Product Owner Role, Scrum Master
Role or Developer Role. As explained in the Enterprise Ontology context (see Section 2.2.2),
Team Memberships allocate Team Members to Teams. Thus, Product Owner Membership
allocates a Project Person Stakeholder to play the Product Owner Role in a Scrum Team.
This Project Person Stakeholder is called Product Owner. For example, if John is allocated to
play a Product Owner Role in the Scrum Team 𝑠𝑡 of the Scrum Project 𝑠𝑝 , it means that
John is the Product Owner in 𝑠𝑡 . Analogously, Scrum Master Membership and Developer
Membership allocate, respectively, a Scrum Master and a Developer to a Development
Team. The Development Team is part of a Scrum Team and is responsible for developing
the product and intermediary results.

A Product Owner can be a Product Owner Client or a Product Owner Project
Stakeholder. The former occurs when the Client himself is a Scrum Team Member and
plays the Product Owner Role. The latter occurs when another person represents theClient’s
interests by playing the Product Owner Role in the Scrum Project.

3.2.3 Scrum Stakeholders Participation Subontology

The Scrum Stakeholders Participation subontology accounts for the participation of
stakeholders in a Scrum project. It focuses on the stakeholders involved in processes and
activities of a Scrum project, addressing questions CQ17 to CQ22 below:

• CQ17. Which stakeholders are in charge of the ceremonies of a Scrum project?

• CQ18. Which stakeholders participate in the ceremonies of a Scrum project?

• CQ19. Which stakeholders are in charge of development tasks of a Scrum project?

• CQ20. Which stakeholders participate in development tasks of a Scrum project?

• CQ21. Which stakeholders are in charge of processes of a Scrum project?

• CQ22. Which stakeholders participate in processes of a Scrum project?

This information helps analyze the participation of stakeholders in a project and verify
team members’ performance (e.g., by identifying the development tasks a team member per-
formed and the task’s duration) (SCHWABER; BEEDLE, 2002; SCHWABER; SUTHERLAND,
2011; RUBIN, 2012). The subontology also provides knowledge about the roles involved in the
processes and activities of a Scrum project. Figure 28 shows the subontology diagram.

To address the involvement of stakeholders in processes and activities of a Scrum
project, the subontology focuses on the is in charge of and participates in relations defined

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 68

Figure 28 – Scrum Stakeholders Participation Subontology.

between stakeholders (Project Stakeholders) and activities (Performed Project Activity) in SPO.
As discussed in Section 2.2.2, the former states that one or more stakeholders are responsible
for performing one or more activities. The latter establishes that stakeholders contribute to the
execution of one or more activities. The equivalent relationships between stakeholders and
process are derived from the relationships between stakeholders and performed activities and
the whole-part relationship between activities and process.

A Product Owner is responsible for the Product Backlog Definition, Planning
Meeting, Review Meeting, and Retrospective Meeting, while a Scrum Master and a
Development Team participate in these process and ceremonies. The Client also participates
in the Product Backlog Definition.

A Scrum Master is responsible for the Daily Stand up Meeting, in which Develop-
ers participate. Finally, Developers are responsible for or participate in Performed Scrum
Development Tasks.

The model depicted in Figure 28 represents the stakeholders (Developer, Scrum
Master, and Product Owner) involved in Scrum activities and subprocess. The respective
Organizational Roles played by these stakeholders (Developer Role, Scrum Master Role,
and Product Owner Role) can be seen in Figure 28 and represent the roles involved in Scrum
activities and subprocess (e.g., the Scrum Team Member in charge of a Performed Scrum
Development Task is a Developer, i.e., he or she plays the Developer Role).

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 69

3.2.4 Product and Sprint Backlog Subontology

The Product and Sprint Backlog subontology focuses on aspects related to the require-
ments established in a Scrum project. It aims to answer the following competency questions:

• CQ23. What user stories were defined in the product backlog of a Scrum project?

• CQ24. What is the priority of a user story in the product backlog of a Scrum project?

• CQ25. How is a user story broken down into others?

• CQ26. What acceptance criteria were established for a user story?

• CQ27. Which user stories were selected for a sprint backlog?

• CQ28. What development tasks were planned to materialize a user story?

• CQ29. What development tasks were performed to materialize a user story?

• CQ30. What development tasks were planned for a sprint?

• CQ31. What development tasks were performed in a sprint?

CQ23 to CQ25 regard the user stories defined in a Scrum project and recorded in its
product backlog. This information is necessary to know the project scope and the priority
to address its requirements (typically in the form of user stories). Moreover, it is possible to
identify user stories decomposed into others to ease development tasks and project management
(SCHWABER; BEEDLE, 2002). CQ26 provides information about criteria that must be considered
to evaluate the results produced when materializing a user story. This information is important
to quality assurance. CQ28 and CQ30 provide information about tasks planning, while QC29
and QC31 concern tasks execution. By answering these questions, it is possible to track planned
and performed tasks and evaluate the adherence between them. CQ27 allows identifying the
user stories to be materialized during a sprint. By relating this information with answers to
CQ31 and CQ29 it is possible to verify whether the user stories selected to be addressed during
a sprint were materialized in that sprint. Figure 29 shows the diagram of the Product and Sprint
Backlog subontology.

A Product Backlog is created during the Product Backlog Definition. It is a Doc-
ument that contains the requirements of the product to be developed in the Scrum Project.
These requirements are described by means of User Stories. Therefore, a User Story is a
Requirement Artifact that describes Requirements in a Scrum Project. For example, (US1) I, as
a Traveler, want to pay my travel ticket. A User Story can be an Atomic User Story, when it
is not decomposed in others (e.g., (US1.1) I, as a Traveler, want to pay my travel ticket with my
credit card; (US1.2) I, as a Traveler, want to pay my travel ticket with bank slip), or an Epic,
when it is composed of other User Stories (e.g., US1, which is composed of US1.1 and US1.2).

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 70

Figure 29 – Product and Sprint Backlog Subontology.

A User Story has two main properties (COHN, 2010): Importance and Complexity.
Importance defines how valuable for the organization the User Story is. Usually, the Product
Owner sets a number for it. The higher the number, the more valuable is a User Story for the
organization. Complexity defines how difficult, or complex, it should be for theDevelopment
Team to implement the User Story. The higher the effort, the more difficult it is for the User
Story to be materialized.

Each User Story has Acceptance Criteria, which are Requirements used to verify
whether the User Story was developed correctly and meets the client’s needs. An Acceptance
Criterion can be a Functional Acceptance Criterion (i.e., a Functional Requirement used to
verify whether the functionality addressed in theUser Storywas developed correctly) or aNon-
Functional Acceptance Criterion (i.e., a Non-Functional Requirement establishing a quality
criterion related to product characteristics or capabilities, such as usability and portability).
(AC1) The credit card must be valid and (AC2) The payment authentication is done in less than
10ms are, respectively, examples of Functional and Non-Functional Acceptance Criterion
related to US1.1.

During the Planning Meeting of a Sprint, the User Stories to be addressed in that
Sprint are selected from the Product Backlog. For each selected User Story, Intended
Scrum Development Tasks are planned. They describe the tasks needed to materialize each
User Story. The selected User Stories and the respective Intended Scrum Development
Tasks are recorded in the Sprint Backlog, a Document that describes the Sprint planning.

When the Planning Meeting is executed, Intended Scrum Development Tasks
causes Performed Scrum Development Tasks, which are the tasks actually performed to
materialize the User Stories. That is, the tasks planned to produce the User Stories lead to
the execution of tasks with that purpose.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 71

Intended Scrum Development Tasks defined in the Sprint Backlog but not exe-
cuted in the respective Sprint (i.e., without a respective Performed Scrum Development
Task) can be associated to the Sprint Backlog of next Sprints. Hence, an Intended Scrum
Development Task may be related to several Sprint Backlogs and, consequently, to several
Sprints.

3.2.5 Scrum Deliverables Subontology

The Scrum Deliverables subontology aims to answer the following competency questions:

• CQ32. Which types of deliverables are produced in a Scrum project?

• CQ33. What deliverables were produced in a Sprint?

• CQ34. Which deliverables were produced in a Scrum project?

• CQ35. Which user stories did a deliverable materialize?

• CQ36. Which deliverables were accepted in a Sprint?

• CQ37. Which development tasks produced accepted deliverables?

CQ32 to CQ35 provide information about deliverables produced during Scrum projects.
This information associated to information from CQ27 to CQ31 allows verifying project per-
formance and progress in terms of selected user stories, tasks performed to implement the
selected user stories and deliverables that materialized the user stories (SCHWABER; BEEDLE,
2002; SCHWABER; KEN, 2013). Moreover, by answering CQ31, CQ33, CQ36 and CQ37 it is
possible to evaluate work quality. For example, by relating information from CQ33 and CQ36 it
is possible to verify whether all the deliverables produced in a sprint were accepted or whether
there is a need for reworking to fix deliverables that were not accepted (SCHWABER; BEEDLE,
2002; SCHWABER; KEN, 2013). Furthermore, from CQ31 and CQ37 it is possible to identify
how much work has been spent on producing deliverables that end up “not accepted”. All this
information is useful to verify work quality and team productivity. The diagram of the Scrum
Deliverables subontology is shown in Figure 30.

Performed ScrumDevelopment Tasks are performed in one or more Sprints aiming
to produce Deliverables, which are Software Items that materialize User Stories addressed in
that Sprint (e.g., (i) a feature to search and select flight; (ii) a feature to pay the travel ticket
using credit card).

A Deliverable is evaluated considering the Acceptance Criteria related to the User
Stories it materializes.When theDeliverable is in conformancewith theAcceptance Criteria,
it is said an Accepted Deliverable and it means that it is “done”. Otherwise, it is a Not
Accepted Deliverable. For instance, the feature to pay the travel ticket using credit card,

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 72

Figure 30 – Scrum Deliverables Subontology.

which materializes US1.1 (I, as a Traveler, want to pay my travel with my credit card) is an
Accepted Deliverable if it is in conformance to both the Acceptance Criteria defined to
US1.1: (AC1) The credit card must be valid and (AC2) The payment authentication is done in
less than 10ms. Otherwise, it is a Not Accepted Deliverable.

A Performed ScrumDevelopment Task that produced onlyAccepted Deliverables
is said a Successfully Performed Scrum Development Task. On the other hand, a Non-
Successfully Performed Scrum Development Task is a Performed Scrum Development
Task that produced one or more Not Accepted Deliverables. User Stories related to Not
Accepted Deliverables can return to the Product Backlog to be addressed again in next
Sprints. For example, suppose that the feature to pay the travel ticket using a credit card,
which materializes US1.1 (I, as a Traveler, want to pay my travel with my credit card), was
produced by the Performed Scrum Development Task Build page to credit card payment
in the Sprint S1. Moreover, consider that US1.1 was not in conformance to the Acceptance
Criterion (AC2) The payment authentication is done in less than 10ms. That means that the
feature “to pay the travel ticket using credit card” is a Not Accepted Deliverable and, thus,
Build page to credit card payment is a Non-Successfully Performed Scrum Development
Task. Since the User Story US1.1 was related to a Not Accepted Deliverable, after S1 is
finished, US1.1 can return to the Product Backlog to be addressed in the Sprint S2 (or other)
in order to be materialized by an Accepted Deliverable.

Accepted Deliverables produced in a Sprint are integrated forming a more complex
and complete Software Item called Sprint Deliverable, which is the Sprint result delivered
to the client. The set of Sprint Deliverables produced in the Sprints of a Scrum Project
forms the Scrum Project Deliverable, which is the final deliverable of the Scrum Process.
Scrum Project Deliverable is a Software Product and, as such, it is composed of (i) one or
more Software Items (e.g., programs) working together for satisfying certain needs, and (ii)

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 73

other items to support the Software Product use or maintenance, such as documentation.

Some constraints not captured by the SRO conceptual models were defined by means of
axioms. As an example, in the context of the Product and Sprint Backlog and Scrum Deliverable
subontologies (Figures 29 and 30), Scrum Development Tasks Performed in a given Sprint
must be related to aUser Story from the Sprint Backlog of that Sprint. That is, if aPerformed
Scrum Development Task dt is performed in a Sprint s that has the Sprint Backlog sb and
dt is to produce a Deliverable d, then there is a User Story us in the Sprint Backlog sb that
is materialized by the Deliverable d. In a (many-sorted) first-order logic notation:

∀ 𝑑𝑡 : PerformedScrumDevelopmentTask, 𝑠 : Sprint, 𝑠𝑏 : SprintBacklog, 𝑑 : Deliverable

((isPerformedIn(𝑑𝑡, 𝑠) ∧ has(𝑠, 𝑠𝑏) ∧ isToProduce(𝑑𝑡, 𝑑)) →
∃𝑢𝑠 (isPartOf(𝑢𝑠, 𝑠𝑏) ∧ materializes(𝑑,𝑢𝑠)))

Another example, focusing on the Product & Sprint Backlog subontology (Figure 29),
constrains that a task performed to meet a user story is caused by a task planned to do that.
That is, if a Performed Scrum Development Task dt was performed to meet a User Story
us from the Sprint Backlog sb, then dt was caused by an Intended Scrum Development
Task idt specified in sb and planned to meet us:

∀ 𝑑𝑡 : PerformedScrumDevelopmentTask, 𝑢𝑠 : UserStory, 𝑠𝑏 : SprintBacklog,

𝑖𝑑𝑡 : IntendedScrum DevelopmentTask

((wasperformedtoMeet(𝑑𝑡,𝑢𝑠) ∧ isPartOf(𝑢𝑠, 𝑠𝑏) →
∃𝑖𝑑𝑡 (specifies(𝑠𝑏, 𝑖𝑑𝑡) ∧ isPlannedToMeet(𝑖𝑑𝑡,𝑢𝑠) ∧ causedBy(𝑑𝑡, 𝑖𝑑𝑡)))

3.2.6 Evaluation

For evaluating SRO, we performed Verification and Validation activities, as suggested in
(FALBO, 2014).We used two approaches to ontology evaluation: assessment by humans and data-
driven approach (BRANK; GROBELNIK; MLADENIC, 2005). First, we performed a verification
activity by means of expert judgment, in which we checked whether the concepts, relations,
and axioms defined in SRO are able to answer the competency questions. For each competency
question, we identified the elements of SRO which together are able to address the question.
Table 1 presents results produced during verification. In the second, we aimed to validate the
ontology by assessing whether it is suitable for representing real-world situations. For that,
we instantiated SRO using data extracted from a real project. Table 2 presents instantiations
recorded during validation. The instances were extracted from a project developed in the
software organization where we performed the study described in Section 4.2.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 74

Table 1 – SRO Verification.

Competence Question SRO Concepts, Properties, and Relationships

CQ01 Which processes and activ-
ities make up a Scrum pro-
cess?

Sprint and Product Backlog Definition
Scrum Process composed of Sprint
Scrum Process composed of Planning Meeting

CQ02 In a Scrum project, on which
other activities/processes
did a certain activity/process
depend?

Sprint depends on Product Backlog Definition
Performed Scrum Development Task depends on Planning Meeting
Daily Standup Meeting depends on Performed Scrum
Development Task
Review Meeting depends on Daily Standup Meeting
Retrospective Meeting depends on Review Meeting

CQ03 How many sprints were per-
formed in a Scrum project?

Scrum Process performed in Scrum Project
Scrum Process composed of Sprint

CQ4 What ceremonies were per-
formed in a sprint?

Sprints composed of Planning Meeting
Sprint composed of Daily Standup Meeting
Sprint composed of Review Meeting
Sprint composed of Retrospective Meeting

CQ05 What development tasks
were performed in a sprint?

Sprint composed of Performed Scrum Development Task

CQ06 When did a Scrum project
start?

Performed Process.startDate
Performed Project Process subtype of Performed Process
Scrum Process subtype of Performed Project Process
Scrum Process performed in Scrum Project

CQ07 When did a Scrum project
end?

Performed Process.endDate
Performed Project Process subtype of Performed Process
Scrum Process subtype of Performed Project Process
Scrum Process performed in Scrum Project

CQ08 When did a Scrum process
start?

Performed Process.startDate
Performed Project Process subtype of Performed Process
Scrum Process subtype of Performed Project Process

CQ09 When did a Scrum process
end?

Performed Process.endDate
Performed Project Process subtype of Performed Process
Scrum Process subtype of Performed Project Process

CQ10 When did a Scrum project ac-
tivity start?

Performed Activity.startDate
Performed Project Activity subtype of Performed Activity
Ceremony subtype of Performed Project Activity
Scrum Development Task subtype of Performed Project Activity

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 75

Table 1 – Continued from previous page

Competence Question SRO Concepts, Properties, and Relationships

CQ11 When did a Scrum project ac-
tivity end?

Performed Activity.endDate
Performed Project Activity subtype of Performed Activity
Ceremony subtype of Performed Project Activity
Scrum Development Task subtype of Performed Project Activity

CQ12 What roles are involved in a
Scrum project?

Scrum Role, Developer, Product Owner, and Client
Scrum Role subtype of Organizational Role
Developer subtype of Scrum Role
Product Owner subtype of Scrum Role
Scrum Master subtype of Scrum Role
Client subtype of Scrum Role

CQ13 What teams are involved in
a Scrum project?

Scrum Team and Development Team
Scrum Team subtype of Project Team Stakeholder
Development Team subtype of Project Team Stakeholder
Scrum Team composed of Project Team Stakeholder

CQ14 Which roles are involved in
a team in a Scrum project?

Development Team composed of Developer
Development Team composed of Scrum Master
Scrum Team composed of Development Team
Scrum Team composed of Product Owner
Scrum Team composed of Client

CQ15 Who are the members of a
team in a Scrum project?

Developer,Scrum Master, Product Owner,and Client
subtype of Scrum Team Member Product Owner Client
subtype of Client
Product Owner Stakeholder subtype of Product Owner

CQ16 Which role is played by a
team member in a Scrum
project?

Developer Role, Scrum Master Role, and Product Owner Role
subtype of Scrum Role
Developer Role is to play Developer
Scrum Master Role is to play Scrum Master
Product Owner Role is to play Product Owner

CQ17 Which stakeholders are in
charge of the ceremonies of
a Scrum project?

Scrum Master is in charge of Daily Standup Meeting
Product Owner is in charge of Product Backlog Definition,
Planning Meeting, Review Meeting, and Retrospective Meeting

CQ18 Which stakeholders partici-
pate in the ceremonies of a
Scrum project?

Development Team participate in Daily Standup Meeting
Scrum Team participate in Ceremony
Client participate in Product Backlog Definition

CQ19 Which stakeholders are in
charge of development tasks
of a Scrum project?

Developer is in charge of Performed Scrum Development Task

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 76

Table 1 – Continued from previous page

Competence Question SRO Concepts, Properties, and Relationships

CQ20 Which stakeholders partici-
pate in of development tasks
of a Scrum project?

Developer participates in Performed Scrum Development Task

CQ21 Which stakeholders are in
charge of processes of a
Scrum project?

Product Owner is in charge of Product Backlog Definition

CQ22 Which stakeholders partic-
ipate in of processes of a
Scrum project?

Client participates in Performed Scrum Development Task

CQ23 What user stories were de-
fined in the product backlog
of a Scrum project?

Product Backlog composed of User Story
Epic subtype of User Story
Atomic User Story subtype of User Story

CQ24 What is the priority of a user
story in the product backlog
of a Scrum project?

User Story.Importance

CQ25 How is a user story broken
down into others?

Epic composed of User Story

CQ26 What acceptance criteria
were established for a user
story?

User Story has Acceptance criterion
Functional Acceptance criterion subtype of Acceptance criterion
Non-Functional Acceptance criterion subtype of
Acceptance criterion

CQ27 Which user stories were se-
lected to a sprint backlog?

Sprint Backlog composed of User Story

CQ28 What development tasks
were planned to materialize
a user story?

Sprint Backlog composed of User Story
Sprint Backlog specifies Intended Scrum Development Task
Intended Scrum Development Task is planned to meet
Atomic User Story

CQ29 What development tasks
were performed to material-
ize a user story?

Sprint Backlog composed of User Story
Sprint Backlog specifies Intended Scrum Development Task
Intended Scrum Development Task is planned to meet
Atomic User Story
Performed Scrum Development Task caused by
Intended Scrum Development Task

CQ30 What development tasks
were planned for a sprint?

Sprint has Sprint Backlog.
Sprint Backlog specifies Intended Scrum Development Task.

CQ31 What development tasks
were performed in a sprint?

Performed Scrum Development Task performed in Sprint.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 77

Table 1 – Continued from previous page

Competence Question SRO Concepts, Properties, and Relationships

CQ32 Which types of deliverables
are produced in a Scrum
project?

Deliverable subtype of Software Item
Sprint Deliverable subtype ofDeliverable
Accepted Deliverable subtype of Deliverable
Not Accepted Deliverable subtype of Deliverable

CQ33 What deliverables were pro-
duced in a sprint?

Performed Scrum Development Task performed in Sprint
Performed Scrum Development Task produced
Deliverable
Successfully Performed Scrum Development Task produced
Accepted Deliverable
Non-Successfully Performed Scrum Development Task
produced Not Accepted Deliverable
Sprint Deliverable composed of Accepted Deliverable
Sprint produces Sprint Deliverable

CQ34 Which deliverables were
produced in a Scrum
project?

Sprint produces Sprint Deliverable
Scrum Process composed of Sprint
Scrum Process creates Scrum Project Deliverable
Scrum Project Deliverable composed of Sprint Deliverable

CQ35 Which user stories did a de-
liverable materialize?

Deliverable materializes Atomic User Story

CQ36 Which deliverables were ac-
cepted in a Sprint?

Successfully Performed Scrum Development Task subtype of
Performed Scrum Development Task
Successfully Performed Scrum Development Task produced
Accepted Deliverable

CQ37 Which development tasks
produced accepted deliver-
ables?

Successfully Performed Scrum Development Task
produced Accepted Deliverable

Table 2 – SRO Validation.

SRO Concepts Instance
Scrum Project ESPM Project.
Scrum Process Scrum process defined to the ESPM Project, comprising Prod-

uct Backlog Definition, Sprints, Ceremonies, and Performed
Scrum Development Tasks.

Product Backlog Definition Process performed at the beginning of the project (from Jan
2, 2018 to Jan 11, 2018) to define the Product Backlog.

Sprint Sprint S40, performed from Oct 21, 2019 to Nov 02, 2019.
Ceremony/Planning Meeting Planning meeting performed at the first day of S40, on Oct

21, 2019.
Ceremony/Daily Standup Meeting First daily meeting performed in S40, on Oct 22, 2019.
Ceremony/Review Meeting Review meeting performed in S40, on Nov 02, 2019..

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 78

Table 2 – Continued from previous page

SRO Concepts instance
Ceremony/Retrospective Meeting Retrospective meeting performed in S40, on Nov 02, 2019..
Scrum Team Member/Developer B. S. and T. M.2

Scrum Team Member/Scrum Master M. E.
Scrum Team Member/Product Own-
er/Product Owner Stakeholder

R. S.

Scrum Team Member/Client R. S.
Scrum Team The team composed of the Scrum TeamMembers cited above.
Developer Membership Allocation of B. S. to play the Developer role in the Scrum

team.
Scrum Master Membership Allocation of the M. E. to play the Scrum Master role in the

Scrum team.
Product Owner Membership Allocation of the R. S. to play the Product Owner role in the

Scrum team.
User Story/Epic US65: “I, as a public servant, I want to visualize my payslips”

Atomic User Story

US65.1: “I, as a public servant, I want to visualize my payslips
in an application to smartphone”.
US35.2: “I, as a public servant, I want to visualize my payslip
in a web browser”.

Product Backlog Product backlog containing the user stories defined to the
ESPM Project. It contains US65, US65.1, US65.2 among others.

Sprint Backlog Sprint backlog created during the planning meeting of sprint
S40. It contains US65, US65.1, US65.2, among others

Acceptance Criterion/ Functional Accep-
tance Criterion

AC1 (related to US65.1): The payslip to be shown is deter-
mined by the month and year informed by the public servant.

Acceptance Criterion/ Non-Functional Ac-
ceptance Criterion

AC2 (related to US65.1): A payslip should appear in 500 mil-
liseconds.

Intended Scrum Development Task Task “Create payslip report functionality in mobile app”
planned to implement the user story US65.1 during S40

Performed Scrum Development Task/Suc-
cessfully Performed Scrum Development
Task

Task “Create payslip report functionality in the mobile app”,
performed during S40 to implement the user story US65.1 and
that produced the accepted deliverable below

Deliverable/Accepted Deliverable Functionality “Payslip report” in the mobile app, resulting
from the implementation of US65.1.

Performed Scrum Development Task/Non-
Successfully Performed Scrum Develop-
ment Task

Task “Create payslip report in the web application”, per-
formed during S40 to implement the user story US65.2 and
that produced the not-accepted deliverable below.

Deliverable/Not Accepted Deliverable Functionality “Payslip report” in the web application, result-
ing from the implementation of US65.2, and that was not
accepted due to failure.

2 The names of Individual project participants were omitted in favor of initials of privacy. Their names were
replaced by characters from TV Show called How I Met your mother.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 79

Table 2 – Continued from previous page

SRO Concepts instance
Sprint Deliverable The set of accepted functionalities developed during the S40

(which includes “Paylist report” in the mobile app, among
others), incorporated to the software version delivered in S39

Scrum Project Deliverable SmartCity, the software product resulting from ESPM project.

3.3 Continuous Integration Reference Ontology (CIRO)

The Continuous Integration Reference Ontology (CIRO) consolidates reference literature
about Continuous Integration (CI), using as main sources (FOWLER, 2006; DUVALL; MATYAS;
GLOVER, 2007; HUMBLE; FARLEY, 2010; STÅHL; BOSCH, 2014; SHAHIN; BABAR; ZHU, 2017;
STARON et al., 2018). CIRO is organized into four subontologies, following the architecture
depicted in Figure 31:

• The Continuous Integration Process subontology: which presents an overview of the CI
process, identifying the main events that occur in this context, including continuous
build, continuous test, and continuous inspection, each of which is covered in detail in a
corresponding subontology.

• The Continuous Build Process subontology: which addresses the main activities, roles,
software artifacts, and applications used to implement a continuous and automatic
building process in CI context. In addition, this subontology presents the roles that a
software artifact performs when it is built.

• The Continuous Test Process subontology: which introduces main activities, applications,
and software artifacts used to implement a continuous and automatic testing process in
the CI context. In addition, this subontology describes the roles that a software artifact
under testing can perform in the CI context.

• The Continuous Inspection Process subontology: aims at representing main activities,
artifacts, roles, and applications involved in a continuous and automatic inspection
process in the CI context.

The next section presents an extension of CMPO that provides conceptualizations
aligned with the Git philosophy necessary to develop CIRO.

3.3.1 Extension of the Configuration Management Process Ontology (CMPO)

The original version of CMPO (CALHAU; FALBO, 2012) is suitable for configuration
management processes aligned to the Subversion (a.k.a. SVN) philosophy. Thus, we need to

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 80

Figure 31 – CIRO’s architecture.

make some changes to turn CMPO suitable for the CSE context. The changes made aimed to
address configurationmanagement processes aligned with the Git philosophy (CONSERVANCY,
2023). The changes aimed to make CMPO able to properly represent check in and check out
situations present in the way software is developed nowadays. These changes were necessary
mainly to develop CIRO. Figure 32 presents a CMPO fragment focusing on Checkout.

Figure 32 – CMPO fragment focusing on Checkout.

Checkout activity is composed of the following Performed Simple Activities: Branch
Creation, Branch Switch, and Artifact Checkout. Branch Creation is an activity for creating a

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 81

Branch in a Source Repository. A Branch is a Collective of the Artifacts in a Source Repository.
Branch Switch is an activity for switching between branches in a source repository while
Artifact Checkout is an activity to create or update a Branch with Artifact Copy. Figure 33
presents a CMPO fragment focusing on Checkin.

Figure 33 – CMPO fragment focusing on Checkin.

Checkin activity is composed of the following Performed Simple Activities: Check Conflict,
Resolve Conflict, Commit Artifact Copy, and Delete Branch. Check Conflict is an activity that
verifies if there are Conflicts between an Artifact Copy in a Source Branch with a version of it in
a Target Branch. A Source Branch is a Role that a Branch assumes when there is a new version
or a new Artifacts Copy is created and desire to save such Artifacts Copy in other Branch (Target
Branch), after a Checkin activity. A Conflict represents a difference of content in a same region
of an Artifact Copy. An Artifact Copy with Conflict is created when a Conflict is identified while
an Artifact Copy without Conflict when a Conflict was not identified.

Finally, Resolve Conflict is an activity that allows a Change Implementer to fix a Conflict
in an Artifact Copy with Conflict. An Artifact Copy without Conflict is created when all Conflicts
are resolved. A Commit Artifact Copy is an activity that sends an Artifact Copy without Conflict
to a Target Branch. Finally, Delete Branch is an activity that removes a Source Branch in a Source
Repository.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 82

3.3.2 Continuous Integration Process Subontology

The Continuous Integration Process subontology aims to answer the following compe-
tency questions:

• CQ01. Which processes and activities did make up a CI process?

• CQ02. In the CI process, on which other activities/processes did a certain activity/process
depend?

• CQ03. When did a CI process start?

• CQ04. When did a CI process end?

• CQ05. Which artifacts participated in the CI process?

• CQ06. Which stakeholders participated in the CI process?

• CQ07. What type of event triggered the CI process?

CQ01 and CQ02 regard subprocesses and activities involved in a Continuous Integration
(CI) process. They aim to provide knowledge about the CI process structure and reveal the
order required of its subprocesses and activities. CQ03 to CQ04 refer to temporal aspects and
aim to provide information about processes and activities duration, contributing to analyzing
the process performance (SHAHIN; BABAR; ZHU, 2017). CQ05 addresses the participants
(agents or objects) in a CI process, while CQ06 is concerned with roles played by agents that
participated in the continuous integration process. Finally, CQ07 addresses the different types
of CI process according to how they were triggered. Figure 34 shows the Continuous Integration
Process subontology conceptual model.

A Continuous Integration Process is an automated Specific Performed Project Com-
posite Process with the purpose of verifying whether a new software artifact can be integrated
without bringing any problems to source code that is already approved, without human in-
tervention, i.e., a Continuous Integration Process is an automated process that performs
tests in the project’s software artifacts to identify a building problem, a non-compliance with
project’s requirements, quality problem, and communicate the stakeholders about success
or failed in any subprocess in an instance of Continuous Integration Process (DUVALL;
MATYAS; GLOVER, 2007; SHAHIN; BABAR; ZHU, 2017).

As can be observed in Figure 34, a Continuous Integration Process is composed of at
least (i) a Continuous Build Process, an automated Specific Performed Project Process, which
aims at building a new version of the software to be tested (e.g., a software project‘s version 1.0.1
was created to be tested, after a commit of code that implements FR01), (ii) a Continuous Test
Process is an automated Test Process that verifies whether the new version of the software is in

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 83

Figure 34 – Continuous Integration Process Subontology.

conformance with the software requirements applying automated tests (e.g., an automated unit
test is performed to verify FR01 continues to be met, even after inclusion in the new software
artifact.), and (iii) a Continuous Feedback Activity, an automated Performed Simple Project
Activity that provides to a CI Stakeholder information about the status of a CI process (e.g.,
send information if a new software artifact broke a build or it failed to pass an automated unit
test). A CI Stakeholder is a Stakeholder (e.g., a developer and tester) interested in information
(e.g., success or failure of a software artifact during a testing process) about a Continuous
Integration Process.

In addition to the aforementioned processes and activities, a Continuous Inspection
Process could be part of aContinuous Integration Process to verify the quality of a software
artifact (DUVALL; MATYAS; GLOVER, 2007; SHAHIN; BABAR; ZHU, 2017). A Continuous
Inspection Process is an automated Quality Assurance Process that aims at guaranteeing the
software artifacts conform to certain software engineering quality criteria (e.g., a function
cannot have more than 300 lines of code or the project software artifacts cannot have more
than 10% duplicate code (MARTIN, 2009)).

Each process and activity presented in aContinuous IntegrationProcess is performed
inside of a Continuous Integration Server. A Continuous Integration Server is a Loaded
Software System Copy (e.g., a copy of GitLab3 loaded in a computer) that provides Software
3 https://gitlab.com/

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 84

artifacts (e.g., libraries and programs) that participates in the CI process to enable executing
the process in an automatic way, without human intervention.

There are three different types of Continuous Integration Processes according to
how they are triggered. A Check-in-Triggered Continuous Integration Process is a CI
Process that is triggered by a Check-in, i.e., when a new Software artifact is checked-in to a
Source Repository, the CI process is started. A Scheduled Continuous Integration Process
occurs when a specific date or time is reached (e.g., every day at 9 p.m.). Last, an On-Demand
Continuous Integration Process is the one triggered by a CI Request Event, which is an Event
that occurs when aCI Stakeholder executes a command in aContinuous Integration Server
to start the Continuous Integration Process. For example, when a developer manually starts
a CI process by clicking a button on GitLab’s user interface.

Finally, a Continuous Integration Process is a Successful Continuous Integration
Process when a Candidate Code is integrated, without problems. On the other hand, a
Unsuccessful Continuous Integration Process is a Continuous Integration Process
that has not integrated a Candidate Code, due to a problem in the Continuous Integration
Process’s processes or activity.

3.3.3 Continuous Build Process Subontology

The Continuous Build Process subontology aims to answer the following competency
questions:

• CQ08. Which activities make up a continuous build process?

• CQ09. Which resources were used to build the software artifacts during the continuous
build process?

• CQ10. Which artifacts are created during the continuous build process?

Considering that this subontology represents the conceptualization of a process, the
questions expected to be answered are similar to the ones defined in the CI Process Subontology
and address aspects related to the process structure (i.e., the subprocess and activities that
make up the process), when the process started and when it ended, the involved artifacts
and stakeholders. We did not include any questions about the stakeholders involved in this
particular process because they are the same represented in the CI Process Subontology. Figure
35 shows the packages of the Continuous Build Process Subontology modularization.

The package CI Building Process is dedicated to describing a building process while
the CI Building Environment shows the concepts that are present in a building environment,
in a CI context. Figure 36 shows the Continuous Build Environment conceptual model.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 85

Figure 35 – Continuous Build Process Subontology Modularization.

Figure 36 – Continuous Build Environment model from CI Building Environment package.

CI Building Environment is a Loaded Software System Copy (e.g., a copy of build
environment in a copy of the GitLab loaded in a computer) that contains Building Software
Resources (e.g., Operational System (Linux or Windows), Compiler, Transpiler, Interpreter,
or a library to build or load) and Building Hardware Resources (e.g., a physical machine
where the Building Software Resources are installed and loaded) to support the building
and loading activities of a Continuous Build Process.

Interpreters, Compilers, and Transpilers are Software Products used to “execute
instructions written in a programming or scripting language, without requiring them previously
to have been compiled into a machine language program” (WIKIPEDIA, 2023c), “translate a
computer code written in one programming language (the source language) into another language
(the target language)” (WIKIPEDIA, 2023a), and “translate a source code of a program written in
a programming language as its input and produces an equivalent source code in the same or a
different programming language” (WIKIPEDIA, 2023f), respectively.

Building Software Resources and Building Hardware Resources are, respectively,
Software Products and Hardware Equipments that comprise a CI Building Environment. A
Continuous Integration Server uses a CI Building Environment to support aContinuous
Build Process’s activities, as presented in Figure 37.

A Continuous Build Process is a Specific Performed Project Process with participation
of a Continuous Integration Server. It is composed of the following Performed Project Ac-

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 86

Figure 37 – Continuous Build Process model from Continuous Build Process package.

tivities: Build Environment Creation, Code Checkout, and Candidate Code Building.
Dependency relations (depended on relation between Performed Project Activities) establish the
order in which these activities have occurred. Build Environment Creation aims to create
a CI Build Environment to support the activities Code Checkout and Candidate Code
Building.

Code Checkout aims to create a Source Code Copy and Test Code Copy inside of a
CI Building Environment. A Source Code Copy and Test Code Copy are, respectively,
a copy of a Source Code (e.g, code libraries, source code under development of a project, SQL
script to create the database’s tables) and a Test Code (e.g., a code that implements a unit test
or a System Test) that are in a Source Repository (e.g., a GitLab or GitHub). For example, an
instance of GitLab4 gl1 (Continuous Integration Server) created a copy of a version of some
Java code, unit test code, database scripts, and other software artifacts (Source Code and Test
Code Copy), from the main branch (Branch) present in an “Immigrant” source repository
(Source Repository), inside of a virtual build machine vb1 (CI Build Environment) in gl1.
Candidate Code Building aims to build a Candidate Code in a CI Building Environment,
i.e., a Candidate Code Building uses the Building Software Resources (e.g., code libraries,
4 GitLab is composed of the components that implement Continuous Integration and Source Repository’s

requirements

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 87

compiler, transpiler, compiler, and interpreter) and Building Hardware Resources (e.g., a
virtual machine with Linux or Windows), in a CI Building Environment, and the Source
Code Copies to build a Candidate Code or to describe a Build problem.

Candidate Code is a collection of Source Code Copy (Code) that contains: (i) one or
more items of Code Under Integration, which are either newly created Code items or altered
Code items (e.g., a new version of a database script) that a CI Stakeholder desires to integrate
into a Source Repository, and (ii) none, one or more Integrated Code items (e.g., code libraries,
source code, database script, and HTML), which are Code items that were integrated into a
Source Repository in a Continuous Integration Process performed in the past (DUVALL;
MATYAS; GLOVER, 2007; SHAHIN; BABAR; ZHU, 2017).

A Build Problem is an Information Item about problems that occurred in a Candidate
Code Building (e.g., referring to a code library that is missing making it impossible to compile
the project).

Finally, a Continuous Build Process is a Successful Continuous Build Process
when a Candidate Code Building builds a Candidate Code, without problems. On the other
hand, a Unsuccessful Continuous Build Process is a Continuous Build Process that has
not built a Candidate Code, due to a problem in Candidate Code Building.

3.3.4 Continuous Test Process Subontology

The Continuous Test Process subontology aims to answer the following competency
questions that, as previously discussed, are similar to the ones defined to the CI Process
Subontology:

• CQ11. Which processes and activities make up a Continuous Test process?

• CQ12. What automatic tests were performed?

Figure 38 shows the Continuous Test Process subontology conceptual model.

A Continuous Test Process is a Test Process with participation of a Continuous
Integration Server. It is composed of the following automated Performed Project Activities: CI
Testing Environment Creation and Automated Testing.

CI Testing Environment Creation aims to create a CI Testing Environment (Test-
ing Environment and a Loaded Software System Copy) in a Continuous Integration Server
(e.g., copy of a testing environment loaded inside of a copy of GitLab loaded in a computer) to
support the activities of a Continuous Test Process. A CI Testing Environment contains
Test Software Resources (e.g., Unit Test libraries and Test Management tools) and Test Hardware
Resources (e.g., a computer to perform the unit tests).

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 88

Figure 38 – Continuous Test Process Subontology.

Automated Testing is an automated Level-Based Testing Activity that performs tests
automatically, using the Test Software Resources and Test Hardware Resources of a CI Test
Environment. It is composed of Automated Test Executions, which are Performed Test Exe-
cution activities that automatically execute Test Cases by running their Test Code and producing
CI Test Results (Test Result) that describes a result of the executed tests. For example, the
Test Case described as TC01: Pay a trip with a credit card was executed by an Automated
Test Execution tc01 that executed a Test Code (e.g., a Java code that implemented a Unit Test)
unittest-tc01 in a Candidate Code To Be Tested cctbt, inside of a CI Testing Environment
cite, producing a CI Test Result citr.

An Automated Test Execution tests a Candidate Code To Be Tested. A Candidate
Code To Be Tested is aCandidate Code that plays the role Code to Be Tested in aContinuous
Test Process. This way, a Candidate Code under Test is composed of an Integrated Code
(e.g., the Java code tested before) andCode under Integration (e.g., a new version of a database
script) that were tested by a Test Code (e.g., an implementation of a unit test to test the new
version of the database script).

A CI Test Result is a Test Result that describes what was observed by applying a Test

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 89

Case in a Continuous Test Process. It may identify Faults (Runtime Defects) (e.g., that the
function that calculates the income tax failed, with the new version of database script) that
were detected when a Test Code was performed under a Candidate Code To Be Tested or
serve as evidence of success when no Faults (Runtime Defects) are observed.

Finally, a Continuous Test Process is said a Successful Continuous Test Process
when an Automated Test Execution produces a CI Test Result without Faults (Runtime
Defects), i.e., when the Candidate Code To Be Tested does not have any Fault (Runtime
Defect) after all Test Cases are applied. On the other hand, a Continuous Test Process is a
Unsuccessful Continuous Test Process when the Candidate Code Under Test failed, a
Fault (Runtime Defect) was identified, in a Test Case.

3.3.5 Continuous Inspection Process Subontology

TheContinuous Inspection Process subontology aims to answer the competency questions
presented below. As previously discussed, they are similar to the ones defined to the CI Process
Subontology:

• CQ13. Which processes and activities make up a Continuous Inspection process?

• CQ14. What was the project artifact in (non)conformance with the quality requirements
of a project?

Figure 39 shows the packages of the Continuous Inspection Process Subontology modu-
larization.

Figure 39 – Continuous Inspection Process Subontology Modularization.

The package CI Inspection Process is dedicated to describing an inspection process
while the CI Inspection Environment shows the concepts that are present in an inspection
environment, in a CI context. Figure 40 shows the Continuous Inspection Environment conceptual
model.

CI Inspection Environment is a Loaded Software System Copy (e.g., a copy of en-
vironment with inspection software loaded inside in a computer) that contains Inspection
Software Resources (e.g., a static code analysis tool) and Inspection Hardware Resources
(e.g., a physical machine where some inspection software is installed and loaded) to support
the inspection activities of a Continuous Inspection Process. Static Code Analysis Tool
is a Software Product used to “flag programming errors, bugs, stylistic errors, and suspicious
constructs” (WIKIPEDIA, 2023d).

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 90

Figure 40 – Continuous Inspection Environment model from CI Inspection Environment pack-
age.

Inspection Software Resource and Inspection Hardware Resource are, respec-
tively, Software Products (e.g., a static code analysis tool) and Hardware Equipments (e.g., a
machine that runs a static code analysis tool). A Inspection Software Resource is used
in a Continuous Inspection Process’ activity via (participates in) a Continuous Integra-
tion Server, in a CI context. Figure 41 shows the Continuous Inspection Process subontology
conceptual model.

A Continuous Inspection Process is a Quality Assurance Process with participation of
a Continuous Integration Server. It is composed of the following Performed Project Activities:
Inspection Environment Creation and Automated Adherence Inspection. Inspection
Environment Creation aims to create a CI Inspection Environment in a Continuous
Integration Server to support the Automated Adherence Inspection.

An Automated Adherence Inspection is an automated Adherence Evaluation activity
that inspects the adherence of the Candidate Code Under Inspection executing Automated
Artifact Inspection activities. An Automated Artifact Inspection is an automated Artifact
Evaluation activity that uses Quality Assurance Criterion Code to inspect some Quality
Assurance Criteria (e.g., QAC01: a function can have a maximum of 100 lines of code) in each
Software Artifact in a Candidate Code Under Inspection. Quality Assurance Criterion
Code a Code (e.g., a code in Java that implements QAC01) that materializes a Quality Assurance
Criterion.

Automated Adherence Inspection produces a CI Evaluation Report, after execut-
ing allAutomated Artifact Inspection activities. TheCI Evaluation Report is an Evaluation
Report that describes the inspection results and identified issues of a Candidate Code Under
Evaluation. Candidate Code Under Inspection is a Candidate Code that each Software

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 91

Figure 41 – Continuous Inspection Process Subontology.

Artifact plays a Evaluated Artifact role in a Continuous Inspection Process.

Finally, a Continuous Inspection Process is said a Successful Continuous Inspec-
tion Process when an Automated Adherence Inspection produces a Candidate Code
Under Inspection that does not have any Noncompliance Identification. On the other hand,
a Continuous Inspection Process is an Unsuccessful Continuous Inspection Process
when the Candidate Code Under Inspection failed, a Noncompliance Identification was
obtained, in an Automated Adherence Inspection.

3.3.6 Evaluation

As we did in SRO, to evaluate CIRO, we performed Verification and Validation activities
by using two approaches to ontology evaluation: assessment by human (FALBO, 2014) and data-
driven approach (BRANK; GROBELNIK; MLADENIC, 2005). Table 3 presents results produced
during verification. Table 4 presents instantiations recorded during validation. The instances
were extracted from a project developed in the software organization where we performed the
study described in Section 4.2.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 92

Table 3 – Verification of CIRO.

Competence Question CIRO Concepts, Properties, and Relationships

CQ01 Which processes and activi-
ties make up the Continuous
Integration process ?

Continuous Integration Process composed of
Continuous Build Process
Continuous Integration Process composed of
Continuous Test Process
Continuous Integration Process composed of
Continuous Inspection Process
Continuous Integration Process composed of
Continuous Feedback Activity

CQ02 In the CI process, on which
other activities/processes
did a certain activity/process
depend?

Continuous Test Process depends on
Continuous Build Process
Continuous Inspection Process depends on
Continuous Test Process

CQ03 When did a CI process start
?

Performed Project Process.startDate
General Performed Project Process subtype of Performed Process
Continuous Integration Process subtype of
General Performed Project Process

CQ04 When did a CI process end ?

Performed Project Process.endDate
General Performed Project Process subtype of Performed Process
Continuous Integration Process subtype of
General Performed Project Process

CQ05 Which artifacts participated
in the CI process ?

Continuous Integration Server participated in
Continuous Integration Process

CQ06 Which stakeholders partici-
pated in the CI process ?

Stakeholder
Change Implementer subtype of Stakeholder
CI Stakeholder subtype of Stakeholder

CQ07 What type of event triggered
the CI process ?

Checkin-triggered CI Process subtype of
Continuous Integration Process
Scheduled CI Process subtype of Continuous Integration Process
On-Demand CI Process subtype of Continuous Integration Process

CQ08 Which activities make up a
continuous build process?

Continuous Build Process composed of
Build Environment Creation
Continuous Build Process composed of Code Checkout
Continuous Build Process composed of Candidate Code Building

CQ09 Which resources were used
to build the software arti-
facts during the continuous
build process?

Build Environment created Build Environment Creation activity

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 93

Table 3 – Continued from previous page

Competence Question CIRO Concepts, Properties, and Relationships
CQ10 Which artifacts are created

during the continuous build
process ?

Source Code Copy, Test Code Copy, and Candidate Code

CQ11 Which processes and activ-
ities make up a Continuous
Test process?

Continuous Test Process composed of
CI Testing Environment Creation
Continuous Test Process composed of Automated Testing

CQ12 What automatic tests were
performed?

Level-Based Testing composed of Perfomed Test Execution
Perfomed Test Execution uses Test Code

CQ13 Which processes and activ-
ities make up a Continuous
Inspection process?

Continuous Inspection Process composed of
Inspection Environment Creation
Continuous Inspection Process composed of
Automated Adherence Inspection
Automated Adherence Inspection composed of
Automated Artifact Inspection

CQ14 What was the project ar-
tifact in (non)conformance
with the quality require-
ments of project?

CI Evaluation Report described
Candidate Code Under Inspection

Table 4 – Validation of CIRO.

CIRO Concepts Instance
Continuous Integration Server An instance of a GitLab in a computer.
CI Stakeholder B. S.
Continuous Integration Process Continuous Integration Process defined to a software project,

with identification CIP188, comprising automated Build, Test,
Inspection processes. and Feedback activity.

Checkin-triggered CI Process Continuous Integration Process that was instantiated by Git-
Lab after a commit from a new version of database script
created by Barney S., on Oct 10, 2019.

Scheduled CI Process Continuous Integration Process that is instantiated by GitLab,
with identification GL188, on Oct 22, 2019.

On-Demand CI Process Continuous Integration Process that was instantiated manu-
ally by Barney S, on Oct 22, 2019.

CI Request Event Event, with identification e546, that it was created by Barney
S to start an On-Demand CI Process, on Oct 22, 2019.

Continuous Build Process Continuous Build Process, with identification CBP188, per-
formed in Continuous Integration Process, with identification
CIP188, on Oct 22, 2019.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 94

Table 4 – Continued from previous page

CIRO Concepts Instance
Continuous Test Process Continuous Test Process, with identification CTP188 , per-

formed in Continuous Integration Process, with identification
CIP188, on Oct 22, 2019.

Continuous Inspection Process Continuous Inspection Process, with identification CINP188,
performed in Continuous Integration Process, with identifi-
cation CIP188, on Oct 22, 2019.

Continuous Feedback Activity Continuous Feedback Activity, with identification CFA888,
performed in Continuous Integration Process, with identifi-
cation CIP188, on Oct 22, 2019.

CI Building Environment An instance of virtual machine, with identification VM188,
with libraries that is used to build a code in a software, inside
of a instance of GitLab,with identification GL188, on Oct 22,
2019.

Building Hardware Resource A machine that is used to instance a CI Building Environment
on Oct 22, 2019.

Building Software Resource A compiler installed in CI Building Environment, with identi-
fication VM188, on Oct 22, 2019.

Building Environment Creation a Building Environment Creation activity, with identification
BEC188, perfomed in CBP188, on Oct 22, 2019.

Code Checkout Code Checkout activity performed in CBP188, on Oct 22, 2019
Candidate Code Building a Candidate Code Building performed in CBP188, on Oct 22,

2019.
Source Code Copy Source Code copied to Build environment by Code Checkout

activity, on Oct 22, 2019.
Test Code Copy Test Code copied to Build environment by Code Checkout

activity, on Oct 22, 2019.
Candidate Code Candidate Code built by Candidate Code Building, on Oct 22,

2019 .
Build Problem a Build Problem identified in a Candidate Code Building ac-

tivity, on Oct 22, 2019 .
CI Testing Environment is a instance of a Testing Environment created, inside of a

Continuous Integration Server, in Continuous Test Process
CTP188, on Oct 22, 2019.

CI Testing Environment Creation CI Testing Environment creation performed in CTP188, on
Oct 22, 2019.

Automated Testing a Unit Testing performed in CTP188, on Oct 22, 2019.
CI Test Result a report with non-conformance detected by Automated Test-

ing, on Oct 22, 2019.
Candidate Code Under Test a code that was tested in a CTP188, on Oct 22, 2019.
CI Inspecting Environment an instance of an environment with library and equipment to

inspect a code in a CI Inspection Process, on Oct 22, 2019.
Inspection Environment Creation Inspection Environment Creation activity in CINP188, on Oct

22, 2019.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 95

Table 4 – Continued from previous page

CIRO Concepts Instance
Automated Adherence Inspection Automated Adherence Inspection activity performed in

CINP188, on Oct 22, 2019.
Automated Artifact Inspection Automated Artifact Inspection activity performed in CINP188,

on Oct 22, 2019.
Quality Assurance Criterion Code A code that implements a Quality Assurance Criterian code:

A function can have a maximum of 300 lines
CI Inspection Report A CI Inspection Report created in CINP188, on Oct 22, 2019.
Candidate Code Under Inspection A Database script under quality evaluation in a CINP188, on

Oct 22, 2019.

3.4 Continuous Deployment Reference Ontology (CDRO)

TheContinuous Deployment Reference Ontology (CDRO) consolidates reference literature
on the topics, using as main sources the works by (HUMBLE; FARLEY, 2010; SHAHIN; BABAR;
ZHU, 2017; HUMBLE; KIM, 2018). CDRO is organized into two subontologies:

• The Continuous Delivery Activity subontology: aims at representing how a delivery activity
is present in a CD context.

• The Continuous Deployment Process subontology: which presents an overview of the CD
process, identifying the main events, stakeholders, and artifacts present in this context.

Figure 42 shows an overview of CDRO.

Figure 42 – CDRO’s Architecture.

3.4.1 Continuous Delivery Activity Subontology

The Continuous Delivery Activity subontology aims to explain how a delivery activity
is present in a Continuous Deployment process. It aims answering the following competency
questions:

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 96

• CQ01. When did a delivery activity start?

• CQ02. When did a delivery activity end?

• CQ03. Which artifacts participated in a delivery activity?

• CQ04. What does a Delivered code ?

• CQ05. Which resources did make up a Delivery Environment

CQ01 and CQO2 refer to temporal aspects and aim to provide information about a
delivery activity duration. CQ03 concerns the participants (agents or objects) in a delivery
activity while CQ04 identify what is a Delivery Code in CD context. CQ05 describes the
resources that are used by a Delivery Environment. Figure 43 shows the Continuous Delivery
Activity subontology.

Figure 43 – Continuous Delivery Activity Subontology.

A Delivery Activity is an automated Performed Project Activity that involved the
participation of Continuous Delivery Server and delivered a Delivered Code in a Deliv-
ery Environment without human intervention. A Delivery Activity is performed after a
Candidate Code be tested with success in a Successful Continuous Test Process. In turn,
a Delivered Code is a Success Candidate Code Tested that was created in a Delivery
Activity.

A Continuous Delivery Server is a Loaded Software System Copy (e.g., a copy of
GitLab5 loaded in a computer) that provides Software artifacts (e.g., libraries and programs)
5 https://gitlab.com/

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 97

that participated in a Delivery Activity to enable executing the activity in an automatic way,
without human intervention.

A Delivery Environment is a Loaded Software System Copy (e.g., a copy of delivery
environment in a copy of the GitLab loaded in a computer) that is constituded of Delivering
Software Resources (e.g., Operational System (Linux or Windows)) and Delivery Hardware
Resources (e.g., a physical machine where the Delivery Software Resources are installed
and loaded) to support Delivery Activities. Delivery Software Resource and Delivery
Hardware Resource are, respectively, Software Resources and Hardware Resource (e.g., a
delivery tool and a machine that runs a delivery tool). A Delivery Software Resource is used
in a Delivery Activity (participates in) via a Continuous Delivery Server.

3.4.2 Continuous Deployment Process Subontology

The Continuous Deployment Process subontology aims to answer the following compe-
tency questions:

• CQ06. Which processes and activities did make up a CD process?

• CQ07. In the CD process, on which other activities/processes did a certain activity/process
depend?

• CQ08. When did a CD process start?

• CQ09. When did a CD process end?

• CQ10. What is a Deployed Code?

• CQ11. Which artifacts participated in the CD process?

• CQ12. Which resources did make up a Deployment Environment?

• CQ13. Which stakeholders participated in the CD process?

CQ06 and CQ07 regard subprocesses and activities involved in a CD process. They
aim to provide knowledge about the CD process structure and reveal the order required of
its subprocesses and activities. CQ08 to CQ09 refer to temporal aspects and aim to provide
information about processes and activities duration, contributing to analyzing the CD process
performance (SHAHIN; BABAR; ZHU, 2017). CQ10 addresses to identify which is a Deployed
Code. CQ11 addresses the participants (agents or objects) in a CD process, while CQ12 is
addressed to identify the resources that are used by a Continuous Deployment Server. Finally,
CQ13 is concerned with roles played by agents that participated in the CD process.

A Continuous Deployment Process is an automated process that performs deploy-
ment of aDeployed Code in a production-like environment and communicate the stakeholders

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 98

about success or failure (HUMBLE; FARLEY, 2010; SHAHIN; BABAR; ZHU, 2017; HUMBLE;
KIM, 2018). It is an automated Specific Performed Project Composite Process that involved the
participation of one or several Continuous Deployment Servers, with the purpose of de-
ploying a Deployed Code in a Deployment Environment without human intervention.
Figure 44 presents Continuous Deployment Process subontology.

Figure 44 – Continuous Deployment Process Subontology.

A Continuous Deployment Process is composed of (i) at least one Deployment
Activity, which is an automated Performed Project Activity that deployed a Deployed Code in
a Deployment Environment, and (ii) Continuous Deployment Feedback Activity, an
automated Performed Simple Project Activity that provided to a CD Stakeholder information
about the status of a CD process (e.g., send information if a code was deployed with success
or failure in an production-like environment). A CD Stakeholder is a Stakeholder (e.g., a
developer or a client) that participates or was charged of a Continuous Deployment Process.
Besides a CD Stakeholder interested in information (e.g., success or failure of the deployment
of a version of a code in a production-like environment) about a Continuous Deployment
Process.

Continuous Deployment Server is a Loaded Software System Copy (e.g., a copy of
ArgoCD6 loaded in a computer) that provided Software artifacts (e.g., libraries and programs)
that participated in a Continuous Deployment Process to enable executing the process in
an automatic way, without human intervention.

A Deployment Environment is a Loaded Software System Copy (e.g., a copy of a
machine with linux in a computer) that contains Deployment Software Resources (e.g.,
6 <https://argo-cd.readthedocs.io/en/stable/>

https://argo-cd.readthedocs.io/en/stable/

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 99

Operational System (Linux or Windows)) and Deployment Hardware Resources (e.g., a
physical machine where the Deployment Software Resources are installed and loaded) to
support the Deployment Activities. Deployment Software Resource and Deployment
Hardware Resource are, respectively, Software Products (e.g., a deployment tool) andHardware
Equipment (e.g., a machine that runs a deployment tool). A Deployment Software Resource
is used in a Deployment Activity via (participates in) a Continuous Deployment Server.

Finally, a Continuous Deployment Process is a Successful Continuous Deploy-
ment Process when a Deployed Code is deployed in a production environment, without
problems. On the other hand, a Unsuccessful Continuous Deployment Process is a Con-
tinuous Deployment Process that has not deployed a Deployed Code, due to a problem
in the Continuous Deployment Process’s processes or activity (e.g., a machine without
adequate resources to operate a Deployed Code)7.

3.4.3 Evaluation

Aswe did in SRO and CIRO, to evaluate CDRO, we performed Verification and Validation
activities by using two approaches to ontology evaluation: assessment by human (FALBO,
2014) and data-driven approach (BRANK; GROBELNIK; MLADENIC, 2005). Table 5 presents
results produced during verification. Table 6 presents instantiations recorded during validation.
The instances were extracted from a project developed in the software organization where we
performed the study described in Section 4.2.

Table 5 – Verification of CDRO.

Competence Question CDRO Concepts, Properties, and Relationships

CQ01 When did a Delivery Activ-
ity start ?

Performed Project Activity.startDate
Delivery Activity subtype of Performed Project Activity

CQ02 When did a Delivery Activ-
ity end ?

Performed Project Activity.endDate
Delivery Activity subtype of Performed Project Activity

CQ03 Which artifacts participated
in the Delivery Activity ?

Delivered Code created by Delivery Activity
Delivered Code created in Delivery Environment
Continuous Delivery Server participated in Delivery Activity
Delivery Environment used by Continuous Delivery Server

CQ04 What is a Delivery Code
Successful Tested Candidate Code
Successful Tested Candidate Code subtype ofDelivered Code

CQ05 Which resources did make
up a Delivery Environment?

Delivery Environment composed of Delivery Hardware Resource
Delivery Environment composed of Delivery Software Resource

7 The absence of detailed discussions on deployment strategies and techniques within this thesis is due to
constraints in research scope and timeline. Future studies are encouraged to explore this area for a more

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 100

Table 5 – Continued from previous page

Competence Question CDRO Concepts, Properties, and Relationships

CQ06 Which processes and activi-
ties make up the Continuous
Deployment process ?

Continuous Deployment Process composed of
Deployment Activity
Continuous Deployment Process composed of
Continuous Deployment Feedback Activity

CQ07 In the Continuous Deploy-
ment process, on which
other activities/processes
did a certain activity/process
depend?

Continuous Deployment Process depends on Delivery Activity
Continuous Deployment Feedback Activity depends on
Deployment Activity

CQ08 When did a Continuous De-
ployment process start ?

Performed Project Process.startDate
General Performed Project Process subtype of Performed Process
Continuous Deployment Process subtype of
Specific Performed Project Composite Process

CQ09 When did a Continuous De-
ployment process end ?

Performed Project Process.endDate
General Performed Project Process subtype of Performed Process
Continuous Deployment Process subtype of
Specific Performed Project Composite Process

CQ10 What is a Deployed Code?
Delivered Code
Deployed Code subtype of Delivered Code

CQ11 Which artifacts participated
in the Continuous Deploy-
ment process ?

Continuous Deployment Server participated in
Continuous Deployment Process
Delivered Code used Deployment Activity
Delivered Code created Deployment Activity
Deployment Environment used by Continuous Deployment Server

CQ12 Which resources did make
up a Deployment Environ-
ment?

Deployment Environment
composed of Deployment Hardware Resource
Deployment Environment
composed of Deployment Software Resource

CQ13 Which stakeholders partici-
pated in the Continuous De-
ployment process ?

Stakeholder
CD Stakeholder subtype of Stakeholder

comprehensive understanding.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 101

Table 6 – Validation of CDRO.

CDRO Concepts Instance
Delivery Environment An instance of virtual machine, with identification

VM188, with libraries that is used to delivery, inside of
an instance of GitLab, with identification GL188, on Oct
22, 2019

Delivery Hardware Resource A machine that is used to instance a Delivery Environ-
ment, on Oct 22,2019

Delivery Software Resource A delivery software installed in a Delivery Environment,
with identification VM188, on Oct 22,2019

Continuous Delivery Server An instance of GitLab, named GL01, loaded in a computer.
Delivery Code A code that was tested in a CTP 188, on Oct 22,2019, and

delivery in GL01.
Delivery Activity Delivery Activity defined to a software project, with iden-

tification CDEP188.
Deployment Environment An instance of virtual machine, with identification

VM188, with libraries that is used to deploy, with identi-
fication DPE188, on Oct 22, 2019

Deployment Hardware Resource A machine that is used to instance o Deployment Envi-
ronment, on Oct 22,2019

Deployment Software Resource A deployment software installed in a Deployment Envi-
ronment, with identification VM188, on Oct 22,2019

Continuous Deployment Server An instance of ArgoCD loaded in a computer.
CD Stakeholder L. A.
Continuous Deployment Process Continuous Deployment Process defined to a software

project, with identification CDP188, composed of auto-
mated deploy, and Feedback activity.

Deployment Activity A Deployment Activity instance performed in CDP188,
on Oct 22,2019.

Deployed Code A delivered code created and used in a Deployment Ac-
tivity instance performed in CDP188, on Oct 22,2019.

Continuous Deployment Feedback Activity Continuous Deployment Feedback Activity, with identifi-
cation CDFA888, performed in Continuous Deployment
Process, with identification CDP188, on Oct 22, 2019.

Successful Continuous Deployment Process Continuous Deployment process,with identification
CDP188, that performed without erro, on Oct 22, 2019.

Unsuccessful Continuous Deployment Process Continuous Deployment process,with identification
CDP188, that performed with build’s error, on Oct 22,
2019.

3.5 Related Work

We discuss here some related efforts with respect to ontologies and metamodels that
cover similar aspects to SRO, CIRO, and CDRO.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 102

Regarding ontologies addressing Scrum, the studies most closely related to SRO were
conducted by Parsons (2010), Kiv et al. (2019), and Lin et al. (2012). Parsons (2010) presented a
general ontology on agile methods to propose an analytical framework to understand how an
overarching agile methodology is constructed. Lin et al. (2012), in turn, introduced a Scrum
ontology based on concepts from CRIO metamodels (COSSENTINO et al., 2007), modelled using
OWL. CRIO is an organisational metamodel with four concepts (Role, Interaction, Organisation,
and Holon) used to model and design Multi-Agent Systems (COSSENTINO et al., 2007; GAL-
LAND; GAUD; KOUKAM, 2008). Kiv et al. (2019) proposed an agile method ontology modeled
using UML and implemented with OWL to represent knowledge about projects. Differently
from SRO, the works by Parsons (2010) and Kiv et al. (2019) propose general ontologies about
the agile paradigm, describing methods and goals without a focus on Scrum. Lin et al. (2012),
in turn, propose a lightweight ontology, which provides a limited conceptualization. Moreover,
these ontologies are not connected to other aspects of Software Engineering. SRO describes
the conceptualization about Scrum in the Software Engineering context. Thus, SRO concepts
are related to concepts from other Software Engineering sub-domains such as Requirements
and Software Process.

In addition to ontologies covering similar ground, the Method Engineering field has
produced some metamodels concerned with agile methods. This is the case of Damiani et
al. (2007), who present Scrum metamodels using MOF (Meta-Object Facility), and Ayed, Van-
derose & Habra (2012), who introduces an approach to model an agile process according to
an organization’s characteristics, based on Situational Method Engineering (SME) (HARM-
SEN; BRINKKEMPER; OEI, 1994) and using SPEM (Systems Process Engineering Metamodel).
Different from SRO, the metamodel proposed in (DAMIANI et al., 2007) focuses only on few
concepts related to the ceremonies and backlog, resulting in a limited view of Scrum. In (AYED;
VANDEROSE; HABRA, 2012), the metamodel concerns agile development in general, and as
such, does not address specific aspects of Scrum or other particular agile methods. Because of
this, the proposed metamodel is defined at a rather abstract level, hindering its use as semantic
grounding for operational data that is handled by the various tools. Moreover, the purpose
of the proposed models is not to provide a comprehensive conceptualization able to address
semantic issues. Instead, they are intended to support process/method definition and evolution.

Regarding the Continuous Integration domain, the study most closely related to CIRO
was presented by Moriconi et al. (2022). Moriconi et al. (2022) presents an operational ontology
for representing builds in a continuous integration process. This ontology was implemented
as a knowledge graph (FENSEL et al., 2020)8 to identify failed builds caused by infrastructure
issues (DURIEUX et al., 2020). Different from work proposed by Moriconi et al. (2022), CIRO
is a reference ontology that describes the conceptualization of Continuous Integration in the
Software Engineering context. Therefore, the CIRO concepts are related to concepts from other
8 No other reference or operational ontology was found in the continuous integration literature.

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 103

Software Engineering sub-domains such as Quality and Test Processes.

Concerning the Continuous Deployments, the studies most closely related to CDRO
weres presented by Macarthy & Bass (2020), Pardo, Orozco & Guerrero (2023), and Guerrero,
Calvache & Orozco (2023) about DevOps (HUMBLE; KIM, 2018). Macarthy & Bass (2020)
present a study performed with 11 DevOps practitioners, across nine organizations, to define
an empirical taxonomy of DevOps; while Pardo, Orozco & Guerrero (2023) present the DevOps
ontology that describe in high level the DevOps’s concepts (e.g., Activity, Practice, and Principle).
It was created using REFSENO methodology (TAUTZ; WANGENHEIM, 1998), modeled in UML,
implemented in OWL. Guerrero, Calvache & Orozco (2023) present general concepts from
the literature about DevOps (Dimension, Approach, Principle, Value, and Technological Tool),
process concepts (e.g., ROI, Activity, Product, and Task) from the Ontology of Process-reference
Models (PrMO) (CALVACHE et al., 2014), and measurement concepts (e.g., Indicator, Measure,
Measurement, and Scale) from the Software Measurement Ontology (SMO) (GARCÍA et al.,
2006). Different from the works proposed by Macarthy & Bass (2020), Pardo, Orozco & Guerrero
(2023), and Guerrero, Calvache & Orozco (2023), CDRO is a reference ontology that considers
a more holistic view of CD and describes its conceptualization in the Software Engineering
context. Therefore, like in CIRO, CDRO concepts are related to concepts from other Software
Engineering sub-domains such Testing.

Due to the strong connection between the Scrum, CI, and CD processes and other
Software Engineering aspects, SRO, CIRO, and CDRO were developed as networked ontologies
of SEON (RUY et al., 2016). This modeling decision allowed us to reuse concepts from other
SEON ontologies and achieve a broad understanding about Scrum, CI, and CD in the Software
Engineering context. For example, by connecting SRO to other SEON ontologies it is possible to
understand that User Story is a Requirements Artifact and, as such, describes requirements of
stakeholders of the project. It is also possible to understand that a Sprint is a process composed
of activities performed during a time box. Understanding the Scrum, CI, and CD processes
in the context of the Software Engineering domain contributes to a better understanding
of the conceptualization and to make comparisons or integration of information regarding
different paradigms. For example, by acknowledging that User Story is a Requirement Artifact,
when looking at information about projects developed using different process models, one can
understand that, in a project that adopts the Scrum process, the User Story plays the same role
than the Requirement Description plays in a project that adopts the Waterfall process, since
both are types of Requirements Artifacts in SEON. This broad analysis is not possible in any of
the cited works.

Another difference of SRO, CIRO, and CDRO when compared to the aforementioned
works, is that SRO, CIRO, and CDRO provide a more precise conceptualization. For example,
SRO establishes the meaning of “Done” and what are the impacts of this concept in different
aspects of a software process based on Scrum. Finally, being networked ontologies of SEON,

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 104

SRO, CIRO, and CDRO are ultimately grounded in UFO (the Unified Foundational Ontology)
(GUIZZARDI, 2005), which results in a well-founded conceptualization that can better represent
real-world situations.

Considering Continuum as a whole, the closest work to it was presented by Guerrero,
Calvache & Orozco (2023). They propose the DevOps Ontology, which is an ontology to
support the understanding of DevOps (LEITE et al., 2019), presenting general concepts from
the literature about DevOps, process concepts, from the Ontology of Process-reference Models
(PrMO) (CALVACHE et al., 2014), and measurement concepts, from the Software Measurement
Ontology (SMO) (GARCÍA et al., 2006). Although Guerrero, Calvache & Orozco (2023) claims
that DevOps Ontology supports the understanding of DevOps, the ontology does not present
any specific process, role, or artifact related to DevOps that would allow one to understand
how DevOps works.

Different from DevOps Ontology, Continuum is an ontology (sub)network integrated to
SEON (RUY et al., 2016). It describe the processes, roles, and artifacts involved in the CSE core
processes. In addition, Continuum is strongly connected with Software Engineering aspects.
As said before, this modeling decision allows us to reuse concepts from SEON ontologies and
achieve a broad understanding of the CSE in the Software Engineering context. Furthermore,
being part of SEON, Continuum is supported by evolution mechanisms that help extend its
conceptualization to cover other CSE aspects.

3.6 Final Considerations

Continuum is a subnetworked of SEON (RUY et al., 2016) and reuses concepts from
UFO (GUIZZARDI, 2005), SPO (BRINGUENTE; FALBO; GUIZZARDI, 2011; RUY, 2017), EO
(FALBO, 2014), SysSWO (DUARTE et al., 2018b; COSTA et al., 2022), CMPO (CALHAU; FALBO,
2012), RSRO (FALBO; NARDI, 2008) , ROoST (SOUZA; FALBO; VIJAYKUMAR, 2017), QAPO
(RUY, 2017), and OSDEF (DUARTE et al., 2018a). The number of ontologies reused shows the
comprehensiveness of the scope of the CSE processes addressed, crosscutting the software
lifecycle.

The current version of Continuum is composed of the Scrum Reference Ontology (SRO),
the Continuous Integration Reference Ontology (CIRO), and Continuous Deployment Reference
Ontology (CDRO). SRO provides conceptualization about agile development with Scrum and
consists of five subontologies (Scrum Process subontology, Scrum Stakeholders subontology,
Scrum Stakeholders Participation subontology, Product and Sprint Backlog subontology, and
Scrum Deliverables subontology). CIRO, in turn, addresses relevant aspects of continuous
integration and is composed of four subontologies (Continuous Integration Process subontology,
Continuous Build Process subontology, Continuous Test Process subontology, and Continuous
Inspection Process subontology). CDRO concerns aspects of continuous deployment and is

Chapter 3. Continuum - A Continuous Software Engineering Ontology (sub)Network 105

composed of two subontologies (Continuous Delivery Activity subontology and Continuous
Deployment Process subontology).

Continuum provides the conceptualization necessary to support semantic integration
in Immigrant. Different from other works, Continuum introduces processes, roles, and artifacts
involved in the CSE core processes (agile development, continuous integration, and continuous
deployment) and relates them to more general Software Engineering concepts. Details about
how Continuum is used in Immigrant to support application data integration are discussed in
the Chapter 5.

106

4 Learning Iterations Towards Immigrant

Many times I’ve lied, many times I’ve listened, many times I’ve wondered how much

there is to know.
Led Zeppelin, Over The Hills And Far Away

This chapter presents an overview of the studies carried out in the three learning
iterations performed to design Immigrant. They helped us better understand the target problem
and gradually evaluate the design choices we have made to develop Immigrant. Thus, this
chapter is related to the Design Cycle, because it regards studies in which we developed the first
version of Immigrant and components that were incorporated in the current version. It is also
related to the Relevance Cycle because the studies aided problem understanding. Section 4.1
briefly introduces the learning iteration concept. Section 4.2 regards the first learning iteration,
an exploratory case study that resulted in the first version of Immigrant. Section 4.3 concerns
the second learning iteration, a participative case study in which we proposed California, a
System Theory-based process to aid organizations in the journey from traditional to data-driven
software development. Section 4.4 presents the third learning iteration, a multiple case study in
which we proposed Zeppelin, a diagnosis instrument that helps get an overview of CSE practices
adoption in software organizations. Finally, Section 4.5 presents the final considerations of the
chapter.

4.1 Learning Iterations

Several authors advocate the use of empirical studies in DSR projects. These studies
have often been used to evaluate the proposed artifacts (BASKERVILLE, 2008; WIERINGA,
2014). According to Barcellos et al. (2022), although the use of empirical studies in DSR projects
has focused on the artifact evaluation activity, they can also be used to support other activities
of the DSR process. The authors suggest organizing empirical studies as learning iterations
(LIs), i.e., studies performed in iterations that allow the researcher to learn something about the
problem or the proposed artifact. In this context, LIs provide useful knowledge to understand
the problem, develop the artifact, evaluate, or improve it. The authors argue that, by using
LIs, the researcher experiences a more fluid DSR process, which harmonizes several studies in
iterations, contributing to research soundness. In addition, the studies also contribute to the
development of better-grounded artifacts, which are expected to be more suitable for solving
the target problem.

Each LI comprises a study that aims at building knowledge guided by knowledge
questions that motivate the study. LI are categorized according to their purpose, which can be

Chapter 4. Learning Iterations Towards Immigrant 107

(i) problem investigation; (ii) artifact foundation; (iii) artifact design; (iv) artifact evaluation; and
(v) artifact evolution (BARCELLOS et al., 2022). Figure 45 depicts schematically the elements
involved a LI.

Figure 45 – Learning Iteration (BARCELLOS et al., 2022).

The study purpose and the knowledge questions help define the empirical study to
be performed (e.g., a systematic literature review, a case study, a controlled experiment) and
its scope. After performing the study, the researcher gets knowledge about the problem or to
ground, develop or evolve the artifact(s). New knowledge questions can also arise and lead to
another study in a new LI. In a nutshell, LI contains the LI plan, the empirical study package,
and the LI report. The plan establishes the LI purpose and knowledge questions, and identifies
which empirical study will be carried out and how it connects to the DSR project as a whole. The
study package refers to the execution of the LI, which involves activities related to the referred
empirical study, including to define the research protocol to be followed, run it to collect and
analyze data, and record the study results. The LI is concluded with a report that highlights the
acquired knowledge and connects the study results with the DSR project (BARCELLOS et al.,
2022).

As explained in Chapter 1, we performed three empirical studies as LIs aiming at the
Immigrant development. Figure 46 illustrates an overview of them. In the following sections,
we provide information about each LI, including (i) an overview of the LI scope by means of its
purpose, study type and knowledge question; (ii) the study execution and main results; and
(iii) the acquired knowledge and its relation to the whole research. Concerning the studies
execution, in this chapter we provide only an overview of them. The complete description of
the studies and their results are available in publications and supplementary materials indicated
in the next sections.

4.2 First Learning Iteration: Towards an Ontology-Based Ap-

proach to Integrate Data Application

As discussed in chapters 1 and 2, application integration should take semantic aspects
into account. Therefore, to develop the artifact aimed by this work, we decided to integrate

Chapter 4. Learning Iterations Towards Immigrant 108

Figure 46 – Overview of the LIs performed to develop Immigrant.

application data by using networked ontologies to assign semantics to data and, thus, support
semantic integration. This decision was made to meet requirement R2: the proposed artifact
must address semantic issues involved in data integration in CSE domain, (see Section 1.4). We
chose to use networked ontologies because CSE involves several subdomains related to each
other and to SE general concepts. Thus, semantic aspects in CSE can be better supported by an
integrated, consistent, and comprehensive conceptualization provided by an ontology network.

We performed the first learning iteration with the purpose of evaluating our design
choice of using networked ontologies to integrate application data. It consisted of an exploratory
case study1 to answer the following question: Is it useful and feasible to use an ontology network
to integrate existing data stored in applications to meet organizations’ information needs aiming
at data-driven software development in CSE?

The study was performed in the software development unit of Prodest2, a Brazilian
government agency responsible for IT (Information Technology) solutions in the state of
Espírito Santo that faced problems to integrate application data to support data-driven software
development. The unit consists of around 50 employees, organized in various teams. Software
managers involved in projects adopting Scrum reported the need to obtain integrated data to
better monitor software projects, time-tracking, and product quality.

Microsoft Azure DevOps3, an application that supports project management in agile
software projects, and Clockify4, an application that supports time-tracking, were used in
projects at Prodest in a complementary way. While Microsoft Azure DevOps has been used to
aid in project management in general (e.g., to create a new project, to record scope by means
of user stories, to define tasks and to allocate them to a team), Clockify has been used to enable
detailed control of tasks duration, schedule, effort, and cost. Thus, general data about the project
(e.g., concerning sprints, user stories, and related tasks) is handled by Microsoft Azure DevOps,
while detailed data about how the tasks were performed over time (e.g., concerning time entries,
1 It is empirical research that seeks to better understand a contemporary phenomenon, usually complex, in its

real context (DRESCH; LACERDA; JÚNIOR, 2015).
2 <https://prodest.es.gov.br/>
3 <https://azure.microsoft.com/pt-br/services/devops/>
4 <https://clockify.me>

https://prodest.es.gov.br/
https://azure.microsoft.com/pt-br/services/devops/
https://clockify.me

Chapter 4. Learning Iterations Towards Immigrant 109

effort, and cost related to each time entry) is handled by Clockify. Since the applications were
not integrated, redundant data needed to be manually entered in both of them (e.g., the same
task was created in both applications), and when integrated data was needed (e.g., data about
how tasks that implemented user stories of a given sprint were performed), human intervention
was needed to retrieve data from both applications and integrate them by using spreadsheets.

For example, to obtain information about the amount of hours spent on development
tasks in a given sprint, managers used to perform the following procedure: (i) export a spread-
sheet from each application with data about the project, (ii) select fromMicrosoft Azure DevOps
spreadsheet tasks related to the desired sprint; (iii) retrieve from Clockify spreadsheet data
corresponding to the selected tasks; (iv) for each task, sum hours of all its time entries recorded
in Clockify spreadsheet; (v) record data resulting from (ii) and (iv) in a new spreadsheet and
sum time spent on all the tasks. This process demands effort and has to be repeated every time
integrated data is needed. If any mistake is made over the process, the resulting information
can be incorrect and lead to poor decision support. Moreover, manual consistency management
was required in the two applications. For example, when a development task was created in
Microsoft Azure DevOps, a team member had to create the same task in Clockify, where task
execution is controlled in detail. When the task execution was concluded, the member had
to change its status from “In Progress” to “Done” in Microsoft Azure DevOps and Clockify
manually. These manual activities naturally create opportunities for data inaccuracy. Ideally,
when a task is concluded in Clockify, the number of hours recorded in all its time entries should
be summed up, and automatically recorded in Microsoft Azure DevOps and the task status
should be changed to “Done”.

To address the lack of off-the-shelf integration that hampered data-driven software
development, we used an extract of Continuum (focusing on SRO concepts) to build a solution
that integrates Microsoft Azure DevOps and Clockify, enabling automatic sharing and exchange
of data between the applications and providing consolidated data useful for decision making.
Next, we present general information about the study and its results. Detailed information can
be found in (SANTOS et al., 2021).

4.2.1 Execution and Results

The study was performed from August to December of 2019. To develop the integration
solution, we defined and followed the process illustrated in Figure 47, which is constituted of
two macro-activities: Conceptual Integration and Integration Design and Implementation. The
ontology (i.e., the fragment of Continuum relevant to the application domain) was used to
assign semantics at the conceptual level.

The first activity, Conceptual Integration, uses ontology as a basis to identify semantic
mappings that will serve as a basis for data integration. For that, it is necessary to Transform On-
tology Model into Information Model. An information model concerns what kind of information

Chapter 4. Learning Iterations Towards Immigrant 110

Figure 47 – Process followed to develop the integration solution (SANTOS et al., 2021).

may be stored and exchanged considering demands of specific agents (the “recorded world”),
while an ontology model concerns metaphysical aspects of a domain (i.e., it concerns what is
considered to exist in the “real world”) (CARRARETTO, 2012). Thus, by turning an ontological
model into an information model, the resulting model preserves the conceptualization in a
structure more suitable for computing demands. Besides the information model, to produce the
integration model, it is necessary to Retrieve the Conceptual Data Model of each application.
By analyzing Microsoft Azure DevOps, Clockify, and their documentation, we retrieved their
conceptual data models.

Once we have obtained the applications’ conceptual data models and the ontology
information model, we needed to Identify Semantic Mappings. We used the ontology information
model to establish the mappings, assigning semantics to application elements by relating them
to the ontology elements. The semantic mappings are important to implement the integration
rules to enable service integration. The semantic mappings use ontology as a bridge between the
applications and identify which elements of the different applications are equivalent according
to the ontology conceptualization. By doing that, it is possible to know which data can be
integrated and how they must be stored.

Once we have assigned semantics to applications’ elements by means of semantic
mappings, we performed Integration Design and Implementation. In this activity, we developed
software artifacts (database, code libraries, services, and dashboard) and combined them into
integration processes that coordinate data integration in the integration solution architecture.
Details about the integration architecture and implementation are available in (SANTOS et
al., 2021). To provide the integration solution users with data to support decision-making,
we created a dashboard that shows, among others: data regarding some agile metrics (e.g.,
Work in Progress (WIP) and Lead Time), key process indicators (KPIs) (e.g., number of projects
and the average amount of hours spent on each project), user stories where story points are
missing, a total of hours spent on tasks, total of deliverables considered “done”. Figure 48 shows
a fragment of the dashboard.

After being developed, the integrated solution was used in a real project with 14 team
members (two Scrum masters and 12 developers) lasting from 2018 to 2020. From August to
December of 2019, the doctorate candidate (playing the Scrum master role) and the other Scrum

Chapter 4. Learning Iterations Towards Immigrant 111

Figure 48 – Fragment of the dashboard showing integrated data (SANTOS et al., 2021).

master used the integrated solution to facilitate project management. During this period, they
accessed the dashboard and shared information with the team in biweekly meetings. After that,
the doctorate candidate performed semistructured interviews with the other Scrum master and
nine developers to evaluate the solution.

The interviewees reported that based on information provided in the dashboard, it
was possible to make decisions along the project and also to create more realistic plans to
new projects. For example, decisions about team member allocation and duration estimates
became more accurate. Team member allocation was performed considering information about
previous allocations provided in the dashboard. Therefore, to allocate team members to tasks,
it was possible to look for team members that have worked on projects or tasks with similar
characteristics (considering functional and non-functional requirements). Effort and duration
estimates were performed based on information about the member’s productivity. By using
historical data available at the dashboard to support estimates, an average deviation of 7.3%
in estimates was achieved, which is smaller than the average deviation (24%) in projects that
started before August/2019. During the interview, a developer reported that the first sprints of
the projects used to have inaccurate time planning and pointed out that the dashboard aided
in better estimate the duration of each task. Another developer said that data provided in the
dashboard allowed to monitor the team’s velocity, contributing to observe the team’s evolution
and considering its velocity to plan the sprints more realistically.

It was also noted that using the integrated solution the development team truly under-

Chapter 4. Learning Iterations Towards Immigrant 112

stood the meaning of “Done” in a Scrum project since only deliverables in conformance to all
acceptance criteria appeared in the “Done” section of the dashboard. This operationalization
of the notion in the integrated tool helped the development team to understand that it is
necessary to deliver valuable and accepted software artifacts in each sprint, contributing to
product quality and team performance as well as improved project planning. In this context, a
developer reported that by properly understanding the meaning of “Done” and knowing the
individual and team’s WIP, the team members were encouraged and motivated to increase
their performance and produce better deliverables.

The integrated solution also enabled the identification of problems in the execution of
the Scrum process in the project. For example, the dashboard provides information about user
stories without story points (i.e., estimated effort to implement the user story) defined to them.
This may lead the Scrum master to ask the team to complete the information. In the project,
when asking some team members to set the story points, it was realized that being novices in
Scrum, they did not know how to properly estimate using story points. Thus, training in this
matter was provided to the team and the problem was solved.

The Scrum master highlighted that the integrated solution helped to address problems
earlier (as in the example cited above) and aided the team to change its practices and work
processes “on the fly”, according to the information provided in the dashboard, promoting
self-organization. Moreover, she said that the information provided in the dashboard helped
her make decisions together with developers, which increased their engagement. Another
benefit of using the integrated solution was the automatic synchronization of data between the
applications, which decreased manual work, avoided errors due to manual manipulation of the
same data in different applications, and contributed to the team focusing their attention on
development activities.

4.2.2 What did we learn?

The main lesson we learned from this study is that using networked ontologies is viable
and useful to address semantics and produce an integrated solution that aids in improving software
development work and supports decision making in the CSE context. This corroborates our
design choice for the artifact aimed by this work to meet R2. Moreover, by developing the
integrated solution created in the study, we also learned how to use networked ontologies to
integrate, share and exchange data from different applications to support data-driven software
development. The process, architecture, and implementations created during the study represent
the initial version of Immigrant.

Concerning the integration solution, we observed that implementing integration at
service layer may contribute to data integration. The opposite (i.e., data integration is needed
to service integration) is quite well-known (IZZA, 2009), but, besides that, we realized that it
may be advantageous to implement integration at the service layer to facilitate data integration

Chapter 4. Learning Iterations Towards Immigrant 113

among applications. During the software development process, it is common the use of different
applications referring to the same entity (i.e., a task, a user story). However, sometimes each
application addresses different aspects of that entity. For example, concerning task, Microsoft
Azure DevOps addresses the person responsible for it and whether the task is done; while
Clockify addresses the task start and end dates. Considering that Microsoft Azure DevOps and
Clockify are not integrated, the tasks are created in each application separately. Thus, pieces
of information about a task are stored in the Microsoft Azure DevOps repository while other
pieces are stored in the Clockfy repository. If the correspondence between the task created
in Microsoft Azure DevOps and the one created in Clockify is not correct (e.g., if they are
recorded with different names), data integration will fail because it will not be possible to
identify the same task in the different applications. To help in this matter, service integration
should synchronize the applications (e.g., triggered by events performed during the software
process). For example, when a task is created in Microsoft Azure DevOps, a corresponding
task is automatically created in Clockify, with the same name and responsible, ensuring data
consistency and facilitating data integration.

In this study, we also noticed that data provided in the dashboards was useful to the
organization because it was aligned with the organization’s needs. Thus, we confirmed in
practice what the literature points out (JONES et al., 2020): data must meet the organization
information needs, otherwise it is useless. However, we also observed that, it may not be easy for
organizations to identify which information should be satisfied. In the study, we first needed to
understand the organization goals, how it worked, and which practices it performed so that
we were able to identify its information needs. Then, considering the applications used by the
organization and the available data, we decided which information should be presented in the
dashboard.

At Prodest, where we performed the participative case study, different projects can use
different practices. Thus, we noticed that they could have different information needs. Therefore,
we learned that although the applications used by organizations are essential to decide which
data will support data-driven software development (after all we need the stored data to provide
integrated data), organizations5 using the same applications (e.g., Microsoft Azure DevOps,
Github, and Clockify) can work in different ways, even when performing the same software
processes (e.g., agile development, continuous integration, continuous deployment). Thus, it is
necessary to understand how the organization perform such processes (e.g., which practices
are adopted, at which level (e.g, project, team, process, organization). Moreover, the same
information need may demand different data to be satisfied in different organizations. For
example, if an organization can implement agile development using epics, user stories, tasks,
and sprints while another organization can use tasks and sprints only, and both want to know
the average cost to release. In this case, different data will be needed to meet that information
5 This can also be true for different organizational units, projects or teams of the same organization.

Chapter 4. Learning Iterations Towards Immigrant 114

need in each organization.

By observing that, we learned that understanding the CSE practices adopted by the
organization and how they are adopted help identify the organization’s information needs. This
knowledge is related to R1 (the artifact must support identifying the organization’s information
needs that are important to support data-driven software development in CSE) and led us to
perform the two next LIs.

4.3 Second Learning Iteration: California

In the first study, we confirmed in practice the necessity of properly identifying the
organization’s information needs to guide data integration and we noticed that organizations
may face difficulties to identify such information. Moreover, we observed that understanding
how the organization works and the CSE practices it adopts is useful to identify the organi-
zation’s information needs. Based on that, and considering the artifact requirement R1 (the
artifact must support identifying organization’s information needs that are important to support
data-driven software development in CSE) (see Section 1.4), we performed the second learning
iteration with the purpose of proposing a way to support understanding how an organization
works (in terms of CSE) and, thus, help identify its information needs.

The study was a participative case study6 that aimed at answering the following question:
How to understand the way an organization works and, thus, help identify its information needs
relevant to data-driven software development in the CSE context?

The study was performed in a Brazilian software house (here called Organization A
for anonymity reasons) which decided to evolve from traditional to agile and data-driven
software development by following the StH model (OLSSON; ALAHYARI; BOSCH, 2012). The
organization had made a previous unsuccessful attempt to implement agile practices and needed
an approach that was more suitable for its characteristics.

Organization A has a particular characteristic that needs to be taken into account
when defining strategies to implement agile practices: the software projects of Organization A
are built in partnership with an European organization (here called Organization B). In this
partnership, Organization B is responsible for the software requirements specification process,
while Organization A is responsible for the design, coding, testing, and deployment processes.
Furthermore, Organization B is responsible for the communication between Organization A
and the project client. Both organizations A and B work in a traditional but many times ad hoc
manners. This way of working has brought problems, such as budget overloading, teams divided
into disciplines (testers, architects, programmers, etc.) causing many intermediary delivery
points in the organization and increasing delays between them, with large periods of time
required to deploy new versions of the software products; not unlike what is described in the
6 A research method in which the researcher acts in the phenomenon being observed (BASKERVILLE, 1997).

Chapter 4. Learning Iterations Towards Immigrant 115

literature (WILLIAMS; COCKBURN, 2003; OLSSON; ALAHYARI; BOSCH, 2012; KARVONEN
et al., 2015).

4.3.1 Theoretical Background

In this study, we combined Systems Theory tools (MEADOWS, 2008), GUTMatrix (BECK,
1999), and Reference Ontologies (GUIZZARDI, 2007) into a process that guides identifying
strategies to implement CSE practices. The System Theory tools allow seeing the organization
as a system, consisting of elements (e.g., teams, artifacts, policies) and interconnections (e.g., the
relation between the development team, the software artifacts it produces, and the policies that
influence their production) coherently organized in a structure that produces a characteristic
set of behaviors, often classified as its function or purpose (e.g., the development team produces
a software product aiming to accomplish its function in the organization) (MEADOWS, 2008).

In the Systems Theory literature, there are several tools that support understanding
the different elements and behaviors of a system, such as systemic maps and archetypes
(MEADOWS, 2008; STERMAN, 2010). A systemic map (also known as a causal loop diagram)
allows representing the dynamics of a system bymeans of the system borders, relevant variables,
their causal relationships, and feedback loops. A positive causal relationship means that two
variables change in the same direction (e.g., an increase in the number of bad design decisions
causes increases in the number of software defects), while a negative causal relationship
means that two variables change in opposite directions (e.g., an increase in test efficacy causes
decreases in the number of software defects). Feedback loops are mechanisms that change the
variables of the system. There are two main types: balancing and reinforcing feedback loops.
The former is an equilibrant structure in the system and is source of stability and resistance to
change. The latter compounds change in one direction with even more change.

One beneficial effect of using systemic maps is that they help identify archetypes. An
archetype is a common structure of the system that produces a characteristic pattern of behavior.
For example, the archetype Shifting the Burden occurs when a problem symptom is solved
by applying a symptomatic solution, which diverts attention away from a more fundamental
solution (KIM, 1993). Archetypes and Systemic Maps can be useful to identify problems and
possible leverage points to solve them. Leverage points are points in the system where a small
change can lead to a large shift in behavior (MEADOWS, 2008), as shown in Figure 49.

GUT Matrix allows to prioritize the resolution of problems, considering that resources
are limited to solve them. The prioritization is based on: Gravity (G), which describes the impact
of the problem on the organization; Urgency (U); referring to how much time is available to
address the problem; and Tendency (T), which measures the predisposition of a problem getting
worse over time (BECK, 1999).

Reference Ontology is a special kind of conceptual model representing a model of

Chapter 4. Learning Iterations Towards Immigrant 116

consensus within a community. It is a solution-independent specificationwith the aim ofmaking
a clear and precise description of the domain in reality for the purposes of communication,
learning, and problem-solving (BASKERVILLE, 1997). Thus, SEON (RUY et al., 2016) was used
to provide a common conceptualization to support communication among organizations A
and B and their employees in the software development context.

Next, we present general information about the study. Detailed information is available
in (SANTOS; BARCELLOS; CALHAU, 2020; SANTOS; BARCELLOS; CALHAU, 2022).

4.3.2 Execution and Results

The study was performed at the beginning of 2020 and involved five participants from
Organization A (two directors, one tech lead, and two developers) and two consultants, being
the doctoral candidate one of them. The main goal was to improve software processes by
implementing agile practices (i.e., StH first stage) in a proper and suitable way for Organiza-
tion A. We started by collecting data about the organization through interviews. Then, we
built systemic maps to get a comprehensive view of the organization and understand how it
behaves, representing relevant variables and the relation between them (e.g., cause and effect
relationship). Figure 49 illustrates a fragment of the built systemic maps. The elements in blue
in the figure form a modeling pattern that reveals the presence of the archetype Shifting the
Burden.

Figure 49 – Fragment of Systemic map (SANTOS; BARCELLOS; CALHAU, 2020).

Chapter 4. Learning Iterations Towards Immigrant 117

As previously said, Organization B is responsible for eliciting requirements with the
client, specifying and sending them for Organization A to develop the software. The develop-
ment teams of Organization A often misunderstand requirements that describe the software,
component, or functionality to be developed, since Organization B produces Requirements poorly
specified, neither adopting a technique nor following a pattern to describe them. Misunderstood
requirements contribute to increasing the number of Defects in software artifacts, since design,
code, and test are produced based on the requirements informed by Organization B. Defects in
software artifacts make Organization A mobilize (and often overload) the development team to
fix defects by performing New urgent development activities, which decreases the number of
Defects in software artifacts. These urgent activities are performed as fast as possible, aiming
not to delay other activities. Thus, they do not properly follow software quality good practices.
Moreover, they contribute to increasing the project cost and time (Late and over-budget project).
Defects in software artifacts increase the need of using Software quality techniques that, when
used, lead to fewer Defects in software artifacts. This causal relationship has a delay since the
effect of using Software quality techniques can take a while to be perceived.

As shown in Figure 49, the archetype Shifting the Burden is composed of two balancing
feedback loops and one reinforcing feedback loop. The balancing feedback loops (between New
urgent development activities and Defects in software artifacts, and between Defects in software
artifacts and Software quality techniques) mean that the involved variables influence each other
in a balanced and stable way (e.g., higher/lower the number of Defects in software artifacts,
more/less New urgent development activities are performed). In the reinforcing feedback loop,
New urgent development activities are a symptomatic solution that leads to Defects fixed through
rework, a side effect, because once urgent development activities fix the defects in software
artifacts, Organization A feels like the problem was solved. This, in turn, decreases the need for
using Software quality techniques, which is a more fundamental solution. As a result, software
artifacts continue to be produced with defects, overloading the development team with new
urgent development activities. Shifting the Burden is a complex behavior structure because the
balancing and reinforcing loops move the system (Organization A) in a direction (New urgent
development activities) usually other than the one desired (Software quality techniques). New
urgent development activities contribute to increasing project cost and time (Project is late and
over-budget) because these activities were not initially planned in the project.

When Organization B does not properly define the project scope (Scope poorly defined),
Organization A may allocate a Team not suitable for the project, contributing to Defects in
software artifacts and to Changes in the project team during the project. Usually, when the
team is changed, the new members need to get knowledge about the project. Moreover, often
the new members are more experienced and thus more expensive, which contributes to Late
and over-budget project. To change the project team, members can be moved from a project to
another, causing Deficit in other project teams. Furthermore, there is a balancing loop between
Changes in the project team and Defects in software artifacts. The former may cause the latter

Chapter 4. Learning Iterations Towards Immigrant 118

due to instability inserted into the team. The latter, in turn, contributes to the former because
Defects in software artifacts may lead to the need to change the team. There is a delay in this
relationship because it can take a while between defects are noticed and the need to change
the team. Finally, Scope poorly defined causes Unrealistic deadline, which contributes to Late
and over-budget project.

We reflected on the behaviors on which the strategies to implement agile practices
should be focused. Then, we created a GUT matrix to identify and prioritize non-fruitful
behaviors, i.e., undesirable behaviors. They were identified mainly from the systemic maps.
For example, from the fragment depicted in Figure 49 based on the positive causal relationship
betweenMisunderstood requirements and Defects in software artifacts, the following undesirable
behavior was identified: Software artifacts are developed based on misunderstood requirements.
From the Shifting the Burden archetype, we identified: Software quality techniques are not often
applied to build software artifacts. To complement the information provided by the systemic
maps, we used information from the interviews to look for behaviors the literature points out
as desirable in organizations moving to agile (e.g., self-organized teams) (DEAN, 2016).

After identifying the undesirable behaviors, the study participants validated and priori-
tized them considering the GUT dimensions. Each dimension was evaluated considering values
from 1 (very low) to 5 (very high). 13 undesirable behaviors were identified. Table 7 shows a
fragment of the GUT Matrix.

Table 7 – Fragment of GUT Matrix.

Undesirable Behaviors G U T GxUxT
UB1 Software artifacts are developed based on misunderstood requirements 5 5 5 125
UB2 Software quality techniques are not often applied to build software artifacts 5 5 4 100
UB3 Projects are late and over budget 5 5 4 100
UB4 Organization has inconsistent knowledge of agile methods 5 5 4 100
UB5 Teams are not self-organized 5 4 4 80

For each undesirable behavior, we analyzed the systemic maps and the interviews
and identified its causes. We have observed that Software artifacts are developed based on
misunderstood requirements (UB1) because Requirements are not satisfactorily described (C1),
and because of Poor communication between client and development team (C2). C1 was identified
directly from the systemic map. C2 was based on information about the procedure followed by
Organization A to communicate with the client. When there is any doubt about requirements,
the contact was made mainly through email or comments on issues in the project management
system. Only Organization B has direct contact with the client.

C1 and C2 are also causes of UB2 (Software quality techniques are not often applied to
build software artifacts), since the lack of well-defined requirements and direct contact with
the client impact verification and validation activities. Moreover, there is a Lack of clear and

Chapter 4. Learning Iterations Towards Immigrant 119

objective criteria to evaluate results (C3) and there are Large deliverables (C4), which makes it
difficult to evaluate results.

As it can be noticed in Figure 49, Projects are late and over budget (UB3) mainly because
of C1 and C5 (Unstable scope and deadline). Moreover, C6 (Unsuitable team allocation) and C4
also affect project cost and time. The former is because low productivity impacts on project
time and, thus, cost. The latter is because it is difficult to estimate large projects.

Regarding UB4 (Organization has inconsistent knowledge of agile methods), some mem-
bers of the organization had previous experience with agile methods in other companies,
others had a previous unsuccessful experience in Organization A, and others did not have
experienced agile methods. Most of the members were not sure about agile concepts and
practices. Therefore, this undesirable behavior is caused by C7 (Organization’s members had
different experiences with agile) and C8 (Agile concepts and practices are not well-known by the
organization). Finally, Teams are not self-organized (UB5) due to the Traditional development
culture that produced functional and hierarchical teams (C9). After we have identified the causes
of undesirable behaviors, the study participants validated them. Table 8 shows the identified
causes and respective undesirable behaviors.

Table 8 – Causes of Undesirable Behaviors.

Causes UB1 UB2 UB3 UB4 UB5
C1 Requirements are not satisfactorily described x x x - -
C2 Poor communication be-tween client and development team x x - - -
C3 Lack of clear and objective criteria to evaluate results - x - - -
C4 Large deliverables - x x - -
C5 Unstable scope and deadline - x x - -
C6 Unstable team allocation - - x - -
C7 Organization’s members had different experiences with agile - - - x -
C8 Agile concepts and practices are not well-known by the organization - - - x -
C9 Traditional development culture - - - - x

The causes of undesirable behaviors and the prioritization made in the GUT Matrix
showed us leverage points of the system, i.e., points that if changed could change the system
behavior. Therefore, we defined strategies to help Organization A move towards the second
stage of StH by changing leverage points of the system and thus creating new behaviors in the
system in that direction. We started by defining strategies to change undesirable behaviors at
the top of the GUT Matrix and causes related to more than one undesirable behavior. After we
have defined the strategies, we presented them to the team in a meeting and they provided
feedback that help us to make the strategies more suitable for the organization.

Table 9 summarizes the defined strategies, the leverage points (causes) addressed by
them, and the main agile concepts involved. It is worth noticing that some agile concepts were
indirectly addressed. For example, although we did not directly use Product Backlog in S1, the

Chapter 4. Learning Iterations Towards Immigrant 120

set of requirements agreed with Organization B works as such. Similarly, in S3, when the team
selects the requirements to be addressed in a development cycle, we are applying the Sprint
Backlog notion. We decided not to use some of the original terms because Organization A had a
bad previous experience trying to implement agile practices by following Scrum “by the book”,
which did not work and provoked resistance to certain practices. Thus, we tried to give some
flexibility even to the practices’ names, to avoid bad links with the previous experience. Details
about the implementation of strategies in (SANTOS; BARCELLOS; CALHAU, 2020; SANTOS;
BARCELLOS; CALHAU, 2022).

Table 9 – Strategies, Causes, and Agile Concepts.

Strategies Agile Concepts Causes
S1 New procedure to communicate require-

ments
User Story, Behavior Driven Development,
Product Owner and Product Backlog

C1, C2, C3

S2 Budget and time globally and locally man-
aged through short development cycles

Sprint, Sprint Backlog, Scrum meetings,
and Small deliverables

C4, C5, C6, C9

S3 Self-organized teams Squad and Guild C9
S4 Agile common conceptualization Concepts related to agile software develop-

ment
C7,C8

To address C7 and C8, which cause the organization to have inconsistent knowledge
of agile methods (UB4), we defined Agile common conceptualization (S4) as a strategy to use
Reference Ontologies to provide a common conceptualization about the Software Engineering
domain as a whole, and about the agile development process in particular. We used ontologies
from SEON (RUY et al., 2016) to extract the view relevant to understand agile development.
It contains a conceptual model fragment, axioms, and textual descriptions that provide an
integrated view of agile and traditional development, defining concepts in a clear, objective, and
unambiguous way. We suggested the use of SEON because its ontologies have been developed
based on the literature and several standards, providing a consensual conceptualization. The
SEON view used in the study focuses on the Scrum Reference Ontology (SRO) and can be seen
in Section 3.2. To make it easier for the teams to learn and apply the conceptualization provided
by an ontology, the authors created complementary artifacts that combined graphical (e.g.,
Kanban Board, Diagrams, and process model) and textual elements (e.g., textual definitions).
Table 10 presents a dictionary of terms that was used to explain Scrum’s concept. The details
about other artifacts are available in (SANTOS; BARCELLOS; CALHAU, 2022). As a result of
this approach, the conceptualization provided by the ontologies was made more accessible to
the team, improving domain understanding and communication.

Table 10 – Some terms present in Dictionary based on SRO.

Concept Description
1 Scrum Project Software Project that adopts Scrum in its process.

Chapter 4. Learning Iterations Towards Immigrant 121

Table 10 – Continued from previous page

Strategies Agile Concepts
2 User Story Requirement Artifact (i.e., a requirement recorded in some way) that describes

Requirements in a Scrum Project. It indicates a goal that the user expects to
achieve by using the system and, thus, represents value for the client. A User
Story can be an Atomic User Story, when it is not decomposed into others, or
an Epic, when it is composed of other Use Stories.

3 Acceptance Criteria Requirement established to a User Story and that must be met when the User
Story is materialized. Thus, it is used to verify if the User Story was developed
correctly and meets the client needs.

4 Deliverable Software Item that materializes User Stories.

After defining and validating the strategies with the team, they were executed by the
organization in two projects with the supervision of the first and third authors of (SANTOS;
BARCELLOS; CALHAU, 2020; SANTOS; BARCELLOS; CALHAU, 2022). The first project started
and finished during this study while the second project started before the study and was still
ongoing at the time we wrote in (SANTOS; BARCELLOS; CALHAU, 2020). The new practices
started to be used in early February 2020.

The authors define some information needs (e.g., Effort spent on development and bug-
fixing tasks in different projects and Effort spent on development and bug-fixing tasks before and
after applying the strategies in the project) to monitor the implementation of strategies. Data
to meet the information needs was extracted from Jira7, which is used by Organization A to
support part of the software development process. Considering that the strategies were applied
in the projects in different moments (the first project adopted the strategies from its beginning
to its end, while the second adopted the strategies when it was already ongoing), we decided
to analyze them separately. About four months later, we conducted an interview to obtain
feedback and collect project data. At that point, one of the projects had already been concluded
and the other was ongoing.

Finally, we defined and executed strategies to implement agile practices taking the
prioritized undesirable behaviors as leverage points and considering the organization’s needs.
Figure 50 shows an overview of California, the System-Thinking process raised from this case
study.

After executing the process, we carried out interviews with the participants to get their
perceptions about it. The results showed that California provided means to:

i. Understand how different organizational aspects (e.g., business rules and quality
software practices) are interrelated and influence each other and how these
aspects and interrelations produce desirable and undesirable behaviors: The

7 <https://www.atlassian.com/software/jira>

https://www.atlassian.com/software/jira

Chapter 4. Learning Iterations Towards Immigrant 122

Figure 50 – California: A System Theory-Based Process (SANTOS; BARCELLOS; CALHAU,
2020).

director said that “the systemic maps allowed me to understand how poorly specified
requirements can negatively impact different parts of the project and of the organization” ;

ii. Create strategies to change undesirable behaviors since it provided a compre-
hensive understanding of the organization’s behavior and supported identifying
causes of undesirable behaviors: The director said that he “perceived the need to im-
plement practices to guarantee the quality of the requirements and that development tasks
should only start if the developer truly understood the requirement” ;

iii. Prioritize the undesirable behaviors to be changed first: the director stated that
GUT Matrix was easy to use, and important to prioritize the undesirable behaviors to be
changed first. According to him, using these tools “was easier and clearer when compared
to Ishikawa and Pareto diagrams, because systemic maps allow more comprehensive and
freer views and GUT Matrix has a simple way of prioritization” ;

iv. Create a common communication among project stakeholders and business
partners, eliminating some misunderstandings not only about agile practices
but also about Software Engineering in general, reducing misunderstandings in
software requirements among the stakeholders and enabling better managing
of budget and time locally, in short, development cycles: the director reported
the artifacts created based on reference ontologies were useful to create a common
communication. He said that “by using the conceptualization provided by the ontology, the
team truly understood the ‘done concept’, commonly used in agile projects”, while the tech
leader commented that “by using the artifacts created by the ontology conceptualization,
the necessary information that should be included in a requirement description became
clearer”, and;

v. Address some undesirable behaviors by applying agile practices and concepts:
the tech leader and directors commented that “the self-organization culture has been
developed in the teams and that the use of Squads has been very helpful”. The use of Guilds
was still in progress.

Chapter 4. Learning Iterations Towards Immigrant 123

Table 11 – Effort spent on development and bug-fixing tasks in different projects.

Task Project that adopted the strate-
gies

Projects that did not adopt the
strategies

Development 97.6% 81.0%
Bug-fixing 2.4% 18.9%

Table 12 – Effort spent on development and bug-fixing tasks before and after applying the
strategies in the project.

Task Before the strategies After the strategies

Development 62,1% 88,2%
Bug-fixing 37,9% 11,8%

Aiming to meet the information needs, collected data from the two projects where the
strategies were implemented (one finished and another ongoing) and from the other 22 projects
that did not use the strategies and were carried out in the same time-box of our study. Table 11
and Table 12 show the results.

By comparing data regarding the tasks performed in the first project and in the other
22 projects, we have an indication that in the former only 2.4% of the effort was spent on
bug-fixing while in the latter it was 18.9%, as shown in Table 11. Analyzing the two projects in
which the strategies were implemented, we also have an indication of an improvement in the
effort spent on bug-fixing before using the strategies (37.8%) to after using them (11.8%), as
shown in Table 12.

In summary, the results showed that California helps understand how the organization
behaves and defines proper strategies to implement or improve CSE practices according to the
organization’s behavior and needs.

4.3.3 Threats to Validity to the Study Results

The validity of a study denotes the trustworthiness of the results. Every study has
threats that should be addressed as much as possible and considered together with the results.
In this section, we discuss some threats considering the classification proposed in (RUNESON
et al., 2012).

The main threat in this study is related to the researchers who conducted the study.
Participative case studies are biased and subjective as their results rely on the researchers
(BASKERVILLE, 1997). The first and third authors acted as consultants in Organization A and
were responsible for conducting the interviews, creating systemic maps and GUT matrix and
defining strategies. The researchers participation affects Internal Validity, which is concerned
with the relationship between results and the applied treatment, External Validity, which regards
to what extent it is possible to generalize the results from the case-specific findings to different

Chapter 4. Learning Iterations Towards Immigrant 124

cases, and Reliability Validity, which refers to what extent data and analysis depend on specific
researchers. To reduce the threat, the other study participants participated in the activities and
validated results. Moreover, another researcher, external to the organization, evaluated data
collection and analysis and was involved in discussing and reflecting on the study and results.

Concerning Construct Validity, which is related to the constructs involved in the study,
the main threat is that we did not define indicators to evaluate results. Data collection was
performed through interviews, which involves subjectivity. To minimize this threat, we used
some measures collected in the projects to evaluate the new behaviors caused by the proposed
strategies. Moreover, the use of maps facilitated knowledge sharing and the validation of their
usefulness by the participants contributes to construct validity.

In case-based research, after getting results from specific case studies, generalization can
be established for similar cases. However, the threats aforementioned constrain generalization.
Moreover, the study involved only one organization. Thus, it is not possible to generalize results
for cases without researcher intervention or for organizations not similar to Organization A.

4.3.4 What did we learn?

With this study, we learned that using System-Thinking tools, GUT Matrix, and refer-
ence ontologies helps understand the organization’s current state and defining strategies for
improving it. We also observed that it is useful to have a process with well-defined steps to be
followed. Moreover, we confirmed the perception we had in the first LI that understanding the
organization helps identifying information needs. In this study, we noticed that when applying
California, information needs can be derived to understand the organization’s current state/be-
havior (e.g., How much time has been spent on rework? How many defects have been delivered
to the client? How much rework has been caused by requirements changes? How many projects
have been late? How many projects have been over-budget? What has been the turnover rate?).
Data meeting such information needs can be used to support decisions on the strategies to be
implemented. After strategies implementation, information needs can be defined aiming to
verify whether the defined strategies have been effective (e.g., Did rework decrease after using
the strategy? How much? Are the team members more engaged?).

We also observed a strong relation between the information needs and the applications
used by the organization (we indeed expected that). When information needs are identified,
the application(s) or repository(ies) containing the corresponding data are often also identified.
That means, the processes of deriving information needs and identifying the ones feasible to
be met by available data are not necessarily sequential; they can occur together and iteratively.
For example, in the study, to evaluate the effectiveness of the strategy established to improve
requirements communication aiming at avoiding rework due to requirements misunderstanding,
we defined the information need ‘Howmuch effort has been spent on bug-fixing activities? ’, which
demanded data from Jira. The results of the data analysis to evaluate the strategy effectiveness

Chapter 4. Learning Iterations Towards Immigrant 125

were presented in the last paragraph of Section 4.3.2.

We also learned that, although the proposed process (California) is useful, it involves a lot
of tacit knowledge and judgment, as well as knowledge of System Thinking tools, GUT matrix, and
Reference ontologies. Moreover, it may demand much time to be applied. Hence, depending on the
application scenario to be considered, it may be difficult or even unfeasible to use California.
This perception led us to perform a new learning iteration to answer the same question explored
in this study, but focusing in an easier way to support understanding how an organization
adopts CSE practices (e.g., practices and applications).

4.4 Third Learning Iteration: Zeppelin

Although California can be useful in this matter, it may demand knowledge and time to
be applied. Thus, we performed the third learning iteration to increase the knowledge related
to the question: How to understand the way an organization works and, thus, help identify its
information needs relevant to data-driven software development in CSE context?

The learning iteration comprised a multiple case study8 and intended to reach an
easier way to understand the current state of software organizations concerning CSE practices
adoption.

The study consisted in developing a diagnostic instrument (called Zeppelin) to support
organizations to get a panoramic view of CSE adoption and using such instrument in five
Brazilian software organizations (one software house, two startups, one fin-tech, and one public
Organization with an IT Department). General information about the study is presented in the
following. Details are available in (SANTOS; BARCELLOS; RUY, 2021).

4.4.1 Execution and Results

The first step of the study was to create Zeppelin. It has two components: (i) Diagnosis
Questionnaire, which identifies the CSE practices an organization performs and the degree to
which they are adopted; and (ii) Analytics Report, which presents consolidated data from the
questionnaire answers, showing a panoramic view of the organization from the CSE perspective
and pointing out possible improvement areas.

The Diagnosis Questionnaire consists of an electronic spreadsheet with eight forms: (i)
Context, to provide a brief introduction to CSE; (ii) Instructions, which guides the user on how
to fill in the other forms; (iii) Organization, to characterize the organization (e.g., organization
type, size, age, development team size); (iv) User, to characterize the person answering the
questionnaire on behalf of the organization (e.g., position, knowledge, and experience with CSE
8 Multiple case study is a research method in which the researcher carries out multiple cases to investigate a

phenomenon through the understanding of differences and similarities between the cases (GUSTAFSSON, 2017).

Chapter 4. Learning Iterations Towards Immigrant 126

practices); and four forms concerning StH stages and containing in all 76 statements expressing
CSE practices: (v) Agile Organization (26 practices), (vi) Continuous Integration (18 practices),
(vii) Continuous Deployment (19 practices), and (viii) R&D as Innovation System (13 practices).
The CSE practices were identified based on the literature, mainly StH (OLSSON; ALAHYARI;
BOSCH, 2012), Continuous * (FITZGERALD; STOL, 2017), Eye of CSE (JOHANSSEN et al.,
2019) and FCSE (BARCELLOS, 2020), and on the practical experience reported in (SANTOS;
BARCELLOS; RUY, 2021).

The questionnaire is used to evaluate which practices have been adopted in the or-
ganization and to understand how comprehensive their adoption has been. When applying
Zeppelin, for each practice, the user must indicate the level at which it is adopted in the
organization. The adoption levels were defined based on (OLSSON; ALAHYARI; BOSCH,
2012) and are used to capture the comprehensiveness of each practice in the organization
and help monitor its evolution. The Not Adopted level is used to identify practices that the
organization has never used. The Abandoned level refers to practices that were discontin-
ued. The Project/Product level is used to identify practices not formalized in the organiza-
tion and used only in a particular project or product. The Process level indicates that the
practice is formally defined (e.g., by means of procedures, guidelines, business processes,
policies) but the team can decide whether to apply it in a project. Finally, a CSE practice is
said to have the Institutionalized level when it is formally defined and used in all projects.
The adoption degree of each stage (𝐴𝐷) is represented as a percentage and is established
by calculating the weighted average of the adoption level (𝐴𝐿) of all practices of that stage
(i.e., practices 1 to 𝑛, where 𝑛 is the number of practices related to the stage). Thus, 𝐴𝐷𝑠𝑡𝑎𝑔𝑒 =

(𝑤𝑒𝑖𝑔ℎ𝑡×𝐴𝐿𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒1+ ...+𝑤𝑒𝑖𝑔ℎ𝑡×𝐴𝐿𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑛)/𝑛)×100). The weights of the adoption levels vary
from 0 (zero) (referring to theNot Adopted level) to 1.0 (referring to the Institutionalized level). Fig-
ure 51 presents a fragment of the Diagnosis Questionnaire. The complete questionnaire is avail-
able at <http://nemo.inf.ufes.br/wp-content/uploads/CSE/zeppelin_analytics_report_v1.xlsx>
and Appendix A.

The Analytics Report is an artifact that imports data from the Diagnosis Questionnaire,
consolidates it and provides a panoramic view (by using tables, charts, and text) of CSE
practices adoption in the organization. It focuses on providing three different perspectives of
CSE practices adoption: (i) per 5 StH stage (i.e., Agile Organization, Continuous Integration,
Continuous Deployment, and R&D as Innovation System); (ii) per 9 Eye of CSE dimension
(namely, Deployment, Quality, Software Management, Team, Technical Solution, Knowledge,
Operation, Business, and User/Customer), and (iii) per Eye of CSE element (33 elements, e.g.,
Agile Practice, Automated Tests, Continuous Deployment Releases, and Continuous Learning).
Each CSE element is related to one CSE dimension. By analyzing the different perspectives,
the organization identifies its strengths and weaknesses and can define improvement actions
accordingly. Figure 52 illustrates some pieces of information contained in the Analytic Report.

http://nemo.inf.ufes.br/wp-content/uploads/CSE/zeppelin_analytics_report_v1.xlsx

Chapter 4. Learning Iterations Towards Immigrant 127

Figure 51 – Fragment of the Diagnosis Questionnaire with practices related to Continuous
Integration (SANTOS; BARCELLOS; RUY, 2021).

Figure 52 – Fragment of Analytic Report (SANTOS; BARCELLOS; RUY, 2021).

Zeppelinwas applied in five Brazilian software organizations: two startups, one software
house, one fin-tech, and one public organization with IT department. After using Zeppelin,
the participants (one representing each organization) were asked to share their perceptions
about the use of Zeppelin by filling in a feedback form. Concerning (Q1) Is Zeppelin useful to
identify which CSE practices have been adopted in an organization and provide a panorama about
its position in the CSE evolutionary path?. We analyzed the answers to the questions of the first
section of the feedback form (SANTOS; BARCELLOS; RUY, 2021). As result, all participants

Chapter 4. Learning Iterations Towards Immigrant 128

agreed (80% strongly agreed and 20% agreed) that Zeppelin provided a comprehensive view of
CSE practices adoption and provided a faithful panoramic view of their organization.

As for (Q2) Does Zeppelin help an organization envision an improvement path to follow?
All participants agreed (40% strongly agreed and 60% agreed) that Zeppelin supported them to
identify areas and practices the organization succeeds and the ones that need to be improved or
adopted. They also agreed that the panorama provided by Zeppelin and the practices contained
in the Diagnosis Questionnaire helps define improvement actions.

When asked to provide comments and suggestions about Zeppelin, a participant made
a comment that supports the results related to Q2: “This evaluation instrument can strategically
support the company to understand its current state and envision its future state”.

We asked the participants about dimensions they consider most important to improve
in their organizations. They noticed that the answers were aligned to data provided in the
Analytics Report. Some of the aspects cited by the participants were Knowledge, Software Man-
agement, Quality, User/Costumer, Team, Operation, and Business. In general, the participants
found it important to improve CSE practices that promote:

i. Knowledge sharing and decision rationale capturing at different stages (Knowledge);

ii. Adoption of good management practices to improve agile development, continuous
integration, and deployment (Software Management);

iii. Improvement and automation in tests in different stages of software development (Qual-
ity);

iv. Involvement of user and other stakeholders in all development processes and learning
from user data and feedback about the products (User/Costumer);

v. Self-organized, motivated and productive team (Team);

vi. Logging and monitoring production activities; and

vii. Alignment between software development, operation, and business.

It was observed that some dimensions less addressed by the organizations were not
cited by the participants, even being pointed out in the Analytics Report. This, in fact, was
expected, because Zeppelin gives a broad view of the organization, indicating aspects more and
less addressed. However, which aspects will be the target of improvement actions and how
much they need to be improved is a decision to be made by the organization, based on its goals,
needs, characteristics, constraints, etc.

Therefore, the results indicate that Zeppelin provides a panoramic view that describes
the current state of the adopted CSE practices in an organization, supporting the identification

Chapter 4. Learning Iterations Towards Immigrant 129

of weaknesses and strengths as well as aiding in decision-making about which aspects should
be addressed in improvement actions.

4.4.2 Threats to validity to study results

The validity of a study denotes the trustworthiness of the results. Every study has
threats that should be addressed as much as possible and considered together with the results.
In this section, we discuss some threats considering the classification proposed in (RUNESON
et al., 2012).

Regarding Construct Validity, which is related to the constructs involved in the study,
the main threat concerns the statements used to identify CSE practices in the Diagnosis
Questionnaire, which can be understood in different ways by different participants. To minimize
this threat, the authors performed interviews with the participants to validate the answers.
This gave us an opportunity to resolve misunderstandings. Another threat refers to the weights
assigned by the authors to the adoption levels (e.g., a practice adopted at project level has
weight 0.5 while an institutionalized practice has weight 1.0). This directly impacts the degree
of adoption calculation. If different weights are used, the quantitative results presented in the
Analytics Report may be a little different. CSE practices defined in the Diagnosis Questionnaire
is also a threat. Some practices may have not been properly covered by it. To minimize this
threat, CSE practices were defined based on four works addressing CSE processes and practices
(OLSSON; ALAHYARI; BOSCH, 2012; JOHANSSEN et al., 2019; FITZGERALD; STOL, 2017;
BARCELLOS et al., 2022).

Concerning Internal Validity, which is concerned with the relationship between results
and the applied treatment, the main threat is related to the researchers who conducted the
study. In (SANTOS; BARCELLOS; RUY, 2021), two of the authors conducted interviews to
validate data . Moreover, the Analytics Reports were also elaborated by the authors. Different
results could be obtained if Zeppelin had been used by the participants without the authors
interference. To minimize this threat, the authors interfered as little as possible and did not
influence the participants’ feedback. Another threat refers to the participants providing answers
not consistent with the organization reality (e.g., they could indicate a higher level of adoption
for a practice than its actual level). We minimized this threat by performing interviews to
validate the answers. In the interviews, we asked the participants to explain how each practice
is performed in the organization, so that we could verify whether the indicated level of adoption
was correct.

As for External Validity, which is concerned the extent to which it is possible to general-
ize results, the main threats in this study are: (i) researchers participation; (ii) small number of
organizations; and (iii) feedback obtained from only one person of each organization. Concern-
ing (i), as discussed in the context of internal validity, the researchers participation may have
influenced results. As for (ii), only five organizations were involved in the study, all of them are

Chapter 4. Learning Iterations Towards Immigrant 130

from the same country and most of them are small and founded in the last years. Regarding
(iii), the results are based on the participants’ feedback and, thus, are biased and subjective
(BASKERVILLE, 1997). Thus, it is not possible to generalize results for cases different from the
ones considered in the study.

Finally, concerning Reliability Validity, which refers to what extent data and analysis
depend on specific researcher, the main threat is that data analysis was performed by the
authors, as presented in (SANTOS; BARCELLOS; RUY, 2021). To minimize this threat, analysis
was carried out by two of the authors and reviewed by the other one.

In summary, considering all mentioned threats, we can only present some insights
regarding Zeppelin use and generalization is limited. Thus, obtained results cannot be considered
conclusive, but preliminary evidence of Zeppelin feasibility and usefulness.

4.4.3 What did we learn?

With this study, we learned that Zeppelin provides, in an easy way, a panoramic view
of CSE practices implemented in an organization. Thus, using Zeppelin helps us to know
the organization’s current state by means of the CSE practices it adopts and the adoption
comprehensiveness. This information can be used to identify areas that can be improved and
actions that can be performed aiming at such improvements.

It was observed that by knowing the CSE practices the organization adopts, it is possible
to identify relevant data, from practices and applications, that meets an information need. For
example, if the organization adopts automatic testing practices, it has data about them storage
in a continuous integration server. Thus, the data about the execution of automated tests can be
used to answer an information need related to them can be defined (e.g.,What is the automated
test coverage? What is the test automatic efficiency? What is the density of detected defects in
automated tests?). On the other hand, it is not reasonable to derive information needs related
to practices that the organization does not perform, because there no data is produced to meet
such needs. For example, if the organization does not perform continuous experimentation
practices (e.g., A/B testing), there may not be data or information needs associated to them.

It was also noticed that information needs can be identified from the improvement areas
pointed out in the diagnostic. For example, if it is necessary to improve continuous deployment,
information needs such as What is the deployment rate? What is the deployment cost? could
be defined to quantitatively understand the current state and, later, verify the effects of the
performed improvement actions.

Finally, it was learned that knowing the level at which the practices are adopted also helps
identify if an information needs can be met properly, using data provided by the CSE practices
and applications. For example, if a practice is adopted at project level, information needs related
to the project can be defined (e.g.,What is the sprint delivery rate?) and met by collected data in

Chapter 4. Learning Iterations Towards Immigrant 131

that project. On the other hand, if a practice is institutionalized, information needs regarding
the organization can be defined and met by data from several projects. Therefore, there is a
relation between the degree of adoption of CSE practices and the capability of a organization
to create data, in an application used to support a software process, that answer an information
need.

4.5 Final Considerations

This chapter presented the three learning iterations performed to aid us understand
the problem and design the proposed approach (Immigrant). The first learning iteration was an
exploratory case study in which we used networked ontologies to integrate existing data stored
in diverse applications to support data-driven software development in CSE. As result, we
created the first version of Immigrant (SANTOS et al., 2021). The first learning iteration raised
a demand to investigate how to understand the way an organization works and, thus, help
identify its data and information needs relevant to support data-driven software development
in the CSE context.

This prompted the second learning iteration, which was executed as a participative
case study in which we proposed California (SANTOS; BARCELLOS; CALHAU, 2020; SANTOS;
BARCELLOS; CALHAU, 2022). California is a process that supports understanding how an
organization behaves and defining strategies to implement CSE practices accordingly. Infor-
mation needs can be derived from the organization’s current state as well as to monitor the
established strategies. Considering California demands much time and a lot of tacit knowledge
to be applied, we performed the third learning iteration to reach an easier way to understand
the organization.

The third learning iteration was a multiple case study with five organizations. In this
study, a diagnostic instrument was developed, called Zeppelin (SANTOS; BARCELLOS; RUY,
2021; SANTOS et al., 2022), to support organizations to get a panoramic view of their adoption
of CSE practices. Zeppelin helps understanding the current state of the organization and
identifying improvement areas. Zeppelin supports identifying the data source (e.g., applications)
and data level (e.g., Product/Project level, Process level, or Institutionalized level) that can be
used to answer the information needs.

Each learning iteration helped us better understand the target problem and gradually
evaluate design choices we have made to develop Immigrant. At the end, we reached the first
version of The Band, and, California and Zeppelin were incorporated into Immigrant’s current
version to support identifying information needs to be met by the ontology-based integrated
solution. The current version of Immigrant is presented in the next chapter.

132

5 Immigrant

We come from the land of the ice and snow / From the midnight sun where the hot

springs flow / The hammer of the gods / Will drive our ships to new lands / To fight

the horde, sing and cry / Valhalla, I am coming.
Led Zeppelin, Immigrant Song

This chapter presents Immigrant, the main artifact produced in this work. Therefore, it is
related to theDesign Cycle. The chapter is organized as follows: Section 5.1 introduces Immigrant,
providing a general view of the approach and its components (California, Zeppelin, and The
Band); Section 5.2 discusses the use of ontology network (ON) and Federated Information
System (FIS) in The Band, the Immigrant component responsible for data integration; Section 5.3
presents the process that was followed to develop The Band and introduces some components
of The Band architecture; Section 5.4 details The Band architecture; Section 5.5 concerns the
implementation of The Band in this work; Section 5.7 regards how Immigrant can be used;
Section 5.6 discusses how The Band meets some FIS characteristics; Section 5.8 discusses related
work, and, finally, Section 5.9 presents some final considerations.

5.1 Immigrant Overview

As discussed in Chapter 1, considering that Software Engineering (as a whole, and
Continuous Software Engineering, in particular) is a large and complex domain, involving
many subdomains, we advocate using an ON to integrate application data aiming at data-driven
software development. We defend the use of SEON (RUY et al., 2016), more specifically its
subnetwork Continuum, which is proposed in this work and is devoted to CSE (see Chapter 3).

The main artifact proposed in this work is Immigrant1, an ontology-based approach
that uses networked ontologies to integrate application data aiming at enabling data-driven
software development in the CSE context. Figure 53 shows an overview of it.

The approach considers, from the top-down perspective, information needs to be obtained
from the current state of the organization and the actions to implement or improve CSE
practices. The organization diagnosis and the definition of the actions to be performed to move
from traditional to data-driven software development are supported by California (SANTOS;
BARCELLOS; CALHAU, 2020) and Zeppelin (SANTOS et al., 2021), which were introduced in
Chapter 4. These artifacts are meant to meet the requirement R1 (the approach must support
1 The name Immigrant was inspired by the Immigrant Song by the Led Zeppelin band because the approach

allows organizations to migrate from non-data-driven software development (land of ice and snow) to data-
driven software development (western shore).

Chapter 5. Immigrant 133

Figure 53 – Immigrant overview.

identifying the organization’s information needs that are important to data-driven software
development in CSE), defined in Chapter 1.

From the bottom-up perspective, Immigrant considers data available in the applica-
tions used by the organization to support its development process. Based on the information
needs and available data, and using networked ontologies (e.g, Scrum Reference Ontology and
Continuous Integration Reference Ontology) as an interlingua, an integration solution called
The Band2 defines and implements a software architecture that integrates data from different
applications and shows meaningful information (e.g., in dashboards) to enable data-driven
software development. The Band enables Immigrant to meet requirements R2 (the approach
must address semantic issues involved in data integration in such a complex domain), R3 (the
approach must consider data available in the organization’s applications) and R4 (the approach
must provide integrated and meaningful data, considering the organization’s information needs
and available data).

Considering that the two Immigrant components that support the information needs
(California) and data sources (Zeppelin) identification were introduced in Chapter 4, in the next
sections we focus on The Band, the Immigrant component responsible for data integration.

5.2 The use of an Ontology Network and Federated Information

Systems in The Band

The Band is a data integration software solution based on SEON and Federated In-
formation System (FIS) architectures. SEON architecture provides the abstraction layers to
2 The Band: the idea is that each ontology-based service of the architecture is a musician that plays an instrument

(ON concepts, relations, and rules) and the services together are responsible for creating an music (information)
from musical notes (data application) to satisfy a public (organization).

Chapter 5. Immigrant 134

be considered (i.e., foundational, core, and domain), the subdomains and respective concepts,
relationships, and axioms to be addressed. FIS architecture, in turn, provides means to cre-
ate systems that share, exchange, and combine data, and an interface for a client to access
data in the systems federation. In The Band, each networked ontology is transformed into an
ontology-based service (OBS) that is a system of The Band federation and has its own repository,
called ontology-based data repository (OBDR). Therefore, each OBS captures, stores, and shares
data related to the domain portion addressed by the referred networked ontology. Figure 54
illustrates a generic scenario of the use of ON and FIS in The Band.

Figure 54 – Transformation of ON into FIS.

Dotted circles specify the abstraction layers, which are defined like in SEON (RUY et
al., 2016), i.e., based on the ontology types (Foundational, Core, and Domain). Each networked
ontology gives rise to a service, which is a system of the federation. A black line arrow indicates
that the source ontology reuses concepts from the target ontology, meaning that the respective
OBSs need to exchange (dotted line arrow) data related to that concept. For example, the Code
concept (from SysSwO) is reused by SRO and CIRO. Thus, the OBSs referring to these ontologies
must communicate with each other to share data related to Code.

Chapter 5. Immigrant 135

An OBS is a system built based on a networked ontology. Thus, it is a system of the
federation and implements concepts, axioms, and relationships from a networked ontology to
manage data extracted from applications that support the software development process in the
domain portion addressed by the networked ontology. It is an autonomous system that has the
capability of sharing data and functionality with other OBSs or with a client.

To be autonomous, each OBS should manage all data related to the domain portion
addressed by the respective networked ontology. Therefore, each OBS considers all concepts
and relationships of the networked ontology, even if the concepts are from different source
ontologies (i.e., reused concepts). For example, if the Code concept (from SysSwO) is reused
by SRO, it needs to be addressed by the OBS referring to SRO. Similarly, if the Code concept
(from SysSwO) is reused by CIRO, it needs to be addressed by the OBS referring to CIRO. As
a result, the same concept is handled by more than one service. On one hand, this requires
communication to ensure data consistency (e.g., if the OBSs referring to SRO and CIRO are used
to integrate application data, it is necessary to ensure that data related to Code is consistent
in both SRO and CIRO OBDRs). On the other hand, this allows one to use only the OBSs
directly related to the domain portion involved in the integration scenario. For example, if the
integration scenario regards agile development, one can use the OBS referring to SRO and
does not need to use the OBS referring to SysSwO because the SysSwO concepts (e.g., Code
as a Software Artifact produced in a Performed Scrum Development Task) relevant to the
scrum context are also included in SRO. Thus, the SRO OBS contains the concepts necessary to
represent the Scrum domains.

By creating OBSs based on networked ontologies, it is possible to observe the rela-
tionships among the networked ontologies and identify which data needs to be exchanged
among different OBSs. By organizing OBSs in a FIS, relevant FIS criteria can be considered to
contribute to defining the solution architecture. For example, by applying the transparency
criterion3, The Band must allow a client to search data without knowing where it is stored and
using a query language based on a common conceptualization (i.e., concepts from the ON);
while an OBS must have the capability of sharing and exchanging data with other OBSs. By
applying the autonomy criterion, OBSs must be able to work independently of other OBSs and
handle all necessary data to deal with the domain of interest (as discussed in the paragraph
above).

5.3 Journey: The Band Development Process

To develop The Band, we defined and followed the Journey process, which is constituted
of two phases: Conceptual Integration and Integration Design and Implementation.
3 In FIS context, Transparency Criterion means that a client does not need to know where is the database

location, schema, and query language to retrieve data from the application present in a FIS.

Chapter 5. Immigrant 136

Figure 55 – Journey overview.

Figure 55 presents an overview of Journey. Next, we describe each phase and its activities.

Conceptual Integration aims to identify the semantic mappings that will serve as a
basis for data integration. The first activity refers to Define the Integration Scenario, which
involves identifying the ON extract to be considered (i.e., the SEON fragment containing the
ontologies to be used in data integration) and the applications to be integrated. The integration
scenario must be defined considering the information needs to be met by integrated data.

After defining the integration scenario, it is necessary to Transform Ontology Model
into InformationModel. In this work, we consider the transformations proposed by Carraretto
(2012) and Guidoni, Almeida & Guizzardi (2020) to create information models from ontologies.
The ON core and domain layers must be kept in the information models (this will be important
to use the ON to create OBSs and OBDRs in the next phase). Since the ON foundational layer has
the purpose of providing the common and general categorization to the other layers’ concepts,
and it does not contain concepts directly related to the application domain, the foundational
layer is suppressed in the information model (i.e., its concepts are not replicated in this model,
associations inherited from higher categories are maintained, e.g. “caused by” between an
Intended and Performed Process and Activity). Figure 56 shows as an example a fragment of
the SRO information model, obtained after applying transformations to the SRO conceptual
model.

Besides creating an information model, it is necessary to Retrieve the Applications
Conceptual Data Model, which can be carried out based on the applications’ documentation
(e.g., API specification or software documentation) or, if documentation is incomplete or
unavailable, one can extract the model by analyzing the application interface and features. For
example, Figure 57 illustrates a fragment of the data model extracted from Microsoft Azure
DevOps (SANTOS et al., 2021).

Chapter 5. Immigrant 137

Figure 56 – Fragment of SRO Information Model (SANTOS et al., 2021).

Figure 57 – Fragment of Microsoft Azure DevOps data model (SANTOS et al., 2021).

To conclude Conceptual Integration, it is necessary to Identify Semantic Mappings
between information models and data models. In this activity, a networked ontology is used
to assign semantics to the application’s elements by relating the data model’s elements (e.g.,
classes and attributes) to the information model’s elements. The semantic mappings can be
defined based on guidelines provided in (CALHAU; FALBO, 2010; RUY, 2017; SALAMON,
2018). Table 13 presents an example of semantic mapping between SRO information model and
Microsoft Azure DevOps’s Data Application Model (Semantic Mappings between Application
and Networked Ontology) (SANTOS et al., 2021).

Table 13 – Examples of Semantic Mappings between SRO Information Model and Microsoft
Azure DevOps Data Model (SANTOS et al., 2021).

SRO Information Model Microsoft Azure DevOps
1 Person Identity
2 Scrum Team Team
3 Development Team Team
4 Team Member Identity and Team Member
5 Developer Identity and Team Member when admin is false

Chapter 5. Immigrant 138

Table 13 – Continued from previous page

SRO Information Model Microsoft Azure DevOps
6 Scrum Master Identity and Team Member when admin is true
7 Scrum Complex Project Project, when it has many Teams
8 Scrum Atomic Project Project, when it has one Team
9 Atomic User Story Work Item, when WorkItem Type is “User Story”

The semantic mappings use networked ontologies as a bridge between the applications
and identify which elements of the different applications are equivalent according to the ON
conceptualization. They are important to implement the integration rules in the next phase.
Once Conceptual Integration is concluded, we have information models, application data
models, and semantic mappings that will be used in the next phase.

Integration Design and Implementation refers to defining the integration solution
architecture and developing software artifacts (e.g., databases, code libraries, web services, and
dashboards) tomaterialize data integration and support data visualization. The first activity aims
to develop application software artifacts (ASA) (e.g., code library) that enable to Communicate
with Application to retrieve data from or send data to it. The ASA developed to communicate
with an application is based on the data model of that application. Figure 58 shows a fragment
of the class diagram of an ASA (a code library) developed using Python4 to communicate with
Microsoft Azure DevOps.

The next two activities are responsible for incorporating FIS characteristics into the
architecture. They concern the creation of OBSs (and respective OBDRs) as systems of a
federation based on the ON, as discussed in Section 5.2. To create an OBS, first, we need to
Create Ontology-based Data Repository (OBDR) from the information models, so that the
OBS can use the OBDR to store and share data with other OBSs. An OBDR is a data repository
based on an information model derived from a networked ontology and, thus, it represents
concepts of that ontology. It can be implemented in different ways, such as a relational database
or a graph database. Figure 59 depicts a fragment of the OBDR implemented as a relational
database based on SRO information model (thus, we call it SRO OBDR).

Once the OBDR is created, we can Create Ontology-based Service by transforming a
networked ontology (i.e., the information model derived from it) into a service, as discussed in
Section 5.2. The activities that create OBDR and OBS must be repeated until all the networked
ontologies represented in the information models are addressed (i.e., until each of them has an
OBS and an OBDR). Figure 60 and Figure 61 show an OBS, developed in Java and using the
SRO information model. A client can manage data, respectively, through REST (FIELDING;
TAYLOR, 2002) or GraphQL (HARTIG; PÉREZ, 2018) interfaces, and both use the networked
ontology’s concepts to do that.
4 https://pypi.org/project/azuredevopsX/

Chapter 5. Immigrant 139

Figure 58 – Fragment of the class diagram of a lib to access Microsoft Azure DevOps data.

Figure 59 – Fragment of SRO OBDR.

As we explained in Section 5.2, since OBSs are autonomous, the same ontological
concept (e.g., Code appears in SysSWO and CIRO) can appear in different OBDRs and it is
necessary to keep consistency among them. Thus, to support data traceability (in instance
level), in the OBDRs we added two attributes, Internal_id and Version, to each concept derived
from the information model. Internal_id defines the unique identification used to identify a
particular data in different OBDRs (i.e., data referring to concepts present in more than one
OBDR is repeated in various OBDRs and internal_id is used to identify a particular data in all
the OBDRs that contain it). Version, in turn, is used to identify if the OBDRs have the same
version of the referred data (i.e., data referring to concepts present in more than one OBDR is
repeated in various OBDRs and version is used to identify if they are synchronized).

Chapter 5. Immigrant 140

Figure 60 – SRO’s OBS using a REST interface.

Figure 61 – SRO’s OBS using a GraphQL interface.

We also added a table (considering OBDRs implemented as relational databases) called
Application Reference to each OBDR to enable application access and data traceability to
the respective application (see Figure 62). Application Reference provides identifiers to relate
each data stored in the OBDR to a particular application and to the correspondent entity in
the application database. Application_name refers to the application that provides data (e.g.,
Microsoft Azure DevOps) and external_id represents the identifier of the data in the application
database. By doing that, data can be extracted from applications, stored in the OBDRs (which
will be used in data integration), and consistency between the OBDRs and applications database

Chapter 5. Immigrant 141

is ensured. That means, it is possible to relate each data stored in OBDR to its corresponding
data in the application database.

Figure 62 – Concept added to OBDR to allow data traceability.

Once ASAs, OBSs, and OBDRs are created, it is necessary to Extract Data From
Applications and store it in OBDRs. Thus, we need to develop ETL components that use
ASAs to extract data from the applications’ database and, considering the semantic mappings,
transform, and load it in OBDRs.

As we are working with a FIS based on an ON (i.e., OBSs and the respective OBDRs),
it is possible that, in order to capture data related to the addressed domain portion, different
OBSs need to access application data by applying different semantic mappings (e.g., the OBSs
referring to SPO and SRO need to access data from Microsoft Azure DevOps to manage data
about software management and each OBS considers its own semantic mappings with Microsoft
Azure DevOps concepts). Thus, we can split the ETL component into two components: Extract
Component and Transform/Load Component. The former extracts data from an application and
publishes it in a message queue (FOWLER, 2012). The latter consumes data from a message
queue, applies the transformations based on the semantic mappings, and stores data in an
OBDR. This way, it is possible for several OBSs to consume data from a single queue and store
transformed data in distinct OBDRs, as illustrated in Figure 63.

Figure 63 – Example of ETL components and OBDRs.

The next activity aims to Ensure Autonomy and Data Consistency. In this activ-
ity, data publishing components are created to enable (i) the extract components (from ETL
components) to share data with the OBSs when data is extracted from an application, and (ii)
the OBSs to share and exchange data with each other when changes happen in data stored in
the related OBDRs (i.e., when data is inserted, deleted, or updated in the OBDR). When data

Chapter 5. Immigrant 142

stored in an OBDR is changed, the data publishing component uses a queue and automatically
propagates the changes in all OBDRs that contain the changed data. This action is necessary to
keep data consistency in all OBDRs and allow each OBS (plus its OBDR) to be autonomous in
the FIS. In other words, data publishing components are the ones that directly support The Band
architecture to work as FIS.

ASAs, OBSs, OBDRs, ETL components, and data publishing components are The Band
architecture components that allow capturing data from applications, storing it in autonomous
data repositories, and ensuring data consistency.

Once OBDRs are populated with application data, it is necessary to offer access to
integrated data that meet the information needs to be considered in the integration scenario.
For that, we must Provide Access to Integrated Data, which involves developing data access
components that enable access to data through an interface (e.g., dashboards, Rest and GraphQL
APIs, or data repository command). Figure 5.1 presents an SQL Query that retrieves the names
and roles from a development team member.

Listagem 5.1 – Example of SQL Command using SRO Concepts.
SELECT
person . name as "Name " ,
team_member . t e am_ro l e as " Ro le "
FROM s c r um_p ro j e c t
INNER JOIN s c rum_proces s ON s c r um_p ro j e c t . i d = sc rum_proces s . s c r um_p r o j e c t _ i d
INNER JOIN scrum_team ON scrum_team . s c r um_p r o j e c t _ i d = s c rum_p ro j e c t . i d
INNER JOIN development_team ON development_team . scrum_team_id = scrum_team . i d
INNER JOIN team_member ON team_member . t eam_id = development_team . i d
INNER JOIN person ON person . i d = team_member . p e r s on_ i d
WHERE
pro j ec t_name = " The Band "
ORDER BY person . name

The Band provides means to search data available in the OBDRs and show data that
meets the information needs. Figure 64 shows a piece of the interface provided by a data access
component via a dashboard.

5.4 The Band Architecture

In the previous section, we explained the process we followed to create The Band and
we introduced some of the components of The Band architecture. In this section, we provide
details about The Band architecture, which is shown in Figure 65.

From bottom to top, the first layer is Application Integration Layer, which contains ASAs
to communicate with applications and ETL components (extract components) that extract data
from the applications and send it to the Internal Data Communication Layer. It also contains
Data Publishing Components that support the propagation of data changes to different OBDRs

Chapter 5. Immigrant 143

Figure 64 – Example of an interface provided by a data access component.

Figure 65 – The Band architecture overview.

of the Federated Ontogy-based Service Layer (via Internal Data Communication Layer), keeping
data consistent.

The Internal Data Communication Layer contains Transform/load Components that use
ASAs andData Publishing Components from theApplication Integration Layer to load application
data into OBDRs and support data sharing among different OBSs contained in the Federated
Ontological Service Layer. Communication among different OBSs is necessary to keep data
consistent.

Chapter 5. Immigrant 144

The Federated Ontological Service Layer, in turn, receives retrieve commands from the
Federated Data Access Layer, which contains data access components and provides interfaces to
data retrieving and visualization, and sends data to be presented through that layer.

When data loaded in an OBDR is changed (i.e., when loaded data is updated, deleted or
new data is stored), the Federated Ontology-Based Service Layer communicates with the Internal
Data Communication Layer to propagate the changes in all OBDRs containing the changed
data and, thus, ensure data consistency.

The Federated Data Access Layer containsData Access components that provide interfaces
to data retrieving (e.g., APIs) and visualization (e.g., dashboard), via requests to the Federated
Ontology-Based Service Layer. The following sections provide further information about each
layer of The Band architecture. The notation used in the figures detailing the layers is the same
of Figure 65 by adding rectangles to represent the layer components.

5.4.1 Application Integration Layer

Figure 66 presents an overview of the Application Integration Layer. As explained
before, this layer contains Extract Components that use ASAs to extract data from applications
and send it to the OBSs. Data Publishing Components publish data to be consumed by the
Internal Data Communication Layer, which shares application data with OBSs.

Figure 66 – Application Integration Layer architecture.

5.4.2 Internal Data Communication Layer

The Internal Communication Layer aims to be a channel to share and exchange data
among OBSs, using a message broker (FOWLER, 2012) and Transform/Load components. A

Chapter 5. Immigrant 145

message broker is an architectural pattern for messages, mediating communication among
applications. It allows validating, transforming, and routing a message among the applications
(FOWLER, 2012). The Internal Communication Layer is also used to get data from Application
Integration Layer and send it to OBSs, in the Federated Ontology-Based Service Layer (Trans-
form/load Components transform data from the message broker and load transformed data in
OBDR). Therefore, the Internal Communication Layer is used to transport data from OBSs to
Extract components via a message broker. Figure 67 presents the Internal Data Communication
Layer architecture.

Figure 67 – Internal Data Communication Layer architecture.

5.4.3 Federated Ontology-based Service Layer

The Federated Ontology-based Service Layer manages the OBSs, whose architecture is
organized into three layers: (i) Data Access Layer, (ii) Domain Rules Layer, (iii) Data Repository
Layer, and (iv) Data Publishing Layer, as presented in Figure 68.

The Data Access Layer provides an interface that allows a client to manage data in the
OBS, via GraphQL WebService (HARTIG; PÉREZ, 2018) or OBDR Engine. The former provides
an interface based on a graph, while the latter offers an interface based on database commands
(e.g., SQL). Every command given by a client is sent for the Domain Rules Layer to process it
and return the result.

The Domain Rules Layer aims to manage requests from the Data Access Layer, send it to
Data Repository Layer, and send the result back to Data Access Layer. Moreover, it contains an
engine, Domain Rules Engine, which implements the axioms of the referred networked ontology

Chapter 5. Immigrant 146

Figure 68 – Federated Ontology-based Service Layer architecture.

(as explained before, each OBS is based on a networked ontology) and verifies whether data is
in conformance with the domain rules.

The Data Repository Layer manages the OBDR. The Change Data Capture Component
(SHI et al., 2008) captures data when it changes (i.e. when data is created, delete, or updated)
in an OBDR and then sends it to Data Message Producer Component. The Data Management
component, in turn, receives data from Data Message Consumer Component and sends to the
OBDR. Data Message Producer Component receives data from Change Data Capture and sends it
to the Internal Data Communication Layer ; while Data Message Consumer Component, in turn,
consumes data from Internal Data Communication Layer and sends it to the Data Management
Component.

5.4.4 Federated Data Access Layer

The Federated Data Access Layer provides access for a client to manage data in a
federated way (i.e., it accesses data stored in several OBDRs in a transparent way) using Data
Access components. This layer considers the following data access components: Dashboard,
Data View, GraphQL API, and OBDR command. Figure 69 presents the Federated Data Access
Layer and its data access components.

A client can use GraphQL API and OBDR Command components to manipulate data
(i.e. create, update, and delete) or retrieve data from the OBDR using HTTP Protocol or SQL
Commands, respectively. Dashboard allows a client to visualize integrated data that meet
information needs using charts and tables. It uses the OBDR Commands (e.g., SQLs) to retrieve

Chapter 5. Immigrant 147

Figure 69 – Federated Data Access Layer Architecture.

data from one or more OBDRs. Figure 5.2 presents an example of SQL query using SRO and
CIRO OBDRs that retrieves all software projects with did not pass an automated test.

Listagem 5.2 – Example of SQL Command using SRO and CIRO Concepts.

SELECT
SRO . s c r um_p ro j e c t . name as " p ro j e c t_name " ,
CIRO . c o n t i n u o u s _ t e s t _ p r o c e s s . s t a r t D a t e as " s t a r t _ d a t e " ,
CIRO . c o n t i n u o u s _ t e s t _ p r o c e s s . endDate as " end_da te " ,
CIRO . C I _T e s t _R e s u l t as " r e s u l t "
FROM
SRO . s c r um_p ro j e c t
INNER JOIN CIRO . s o f tw a r e _ p r o j e c t ON SRO . s c r um_p ro j e t c . i n t e r n a l _ i d = CIRO .

s o f tw a r e _ p r o j e c t . i n t e r n a l _ i d
INNER JOIN CIRO . c o n t i n u o u s _ i n t e g r a t i o n _ p r o c e s s ON CIRO .

c o n t i n u o u s _ i n t e g r a t i o n _ p r o c e s s
INNER JOIN CIRO . c o n t i n u o u s _ t e s t _ p r o c e s s ON CIRO . c o n t i n u o u s _ t e s t _ p r o c e s s . i d = CIRO .

s o f tw a r e _ p r o j e c t . c o n t i n u o u s _ t e s t _ p r o c e s s _ i d
WHERE
CIRO . c o n t i n u o u s _ t e s t _ p r o c e s s . type = " UnSu c e s s f u l l _Con t i nuou s _Te s t _P r o c e s s "
ORDER BY SRO . s c r um_p ro j e c t . name

Finally, a Data View contains forms that allow a client to manipulate and visualize data
stored in an OBDR. It uses GraphQL API to manipulate data stored in an OBDR. Figure 70
shows a Data View, built using Budibase5, that allows managing data in the SRO OBDR.

5 https://budibase.com/

Chapter 5. Immigrant 148

Figure 70 – SRO Data View.

5.5 Implementing The Band

By following the process described in Section 5.3 and the architecture presented in
Section 5.4, we implemented an instance of The Band aiming at integrating data from Microsoft
Azure DevOps (an application that supports project management), Gitlab6 (a source repository
and application that supports CI and CD), Sonar Cloud7 (an application that addresses software
quality aspects), and Clockify8 (a time-tracking application). The used SEON fragment included
the following ontologies: SPO, EO, SysSWO, RSRO, ROosT, CMPO, QAPO, OSDEF, SRO, and
CIRO (these last two from the Continuum).

The Band is a data integration solution that looks like an “iceberg” because only 10%
of it (Data Access Components) is above the water while 90% (ASAs, OBSs, Extract and Trans-
form/Load Services) is under the water. In other words, a client only sees the data access
components (e.g., Dashboard and Data View) while the other components supporting the
data access components are not noticed by the client. Next, we present information about the
technologies we used to implement The Band.

The dashboards were developed using Metabase9 and Dremio10. Dremio creates a
data lakehouse (WIKIPEDIA, 2023b) with the OBDRs and, thus, create OBDR Command that
retrieves data from one or more OBDRs. Metabase allows using Dremio’s SQL Commands to
create dashboards. An example of a dashboard is presented in Figure 64. The data views were
developed using Budibase, as shown in Figure 70. Budibase is a No-Code development platform
(WIKIPEDIA, 2023e) that creates an application to visualize data saved in a data source.
6 <https://about.gitlab.com/>
7 <https://www.sonarsource.com/>
8 <https://clockify.me/>
9 <https://www.metabase.com/>
10 <https://www.dremio.com/>

https://about.gitlab.com/
https://www.sonarsource.com/
https://clockify.me/
https://www.metabase.com/
https://www.dremio.com/

Chapter 5. Immigrant 149

The OBSs were developed using Java11 and Spring Boot framework12 to create Rest and
GraphQL webservices, while the ontology-based data repositories were implemented using the
relational database PostgreSQL13. An example of Rest and GraphQL is presented in Figure 60
and Figure 61.

Finally, the ASAs, Extract, Transform/Load components were developed using Python,
Apache Beam14, and Spring Cloud Stream 15, respectively. Apache Beam and Spring Cloud
Stream allow extracting data from different data sources, applying transformations (e.g., joining,
filter, combine, union, and split) on data, and loading transformed data on OBDR (e.g., relational
database) using Python and Java, respectively.

5.6 The Band as FIS

As previously discussed, The Band is a data integration software architecture based
on an ON and inspired by FIS architecture. In The Band, each OBS (plus its OBDR) works as
a distinct, independent, and autonomous system and different OBSs can work together in a
federated way.

An OBS is said autonomous because it has design, communication, and execution
autonomy (BUSSE et al., 1999). Design autonomy means that the system is designed indepen-
dently of others; while Communication autonomy means that the system can decide with which
other systems it communicates. Finally, Execution autonomy means that the system executes
independently, based on an incoming request.

Busse et al. (1999) define a set of criteria to characterize and classify FIS. Table 14
summarizes The Band classification according to each criterion.

Table 14 – Federated Information System’s Criteria on The Band.

Criterion The Band Classification Rationale
Kind of compo-
nents (that can be
integrated)

Structured Source Structured components have a pre-defined schema. All
data items are intentionally defined through the schema
element they belong to (BUSSE et al., 1999). The main dis-
tinction of The Band is the integration of OBSs. OBSs im-
plement structured components (OBDRs) whose schema
is pre-defined by SEON.

11 <https://www.java.com/>
12 <https://spring.io/>
13 <https://www.postgresql.org/>
14 <https://beam.apache.org/>
15 <https://spring.io/event-driven>

https://www.java.com/
https://spring.io/
https://www.postgresql.org/
https://beam.apache.org/
https://spring.io/event-driven

Chapter 5. Immigrant 150

Type of Federation Tight A tight federation offers a unified schema (integrated or
federated schema) as an access interface to the federation.
The “semantic essence” of the federated schema is a subset
of the union of the semantic essence of the components
schema (BUSSE et al., 1999). In The Band, the semantic
essence is provided by the OBSs and respective OBDRs,
which together provide the integrated schema (based on
the information models derived from SEON).

Data Model Common Data Model Common data model defines a specific model that re-
stricts the components that can be integrated (BUSSE
et al., 1999). In The Band, the information model is de-
rived from SEON and only components addressing the
information model scope (or part of it) can be integrated.
The information model represents the canonical/com-
mon data model to be used to share and exchange data
between OBSs.

Semantic Data Inte-
gration Approach

Fusion and Supplementation Fusion integration is performed to identify semantically
equivalent entities coming from different sources. Sup-
plementation integration, in turn, occurs when semantics
is added to data to describe its content or semantic con-
text (BUSSE et al., 1999). In The Band, semantic mappings
are defined between SEON concepts and elements of the
applications data models.

Transparency Location transparency,
Schema transparency, and
Language transparency

In The Band users do not need to know the physical loca-
tion of information (location transparency), the different
denotations that entities or attributes have in different
data sources (schema transparency), and do not need to
cope with different query mechanisms and languages
(language transparency).

Query Paradigm Structured Queries Structured queries assume some structure in the informa-
tion which is used to specify data items in a query. DBMS
are typical query-based systems (BUSSE et al., 1999). In
The Band, the data items in the queries are specified ac-
cording to the OBDRs schemas, which are based on the
networked ontologies.

Engineering Ap-
proach

Top-down A top-down approach starts from a global information
need and, later, plugs in sources that can contribute to
this need (BUSSE et al., 1999). In The Band, the integration
scenario defining the ON extract to be used and appli-
cations to have data integrated is established based on
information needs. Thus, global information needs are
the basis for selecting the sources to be used.

Type of Integration Materialized In materialized integration sources are completely or par-
tially materialized at the federation level. In The Band,
data is persistently stored in each OBDR.

Chapter 5. Immigrant 151

Data Access Read-and-Write (partial
Write capabilities sup-
ported)

Read-and-write access means that it is possible to read,
insert or update data through the federation (BUSSE et al.,
1999). In The Band, data stored in OBDRs can be read and
when application data is changed, the modification needs
to be propagated to all OBDRs that share the data. How-
ever, the user of the integration solution is not allowed
to input data into the OBDRs.

Access Method Query Language In The Band, data can be accessed via SQL, REST, and
GraphQL query.

5.7 Using Immigrant

When using Immigrant, the first step an organization must perform is Identify infor-
mation needs to be met by integrated data. For that, the organization can use California or
Zeppelin (or even other methods, such as (e.g., GQ(i)M (GOETHERT; FISHER, 2003) and OKR
(TRINKENREICH et al., 2019)). Table 15 shows examples of information needs.

Table 15 – Example of the Information Needs.

Information Need
1 What is the average waiting time for a user story until development begins?
2 What is the average development time for a user story (from the start of its development until it is

successfully completed)?
3 What is the average delivery time for a user story (since its creation)?
4 What is the average amount of rework during the development of a product version?

The next step is Identify available data sources, when the applications used by the
organization to support the development process are selected and the available data related
to the information needs is identified. Considering the identified information needs and the
available data, it is possible to Define measures to be obtained from the available data to meet
the information needs. It is outside the scope of this thesis to guide on measures definition.
In (SOUZA, 2023), a work related to this thesis, a process called Ramble ON was proposed
to help organizations derive measures from information needs and define them based on the
conceptualization provided by networked ontologies. Table 16 presents examples of measures
defined to meet information needs.

Table 16 – Examples of measures defined to meet the information needs.

Information Need Measure Description
1 What is the average waiting time for a user

story until development begins?
Wait Time How long a user story is in the Backlog

until it is selected for development.

Chapter 5. Immigrant 152

Table 16 – Continued from previous page

Information Need Measure Description
2 What is the average development time for

a user story (from the start of its develop-
ment until it is successfully completed)?

Cycle Time How long a user story takes to be delivered.

3 What is the average delivery time for a user
story (since its creation)?

Lead Time How long, from its creation, a user story
takes to be delivered.

4 What is the average amount of rework dur-
ing the development of a product version?

Time to Repair How long it takes for a defect to be resolved
after it has been identified in the develop-
ment and/or production-like environment.

The next step is Provide integrated data and it is when The Band is used. If the applica-
tions used by the organization are the ones considered in The Band implementation produced
in this thesis and the provided integrated data (e.g., information provided in the produced
dashboards) meet the organization’s information needs, the organization can use The Band as
it is to extract data from its applications and provide dashboards from the organization data. If
the applications are the same but other information needs have to be met, then it is necessary
to develop new searches and dashboards (i.e., update existing Data Access layer or develop
new ones). If other applications need to be integrated, then it is also necessary to develop new
ASAs and ETL components to extract data from the applications and store it in OBDRs.

It is worth pointing out that in The Band measures are defined at the semantic level, i.e.,
by using concepts from the networked ontologies instead of concepts from the applications.
In this way, once data is extracted from the applications and stored in the OBDRs, it can be
used to calculate values for the measures regardless of the source application. The semantic
measurement formulas are defined in the OBDR command components of The Band. Table 17
describes some measurement formulas defined using Continuum concepts to the measures
cited in Table 16.

Table 17 – Measurement formulas defined based on Continuum concepts

Measure Measurement Formula
1 Wait Time Time difference between adding it to a Sprint Backlog of a Scrum project and

adding a User Story to the Product Backlog of a Scrum Project
2 Cycle Time Time difference between the End Date of the last Successfully Performed Scrum

Development Task related to a User Story and the Start Date of the First Per-
formed Scrum Development Task related to that User Story in a Scrum Project.

3 Lead Time Time difference between End Date of the last Successfully Performed Scrum
Development Task related to that User Story in a Scrum Project and the addition
of a User Story in a Product Backlog of a Scrum Project.

4 Time to Repair Time difference between the End Date of the last Successfully Performed Scrum
Development Task related to that Defect and the Start Date of a Performed
Scrum Development Task performed to address a Defect in a Scrum Project

Chapter 5. Immigrant 153

5.8 Related work

In the literature, there are some approaches using ontologies to integrate software
development data. Some authors, such as Calhau & Falbo (2010), Fonseca, Barcellos & Falbo
(2017), use ontologies as interlingua to integrate applications at the conceptual level. The
ontology serves as a bridge to connect elements from different applications, assigning semantics
to them. Similarly, in our proposal, ontologies also serve as a conceptual bridge to connect
elements from different applications. Differently from the cited works, in our proposal, the
ontology is transformed into an information model and it is used as an information resource
to build software artifacts (e.g., databases and services) used to integrate application data.
Moreover, the aforementioned works are focused on conceptual integration and induce design
decisions that guide the developer to build a peer-to-peer connector between applications,
while our proposal details an architecture that uses networked ontologies and ontology-based
services to integrate application data. Furthermore, these works do not produce data integration
software architectures with reusable components, i.e., they produce specific software solutions
that can only be used in the context that were developed. This way, it is not possible to reuse the
integration solution to integrate different applications (even if they meet the same information
needs and refer to the same domain portion and ontologies used in the integration solution).
In our proposal, we combine networked ontologies with FIS characteristics and provide an
architecture containing reusable components that enable to connect different applications
supporting the domain portions addressed by the OBSs and OBDRs.

In the work reported by Izza (2009), operational ontologies are used as solutions for
semantically describing, discovering, and composing web services, using a single ontology,
multiple ontologies, and hybrid ontology approaches. In the first approach, information sources
(e.g., databases) are related to a global ontology, which can be applied only if all information
sources to be integrated provide a very similar view of a domain. In the second approach, each
information source is described by its own ontology and there is not a common vocabulary
connecting the different ontologies or information sources. The third approach is similar to
multiple ontologies (the semantics of each source is described by its own ontology) but there
is a global shared ontology (or vocabulary) on which the sources are based. Differently from
the cited work, our proposal focuses on data integration by using components (e.g., databases
and services) developed based on an ON. Thus, we provide a data integration solution where
each component shares a common conceptualization (given by the networked ontologies)
that favors data exchange and sharing. Another difference is that we work with reference
ontologies, which aims at providing a conceptualization independent of computational issues.
Therefore, different technologies can be used to implement the solution. Izza (2009) focuses on
operational ontologies, which are not developed from a foundational ontology that shares the
same categorization with all ontologies used in the integration solution. Further, Izza (2009)
does not use FIS characteristics to provide autonomous services in an architecture that favors

Chapter 5. Immigrant 154

reuse and growth.

There have been some works addressing Software Process Improvement (SPI) that also
propose to integrate data to support decision-making and, as such, are also related to ours.
For example, Renault, Barcellos & Falbo (2018) use ontologies to integrate MantisBT16 and
Subversion17, which are applications that support Issue Management and Software Configura-
tion Management processes, respectively. Similarly to our work, the authors use ontologies
to assign semantics at the conceptual level. However, differently from our work, the focus is
on integration at the process level and supporting of decision-making to improve software
processes, while we focus on integration at the data level to support data-driven software
development.

We can also consider some Mining Software Repository (MSR) (HASSAN, 2008) works
that aim at providing data to support decision-making in software development as related to
ours. MSR aims to analyze and cross-link data present in software repositories (e.g., source
control, bug repositories, deployment logs, source code repositories, and emails) to uncover
actionable information about software and projects. It seeks to transform static record-keeping
software repositories into active repositories that could provide information to support decision-
making in software development (HASSAN, 2008). Some works addressing MSR to support
software development include those of Mattila et al. (2017), Hassan (2008), Destefanis et al.
(2016), Cubranic et al. (2005), Kim et al. (2006). Mattila et al. (2017) use data from Jira to guide
decisions to decrease deviations between the planned and executed process. Hassan (2008),
in turn, analyzes source code from code repositories to identify and propagate changes when
a software artifact is modified in a project. Destefanis et al. (2016) explore data from Jira to
investigate how social aspects (e.g., being polite) influence developers’ productivity on agile
software projects. Cubranic et al. (2005) and Kim et al. (2006) discuss that linking data from
different and heterogeneous software repositories (e.g., email, source control repository, and
chat) could improve data quality and, thus, provide a more complete view of a project.

Similarly to our work, these works aim to use and integrate existing data to provide
useful information to support decision-making in software development. However, differently
from our work, the authors of the aforementioned works were not concerned with semantic
aspects explicitly. As we previously discussed, neglecting semantic aspects can lead to conflicts
whenever the same information item is given divergent interpretations (WACHE et al., 2001).

Our work proposes the use of networked ontologies to assign semantics to data and
structure services and repositories in the integration solution. The created OBSs and OBDRs
are used to integrate applications. They work as systems of a FIS, making it easier to add new
applications or change the ones that were integrated to others addressing similar scope (e.g.,
when the organization changes one application for another). Once semantics is assigned to
16 <https://www.mantisbt.org/>
17 <https://subversion.apache.org/>

https://www.mantisbt.org/
https://subversion.apache.org/

Chapter 5. Immigrant 155

applications’ information items (e.g., class, attributes), it is possible to change an application
data repository for another (e.g., from Microsoft Azure DevOps to Jira). The cited works, in
turn, provide solutions considering the data structure of the used repositories, which makes it
difficult to reuse them with different repositories. By using networked ontologies, our work not
only supports the integration solution but also helps understand the domain of interest. We
argue that ontology-based approaches such as the one proposed in this work could contribute
to MSR solutions by providing comprehensive and well-founded conceptual models to combine
and interpret data extracted from software repositories as well as support the linking of data
from different repositories.

In conclusion, by analyzing all cited works, we notice that none of them use ON, provide
characteristics enabled by an architecture based in FIS, produce ontology-based reusable soft-
ware components, and address CSE aspects, as our proposal does. Moreover, when considering
Immigrant as a whole (the previous discussion concerns mainly The Band component), our
proposal is the only solution that aids data integration and supports identifying the information
needs to be met by the resulting integrated data.

5.9 Final Considerations

This chapter introduced Immigrant, the main artifact produced in this work. It is an
ontology-based approach to integrate application data aiming at enabling data-driven software
development in the CSE context. Immigrant uses ontologies from SEON (RUY et al., 2016),
particularly the ones from Continuum, a subnetwork developed in this work and devoted to
CSE aspects. Immigrant has three components California, Zeppelin, and The Band, which have
different and complementary roles.

Immigrant considers both, top-down and bottom-up perspectives. From the top-down
perspective, the organization information needs must be identified. This can be supported by
California and Zeppelin, which help understand the organization current status, identify CSE
practices to be implemented or improved and, thus, derive information needs to be met. From
the bottom-up perspective, available application data must be considered and integrated to meet
the information needs. Data integration is supported by The Band, a data integration software
solution that allows to capture and integrate data from applications supporting the software
development process and provides integrated data in dashboards to aid software development
and decision-making. This chapter presented an overview of the Immigrant, provided details
about The Band and discussed related work.

The Band uses SEON and incorporates FIS characteristics to create OBSs and OBDRs
that work as systems of a FIS. Some benefits of using an ON to develop FIS in a data integration
solution are:

Chapter 5. Immigrant 156

• The ON provides the “big picture” of which subdomains and concepts can be addressed
in a data integration solution related to the ON domain. For example, Continuum helps
understand which subdomains, concepts, and relations need to be considered (and, thus,
integrated) in a data integration solution for the CSE domain.

• The ON structure helps define the FIS structure in which each networked ontology gives
rise to components (here, OBSs plus OBDRs) that are systems of the FIS. The axioms
help define integration rules to keep data consistency in the different systems (i.e., OBSs)
that are part of the federation (i.e. The Band). In The Band, OBSs (plus respective OBDRs)
are autonomous systems that can work alone (i.e., independently of other OBSs and can
also share and exchange data with other OBSs of the federation. The relations between
different OBSs are defined based on the relations between the networked ontologies.
This helps identify data that must be shared.

• The ON architecture provides a basis to the integration architecture and supports different
views of integrated data. For example, the ON layers can be used to categorize and
organize OBSs in layers in the FIS architecture. This way, the FIS architecture can provide
different viewpoints of data according to the aimed layer. For example, integrated data
about software process performance can be provided in a core view by using SPO. On the
other hand, specific data about agile software process can be provided in a domain-specific
view by using SRO.

• TheON evolution enables the integrated solution evolution. If the ON evolves (by applying
evolution mechanisms such as merging, reengineering, and aligning (SALAMON, 2018)),
the FIS architecture can evolve accordingly. That is, new OBSs can be created to address
the new domain portion added to the ON, making it possible to integrate new data from
applications supporting that domain portion.

The next chapter presents a learning interaction performed to evaluate Immigrant in a
software organization that desired to achieve a data-driven software development process.

157

6 Final Learning Iteration: Applying Immi-

grant in a Software Organization

Many times I’ve lied, many times I’ve listened, many times I’ve wondered how much

there is to know.
Led Zeppelin, Over The Hills And Far Away

This chapter presents the fourth and last learning iteration performed in this work. It
consisted of a participative case study in which Immigrant was used in a software organization
that desires to implement a data-driven development software process. This chapter is related
to the Design Cycle, since it regards evaluating the proposed artifact. Section 6.1 introduces
the study context by describing the organization in which Immigrant was applied. Section 6.2
presents the study planning. Section 6.3 concerns the study execution and results. Section 6.4
discusses the results. Section 6.5 addresses threats to validity. Section 6.6 discusses what we
learned in this last learning iteration. Finally, Section 6.7 presents the final considerations of
the chapter.

6.1 Context

Organization X (its name was omitted for anonymity reasons) is a Brazilian software
organization that decided to evolve from an agile to a data-driven software development process.
Org X is a small 3-year-old fintech startup that provides financial solutions to small Brazilian
financial funds. In addition to the directors, it has four software developers, one designer, and
one financial expert. Org X adopts a software development process based on Scrum and other
CSE practices (e.g., Continuous Integration, Continuous Delivery, and Continuous Deployment).
Development team members have between one and three years of practical experience working
in software organizations. Three out of the four developers started working as interns and after
graduating were hired. The author of this thesis worked at Org X from January 2022 to March
2023 as a consultant.

The development team is responsible for the software requirements specification,
design, coding, testing, deployment, and operation processes, i.e., the development team is
responsible for performing every activity related to software development and operations.
As a consequence of the many responsibilities, some problems emerged, such as projects
delays and budget overruns, increased software defects, overloaded teams due to rework, and
communication issues with clients. Aiming to minimize these problems, Org X decided to
improve the software process by improving the performed CSE practices or implementing

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 158

new ones aiming at a data-driven software development. According to the director: “the main
difficulty is identifying problems during the process execution in an easy way and using data
to support decision-making in development and business contexts”. In addition, the director
commented that they “desire to automate some aspects of the software process to reduce repetitive
teamwork in activities related mainly to project management and software development (e.g.,
creating, relating and maintaining consistency of data regarding epics, user stories, and tasks in
the tools)”. Considering this scenario, we proposed to use Immigrant to enable Org X to perform
data-driven software development.

6.2 Study Planning

The study consisted of a participative case (BASKERVILLE, 1997) study whose goal
was to evaluate Immigrant in a real context to verify if it is useful and if its use is feasible. It is
important to observe that the Immigrant components have already been evaluated in isolation.
As discussed in Chapter 4, we performed studies as learning iterations (LI) to evaluate California
(LI2 in Figure 1) (SANTOS; BARCELLOS; CALHAU, 2022), Zeppelin (LI3 in Figure 1) (SANTOS
et al., 2021) and The Band (LI1 in Figure 1) (SANTOS et al., 2022). The results suggests that,
when used in isolation, each component is useful and its use in software organization is feasible.
However, we have not evaluated the use of all components in the same organization. Moreover,
after LI1 we evolved The Band (SANTOS; ALMEIDA; BARCELLOS, 2023) and we need to
evaluate the current version. Thus, this study aimed to evaluate the use of all components of
Immigrant in the same organization. The participative case study was selected as the research
method in this study because the researcher (this thesis author) acted as a consultant in Org X .
Together with other participants, he gathered information to understand the organization and
defined strategies to enable data-driven software development. Thus, the researcher had some
control over some intervening variables.

Aligned with the study goal, we defined the following main research question: Is
Immigrant useful and is its use in software organizations feasible? To answer this research
question, we decomposed it into other four: (i) Is Zeppelin useful and its use in software
organizations feasible?; (ii) Is California useful and its use in software organizations is feasible?;
(iii) Is The Band useful and its use in software organizations is feasible?; and (iv) Is the combined
use of the three components of Immigrant useful and feasible?

The procedure followed in the study consisted of getting general information about the
organization, applying Immigrant, and getting feedback about its use. For applying Immigrant,
we followed the steps presented in Section 5.7:

Step1 - Identify information needs: in this step Zeppelin (SANTOS et al., 2022) is used
by the participants, with the help of the researcher. The analytic report results are presented to
the participants that must define information needs based on Zeppelin’s data. To complement

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 159

the identified information needs, California (SANTOS; BARCELLOS; CALHAU, 2020) is used
to identify undesirable behaviors and its causes, define strategies to address them and, thus,
derive information needs. To conclude this step, the information needs identified from Zeppelin
and California data are prioritized and the ones to be considered in the study scope are selected.

Step2 - Identify available data sources: in this step the applications that support the
development process in the organization are identified.

Step3 - Define measures: in this step the participants define the measures to meet the
identified information needs and that can be obtained from the available data.

Step4 - Provide integrated data: in this step The Band (SANTOS; ALMEIDA; BARCEL-
LOS, 2023) is used to collect data from the applications and provide integrated data enable
data-driven software development. For that, first, it is verified whether The Band supports
the applications, information needs, and measures identified in the previous steps. If new
components are necessary, they are provided by the researcher.

6.3 Study Execution, Data Collection, and Results

In this section, we present information about the study execution and show some of the
collected data and produced results. The study execution and data collection were performed
from September to December 2023.

By following the study procedure, we started by getting general information about the
organization. For that, we performed an interview with the director to gather information about
the organizational environment, culture, relationship with partners, future plans, software
development process, software development issues, and agile knowledge. The director was told
to feel free to talk as much as they wanted to. The interview lasted about 60 minutes. The funnel
questions technique was used, i.e., the interview started with general questions (e.g., “What kind
of software does the organization develop?” and “How is the software development process?”), and
then went deeper into more specific points (e.g., “Tell me more about the software test activity”).
Among the information provided by the directors, he pointed out that “He desires to implements
a data-driven software culture inside of the development team, i.e., the decision-making and daily
activities should be based on data and not only in the team’s experience”.

The director said that “the development team has difficulty developing a quick prototype
to validate an idea with a client. The development team uses the same techniques to develop real
and prototype software. As a consequence, the development team spends almost the same time
in the development of a prototype and a real project. Thus, he has difficulty validating the ideas
with clients”. Besides, He described that “development team has difficulty understanding the
problem domain concepts and implements CSE practices (e.g., automated testing with a modular
architecture.)”.

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 160

Finally, the director expressed the desire “to gain a comprehensive understanding of the
current state of the projects development process”. This includes assessing whether the projects are
on track for timely delivery, ensuring that the developers are producing high-quality software
artifacts, and evaluating the investment made in each project. Furthermore, the director seeks
“to identify which features are most frequently utilized by clients”. According to the director,
this information allows Org X make decisions to improve the software development process,
products, and validate hypothesis about the client’s needs.

After this overall view, we applied Immigrant. We started by identifying information
needs. To understand the use of CSE practices in Org X, the development team members
answered the Zeppelin questionnaire (SANTOS et al., 2022). We represented collected data in
tables and graphs, analyzed them, presented the analysis results to the development team and
director and, together, defined information needs based on Zeppelin’s data. After that, we applied
California (SANTOS; BARCELLOS; CALHAU, 2020) to identify undesirable behaviors and its
causes and, then, defined strategies to address them. Thus, together with the team and director
we derived information needs. We prioritized the defined information needs and selected the
ones to be addressed. Next, we identified the available data sources by identifying the applications
Org X uses to support the development process, which are: Microsoft Azure DevOps, to support
project management aspects, GitLab, a Source Code Repository and Continuous Integration
Server, and Sonar Cloud, which supports code quality inspection. Then, considering data
available in the application data sources and the identified information needs, together with the
team we defined the measures to be represented in The Band dashboards. Finally, we checked
whether The Band supported the identified applications, information needs, and measures, and
we noticed that it would be necessary to develop new components to provide data related to
some of the defined measures and information needs. We developed such components and,
then, we used The Band to provide integrated data. In the following sections we present some
of the results produced in each of these steps.

6.3.1 Identifying Information Needs from Zeppelin

After the interview with the director, we applied Zeppelin to identify information
needs . Zeppelin Questionnaire was made available to the development team in June 2023. The
questionnaire was answered by the development team one week after the day it was sent. After
that, we prepared the Zeppelin‘s Analytics Report and sent it to the team. Then, we performed
a meeting with the team to discuss the results and clarify some points. Table 18 summarizes
the adoption degree of CSE practices at each StH stage and Table 19 summarizes the adoption
degree of CSE practices by Eye of CSE category.

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 161

Table 18 – Adoption Degree by StH stage.

StH Stage CSE Practices Adoption Degree (%)
Agile Organization 16.15
Continuous Integration 21.33
Continuous Deployment 6.47
R&D as Innovation System 20.76

Table 19 – Adoption Degree by Eye of CSE category.

Eye of CSE category CSE Practices Adoption Degree (%)
Technical Solution 36.66
Team 17.5
Development 17.27
Business 16.66
Quality 16.66
Software Management 16.25
Knowledge 13.63
User/Customer 5.71
Operation 0

The meeting lasted about 120 minutes. We spent 30 minutes explaining the Zeppelin‘s
Analytics Report and the rest of the meeting was used to understand how the CSE practices were
adopted. For that, we interviewed the development team to understand in detail the provided
answers to Zeppelin’s Questionnaire. Concerning the Agile Organization practices, a developer
said that the development process is based on Scrum. However, Scrum roles are not defined
clearly, and it is common for a member to play different roles in the same project (e.g., Scrum
Master and Developer). Another developer commented that “he has difficulty identifying when
the director wants a prototype or a real application”. The developers commented that Org X has “a
culture to develop a proof of concept (POC) to understand the problem domain and create solutions”.
According to them, a POC is useful for understanding the project’s problem and designing a
solution that brings value for a client and reduces rework. The developers commented that “they
are free to contact the client to resolve any doubts about the project”. Regarding the development
cycles, the sprint time box lasts five days (i.e., one week). The development team spends four
days, from Monday to Thursday, developing and deploying a feature, and the last day, Friday,
is dedicated to planning the next sprint. This sprint configuration has proved to be efficient.
Microsoft Azure DevOps is used as a project management supporting application.

Concerning time estimates, the developers commented that “the development team has
difficulty estimating how long will take for a US to be materialized after being added in the Product
Backlog or Sprint Backlog”. The lack of this information brings difficulty to the director when
he wants to show the product to potential clients because he does not know when the features
will be incorporated into the product. Thus, it is common for the director to define the date

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 162

to deliver the features, and, thus, the development team develops the features based on that
schedule. As a result, a feature can be deployed in the production environment without being
tested sufficiently, as pointed out by a developer.

Regarding the problem domain that the organization works on, many of the developers
have never worked with this domain before joining the organization. Thus, the developers said
that there is an overhead when developing a solution, as they must learn about the domain
at the same time they develop the solution. This causes a set of problems related to solution
quality, acceptance criteria, and business rules. To alleviate these problems a little, the team
produces small prototypes to validate the understanding of the problem.

Regarding Continuous Integration practices, the developers said that they “tried to
implement automated test when it is possible”. A developer said that "sometimes it is not possible
to develop automated tests because it is learning about the domain at the same time it is developing
the solution”. In addition, a developer commented that “it is common to create automated tests
or review the code to improve some part of the project after the feature be delivered”. Another
developer commented that desired to use test-driven approaches (e.g., Test-Driven Development
-TDD- or Behavior-Driven Development - BDD) to validate the produced user stories and code.

The development team uses GitLab and Sonar Cloud to support the Continuous Integra-
tion process. GitLab is used as a source repository, Continuous Integration and deployment
server; while Sonar Cloud is used as a code static inspection server. A CI pipeline was configured
in GitLab where a code is tested by automated tests and verified by Sonar when a pull request
is approved or a code is committed on the development branch. Org X uses Git Flow as the
process to control the code integration. However, GitLab is not configured to stop the code
integration when Sonar Cloud identifies a quality problem. According to the team, “this has
caused a lot of corrective maintenance problems throughout the projects”. Moreover, a developer
commented that “the development team used to discuss code quality, based on Sonar data, in
retrospective meetings, but due to the increase in work demand this practice was no longer carried
out”.

Concerning Continuous Deployment practices, Org X develops solutions using container
technologies (e.g., Docker1). Each application is deployed, manually, in a production environ-
ment, in a cloud solution. Org X would like to automate this process. Thus, a developer was
assigned to study Infrastructure as a Code concepts to create a production environment and
deploy an application in an automatic way. According to a developer, “Org X is studying to use
technologies that implement the concepts of Infrastructure as Code2 (e.g., Terraform3) and Contin-
uous Deployment (e.g., ArgoCD4) to reduce deployment time in a production environment from
hours to minutes”. Another benefit expected to be achieved is “collecting data from deployment
1 <https://www.docker.com/>
2 <https://martinfowler.com/bliki/InfrastructureAsCode.html>
3 <https://www.terraform.io/>
4 <https://argoproj.github.io/cd/>

https://www.docker.com/
https://martinfowler.com/bliki/InfrastructureAsCode.html
https://www.terraform.io/
https://argoproj.github.io/cd/

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 163

and operation applications to improve the development process”, as commented by a developer
and director. According to them, data from deployment and operation can bring insights into
how the development process and the products can be improved.

Regarding R&D as Innovation System practices, Org X does not have systematic practices
to improve the products or create new ones based on users’ feedback. According to the director
and the developers, they use “feedback and interview with the clients to identify what needs to
be improved in the current products (e.g., develop a new feature) or to develop a new product”.
In order to implement data collection in a production environment, a developer is studying
how an Application Performance Monitor5 tool (APM) (e.g., SkyWalking6) can provide data
about the products in a production environment to business and development teams. The idea
is to use the data to improve the products or create a new one based on data provided by the
application. Finally, they are thinking of adding features to the application to enable identify
which features are more used by the clients.

At the end of the meeting, the interviewer commented that some information provided
by the interviewees was not in conformance with the answers provided in Zeppelin‘s Question-
naire. This way, it was necessary to review the answers to get a correct overview of Org X.
Thus, the development team reviewed the answers provided to Zeppelin‘s Questionnaire, with
the participation of the interviewer. As a result, a new CSE panoramic overview was obtained
and it was presented to the team, which approved it. Table 20 and Table 21 present the adoption
degree of CSE practices in Org X by StH stages and Eye of CSE category after the meeting.

Table 20 – CSE Practices Adoption Degree by StH’ Stages, before and after interview.

StH Stage CSE Practices Adoption
Degree before interview
(%)

CSE Practices Adoption
Degree after interview (%)

Agile Organization 16.15 15
Continuous Integration 21.33 18
Continuous Deployment 6.47 7.6
R&D as Innovation System 20.76 2.3

Table 21 – CSE Practices Adoption Degree by Eye of CSE, before and after interview.

Eye of CSE’s Dimensions CSE Practices Adoption De-
gree (%) before interview

CSE Practices Adoption De-
gree (%) after interview

Technical Solution 36.66 46.66
Team 17.5 0

5 <https://en.wikipedia.org/wiki/Application_performance_management>
6 <https://skywalking.apache.org/>

https://en.wikipedia.org/wiki/Application_performance_management
https://skywalking.apache.org/

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 164

Table 21 – Continued from previous page

Eye of CSE’s Dimensions CSE Practices Adoption De-
gree (%) before interview

CSE Practices Adoption De-
gree (%) after interview

Development 17.27 14.44
Business 16.66 6.7
Quality 16.66 6.7
Software Management 16.25 20
Knowledge 13.63 0.9
User/Customer 5.7 5.7
Operation 0 30

As can be observed in tables 20 and 21, the CSE practices adoption degrees changed
after the meeting to clarify some questions and better understand the performed practices. This
revealed that Zeppelin should be applied with the supervision of CSE specialist and requires
improvements (i.e., clear guidelines about what each practice means) for other people to be
able to properly apply it without the researchers’ intervention.

Finally, considering the CSE panorama obtained from using Zeppelin, the interviewer,
the development team, and the director defined information needs. Some of them are shown in
Table 22.

Table 22 – Information needs identified based on the use of Zeppelin.

Goal Information Need Description
1 Improve time to deliver fea-

tures
(1.a) What is the average waiting
time for a user story from its cre-
ation until its development is ini-
tiated? (1.b) What is the average
development time for a user story
(from the beginning of its develop-
ment until it is successfully com-
pleted)? (1.c) What is the average
delivery time for a user story (from
its creation)? (1.d) What is the av-
erage amount of rework during the
development of a product version?

(1.a), (1.b), and (1.c) contribute to
understanding the time spent on de-
livering new functionalities. An im-
provement in the value of (1.c) is a
direct indicator of progress toward
the goal of improving delivery time.
(1.d) helps identify whether there
has been a significant amount of re-
work that is impacting the delivery
time of new functionalities.

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 165

Table 22 – Continued from previous page

Goal Information Need Description
2 Improve sprint planning (2.a) What is the average time to

successfully complete a task in a
sprint? (2.b) What is the rate of
tasks planned and not completed in
a sprint?

(2.a) helps understand how long
takes to accomplish a task recorded
in the backlog. The scrum mas-
ter/project manager can use this
information to help estimate how
many tasks can be included in the
sprint backlog. (2.b) helps identify
how much work has been planned
for the sprint and not concluded. An
improvement in values of (2.b) is a
direct indication of the reach of the
objective of improving sprint plan-
ning.

3 Improve the quality of the
software artifacts

(3.a) Which types of code smells
are produced in the software arti-
facts? (3.b) How many code smells
are produced in the software arti-
facts? (3.c) How many code smells
are produced by each developer?

(3.a) and (3.b) help understand po-
tential quality code problems pro-
duced in software artifacts. This in-
formation helps identify and pre-
vent code problems and also sup-
ports managers in defining train-
ing strategies for the development
team in methods that improve qual-
ity. (3.c) helps identify if there is a
predominance of any developers in
producing code smells. This infor-
mation can be used to identify train-
ing needs and improve the devel-
oper’s skills.

6.3.2 Applying California to complement the Information Needs

After identifying information needs considering Zeppelin‘s data, we applied California
to identify undesirable behaviors, their causes, set strategies and derive new information needs.
Considering data gathered using Zeppelin Questionnaire and the interviews performed when
discussing the Analytic Report with the team, we built systemic maps to detail some scenarios.
Figure 71 illustrates a fragment of systemic maps. The elements in blue in the figure form a
modeling pattern that reveals the presence of the archetype Shifting the Burden.

As previously said, there is a lack of expertise in the development team regarding both
the organizational business and software development. Thus, developers often produce Poorly
defined requirements. Additionally, there are Communication problems related to project subjects
between the director (Business) and the developers (Development) . For example, it is common

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 166

Figure 71 – Fragment of systemic map.

that the director does not express correctly that he desires a prototype to show an idea to a
potential client and the development team understands that they desire a robust product in
a few weeks. Therefore, Unrealistic planning (scope, goals and deadlines) is defined to the
projects. .

Poorly defined requirements and Unrealistic planning contribute to increasing the num-
ber of Defects in software artifacts. This way, the development team needs to fix defects by
performing New urgent development activities, as fast as possible (Defects fixed by rework),
which decreases the number of Defects in software artifacts. The side effect is that the CSE good
practices take time to be implemented in Org X. These variables and the relations between
them characterize the Shifting the Burden archetype. It is a complex behavior structure be-
cause the balancing and reinforcing loops move the system (Org X) in a direction (New urgent
development activities) usually other than the one desired (CSE good practices). New urgent
development activities contribute to increasing problems relate to scope, goal, deadline in a
project (Unrealistic planning) because these activities were not initially planned in the project.

Based on the systemic maps, Zeppelin data and interviews, it was possible to identify
the undesirable behaviors presented in Table 23. They were prioritized by using GUT matrix, as
we explain in (SANTOS; BARCELLOS; CALHAU, 2022)

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 167

Table 23 – Some of the identified undesirable behaviors

Undesirable Behaviors G U T GxUxT
UB1 Use of the same software development methods and technologies to develop a

prototype to validate an idea and to create a software product.
5 5 5 125

UB2 Development of software artifacts based on misunderstood requirements. 5 5 5 125
UB3 Continuous Integration and Continuous Deployment techniques (e.g., auto-

mated test and automated quality inspection) are not often applied to build
software artifacts.

5 5 4 100

For each undesirable behavior, we identified its causes. Table 24 presents the main
causes of the undesirable behaviors.

Table 24 – Causes of Undesirable Behaviors.

Causes UB1 UB2 UB3
C1 The software development process is the same to develop a prototype and a final

product
x x -

C2 Poor communication between director and development team - x -
-
C3 Lack of knowledge of the problem domain - x -
C4 Organization members have different experiences with CSE practices x - x
C5 CSE concepts and practices are not well-known by the organization x x x

C1 and C2 were identified directly from the interviews. Regarding C1, the director and
development team described that the software development process does not have activities,
methods, or techniques that guide the developers to build a prototype. Although there is an
open channel between the director and development team, there is a lot of miscommunication
between them. Many times, the developers understand that they should build a product, while
a prototype was required (C2) and vice-versa.

C2 Poor communication between director and development team and C3,Lack of knowledge
in problem domain, are causes of UB2 Development of software artifacts based on misunderstood
requirements, because fails in the communication between the director and the developers
affect understand the requirements, which can be worsened by a lack of knowledge of the
domain (e.g., concepts and rules). Regardig C3, It happens because Org X application domain is
very specific (financial) and requires deep knowledge to properly understand all the concepts,
requirements and rules. Thus, as the team is not expert in the domain, the lack of knowledge of
the application domain (C3) causes inconsistencies. It is necessary that the developers knows
the application domain to build a proper solution.

Regarding UB3 Continuous Integration and Deployment techniques (e.g., Automated Test
and Automated quality inspection) are not often applied to build software artifacts, some members
of the organization had previous experience with CSE practices in other companies, while

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 168

others have never had. Most of the members were not sure about CSE concepts and practices.
Therefore, this undesirable behavior is caused by C4 Organization’s members had different
experiences with CSE practices and C5 CSE concepts and practices are not well-known by the
organization.

Once the causes were identified, we defined strategies to implement data-driven soft-
ware development by addressing such causes to leverage results. Table 25 presents the proposed
strategies.

Table 25 – Strategies and Causes.

Strategies Causes
S1 Define a new software development process that guides about prototyping and devel-

oping software products adopting CSE practices.
C1, C2, and C4

S2 Implement measurement culture to enable data-driven software development and
improve process and product quality.

C4

S3 Define an on-boarding process to new members. C3, C4, and C5
S4 Adopt a CSE common conceptualization. C4 and C5
S5 Automate part of the development process by implementing CSE practices C4 and C5
S6 Hire a CSE consultant or specialist. C4 and C5

In order to provide useful information and support monitoring the defined strategies,
information needs were identified. Table 26 presents some of them, related to the strategy S5.

Table 26 – Information needs identified based on the use of California.

Goal Information Need Description
4 Implement and improve CSE

practices
(4.a) How many projects have
adopted CI and CD practices (e.g.,
automatic testing, and automatic de-
ployment)? (4.b) What is the rate
of CI pipelines successfully com-
pleted? (4.c) What is the rate of CD
pipelines successfully completed?

(4.a) contributes to understand if
CSE practices have been adopted
in the organization projects; while
(4.b) and (4.c) help to understand if
CI/CD pipelines have been success-
fully applied in the projects.

The set of information needs defined (tables 25 and 26) was discussed with the
development team and director in a meeting and the ones to be addressed in this study were
selected. The selection took into account mainly time constraints to perform the study in the
context of this thesis. Thus, in this study the following information needs will be considered:

• (1.a)What is the average waiting time for a user story from its creation until its development
is initiated ?

• (2.a) What is the average time to successfully complete a task in a sprint?

• (3.a) Which types of code smells are produced in the software artifacts?

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 169

• (3.b) How many code smells are produced in the software artifacts?

• (4.b)What is the rate of CI pipelines successfully completed?

6.3.3 Identifying the Available Sources

The following applications are used by Org X and were selected to provide data to
meet the identified information needs. as an available source: Microsoft Azure DevOps, GitLab,
and Sonar Cloud. Microsoft Azure DevOps provides data related to project management using
Scrum, such as Project, Person, Development Team, User Story, Sprint, and Task. GitLab
provides data about Source Repository, Software Artifacts, Commits, Branch, Developer that
created or modified a Software Artifact and when a CI and Delivery pipeline was performed.
Finally, Sonar Cloud provides data related to the quality of software artifacts created in software
project. Thus, it stores data such as quality issues of a software artifact, the developer that
created a software artifact and the developer that fixed a quality issue.

6.3.4 Defining Measures

Considering the available data and the identified information needs, the measures
presented in Table 27 were defined.

Table 27 – Measures defined to meed the Information Needs.

Information Need Measure Description
(1.a) What is the average waiting time for a user

story from its creation until its develop-
ment is initiated?

User Story
Wait Time

The average time a user story has
been waiting since it was created
until its development starts in a
sprint.

(2.a) What is the average time to successfully
complete a task?

Task Cycle
Time in a
project

The average time a task take to be
completed in a project (from when
it is started to when it is finished)

(3.a)/
(3.b)

Which types of code smells are produced
in the software artifacts ?/How many code
smells are produced in the software arti-
facts?

Number of
Code Smells
(per type)

Quantity of code smells (per type)
identified in the software artifacts
produced in a project.

(4.b) What is the rate of CI pipelines successfully
completed?

CI Pipeline
Success Rate

Rate of CI pipeline that were per-
formed with success in a project
(i.e., reason between the number of
successfully performed CI pipelines
and the number of performed CI
pipelines) .

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 170

6.3.5 Providing Integrated Data using The Band

After the meeting with the director and developers, we received the access credentials
of Microsoft Azure DevOps, GitLab, and Sonar Cloud to extract data and provide integrated
data by using The Band.

The The Band instance that we have implemented (see Section 5.5) considered the
three applications used by Org X. That means that The Band is able to extract data from these
applications and store it in the OBDRs. However, as Org X had information needs that were not
met by the dashboards already implemented in The Band, we needed to add new data access
components to collect data from the OBDRs, integrate it and show it in dashboards to Org X.
To provide data to meet the information needs, we used concepts from OBDRS related to SRO,
CIRO and, RSMO. Next, we illustrate some fragments of the produced dashboards. After the
director and the development team access the dashboards, the researcher discussed with them
some questions raised from the data.

Figure 72 presents a fragment of the dashboard that provides data to the measure User
Story Wait Time related to the information need 1.a.

Figure 72 – Fragment of the dashboard focusing on User Story Wait Time.

As can be observed in Figure 72, the user story average wait time in Org X projects varies
from 2 days to 108 days. The director and the development team were questioned about that
and, according to them, there were problems ranging from not understanding the requirements
addressed in the user story, automatic generation of user stories and even not updating the
conclusion of the user story in the project management application.

To understand a little more about this issue, another graph was provided to visualize
the number of defined user stories over time (Figure 73). By analyzing the figure it is possible to
visualize peaks and drops. The peaks refer to periods when a consultant worked at the organi-
zation and helped the team improve software engineering practices. The consultant gradually
decreased its participation and the team abandoned practices that had been implemented (e.g.,
formally recording the user stories creation, start and end dates). In Figure 73 it is noted that in
some projects there are periods in which no use story was recorded. The team commented that
new features were developed, but the user stories were not recorded in the Microsoft Azure
DevOps because the developers were overloaded.

Figure 74 represents data related to Task Cycle Time (by Project) and Task Cycle Time

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 171

Figure 73 – Fragment of the dashboard showing number of US (per type) defined over time.

(in an Project), which are related to the information need 2.a.

Figure 74 – Fragment of the dashboard showing the Task Cycle Time by the projects.

As can be observed in Figure 74, some projects (e.g., Factor and GS-SBK) have a Task
Cycle Time superior to 30 days and, when we asked the development team "Why do tasks on
average take more than 30 days to be completed successfully?" a developer reported that "the
team member forgot to update the conclusion of a task in the management application". He added
that "successfully completed tasks were recorded correctly when the consultant worked at Org X
and again during the case study.". It can be observed on Task Cycle Time (an Project) measure,
that the tasks were launched and successfully completed in the period in which the consultant
was in Org X (February and between September and December 2023). This showed that the
development team needs to develop software management skills and improve conformance in
following recording procedures.

Figure 75 presents data regarding code smells (information needs 3.a and 3.b and
respective measures) .

When we asked the development team about the high quantity of the code smell
Function and methods should not be empty, a developer commented that Org X developed
an internal MDD solution that produces files with empty standard methods that can mostly
be filled with business rules, if necessary. For example, file signals.py is an example of a file
produced by the internal MDD solution that has 88 code smells of that type.

Regarding the information need 4.b (What is the rate of CI pipelines successfully
completed), we developed two graphs to provide information related to it. The first one presents
data about CI Pipeline Success Rate in a project (Figure 76). The second shows data about CI

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 172

Figure 75 – Fragment of the dashboard showing the Number of Code Smells (per type and
artifact).

Pipeline Success Rate in all projects (Figure 77).

Figure 76 – Fragment of the dashboard showing data regrading CI Pipeline Success Rate in a
project.

In Figure 76 it is possible to see the points in the development process in which there
were problems in the CI pipeline. Using this graph, the development team can check if there
were problems creating or maintaining a software artifact or even problems related to the
configuration of the CI process, for example.

Figure 77 – Fragment of the dashboard focusing on CI Pipeline Success Rate in all projects.

As can be observed in Figure 77, most projects have a CI Pipeline Success Rate above
60%. However, although the CI Pipeline Success Rate is high, it is important to note that most
projects do not implement automated tests, just code verification with Sonar Cloud.

It is worth pointing out that we faced some challenges in providing integrated data
due to limitations in application data. For instance, Microsoft Azure DevOps, GitLab, and
Sonar Cloud do not record some data we needed to provide meaningful integrated data. For
example, Microsoft Azure DevOps does not provide data about the projects start and end date.
Thus, it was necessary to create queries to estimate when the project started based on the

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 173

date of the first created user story and the first performed commit. Another challenge is data
inconsistency in the applications. For example, the same project was recorded with different
names in Microsoft Azure DevOps and in GitLab, making it difficult to identify data related to
the same project. Moreover, sometimes, the same entity in the real world is represented by
different entities in application data. For example, Gitlab allows the recording of the same team
member more than once if we change the associated email. In some cases, data was missing.
For example, in GitLab, it was common branch names and commit messages without reference
to the Microsoft Azure DevOps user stories in which they originated.

To solve the aforementioned issues, we implemented in The Band a mechanism to align
data of different OBDRs. To identify possible duplicate instances of an entity, we developed
a script that implements a string matching (e.g., we used a script to find the instances of a
Person with different names that represent the same person in the real world). After that, it
was necessary to perform manual alignment to ensure data consistency.

6.3.6 Getting Feedback about Immigrant

After applying Immigrant, we conducted an interview with the director7 to obtain his
perception of the usefulness and feasibility of using our proposal. The interview lasted about 60
minutes. The interviewer talked briefly about each component of Immigrant, summarized how
they were applied, and the main results produced when applying them. The study research
questions were used as the main questions of the interview (i.e., we aimed to verify if Immigrant
and each one of its components were useful and if their use was feasible). The interviewer
explained the interview purpose to the director and asked the interviewee to talk freely about
his perceptions of using each of the Immigrant components and the approach as a whole,
pointing out the main advantages and disadvantages of using them. Next, we present some
aspects pointed out by the director.

Regarding Zeppelin, the director found it useful and easy to use. He commented that
an advantage of applying Zeppelin was that it provided a quantitative view of CSE practices
adoption that, besides helping the organization reflect on how much and how well it has
performed CSE practices, it supports investigating “how much the development team knows
about CSE practices that should be applied in Org X”. According to the director, the organization
intends to use the panoramic view provided by Zeppelin to aid in identifying knowledge needs
and offering training to improve the developers knowledge about CSE practices. Concerning
disadvantages, the director commented that “the questionnaire seems generic for all types of
software organizations” and, according to him, some practices may not be suitable (or realistic)
for some types. The director questioned if it would be possible to create a version of Zeppelin
focused on early-stage startups. The interviewer informed him that we intend to work on that
as a future work.
7 The development team was not available to be interviewed.

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 174

As for California, the director pointed out that the main strength is that “it provides
insight of causes and effects that are benefiting or causing problems in the development process.
Knowing the causes of problems is important to create strategies that help remove or mitigate
their effects”. The director said that he wants to propose a training path focusing on the
financial domain because by analyzing information provided byCalifornia, “the lack of developers
knowledge of the financial domain became evident and it is a cause of several problems.”.The
Director commented that he liked California and found it useful but he also found it complex to
be replicated in the organization without a System Thinking and CSE specialist. It considered
this the main weakness of California. The interviewer informed him that there is an ongoing
research project creating guidelines and tool support to help other people use California.

About information needs identification, the director commented that“ Zeppelin and
California provided data that enabled him to make questions about the software development
process and the necessary data to improve the process and the team”. For example, he said that
"Knowing how long a US takes to be done is important when he is negotiating a contract with a
client. And knowing which types of code smells a developer is "creating" it is important to promote
training to improve the team". After this comment, he quoted the phrase from W. Edwards
Deming8: “What cannot be measured, cannot be managed”. He also asked “whether there is a
possibility of Zeppelin and California suggesting information needs based on the data analysis
data”. The interviewer informed him that the current version of those Immigrant‘s components
does not support that, but we can consider it as future work.

Concerning The Band, the director said that it was very useful. He said that “it provided
useful information about the software development process and development team that can be used
to improve both of them”. He commented that “from data provided by The Band, it was possible to
note that some internal initiatives (e.g., Model-Driven Development (MDD) and Design Structure
Matrix (DSM)) used to improve the development and project management processes have been
successful”. It also highlighted: “what I found most useful was that The Band provided realistic
data that showed us what is happening in the organization”. According to him, understanding
what is happening is important to identify what needs to be improved and take actions in that
direction. He exemplified: “For example, using the dashboard presenting data about the Number
of Code Smells (per type), it is possible to visualize points of improvement in the MDD internal
solution. For example, we can identify the software artifacts with a high number of code smells and
who created them and we can investigate what happened (if the problem is in the applied method
or if it was caused by the developer that created the artifact). Thus, we can improve practices to
reduce code smells and even improve the developer’s technical knowledge to avoid these problems.”.
He also pointed out that data presented in The Band dashboards comes from data created by
some action of a team member in projects carried out in the organization. Thus, The Band also
helps identify problems in the process of collecting and recording such data. For example, it
8 <https://en.wikipedia.org/wiki/W._Edwards_Deming>

https://en.wikipedia.org/wiki/W._Edwards_Deming

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 175

was possible to identify that developers stopped recording user stories after the consulting
left the organization, which hampered project planning. Knowing that also helps improve the
software process.

The director did not face any difficulty in using The Band. It is important to notice that
we refer to the use of the implemented solution, i.e., the use of the produced dashboards. In
this study, the new components necessary for The Band to provide data to meet the identified
information needs were developed by the author of this thesis. Thus, no effort was needed
from the organization. The director questioned whether The Band would suggest points for
improvement based on the integrated data: “What actions should I take to improve the values
of the measures? What is the most relevant measure? Where do I attack the problem?”. The
interviewer clarified that The Band purpose is to provide data to enable data-driven software
development. Thus, how data will be used and what are the actions to be taken are out of The
Band’s scope.

Finally, when asked about the combined use of the three components, the director said
that it was useful because by using Immigrant he had a panoramic view of CSE practices in
Org X, going from a global view (Zeppelin and California) to a more detailed view based on
quantitative data (The Band). In this way, it was possible to envision a path to data-driven
software development.

6.4 Discussion

The participative study case results and the director’s feedback provide us with infor-
mation about how the Immigrant’s components (Zeppelin, California, and The Band) work
together and enable data-driven software development in a software organization.

Under the Immigrant’s top-down perspective,Zeppelin andCalifornia offered an overview
of Org X and helped identify information needs. Zeppelin provided a quantitative data view of
the CSE practices adoption, while California supported understanding undesirable behaviors
and their causes. By combining both components Org X defined a set of information needs to
guide its first steps towards data-driven software development.

Another benefit brought by these Immigrant’s components was the management of
expectations about the quality of the application data in Org X. After all, the low level of
knowledge and experience with CSE practices of the team members identified from Zeppelin
data would be reflected in the use of the applications that support the development process
and, consequently, in the data stored in the applications. This was confirmed when The Band
was used to provide integrated data to meet the information needs. For example, by analyzing
data related to Task Cycle Time it was noticed that the development team only recorded data in
the Microsoft Azure DevOps when the consultant was working at Org X.

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 176

Concerning Immigrant’s bottom-up perspective, The Band was useful to validate the
CSE practices adoption overview provided by Zeppelin and California, as commented by the
director. In this case study, it is possible to observe a relation between the quality of CSE
practices adoption and the quality of application data, as commented before. Additionally, The
Band allows the director to identify opportunities for improvement in specific areas of the
organization (e.g., training some developers, to create less code smells and verify that some
internal initiatives (MDD solution and DSM) were fruitful).

Although the challenges faced when implementing Immigrant with all components
(e.g., it requires time to use all the components, particularly if new components need to be
added to The Band), it was possible to observe that it was useful and its use is feasible to enable
data-driven software development.

6.5 Threats to Validity

Next, we discuss some threats considering the classification proposed in (RUNESON et
al., 2012). The definition of each validity type was presented in Chapter 4.

Regarding Construct Validity, some threats observed in the previous learning iterations,
when we used Immigrant components in isolation, are also present in this study, such as the
statements used to identify CSE practices in the Zeppelin diagnosis questionnaire (which may
have led to misunderstandings) and the weights assigned by the researchers to the adoption
levels are threats. To resolve misunderstandings, we performed interviews with the participants
to validate the answers. This gave us an opportunity to calibrate the answers. Another threat
is that using California may be tiresome and requires knowledge of the organization and
system thinking tools. Thus, participants could provide incorrect or incomplete information. To
minimize this threat we applied California after Zeppelin, which accelerated its use. Moreover,
the researcher guided the participants through California steps and provided the necessary
system-thinking knowledge to accomplish the tasks. Another threat is related to the quality
of the available data. The successful use of The Band relies on the quality of application data.
Therefore, the study results also depend on the quality of data available in the organization.
The Band does not have any mechanism to ensure application data quality (this is out of its
scope). If there is a lack of data, data is incorrect or incomplete, the quality of the integrated
data will be affected and, as a consequence, the perceptions of the use of The Band as well.
To minimize this threat, we assign semantics to data in The Band by using concepts from an
ontology network (i.e., we extract data from the applications and transform it into instances
of ontological concepts). Even so, it is not possible to guarantee data quality because we did
not influence how data was created. The participation of the researcher in the study also
threatens construct validity because as he is one of the creators of Immigrant, he knows
what was addressed in The Band instance that was already implemented. This familiarity may

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 177

have influenced the decision on which information needs and the measures to define in the
study (e.g., by directing to the ones that could be satisfied by the implemented instance of
The Band). To minimize this threat, information needs and measures were defined together
with the director and developers, supported by information provided when using Zeppelin and
California. Another threat is that so far the results from using our approach are based on the
perception of the director, collected through an interview. We still lack quantitative data to
provide more robust evidence of the use of Immigrant.

Concerning Internal Validity, the main threat regards the time to carry out the study.
We started working with Org X in September 2023 and we believed that we would have enough
time to carry out the study without any hurry. However, the author of this thesis needed to
drastically decrease the number of hours dedicated to the study and Org X also faced issues that
delayed some activities. As a result, the use of The Band to extract data and provide integrated
data was performed only in November 2023. As a consequence, it was not possible to implement
the defined strategies to quantitatively monitor them by using data provided by The Band. The
active participation of the author in the study is also a threat intrinsic to participative case
studies. The previously discussed problems in the quality of application data also affect internal
validity (different data could lead to different results in the same organization).

As for External Validity, the main threat is that Immigrant was applied in only one
organization and the author of this thesis participated in the study. Moreover, the organization
profile is very specific (a small three-years-old fintech startup). To generalize results, ideally,
the proposal should be applied in other software organizations and also by someone other than
the author of this work.

Concerning Reliability Validity, the main threat is the influence of the author in the
study and the fact that data analysis was performed by the researchers. To minimize this threat,
analysis was carried out by the author and discussed/refined together with the supervisors.
Discussions were performed until consensus.

Considering all the aforementioned threats, the obtained results must be considered
preliminary evidence that needs other studies to be confirmed.

6.6 What did we learn?

To apply Immigrant in OrgX, we started by using Zeppelin and, after that, we applied
California. We learned that by doing that it was possible to understand the organization faster
than when California was applied alone, as described in (SANTOS; BARCELLOS; CALHAU,
2020). It was possible to quickly identify the undesirable behaviours, define strategies, and
information needs.

Another important lesson learned is that, when answering Zeppelin questionnaire,

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 178

people can misunderstand the statements and provide incorrect answers. Thus, conducting
an interview helps understand how CSE practices have been performed in the organization,
remove gaps in the understanding of the statements, and produce more realistic and accurate
answers. As can be noted in the Table 20 and Table 21, the adoption degrees changed after the
interview. This shows that Zeppelin can be improved to better support its users to properly
understand the statements and the levels at which each practice can be performed.

We also learned that in The Band data integration is sensitive to the quality of application
data. Moreover, quality of such data is directly related to the quality of the process that produce
it and to the actions performed by the development team. Therefore, to improve the quality
of data integration it is necessary to improve the development process and its execution by
the development team. Performing a quality software process would contribute to provide
standardized and quality data.

Finally, we learned that although there are some challenges in applying Immigrant, it is
a promising approach to enable data-driven software development.

6.7 Final Considerations

This chapter presented a participative case study whose goal was to evaluate Immigrant
in a real context to verify whether it is useful and whether its use is feasible. In a nutshell,
initially, Zeppelin was used to gain a comprehensive understanding of the current CSE practices
implemented in the organization. Subsequently, we employed California to pinpoint specific
information requirements essential for the organization to formulate strategies enabling the
implementation of a data-driven software process. From Zeppelin and California results, we
identified information needs to guide data-driven software development. Last, we used The
Band to deliver cohesive and integrated data to meet the identified information needs. Due to
time constraints, it was not possible to implement and evaluate the strategies defined to Org
X. Even so, Immigrant was considered useful by the director to enable data-driven software
development. It provided useful data for the identification of leverage points in the current
software development process, improvement of skills of the developers, and validation of
internal initiatives, for instance.

In the study presented in this chapter, Immigrant was used in an organization that had
information needs not addressed by the instance of The Band that was implemented. Thus, it
was necessary to add new components to it, which demands development effort (the author
developed such components). It is important to notice that an organization can use The Band
as it is, i.e., considering the applications and data the current version is able to integrate. In
this way, no development effort would be necessary.

Immigrant deals with a complex process (from the organization information needs
to integrated data aiming data-driven software development). Thus, it is natural that some

Chapter 6. Final Learning Iteration: Applying Immigrant in a Software Organization 179

challenges arise when applying the approach. These challenges reveal that there are several
aspects involved in the Immigrant components that can be improved. Some of them are discussed
in the next chapter, which presents the research contributions, limitations, and envisioned
future works.

180

7 Final Considerations

Rest now within the peace. Take of the fruit, but guard the seed.

Led Zeppelin, Carouselambra

This chapter presents the final remarks and conclusions regarding the research pre-
sented in this thesis. Section 7.1, summarizes the main aspects of the work. Section 7.2 describes
the produced contributions, relating them to the proposed objectives and the published papers.
Section 7.3 discusses the limitations of the work. Finally, Section 7.4 presents recommendations
for future improvements and further research.

7.1 Summary of the Research

This research addresses an ontology-based approach, called Immigrant, which uses
networked ontologies to integrate application data aiming at enabling data-driven software
development in the CSE context. Immigrant considers the organization’s information needs
and the available data to provide meaningful data integration to support CSE. It is composed
of the following components: (i) California, (ii) Zeppelin, and (iii) The Band. California and
Zeppelin are used to understand the organization and identify its information needs, while
The Band is used to provide ontology-based integrated data to meet the identified information
needs. The Band uses the ontologies in the Continuum ontology (sub)network that has been
proposed as part of this thesis in alignment with SEON (RUY et al., 2016).

As previously discussed, this research was motivated by the fact that in the last years it
has been noticed that for producing products that properly meet customers’ needs, making well-
informed decisions, and identifying business opportunities, new practices should be combined
with agile development to enable continuous actions of planning, building, operation, and
evaluation (FITZGERALD; STOL, 2017; BARCELLOS et al., 2022). Hence, organizations should
evolve to continuous and data-driven development in a Continuous Software Engineering (CSE)
approach (BOSCH, 2014). CSE consists of a set of practices and tools that supports a holistic
view of software development to make it faster, iterative, integrated, continuous, and aligned
with the business (FITZGERALD; STOL, 2017; BARCELLOS et al., 2022). Software organizations
often use different applications to support different aspects of software development. However,
many of them do not use data present in the applications to support data-driven software
development (SANTOS et al., 2022).

One of the reasons for that is the difficulty in accessing, integrating, analyzing, and
viewing data handled by heterogeneous applications (CALHAU; FALBO, 2010). This difficulty

Chapter 7. Final Considerations 181

can result in semantic conflicts whenever divergent interpretations are given to the same
information item, a situation that may not even be detected (WACHE et al., 2001). Ontologies
can be used to deal with these issues in semantic integration initiatives (NARDI; FALBO;
ALMEIDA, 2013). They establish a common conceptualization about the applications subject
domains and support communication and integration.

In this work, we propose to use networked ontologies to establish an integration
architecture and assign semantics to application data. Moreover, we advocate that integrated
data should be aligned to the organization information needs. The work followed the Design
Science Research paradigm and involved four learning iterations (BARCELLOS et al., 2022).

In order to understand how ontologies can be used to integrate data on the CSE
context, in the first learning iteration we explored the use of an ontology on agile development
with Scrum to integrate software development data spread across applications and thereby
support data-driven software development. It was the first Immigrant and The Band version.
The results were promising; by using the proposed approach and the resulting integrated
solution, improved estimates and product quality were reported in a Brazilian public software
development unit (SANTOS et al., 2021).

With this study, we confirmed in practice the necessity of properly identifying the
organization’s information needs to guide data integration and we noticed that organizations
may face difficulties in identifying such information. Moreover, we observed that understanding
how the organization works and the CSE practices it adopts is useful to identify the organiza-
tion’s information needs. Thus, we performed the second learning iteration, a case study in a
Brazilian software house to understand this phenomenon (SANTOS; BARCELLOS; CALHAU,
2020; SANTOS; BARCELLOS; CALHAU, 2022). By using a system-thinking-based process
(California) it was possible to define some information needs related to strategies defined to
address causes of undesirable behaviors.

Although California can be useful in this matter, it may demand knowledge and time
to be applied. Thus, we performed the third learning iteration, a multiple case study with five
Brazilian software organizations to evaluate a diagnostic instrument, called Zeppelin, to support
organizations to get a panoramic view of CSE adoption (SANTOS; BARCELLOS; RUY, 2021).
The results indicate that Zeppelin provides a panoramic view that describes the current state of
the adopted CSE practices in an organization, helping to define its information needs.

Despite the results of the first learning iteration being promising, data from applications
addressing certain CSE processes, such as continuous integration and continuous deployment,
was not included in the first version of the proposed solution. Aiming to build a more com-
prehensive data integration solution that covers several CSE processes, we decided to expand
the scope of integrated data using an ontology network. Thus, we developed Continuum, an
ontology network that addresses CSE aspects and is integrated into the Software Engineering
Ontology Network (SEON) (RUY et al., 2016). The current version of Continuum is composed

Chapter 7. Final Considerations 182

of the Scrum Reference Ontology (SRO), Continuous Integration Reference Ontology (CIRO),
and Continuous Deployment Reference Ontology (CDRO). Thus, we evolved the software
solution proposed in (SANTOS et al., 2021) to a data integration solution based on the con-
cepts of ontology network and Federated Information System (FIS), called The Band (SANTOS;
ALMEIDA; BARCELLOS, 2023). The Band leverages Continuum as the basis to build reusable
and autonomous software components, and organize them in a FIS architecture in which all
components work together in the federation. As a result, data from different applications can
be integrated and visualized to provide meaningful information to aid in software development
activities and decision-making.

To evaluate Immigrant’s usefulness and practical feasibility, we performed the fourth
learning iteration, a case study case in a software organization where Zeppelin and California
were used to help identify information needs and The Band was used to provide integrated
data from Microsoft Azure DevOps, GitLab, and Sonar Cloud to meet the information needs.
The results provide preliminary evidence that Immigrant is useful and its use in a practical
setting is feasible.

7.2 Research Contributions

This work is related to two main research areas: Continuous Software Engineering
(CSE) and Ontologies. We see its general objective – to propose an ontology-based approach that
uses networked ontologies to integrate application data aiming at enabling data-driven software
development in the CSE context – as an application of ontologies to solve data integration
problems in CSE. We enumerate here the contributions, spanning the two research areas:

• California, a Systems Theory-based process that helps to understand how the organi-
zation behaves and to define proper strategies to implement or improve CSE practices
according to the organization’s behavior and needs (SANTOS; BARCELLOS; CALHAU,
2020; SANTOS; BARCELLOS; CALHAU, 2022). California provides means to (i) under-
stand how different organizational aspects are interrelated, (ii) create strategies to change
undesirable behaviors, (iii) prioritize the undesirable behaviors to be changed first, (iv)
create a common communication among project stakeholders, and (v) address undesir-
able behaviors by applying CSE practices and concepts. In the Immigrant context, it
can be used to aid the identification of the organization’s information needs to be met
by integrated data. This contribution is related to the specific objective SO1 (Establish
mechanisms to identify the organization information needs) of this research.

• Zeppelin, a diagnostic instrument that provides a panoramic view of the current state
of the adoption of CSE practices in an organization, supporting the identification of
weaknesses and strengths as well as aiding in decision-making about which aspects

Chapter 7. Final Considerations 183

should be addressed in improvement actions (SANTOS; BARCELLOS; RUY, 2021). In the
Immigrant context, it can be used to aid the identification of information needs and data
sources that will provide data to meet the information needs.

• Continuum, an ontology (sub)network that aims at representing the conceptualization
related to the processes involved in CSE. In this work, the following processes are consid-
ered: Agile Development, Continuous Integration, Continuous Delivery and Continuous
Deployment. Currently, Continuum comprises the Scrum Reference Ontology (SRO) (SAN-
TOS et al., 2021), the Continuous Integration Reference Ontology (CIRO), and Continuous
Deployment Reference Ontology (CDRO). In the SE big picture, CSE appears as a (large)
subdomain involving other subdomains. Thus, Continuum has been developed as a sub-
network of SEON (RUY et al., 2016). In the Immigrant context, Continuum establishes a
comprehensive conceptualization that can serve as an interlingua to assign semantics
and allow the integration of data from different applications. Continuum can also be used
to support other ontology applications, such as communication and learning, standards
harmonization, semantic documentation, and among others. This contribution is related
to the specific objective SO2 (Develop networked ontologies about CSE subdomains) of this
research.

• The Band, an integration software solution that uses networked ontologies and Federated
Information System architectures to provide integrated data. The Band provided means
to extract, store data from applications and provide integrated data without semantic
issues. It enables Immigrant to meet requirements R2 (the approach must address semantic
issues involved in data integration in such a complex domain), R3 (the approach must
consider data available in the organization’s applications) and R4 (the approach must
provide integrated and meaningful data, considering the organization’s information needs
and available data). It is related to SO3 (Create an ontology-based approach to integrate
application data), because it is the Immigrant component responsible for data integration.
The Band was developed following the process we have proposed called The Journey,
employing model-driven techniques that leverage information present in networked
ontologies to create data integration components. We believe that The Journey and its
elements (model transformations, for example) may also be used in other settings; a
hypothesis which may be further examined in future work.

• And, finally, Immigrant, an ontology-based approach that uses networked ontologies
from Continuum to integrate application data aiming at enabling data-driven software
development in CSE context. Immigrant considers the organization’s information needs
and the available data to provide integrated data in dashboards. It is composed of Cal-
ifornia, Zeppelin and The Band, and is related to the specific objective SO3 (Create an
ontology-based approach to integrate application data).

Chapter 7. Final Considerations 184

These results contribute to fulfilling the established objectives of this work. Table 28
relates the presented contributions to the specific objectives of this thesis.

Table 28 – Contributions versus Specific Objectives.

General Objective Specific Objective Contribution
An ontology-based approach
that uses networked ontologies
to integrate application data
aiming at enabling data-driven
software development in the
CSE context

SO1. Establish mechanisms to iden-
tify an organization’s information
needs

California, a Systems Theory-based
process that helps understand how
the organization behaves and de-
fines proper strategies to implement
or improve CSE practices, and Zep-
pelin, a diagnostic instrument that
provides a panoramic view of the
current state of the adoption of CSE
practices in an organization.

SO2. Develop networked ontologies
on CSE subdomains

Continuum, an ON that aims at rep-
resenting the conceptualization re-
lated to the processes involved in
CSE.

SO3. Create an ontology-based ap-
proach to integrate application data

The Band, the Immigrant compo-
nent responsible for data integra-
tion. It is an ontology-based ap-
proach that uses networked ontolo-
gies from Continuum to integrate
application data.

Immigrant, the proposed solution to
enable data-driven software devel-
opment in CSE context.

SO4. Apply the proposed approach in
a real context

Fourth studies (the fourth learning
iterations) performed with software
organizations involving the Immi-
grant components.

The contributions cited above and others produced along this work were published in
the following papers (in chronological order):

i. P. S. Santos Jr, M. P. Barcellos, and R. F. Calhau, “Am I Going to Heaven? First Step
Climbing the Stairway to Heaven Model – Results from a Case Study in Industry”, in 34th
Brazilian Symposium on Software Engineering (SBES 2020), 2020, p. 309–318, <http:
//dx.doi.org/10.1145/3422392.3422406>. Presents the exploratory study that resulted in
California. Best Paper Award.

ii. P. S. Santos Jr, M. P. Barcellos, and F. Ruy, “Tell me: Am I going to Heaven? A Diagnosis
Instrument of Continuous Software Engineering Practices Adoption”, in 25th International
Conference on Evaluation and Assessment in Software Engineering (EASE 2021), 2021,

http://dx.doi.org/10.1145/3422392.3422406
http://dx.doi.org/10.1145/3422392.3422406

Chapter 7. Final Considerations 185

<https://doi.org/10.1145/3463274.3463324>. Presents Zeppelin and the multiple case studies
performed to evaluate it.

iii. P. S. Santos Jr, M. P. Barcellos, R. A. Falbo, and J. P. A. Almeida, “From a Scrum Reference
Ontology to the Integration of Applications for Data-Driven Software Development”, in
Information and Software Technology, vol. 136, 2021, <https://doi.org/10.1016/j.infsof.
2021.106570>. Presents the first version of Immigrant (focusing on The Band).

iv. P. S. Santos Jr, M. P. Barcellos, and J. P. A. Almeida, “An Ontology-based Approach to
Enable Data-Driven Decision-Making in Agile Software Organizations”, in V Doctoral
and Masters Consortium on Ontologies (WTDO 2021), Ontobras 2021, 2021. <https:
//ceur-ws.org/Vol-3050/>. Provides an overview of the Doctoral research project.

v. P. S. Santos Jr, M. P. Barcellos, and R. F. Calhau, “Am I Going to Heaven? First Step Climbing
the Stairway to Heaven Model – Results from a Case Study in Industry”, Journal of Software
Engineering Research and Development, 2022, vol. 10, <https://doi.org/10.5753/jserd.
2021.1992>. Extended version of the paper published in SBES 2020.

vi. P. S. Santos Jr, M. P. Barcellos, F. B. Ruy, and M. S. Omêna, “Flying over Brazilian Organiza-
tions with Zeppelin: A Preliminary Panoramic Picture of Continuous Software Engineering”,
In Proceedings of the XXXVI Brazilian Symposium on Software Engineering (SBES ’22),
2022, p. 279–288, <https://doi.org/10.1145/3555228.3555234>. Presents a survey investi-
gating the adoption of CSE practices in 28 Brazilian organizations. Distinguished Paper
Award.

vii. P. S. Santos Jr, J. P. A. Almeida, and M. P. Barcellos. 2023. “Towards Federated Ontology-
Driven Data Integration in Continuous Software Engineering”. In XXXVII Brazilian Sym-
posium on Software Engineering (SBES 2023), September 25–29, 2023, Campo Grande,
Brazil. <https://doi.org/10.1145/3613372.3613380>. Presents an overview of the current
version of The Band.

viii. C. E. Correa Braga, P. S. Santos Jr, and M. P. Barcellos. 2023. Help! I need somebody. A
Mapping Study about Expert Identification in Software Development. In XXXVII Brazilian
Symposium on Software Engineering (SBES 2023), September 25–29, 023, Campo Grande
- MS, Brazil. <https://doi.org/10.1145/3613372.3613389>. Collaboration with a master’s
student to investigate how experts have been identified in software development. The student
intends to use The Band to integrate data regrading results produced by developers to help
identify “who knows what” in an organization.

Finally, the following paper is currently under review:

• P. S. dos Santos Jr, M. P. Barcellos, F. B. Ruy, and M. S. Omêna, “Preliminary Panoramic
View of Continuous Software Engineering Adoption in Brazilian Organizations”, Submitted

https://doi.org/10.1145/3463274.3463324
https://doi.org/10.1016/j.infsof.2021.106570
https://doi.org/10.1016/j.infsof.2021.106570
https://ceur-ws.org/Vol-3050/
https://ceur-ws.org/Vol-3050/
https://doi.org/10.5753/jserd.2021.1992
https://doi.org/10.5753/jserd.2021.1992
https://doi.org/10.1145/3555228.3555234
https://doi.org/10.1145/3613372.3613380
https://doi.org/10.1145/3613372.3613389

Chapter 7. Final Considerations 186

to Journal of Software Engineering Research and Development. Extended version of the
paper published in SBES 2022.

In Chapter 1 we presented the hypothesis established at the beggining of this work as
follows:

The use of ontologies in an ontology network that addresses Continuous Software Engi-
neering (CSE) aspects facilitates the semantic integration of data stored in diverse applications,
and can thereby enable data-driven software development.

The artifacts produced in this work, particularly Continnum and The Band, along with
the studies results have shown that using Continnum helped us assign semantics to application
data and create an ontology-based FIS architecture (The Band) to integrate data and support
data-driven software development. This corroborates our hypothesis 1.

7.3 Research Limitations

Like any research, this work has limitations. Throughout the chapters, we discussed
some specific limitations. Here, we summarize them and discuss overall caveats that should be
considered in the use of the proposed artifacts.

• California: although the proposed process is useful, it involves a lot of tacit knowledge
and judgment, as well as knowledge of System Thinking tools, GUT matrix, and Reference
ontologies. Moreover, it may demand much time to be applied. Hence, depending on the
application scenario to be considered, it may be difficult or even unfeasible to use it fully.

• Zeppelin: the proposed instrument relies on a questionnaire to create a panorama of
the adoption of CSE practices in an organization; as such, this overview is based on the
perception and knowledge of those who answered the questionnaire. Therefore, this can
provide a biased view of a software organization. In the fourth learning iteration, we
noticed divergences between the answers provided by the developers and the observed
organizational reality. As a means to mitigate these divergences, interviews (or other
forms of raising evidence) concerning the adoption of the various CSE practices may be
required. Beyond biases, the divergences may also be the result of different interpretations
of the statements contained in the questionnaire.

• Continuum: up until now, the proposed network’s development and growth have been
done exclusively by our group. It is necessary to allow other researchers to contribute to
Continuum. Besides that, the Continuous Deployment and Delivery domains needs to be
more explored in further depth.

1 This conclusion is based on the researchers’ experience in this work and on the studies results. We did not run

Chapter 7. Final Considerations 187

• TheBand: the proposed solution has amodular and complex data integration architecture
based on a Federated Information System and ontology networks. Therefore, knowledge
about Continuum’s subontologies is required to fully grasp the integrated data provided
by The Band. Another limitation is related to the quality data issue of data stored in
the applications that support the development process. This may negatively affect the
integration and exchange of data between The Band and applications.

• Immigrant: the proposed approach considers both top-down and bottom-up perspectives.
Therefore, it is necessary that whoever is applying it has the ability to look at the organi-
zation holistically and navigate between the different organizational levels in a fluid way
and connect the different organizational elements (e.g., process, good practices, and data),
to understand how the organization implements CSE. While there are various supporting
elements in the proposed approach, these may be considered heavy requirements for the
full application of the approach. It is also worth say that although we have carried out
several studies in this work, it is still necessary to apply Immigrant in other practical
settings. The results obtained so far are promising, but they are not robust enough to
allow for generalization. Thus, new studies are necessary to better understand Immigrant
strengths and weaknesses.

7.4 Perspectives of Future Works

The results presented in this thesis establish the basis for several future works. We
believe that these works can solve some of the aforementioned limitations. Others are improve-
ments for the work done and contributions in the context of the research lines explored in
this thesis. Following, we present some possible future works. The list focuses on the main
improvement opportunities we identified, but it is not exhaustive.

• California: to have a better understanding of how the different software engineering
aspects (i.e., variables) are connected to and influence each other in an organization,
we propose to study other Systems Thinking theory tools (e.g., Behavior over Time
Graphs, Dynamic System Model, and Iceberg Model) and combine them with Enterprise
Architecture Models, so that it will be possible to connect system variables, undesirable
behaviors, and causes to elements of the organization architecture. Regarding undesirable
behaviors, it is difficult to identify them and relate them to archetypes (e.g., Limits to
Success, Shifting the Burden, Fixes that Fail, and Success to the Successful) and leverage
points. Thus, an future work is defining guidelines to help their identification. For example,
define a guideline that teaches how create a systemic models using concepts of CSE.
Finally, California needs clear guidance and computational support. These aspects have

hypothesis testing.

Chapter 7. Final Considerations 188

been addressed in works developed by other students of our research group.

• Zeppelin: from the performed studies, we noticed that some statements raised doubts in
those who answered the questionnaire. Therefore, it is necessary to improve Zeppelin
by providing detailed information about each statement/practice to ensure its proper
understanding. It is also possible to evolve Zeppelin to better address some CSE aspects,
such as Continuous Operation and Continuous Use. CSE involves several processes and
some of them are not addressed by Zeppelin. From the studies we also realize that just
one person answering Zeppelin can give a biased perspective on how the organization
implements CSE practices. Therefore, it would be interesting to create a way for more
than one person in the organization to fill out the Zeppelin questionnaire or create a
guideline that allow us to identify and minimize the biased perspective and, thus, present
an analytical report of this shared vision. Furthermore, an important challenge when
using Zeppelin is to verify whether the answers to the statements are in accordance with
the organization’s reality. It would be positive to make such verification without the
need for an interview or asking the organization to send proof artifacts. Moreover, it is
necessary to calibrate the weights defined to the answers provided to each statement. In a
recent collaboration with researchers from the Laboratory for Software Engineering and
Reliability (LASER) at UNICAMP, it was noticed that the weights may differ depending on
the organization type (e.g., Startup, Software House, and Organization with IT Departure).
Furthermore, as different organization types may perform different CSE practices, it can
be necessary to create a different version of Zeppelin for each type of organization. Last, it
would be useful to provide guidelines on how to implement the CSE practices addressed
in Zeppelin (this has been addressed in the work of a master’s student of LASER).

• Continuum: the Continuum body of ontologies may be enlarged, allowing better cover-
age of the CSE domain. Ontologies covering other subdomains should be developed and
added to Continuum, e.g., concerning Continuous Planning, Continuous Use, Continuous
Trust. Further, we believe that the body of ontologies composing Continuum can be
applied to CSE learning. CSE disciplines can be better understood with the support of
consolidated conceptual models such as those that are part of Continuum, potentially
complementing CSE teaching. Teachers can adopt ontologies as complementary material
in their disciplines, present the graphical model and use the conceptualization provided
to minimize students’ difficulties in understanding the domain, use instantiations to
demonstrate their real functioning and create new instantiations to stimulate students’
thinking. An example of how Continuum was used to teach concepts from the CSE
domain in an organization was presented in (SANTOS; BARCELLOS; CALHAU, 2022).

• The Journey: can be characterized as an ontology-driven software development process
(PAN et al., 2012) that uses ontologies’ concepts to produce data integration software
artifacts (e.g., database, webservices, and code libraries). However, no in-depth study has

Chapter 7. Final Considerations 189

been carried out on the characteristics of ontology-driven software development process
literature. Therefore, it would be interesting to carry out a literature review on that topic
to improve the use of ontologies in The Journey. Although some code generation tools
based on MDD techniques have been developed, there are still software artifacts (e.g.,
dashboards and data view) generated during The Journey that the tools do not address.
Further automating the process may be an interesting line of work.

• The Band: like any data integration solution, The Band deals with data quality issues
which can influence the results. Therefore, it is necessary to create mechanisms for
The Band to identify and fix (when possible) data quality issues, as well as indicate in
which part of the software process data with quality problems is produced. The Band was
developed to integrate data in CSE context. However, other domains can take advantage
of this data integration solution to support data-driven decision-making. For example, in
the context of a master research project developed by a student of our research group,
The Band is being used on integration of application data and, thus, provide information
useful to identify team member‘s skills to allocate people in teams. Therefore, studies
can be performed to investigate how other domains can take advantage of The Band.

• Immigrant: Finally, it is important to comment that all the future work mentioned above
has a positive impact on the Immigrant evolution, as they are related to the Immigrant’s
components. In addition to the mentioned works, we believe that it is necessary to detail
the process of using Immigrant by providing clear guidelines to support a software
engineer applying it in a software organization. Currently, the process contains four
activities that can be detailed to better support third-part use of Immigrant.

190

Bibliography

ALMEIDA, J. P. A. et al. gUFO: A Lightweight Implementation of the Unified Foundational
Ontology (UFO). 2020. Disponível em: <http://purl.org/nemo/gufo>. Cited on page 46.

ALMEIDA, J. P. A.; FALBO, R. A.; GUIZZARDI, G. Events as entities in ontology-driven
conceptual modeling. In: SPRINGER. Conceptual Modeling: 38th International Conference, ER
2019, Salvador, Brazil, November 4–7, 2019, Proceedings 38. [S.l.], 2019. p. 469–483. Cited on
page 45.

AMBLER, S. W.; LINES, M. Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software
Delivery in the Enterprise. 1st. ed. [S.l.]: IBM Press, 2012. ISBN 0132810131. Cited on page 34.

ATLASSIAN. Bitbucket. 2023. Disponível em: <https://www.atlassian.com/br/git/tutorials/
using-branches>. Cited 2 times on the pages 10 and 40.

AYED, H.; VANDEROSE, B.; HABRA, N. A metamodel-based approach for customizing and
assessing agile methods. In: 2012 Eighth International Conference on the Quality of Information
and Communications Technology. [S.l.: s.n.], 2012. p. 66–74. Cited on page 102.

BARCELLOS, M. P. Towards a framework for continuous software engineering. In: Proceedings
of the 34th Brazilian Symposium on Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2020. (SBES ’20), p. 626–631. ISBN 9781450387538. Disponível em:
<https://doi.org/10.1145/3422392.3422469>. Cited 6 times on the pages 10, 19, 31, 33, 34,
and 126.

BARCELLOS, M. P.; FALBO, R. de A.; FRAUCHES, V. Towards a measurement ontology pattern
language. In: ONTO.COM/ODISE@FOIS. [S.l.: s.n.], 2014. Cited on page 48.

BARCELLOS, M. P. et al. Organizing empirical studies as learning iterations in design science
research projects. Simpósio Brasileiro de Qualidade de Software (SBQS), Nob. 2022. Cited 9
times on the pages 10, 11, 25, 29, 106, 107, 129, 180, and 181.

BASKERVILLE, R.What design science is not. [S.l.]: Springer, 2008. 441–443 p. Cited on page
106.

BASKERVILLE, R. L. Distinguishing action research from participative case studies. Journal of
systems and information technology, MCB UP Ltd, 1997. Cited 5 times on the pages 114, 116,
123, 130, and 158.

BECK, K. Extreme Programming Explained: Embrace Change. USA: Addison-Wesley Longman
Publishing Co., Inc., 1999. ISBN 0201616416. Cited on page 115.

BECK, K. Extreme programming explained: embrace change. [S.l.]: addison-wesley professional,
2000. Cited on page 20.

BERCLAZ, D. 8 Deployment Strategies Explained and Compared. 2023. Disponível em:
<https://www.apwide.com/8-deployment-strategies-explained-and-compared/>. Cited on
page 43.

http://purl.org/nemo/gufo
https://www.atlassian.com/br/git/tutorials/using-branches
https://www.atlassian.com/br/git/tutorials/using-branches
https://doi.org/10.1145/3422392.3422469
https://www.apwide.com/8-deployment-strategies-explained-and-compared/

Bibliography 191

BOSCH, J. Continuous software engineering: An introduction. In: Continuous software
engineering. [S.l.]: Springer, 2014. p. 3–13. Cited 4 times on the pages 19, 20, 35, and 180.

BRANK, J.; GROBELNIK, M.; MLADENIC, D. A survey of ontology evaluation techniques. In:
CITESEER LJUBLJANA SLOVENIA. Proceedings of the conference on data mining and data
warehouses (SiKDD 2005). [S.l.], 2005. p. 166–170. Cited 3 times on the pages 73, 91, and 99.

BRINGUENTE, A.; FALBO, R.; GUIZZARDI, G. Using a foundational ontology for reengineering
a software process ontology. Journal of Information and Data Management,, v. 2, p. 511–526, 01
2011. Cited 2 times on the pages 48 and 104.

BRYNJOLFSSON, E.; HITT, L. M.; KIM, H. H. Strength in numbers: How does data-driven
decision making affect firm performance? O&M: Decision-Making in Organizations eJournal,
2011. Cited on page 20.

BUSSE, S. et al. Federated Information Systems: Concepts, Terminology and Architectures. [S.l.],
1999. Disponível em: <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.5830>.
Cited 6 times on the pages 10, 58, 59, 149, 150, and 151.

CALHAU, R. F.; AZEVEDO, C. L. B.; ALMEIDA, J. P. A. Towards ontology-based competence
modeling in enterprise architecture. In: 2021 IEEE 25th International Enterprise Distributed
Object Computing Conference (EDOC). [S.l.: s.n.], 2021. p. 71–81. Cited on page 46.

CALHAU, R. F.; FALBO, R. d. A. An Ontology-based Approach for Semantic Integration. In:
Proceedings 14th IEEE International Enterprise Distributed Object Computing Conference. [S.l.]:
IEEE Computer Society, 2010. p. 111–120. Cited 7 times on the pages 21, 22, 23, 58, 137, 153,
and 180.

CALHAU, R. F.; FALBO, R. D. A. A Configuration Management Task Ontology for Semantic
Integration. In: Proceedings of the 2012 ACM Symposium on Applied Computing. [S.l.: s.n.], 2012.
Cited 3 times on the pages 48, 79, and 104.

CALVACHE, C. et al. A reference ontology for harmonizing process-reference models. Revista
Facultad de Ingeniería, v. 1, p. 29–42, 12 2014. Cited 2 times on the pages 103 and 104.

CARRARETTO, R. Separating Ontological and Informational Concerns: A Model-driven Approach
for Conceptual Modeling. Dissertação (Mestrado) — Universidade Federal do Espírito Santo,
2012. Cited 2 times on the pages 110 and 136.

CHEN, L. Continuous delivery: Huge benefits, but challenges too. IEEE software, IEEE, v. 32,
n. 2, p. 50–54, 2015. Cited on page 41.

COHN, M. Succeeding with agile: software development using Scrum. [S.l.]: Pearson Education,
2010. Cited 2 times on the pages 63 and 70.

CONSERVANCY, S. F. Git. 2023. Disponível em: <https://git-scm.com/site>. Cited 6 times on
the pages 10, 37, 38, 39, 40, and 80.

COSSENTINO, M. et al. A holonic metamodel for agent-oriented analysis and design. In: . [S.l.:
s.n.], 2007. ISBN 978-3-540-74478-8. Cited on page 102.

COSTA, S. D. et al. A core ontology on the human–computer interaction phenomenon.
Data & Knowledge Engineering, v. 138, p. 101977, 2022. ISSN 0169-023X. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0169023X21000951>. Cited 2 times on the
pages 48 and 104.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.5830
https://git-scm.com/site
https://www.sciencedirect.com/science/article/pii/S0169023X21000951

Bibliography 192

CUBRANIC, D. et al. Hipikat: a project memory for software development. IEEE Transactions
on Software Engineering, v. 31, n. 6, p. 446–465, 2005. Cited 2 times on the pages 22 and 154.

DAMIANI, E. et al. A metamodel for modeling and measuring scrum development process. In:
CONCAS, G. et al. (Ed.). Agile Processes in Software Engineering and Extreme Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p. 74–83. ISBN 978-3-540-73101-6. Cited
on page 102.

DEAN, L. Safe® 4.0 reference guide: Scaled agile framework® for lean software and systems
engineering. Google Scholar Google Scholar Digital Library Digital Library, 2016. Cited on page
118.

DEBOIS, P. et al. Devops: A software revolution in the making. Journal of Information
Technology Management, v. 24, n. 8, p. 3–39, 2011. Cited on page 20.

DESTEFANIS, G. et al. Software development: do good manners matter? PeerJ Computer
Science, PeerJ Inc., v. 2, p. e73, 2016. Cited on page 154.

DRESCH, A.; LACERDA, D. P.; JÚNIOR, J. A. V. A. Design science research: método de pesquisa
para avanço da ciência e tecnologia. [S.l.]: Bookman Editora, 2015. Cited on page 108.

DUARTE, B. B. et al. Towards an Ontology of Software Defects, Errors and Failures. In:
Conceptual Modeling. [S.l.]: Springer-Verlag, 2018. Cited 3 times on the pages 48, 56, and 104.

DUARTE, B. B. et al. Ontological foundations for software requirements with a focus on
requirements at runtime. APPLIED ONTOLOGY (ONLINE), v. 13, p. 73–105, 2018. ISSN 18758533.
Cited 2 times on the pages 48 and 104.

DURIEUX, T. et al. Empirical study of restarted and flaky builds on travis ci. In: Proceedings
of the 17th International Conference on Mining Software Repositories. New York, NY, USA:
Association for Computing Machinery, 2020. (MSR ’20), p. 254–264. ISBN 9781450375177.
Disponível em: <https://doi.org/10.1145/3379597.3387460>. Cited on page 102.

DUVALL, P. M.; MATYAS, S.; GLOVER, A. Continuous integration: improving software quality
and reducing risk. [S.l.]: Pearson Education, 2007. Cited 7 times on the pages 10, 36, 37, 79, 82,
83, and 87.

DYBÅ, T.; DINGSØYR, T. Empirical studies of agile software development: A systematic review.
Information and Software Technology, v. 50, n. 9, p. 833–859, 2008. ISSN 0950-5849. Disponível
em: <https://www.sciencedirect.com/science/article/pii/S0950584908000256>. Cited on page
34.

FALBO, R. SABiO: Systematic approach for building ontologies. CEUR Workshop Proceedings,
v. 1301, 01 2014. Cited 7 times on the pages 44, 48, 62, 73, 91, 99, and 104.

FALBO, R. D. A.; NARDI, J. C. Evolving a Software Requirements Ontology. In: Anales de
XXXIV Conferencia Latinoamericana de Informática. [S.l.: s.n.], 2008. p. 300–309. Cited 2 times
on the pages 48 and 104.

FENSEL, D. et al. Introduction: What is a knowledge graph? In: . Knowledge Graphs:
Methodology, Tools and Selected Use Cases. Cham: Springer International Publishing, 2020. p.
1–10. ISBN 978-3-030-37439-6. Disponível em: <https://doi.org/10.1007/978-3-030-37439-6_1>.
Cited on page 102.

https://doi.org/10.1145/3379597.3387460
https://www.sciencedirect.com/science/article/pii/S0950584908000256
https://doi.org/10.1007/978-3-030-37439-6_1

Bibliography 193

FIELDING, R. T.; TAYLOR, R. N. Principled design of the modern web architecture. ACM
Transactions on Internet Technology (TOIT), ACM New York, NY, USA, v. 2, n. 2, p. 115–150,
2002. Cited on page 138.

FITZGERALD, B.; STOL, K.-J. Continuous software engineering: A roadmap and agenda.
Journal of Systems and Software, v. 123, p. 176–189, 2017. ISSN 0164-1212. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0164121215001430>. Cited 11 times on
the pages 10, 19, 20, 31, 32, 33, 36, 41, 126, 129, and 180.

FONSECA, V.; BARCELLOS, M.; FALBO, R. An ontology-based approach for integrating tools
supporting the software measurement process. Science of Computer Programming, v. 135, 10
2016. Cited on page 58.

FONSECA, V.; BARCELLOS, M.; FALBO, R. d. A. An ontology-based approach for integrating
tools supporting the software measurement process. Science of Computer Programming,
v. 135, p. 20–44, 2017. ISSN 0167-6423. Special Issue on Advances in Software Measurement.
Disponível em: <https://www.sciencedirect.com/science/article/pii/S0167642316301599>.
Cited 4 times on the pages 21, 22, 23, and 153.

FOWLER, M. Continuous Integration. 2006. <https://www.martinfowler.com/articles/
continuousIntegration.html>. [Online; accessed 05-April-2022]. Cited on page 79.

FOWLER, M. Continuous Integration.(2006) http://www.martinfowler. com/articles/continuousIn-
tegration.html. [S.l.]: Stand, 2011. Cited on page 36.

FOWLER, M. Patterns of Enterprise Application Architecture: Pattern Enterprise Applica Arch.
[S.l.]: Addison-Wesley, 2012. Cited 3 times on the pages 141, 144, and 145.

FOWLER, M. Canary Release. 2014. Disponível em: <https://martinfowler.com/bliki/
CanaryRelease.html>. Cited 2 times on the pages 42 and 43.

FOWLER, M. Feature Toggles: What Are They and How to Use Them. 2023. Disponível em:
<https://martinfowler.com/articles/feature-toggles.html>. Cited on page 43.

GALLAND, S.; GAUD, N.; KOUKAM, A. Towards a multilevel simulation approach based on
holonic multiagent systems. In: . [S.l.: s.n.], 2008. Cited on page 102.

GARCÍA, F. et al. Towards a consistent terminology for software measurement. Information
and Software Technology, Elsevier, v. 48, n. 8, p. 631–644, 2006. Cited 2 times on the pages 103
and 104.

GitHub. Git Guide. 2023. Disponível em: <https://github.com/git-guides>. Cited 2 times on the
pages 38 and 39.

GOETHERT, W.; FISHER, M. Deriving Enterprise-Based Measures Using the Balanced
Scorecard and Goal-Driven Measurement Techniques. Pittsburgh, PA, 2003. Disponível em:
<http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6507>. Cited on page 151.

GRUBER, T. R. A translation approach to portable ontology specifications. Knowledge
Acquisition, v. 5, n. 2, p. 199–220, 1993. ISSN 1042-8143. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S1042814383710083>. Cited 2 times on the pages
21 and 43.

https://www.sciencedirect.com/science/article/pii/S0164121215001430
https://www.sciencedirect.com/science/article/pii/S0167642316301599
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/articles/feature-toggles.html
https://github.com/git-guides
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6507
https://www.sciencedirect.com/science/article/pii/S1042814383710083
https://www.sciencedirect.com/science/article/pii/S1042814383710083

Bibliography 194

GUERRERO, J.; CALVACHE, C.; OROZCO, C. Devops ontology - an ontology to support the
understanding of devops in the academy and the software industry. Periodicals of Engineering
and Natural Sciences (PEN), v. 11, p. 207–220, 04 2023. Cited 2 times on the pages 103 and 104.

GUIDONI, G. L.; ALMEIDA, J. P. A.; GUIZZARDI, G. Transformation of ontology-based
conceptual models into relational schemas. In: SPRINGER. Conceptual Modeling: 39th
International Conference, ER 2020, Vienna, Austria, November 3–6, 2020, Proceedings 39. [S.l.],
2020. p. 315–330. Cited on page 136.

GUIZZARDI, G. Ontological foundations for structural conceptual models. Tese (Doutorado) —
University of Twente, out. 2005. Cited 7 times on the pages 31, 44, 45, 46, 48, 62, and 104.

GUIZZARDI, G. Conceptualizations, modeling languages, and (meta) models. In: IOS PRESS.
Databases and Information Systems IV: Selected Papers from the Seventh International Baltic
Conference, DB&IS’2006. [S.l.], 2007. v. 155, p. 18. Cited 3 times on the pages 26, 44, and 115.

GUIZZARDI, G. et al. Ufo: Unified foundational ontology. Applied Ontology, IOS Press, v. 17,
n. 1, p. 167–210, 2022. Cited 4 times on the pages 44, 45, 46, and 62.

GUIZZARDI, G.; FALBO, R. D. A.; GUIZZARDI, R. S. S. Grounding Software Domain Ontologies
in the Unified Foundational Ontology (UFO): The case of the ODE Software Process Ontology.
In: Proceedings of the XI Iberoamerican Workshop on Requirements Engineering and Software
Environments (IDEAS?2008). [S.l.: s.n.], 2008. Cited 3 times on the pages 44, 45, and 47.

GUIZZARDI, G. et al. Towards ontological foundations for conceptual modeling: The unified
foundational ontology (ufo) story. Applied ontology, IOS Press, v. 10, n. 3-4, p. 259–271, 2015.
Cited on page 44.

GUIZZARDI, G. et al. Towards ontological foundations for the conceptual modeling of events.
In: . [S.l.: s.n.], 2013. v. 8217, p. 327–341. ISBN 978-3-642-41923-2. Cited 2 times on the pages 44
and 45.

GUIZZARDI, R. S.; GUIZZARDI, G. Ontology-Based Transformation Framework from Tropos to
AORML. 2011. Cited on page 45.

GUSTAFSSON, J. Single case studies vs. multiple case studies: A comparative study. 2017. Cited
on page 125.

HARMSEN, F.; BRINKKEMPER, S.; OEI, H. Situational method engineering for information
systems project approaches. In: Verrijn Stuart, A.; OLLE, T. (Ed.). Methods and Associated Tools
for the Information Systems Life Cycle. Netherlands: North Holland, 1994. (IFIP Transactions A),
p. 169–194. ISBN 0-444-82074-4. IFIP WG 8.1 Working Conference on Methods and Associated
Tools for the Information Systems Life Cycle 1994 ; Conference date: 26-09-1994 Through
28-09-1994. Cited on page 102.

HARTIG, O.; PÉREZ, J. Semantics and complexity of graphql. In: Proceedings of the 2018 World
Wide Web Conference. Republic and Canton of Geneva, CHE: International World Wide Web
Conferences Steering Committee, 2018. (WWW ’18), p. 1155–1164. ISBN 9781450356398.
Disponível em: <https://doi.org/10.1145/3178876.3186014>. Cited 2 times on the pages 138
and 145.

HASSAN, A. E. The road ahead for mining software repositories. In: 2008 Frontiers of Software
Maintenance. [S.l.: s.n.], 2008. p. 48–57. Cited on page 154.

https://doi.org/10.1145/3178876.3186014

Bibliography 195

HEVNER, A. R. The three cycle view of design science research. Scandinavian Journal of
Information Systems, v. 19, n. 2, p. 87–92, 2007. Cited on page 24.

HUMBLE, J. Continuous Delivery vs Continuous Deployment, Available. 2010. Disponível em:
<https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/>.
Cited 2 times on the pages 41 and 42.

HUMBLE, J.What is Continuous Delivery? 2022. Disponível em: <https://continuousdelivery.
com/>. Cited on page 41.

HUMBLE, J.; FARLEY, D. Continuous delivery: reliable software releases through build, test, and
deployment automation. [S.l.]: Pearson Education, 2010. Cited 7 times on the pages 36, 37, 42,
43, 79, 95, and 98.

HUMBLE, J.; KIM, G. Accelerate: The science of lean software and devops: Building and scaling
high performing technology organizations. [S.l.]: IT Revolution, 2018. Cited 3 times on the
pages 95, 98, and 103.

IZZA, S. Integration of industrial information systems: from syntactic to semantic integration
approaches. Enterprise Information Systems, Taylor & Francis, v. 3, n. 1, p. 1–57, 2009. Disponível
em: <https://doi.org/10.1080/17517570802521163>. Cited 4 times on the pages 57, 58, 112,
and 153.

JOHANSSEN, J. O. et al. Continuous software engineering and its support by usage and
decision knowledge: An interview study with practitioners. Journal of Software: Evolution and
Process, v. 31, 05 2019. Cited 6 times on the pages 10, 31, 32, 33, 126, and 129.

JONES, C. L. et al. Practical software and systems measurement continuous iterative
development measurement framework. Version, v. 1, p. 15, 2020. Cited on page 113.

JULIAN, B.; NOBLE, J.; ANSLOW, C. Agile practices in practice: Towards a theory of agile
adoption and process evolution. In: XP. New York, NY, USA: Agil. Process. Softw. Eng. Extrem.
Program, 2019. p. 3–18. Cited on page 19.

KARVONEN, T. et al. Hitting the target: Practices for moving toward innovation experiment
systems. In: FERNANDES, J. M.; MACHADO, R. J.; WNUK, K. (Ed.). Software Business - 6th
International Conference, ICSOB 2015, Braga, Portugal, June 10-12, 2015, Proceedings. Springer,
2015. (Lecture Notes in Business Information Processing, v. 210), p. 117–131. Disponível em:
<https://doi.org/10.1007/978-3-319-19593-3_10>. Cited 5 times on the pages 24, 26, 31, 33,
and 115.

KASAULI, R. et al. Agile islands in a waterfall environment: Challenges and strategies in
automotive. In: Proceedings of the Evaluation and Assessment in Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2020. (EASE ’20), p. 31–40. ISBN
9781450377317. Disponível em: <https://doi.org/10.1145/3383219.3383223>. Cited on page 24.

KEPNER, C. H.; TREGOE, B. B. The new rational manager. Princeton research press Princeton,
NJ, 1981. Cited on page 26.

KIM, D. System Archetypes I: Diagnosing Systemic Issues and Designing High-Leverage
Interventions. Toolbox Reprint Series. Cambridge, MA: Pegasus Communications. [S.l.]: Inc, 1993.
Cited on page 115.

https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://doi.org/10.1080/17517570802521163
https://doi.org/10.1007/978-3-319-19593-3_10
https://doi.org/10.1145/3383219.3383223

Bibliography 196

KIM, S. et al. Automatic identification of bug-introducing changes. In: 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06). [S.l.: s.n.], 2006. p. 81–90.
Cited on page 154.

KIV, S. et al. Agile methods knowledge representation for systematic practices adoption. In:
KRUCHTEN, P.; FRASER, S.; COALLIER, F. (Ed.). Agile Processes in Software Engineering
and Extreme Programming. Cham: Springer International Publishing, 2019. p. 19–34. ISBN
978-3-030-19034-7. Cited on page 102.

KNIBERG, H. Scrum and XP from the Trenches. [S.l.]: Lulu. com, 2015. Cited 2 times on the
pages 19 and 34.

KNIBERG, H.; SKARIN, M. Kanban and Scrum-making the most of both. [S.l.]: Lulu. com, 2010.
Cited 3 times on the pages 19, 34, and 36.

LARMAN, C.; VODDE, B. Large-Scale Scrum: More with LeSS. 1st. ed. [S.l.]: Addison-Wesley
Professional, 2016. ISBN 0321985710. Cited on page 34.

LEITE, L. et al. A survey of devops concepts and challenges. ACM Comput. Surv., Association
for Computing Machinery, New York, NY, USA, v. 52, n. 6, nov 2019. ISSN 0360-0300. Disponível
em: <https://doi.org/10.1145/3359981>. Cited on page 104.

LIN, Y. et al. Scrum conceptualization using k-crio ontology. In: ABERER, K.; DAMIANI, E.;
DILLON, T. (Ed.). Data-Driven Process Discovery and Analysis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012. p. 189–211. ISBN 978-3-642-34044-4. Cited on page 102.

MACARTHY, R. W.; BASS, J. M. An empirical taxonomy of devops in practice. In: IEEE. 2020
46th euromicro conference on software engineering and advanced applications (seaa). [S.l.], 2020.
p. 221–228. Cited on page 103.

MARTIN, R. C. Clean code: a handbook of agile software craftsmanship. [S.l.]: Pearson Education,
2009. Cited 2 times on the pages 37 and 83.

MATTILA, A.-L. et al. Discovering software process deviations using visualizations. In:
BAUMEISTER, H.; LICHTER, H.; RIEBISCH, M. (Ed.). Agile Processes in Software Engineering
and Extreme Programming. Cham: Springer International Publishing, 2017. p. 259–266. ISBN
978-3-319-57633-6. Cited 2 times on the pages 22 and 154.

MEADOWS, D. H. Thinking in systems: A primer. [S.l.]: chelsea green publishing, 2008. Cited 2
times on the pages 26 and 115.

MORICONI, F. et al. Automated identification of flaky builds using knowledge graphs. 2022.
Cited on page 102.

MUKHERJEE, J. Continuous Delivery: Business Value, Benefits, Challenges & Metrics. 2016.
Disponível em: <https://www.atlassian.com/continuous-delivery/principles/business-value>.
Cited on page 42.

NARDI, J. C.; FALBO, R. D. A.; ALMEIDA, J. P. A. Foundational Ontologies for Semantic
Integration in EAI: A Systematic Literature Review. In: Proceedings 12th IFIP WG 6.11
Conference on e-Business, e-Services, and e-Society, I3E 2013. [S.l.]: Springer, 2013. p. 238–249.
Cited 2 times on the pages 21 and 181.

https://doi.org/10.1145/3359981
https://www.atlassian.com/continuous-delivery/principles/business-value

Bibliography 197

OLSSON, H. H.; ALAHYARI, H.; BOSCH, J. Climbing the "stairway to heaven" – a mulitiple-case
study exploring barriers in the transition from agile development towards continuous
deployment of software. In: 2012 38th Euromicro Conference on Software Engineering and
Advanced Applications. [S.l.: s.n.], 2012. p. 392–399. Cited 10 times on the pages 10, 20, 26, 31,
32, 33, 114, 115, 126, and 129.

PAN, J. Z. et al. Ontology-driven software development. [S.l.]: Springer Science & Business
Media, 2012. Cited on page 188.

PAPATHEOCHAROUS, E.; ANDREOU, A. S. Empirical evidence and state of practice of
software agile teams. J. Softw. Evol. Process, John Wiley & Sons, Inc., USA, v. 26, n. 9, p. 855–866,
sep 2014. ISSN 2047-7473. Disponível em: <https://doi.org/10.1002/smr.1664>. Cited on page
34.

PARDO, C.; OROZCO, C.; GUERRERO, J. Devops ontology-an ontology to support the
understanding of devops in the academy and the software industry. Periodicals of Engineering
and Natural Sciences, v. 11, n. 2, p. 207–220, 2023. Cited on page 103.

PARSONS, D. Agile software development methodology, an ontological analysis. In: Proceedings
of 9th International Conference on Applications and Principles of Information Science. [S.l.: s.n.],
2010. p. 5–9. Cited on page 102.

PEFFERS, K. et al. A design science research methodology for information systems research.
J. Manage. Inf. Syst., M. E. Sharpe, Inc., USA, v. 24, n. 3, p. 45–77, dec 2007. ISSN 0742-1222.
Disponível em: <https://doi.org/10.2753/MIS0742-1222240302>. Cited on page 24.

POKRAEV, S. Model-driven semantic integration of service-oriented applications. In: . [S.l.:
s.n.], 2009. Cited on page 21.

PUPPET. State of DevOps Report. 2015. Disponível em: <https://puppetlabs.com/
2015-devops-repor/>. Cited on page 41.

PUTTA, A.; PAASIVAARA, M.; LASSENIUS, C. Adopting scaled agile framework (safe): A
multivocal literature review. In: Proceedings of the 19th International Conference on Agile
Software Development: Companion. New York, NY, USA: Association for Computing Machinery,
2018. (XP ’18). ISBN 9781450364225. Disponível em: <https://doi.org/10.1145/3234152.3234164>.
Cited on page 34.

RAHMAN, M. T. et al. Feature toggles: Practitioner practices and a case study. In: Proceedings
of the 13th International Conference on Mining Software Repositories. New York, NY, USA:
Association for Computing Machinery, 2016. (MSR ’16), p. 201–211. ISBN 9781450341868.
Disponível em: <https://doi.org/10.1145/2901739.2901745>. Cited on page 43.

RENAULT, L. D.; BARCELLOS, M. P.; FALBO, R. D. A. Using an Ontology-based Approach for
Integrating Applications to Support Software Processes. In: Anais do XVII Simpósio Brasileiro
de Qualidade de Software. [S.l.: s.n.], 2018. Cited on page 154.

RISING, L.; JANOFF, N. S. The scrum software development process for small teams. IEEE
software, IEEE, v. 17, n. 4, p. 26–32, 2000. Cited on page 35.

RODRÍGUEZ, P. et al. Survey on agile and lean usage in finnish software industry. In:
Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. New York, NY, USA: Association for Computing Machinery, 2012. (ESEM ’12), p.

https://doi.org/10.1002/smr.1664
https://doi.org/10.2753/MIS0742-1222240302
https://puppetlabs.com/2015-devops-repor/
https://puppetlabs.com/2015-devops-repor/
https://doi.org/10.1145/3234152.3234164
https://doi.org/10.1145/2901739.2901745

Bibliography 198

139–148. ISBN 9781450310567. Disponível em: <https://doi.org/10.1145/2372251.2372275>.
Cited on page 34.

RUBIN, K. S. Essential Scrum: A practical guide to the most popular Agile process. [S.l.]:
Addison-Wesley, 2012. Cited 3 times on the pages 63, 64, and 67.

RUNESON, P. et al. Case study research in software engineering: Guidelines and examples. [S.l.]:
John Wiley & Sons, 2012. Cited 3 times on the pages 123, 129, and 176.

RUY, F. et al. SEON: A Software Engineering Ontology Network. In: Proceedings of the 20th
International Conference on Knowledge Engineering and Knowledge Management. [S.l.: s.n.],
2016. Cited 20 times on the pages 10, 21, 22, 25, 28, 31, 44, 47, 48, 61, 103, 104, 116, 120, 132,
134, 155, 180, 181, and 183.

RUY, F. B. Software Engineering Standards Harmonization: An Ontology-based Approach. Tese
(Doutorado) — Universidade Federal do Espírito Santo, 2017. Cited 3 times on the pages 48,
104, and 137.

SALAMON, J. S. Uma Abordagem Orientada a Objetivos para Desenvolvimento de Ontologias
baseado em Integração. Dissertação (Mestrado) — Universidade Federal do Espírito Santo, 2018.
Cited 2 times on the pages 137 and 156.

SANTOS, P. S.; ALMEIDA, J. a. P. A.; BARCELLOS, M. Towards federated ontology-driven
data integration in continuous software engineering. In: Proceedings of the XXXVII
Brazilian Symposium on Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2023. (SBES ’23), p. 31–36. ISBN 9798400707872. Disponível em:
<https://doi.org/10.1145/3613372.3613380>. Cited 3 times on the pages 158, 159, and 182.

SANTOS, P. S.; BARCELLOS, M. P.; ALMEIDA, J. P. A. An ontology-based approach to enable
data-driven decision-making in agile software organizations. In: V Doctoral and Masters
Consortium on Ontologies (WTDO 2021). [S.l.: s.n.], 2021. (Ontobras 2021), p. 279–284. Cited on
page 28.

SANTOS, P. S.; BARCELLOS, M. P.; CALHAU, R. F. Am i going to heaven? first step climbing
the stairway to heaven model results from a case study in industry. In: Proceedings of the
34th Brazilian Symposium on Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2020. (SBES ’20), p. 309–318. ISBN 9781450387538. Disponível em:
<https://doi.org/10.1145/3422392.3422406>. Cited 15 times on the pages 11, 26, 27, 28, 116, 120,
121, 122, 131, 132, 159, 160, 177, 181, and 182.

SANTOS, P. S. et al. From a scrum reference ontology to the integration of applications for
data-driven software development. Information and Software Technology, Elsevier BV, v. 136, p.
106570, aug 2021. Disponível em: <https://doi.org/10.1016%2Fj.infsof.2021.106570>. Cited 15
times on the pages 11, 13, 25, 28, 109, 110, 111, 131, 132, 136, 137, 158, 181, 182, and 183.

SANTOS, P. S. et al. Flying over brazilian organizations with zeppelin: A preliminary
panoramic picture of continuous software engineering. In: Proceedings of the XXXVI
Brazilian Symposium on Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2022. (SBES ’22), p. 279–288. ISBN 9781450397353. Disponível em:
<https://doi.org/10.1145/3555228.3555234>. Cited 6 times on the pages 20, 28, 131, 158, 160,
and 180.

https://doi.org/10.1145/2372251.2372275
https://doi.org/10.1145/3613372.3613380
https://doi.org/10.1145/3422392.3422406
https://doi.org/10.1016%2Fj.infsof.2021.106570
https://doi.org/10.1145/3555228.3555234

Bibliography 199

SANTOS, P. S. d.; BARCELLOS, M. P.; CALHAU, R. F. First step climbing the
stairway to heaven model - results from a case study in industry. Journal of Software
Engineering Research and Development, v. 10, p. 5:1 – 5:18, Mar. 2022. Disponível em:
<https://sol.sbc.org.br/journals/index.php/jserd/article/view/1992>. Cited 11 times on the
pages 26, 28, 116, 120, 121, 131, 158, 166, 181, 182, and 188.

SANTOS, P. S. d.; BARCELLOS, M. P.; RUY, F. B. Tell me: Am i going to heaven?
a diagnosis instrument of continuous software engineering practices adoption. In:
Evaluation and Assessment in Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2021. (EASE 2021), p. 30–39. ISBN 9781450390538. Disponível em:
<https://doi.org/10.1145/3463274.3463324>. Cited 11 times on the pages 11, 27, 28, 125, 126,
127, 129, 130, 131, 181, and 183.

SATPATHY, T. et al. A guide to the scrum body of knowledge (sbok™ guide). Scrumstudy™, a
brand of VMEdu, Inc, 2016. Cited 3 times on the pages 63, 64, and 66.

SCHERP, A. et al. Designing core ontologies. Applied Ontology, v. 6, 08 2011. Cited 2 times on
the pages 43 and 48.

SCHWABER, J.; KEN, S. The scrum guide-the definitive guide to scrum: The rules of the game.
In: . [s.n.], 2013. Disponível em: <http://scrum.org>. Cited 3 times on the pages 19, 34, and 71.

SCHWABER, K.; BEEDLE, M. Agile software development with Scrum. [S.l.]: Prentice Hall Upper
Saddle River, 2002. v. 1. Cited 4 times on the pages 63, 67, 69, and 71.

SCHWABER, K.; SUTHERLAND, J. The scrum guide. Scrum Alliance, v. 21, n. 1, 2011. Cited 3
times on the pages 35, 63, and 67.

SHAHIN, M.; BABAR, M. A.; ZHU, L. Continuous integration, delivery and deployment:
A systematic review on approaches, tools, challenges and practices. IEEE Access, v. 5, p.
3909–3943, 2017. ISSN 2169-3536. Cited 12 times on the pages 10, 36, 41, 42, 43, 79, 82, 83, 87,
95, 97, and 98.

SHI, J. et al. Study on log-based change data capture and handling mechanism in real-time data
warehouse. In: 2008 International Conference on Computer Science and Software Engineering.
[S.l.: s.n.], 2008. v. 4, p. 478–481. Cited on page 146.

SKELTON, M.; O’DELL, C. Continuous delivery with windows and. NET. [S.l.]: O’Reilly Media,
2016. Cited on page 42.

SOUZA, E. F. D.; FALBO, R. D. A.; VIJAYKUMAR, N. L. ROoST: Reference Ontology on
Software Testing. APPLIED ONTOLOGY (ONLINE), v. 12, p. 59–90, 2017. ISSN 18758533. Cited
2 times on the pages 48 and 104.

SOUZA, L. M. S. d. Ramble ON: Utilizando Medição de software e Ontologias em Rede para prover
Dados de apoio à Tomada de Decisão. [S.l.], 2023. Cited on page 151.

STÅHL, D.; BOSCH, J. Modeling continuous integration practice differences in industry
software development. Journal of Systems and Software, Elsevier, v. 87, p. 48–59, 2014. Cited
on page 79.

STARON, M. et al. Measurement and impact factors of speed of reviews and integration in
continuous software engineering. Foundations of Computing and Decision Sciences, v. 43, n. 4, p.
281–303, 2018. Cited on page 79.

https://sol.sbc.org.br/journals/index.php/jserd/article/view/1992
https://doi.org/10.1145/3463274.3463324
http://scrum.org

Bibliography 200

STERMAN, J. Business dynamics. [S.l.]: Irwin/McGraw-Hill c2000.., 2010. Cited on page 115.

STUDER, R.; BENJAMINS, V. R.; FENSEL, D. Knowledge engineering: principles and methods.
Data & knowledge engineering, Elsevier, v. 25, n. 1-2, p. 161–197, 1998. Cited on page 43.

SUÁREZ-FIGUEROA, M. C.; GÓMEZ-PÉREZ, A.; FERNÁNDEZ-LÓPEZ, M. The neon
methodology for ontology engineering. In: Ontology engineering in a networked world. [S.l.]:
Springer, 2012. p. 9–34. Cited on page 21.

SUÁREZ-FIGUEROA, M. C. et al. Ontology Engineering in a Networked World. [S.l.: s.n.], 2012.
ISBN 978-3-642-24793-4. Cited on page 44.

SVENSSON, R. B.; FELDT, R.; TORKAR, R. The unfulfilled potential of data-driven decision
making in agile software development. In: KRUCHTEN, P.; FRASER, S.; COALLIER, F. (Ed.).
Agile Processes in Software Engineering and Extreme Programming. Cham: Springer International
Publishing, 2019. p. 69–85. ISBN 978-3-030-19034-7. Cited 2 times on the pages 20 and 24.

TAUTZ, C.; WANGENHEIM, C. Gresse von. REFSENO: A representation formalism for software
engineering ontologies. 1998. Cited on page 103.

THEMISTOCLEOUS, M.; IRANI, Z. Evaluating the integration of supply chain information
systems: A case study. European Journal of Operational Research, v. 159, p. 393–405, 12 2004.
Cited on page 58.

TRINKENREICH, B. et al. Combining GQM+Strategies and OKR - Preliminary Results from a
Participative Case Study in Industry. In: Proceedings of the 20th International Conference on
Product-Focused Software Process Improvement. [S.l.: s.n.], 2019. Cited on page 151.

VERNADAT, F. Interoperable enterprise systems: Principles, concepts, and methods. Annual
Reviews in Control, v. 31, p. 137–145, 12 2007. Cited 2 times on the pages 57 and 58.

WACHE, H. et al. Ontology-based information integration: A survey. Bremen, The BUSTER
Project, Intelligent Systems Group, 2001. Cited 3 times on the pages 21, 154, and 181.

WEBER, I.; NEPAL, S.; ZHU, L. Developing dependable and secure cloud applications. IEEE
Internet Computing, v. 20, n. 3, p. 74–79, 2016. Cited on page 41.

WEGNER, P. Interoperability. ACM Comput. Surv., Association for Computing Machinery,
New York, NY, USA, v. 28, n. 1, p. 285–287, mar 1996. ISSN 0360-0300. Disponível em:
<https://doi.org/10.1145/234313.234424>. Cited on page 57.

WIERINGA, R. J. Design science methodology for information systems and software engineering.
[S.l.]: Springer, 2014. Cited on page 106.

WIKIPEDIA. Compiler — Wikipedia, The Free Encyclopedia. 2023. <http://en.wikipedia.org/w/
index.php?title=Compiler&oldid=1136440759>. [Online; accessed 07-February-2023]. Cited on
page 85.

WIKIPEDIA. Data Lake — Wikipedia, The Free Encyclopedia. 2023. <https://en.wikipedia.org/
wiki/Datalake>. [Online; accessed 07-February-2023]. Cited on page 148.

WIKIPEDIA. Interpreter (computing) — Wikipedia, The Free Encyclopedia. 2023.
<http://en.wikipedia.org/w/index.php?title=Interpreter%20(computing)&oldid=1134005862>.
[Online; accessed 07-February-2023]. Cited on page 85.

https://doi.org/10.1145/234313.234424
http://en.wikipedia.org/w/index.php?title=Compiler&oldid=1136440759
http://en.wikipedia.org/w/index.php?title=Compiler&oldid=1136440759
https://en.wikipedia.org/wiki/Datalake
https://en.wikipedia.org/wiki/Datalake
http://en.wikipedia.org/w/index.php?title=Interpreter%20(computing)&oldid=1134005862

Bibliography 201

WIKIPEDIA. Lint (software) — Wikipedia, The Free Encyclopedia. 2023. <http://en.
wikipedia.org/w/index.php?title=Lint%20(software)&oldid=1137767297>. [Online; accessed
07-February-2023]. Cited on page 89.

WIKIPEDIA. No-Code Development Platform — Wikipedia, The Free Encyclopedia.
2023. <https://en.wikipedia.org/wiki/No-codedevelopmentplatform>. [Online; accessed
07-February-2023]. Cited on page 148.

WIKIPEDIA. Source-to-source compiler — Wikipedia, The Free Encyclopedia. 2023. <http:
//en.wikipedia.org/w/index.php?title=Source-to-source%20compiler&oldid=1126015947>.
[Online; accessed 07-February-2023]. Cited on page 85.

WILLIAMS, L.; COCKBURN, A. Agile software development: it’s about feedback and change.
Computer, v. 36, n. 6, p. 39–43, 2003. Cited on page 115.

http://en.wikipedia.org/w/index.php?title=Lint%20(software)&oldid=1137767297
http://en.wikipedia.org/w/index.php?title=Lint%20(software)&oldid=1137767297
https://en.wikipedia.org/wiki/No-codedevelopmentplatform
http://en.wikipedia.org/w/index.php?title=Source-to-source%20compiler&oldid=1126015947
http://en.wikipedia.org/w/index.php?title=Source-to-source%20compiler&oldid=1126015947

Appendix

203

APPENDIX A – Zeppelin

Yes, there are two paths you can go by, but in the long run, there’s still time to change

the road you’re on
Led Zeppelin, Stairway to Heaven

This Appendix introduces details about Zeppelin. Section A.1 presents the statements
of the Zeppelin‘s Diagnostic Questionnaire and their related stage.

A.1 Diagnostic Questionnaire

The Zeppelin‘s Diagnostic Questionnaire contains the following components: (i) Con-
text, (ii) Instructions, (iii) Organization Profile, (iv) Participant Profile, and (v) 76 statements
expressing CSE practices organized in four stages of the StH model: Agile Organization (AO)
(26 practices), Continuous Integration (CI) (15 practices), Continuous Deployment (CD) (17
practices) and R&D as Innovation System (RD) (13 practices). Each StH stage is a form in
Zeppelin‘s Diagnostic Questionnaire. Therefore, Zeppelin‘s Diagnostic Questionnaire comprises 8
forms.

Context presents content about Continuous Software Engineering (CSE), the Stairway
to Heaven model (StH), and its stages (Agile Organization, Continuous Integration, Continuous
Deployment, and R&D as Innovation System) to provide basic infomation for answering the
questionnaire. Instruction explains t how to answer the statements in each table using the
Adoption levels (Not Adopted, Abandoned, Project/Product, Process, and Institutionalized).
Figures 78, and 79 present Context, and Instruction forms.

Organization Profile aims to characterize the organization by capturing the following
data: (i) Organization Type (Startup, Software House, and Organization with It Department), (ii)
Organization Size (Micro, Small, Medium-sized, and Large Organization), and (iii) Organization
Time of Existence. In addition, it is possible to provide data about the development teams: (i)
Size of the Development team and (ii) Quantity of members of the development team work
with agile or other practices present in StH, as can be seen in Figure 80.

Participant Profile is used to understand general data about the person answering the
questionnaire (name, e-mail, Academic Background, Academic Degree, and Conclusion of the
Academic Degree) and its level of knowledge and practice in CSE practices in each StH‘ stage.
For each stage of the StH, the respondent can declare the following levels of knowledge: (i)
None (You have never heard about the topic, or have no knowledge about it.), (ii) Low (You
have not taken any courses, but obtained some knowledge from books or other materials.),

APPENDIX A. Zeppelin 204

Figure 78 – Diagnostic Questionnaire - Context Form.

Figure 79 – Diagnostic Questionnaire - Instruction Form.

Figure 80 – Diagnostic Questionnaire - Organization Profile Form.

(ii) Moderate (You have taken a course or training of 4 hours or more, or have worked with
the topic in an academic project.), and (iv) High (You are an expert on the subject, have some
certification in the area, or have worked with it in a master or doctoral research.). In the same
way as the level of knowledge, the respondent can also inform their level of practice on CSE

APPENDIX A. Zeppelin 205

practice in each StH‘ stage: None (No experience), Low (Less than 1 year), Moderate (Between
1 and 3 years), and High (More than 3 years). The Participant Profile can be seen in Figure 81.

Figure 81 – Diagnostic Questionnaire - Participant Profile Form.

The Agile Organization form presents the statements related to the implementation
of the agile concepts such as small teams, empowered teams, focus on delivering value to
customers, time-box, etc. Figure 82 shows this form.

Figure 82 – Diagnostic Questionnaire - Agile Organization Form.

The Continuous Integration form regards the statements related to the implementation
of the concepts and techniques related to code integration and automated testing, such as TDD,
automated build and testing, and test environments. Figure83 shows this form.

Continuous Deployment form presents the statements related to the implementation
of the concepts and techniques that allow the end consumer to receive a new version of the

APPENDIX A. Zeppelin 206

Figure 83 – Diagnostic Questionnaire - Continuous Integration Form.

software in short periods, after passing the continuous integration tests. Figure 84 shows this
form.

Figure 84 – Diagnostic Questionnaire - Continuous Deployment Form.

Finally, R&D as Innovation System form presents the statements related to the imple-
mentation of the concepts and techniques that allow for experimentation (e.g., A/B Testing) on
the product and considering customer data to execute processes of continuous improvement
and discovery of new features. Figure 85 shows this form.

Figure 85 – Diagnostic Questionnaire - R&D as Innovation System Form.

APPENDIX A. Zeppelin 207

For better visualization, tables 29, 30, 31, and 32 list the statements of the Diagnostic
Questionnaire and their related stage.

Table 29 – Agile Organization Stage‘s Statements.

Statement
AO.01 Roles involved in the agile development process (e.g., Scrum Master, Product Owner, Devel-

oper, and Tester) exist in the organization.
AO.02 Project teams include a Product Owner, who is responsible for representing the Customer

and actively participates in the projects.
AO.03 The scope of the project is defined gradually, using the Product Backlog (or equivalent

artifact).
AO.04 Effort estimation is performed by (or together with) the development team considering short

activities to implement a set of selected requirements (and not the project as a whole).
AO.05 Cost estimation is established based on the effort estimation and considers the effort needed

to implement a selected set of requirements (and not the project as a whole).
AO.06 To deliver value to the customer, requirements are defined and prioritized according to

customer needs, are periodically reviewed, and changes are absorbed into iterations of the
development process.

AO.07 The development process is performed iteratively, in short cycles (e.g., 2 weeks), in which
selected project requirements recorded in a Sprint Backlog (or equivalent) are developed.

AO.08 The customer receives new versions of the product frequently (after one or more short
development cycles), including new functionality defined according to customer needs.

AO.09 The organization has clear acceptance criteria for software requirements and they are used
to evaluate the artifacts (e.g., functionality) produced and define if they are concluded.

AO.10 The organization has at least one person (e.g. Software Architect, Tech Lead, or Quality
Analyst) responsible for the quality of the produced artifacts, including the final product.

AO.11 The team frequently (e.g., daily, every two, or three days) reflects on the development
progress within the scope of what has been defined for the current time-box and adjusts
tasks if necessary (e.g., stand-up meetings).

AO.12 The team frequently meets to discuss improvements to the product, process, or tools during
the projects (e.g., retrospective meetings).

AO.13 The team frequently meets to discuss improvements in team members’ skills during the
projects (e.g., in retrospective meetings).

AO.14 Teams are small (usually between 4 to 6 developers), self-organized and multidisciplinary.
AO.15 The project team has autonomy to make technical decisions on the project.
AO.16 The project stakeholders (including the client) are encouraged to think about their role and

responsibilities in the project.
AO.17 Good programming practices are adopted (e.g., collective coding, standardized coding, pair

programming, code review, etc.).
AO.18 Good testing practices are adopted (automated testing, test-driven development, etc.).
AO.19 Data is collected for metrics to evaluate quality aspects of the produced artifacts and the

product (e.g., cyclomatic complexity, number of code smells).
AO.20 Data is collected for metrics to evaluate performance aspects of the agile development process

(e.g., work in progress, velocity).
AO.21 Data produced (task owner, task completion date, story points, etc) throughout the develop-

ment of the projects is stored in one (or more) data repository.
AO.22 Decisions in projects are made based on data from one (or more) data repository.

APPENDIX A. Zeppelin 208

Table 29 – Continued from previous page

Statement
AO.23 The agile software development process is continuously evaluated and improved.
AO.24 Data stored in the repository is used to improve the product and the agile software develop-

ment process.
AO.25 The organization has practices to share relevant knowledge to (agile) software development

(e.g., internal lectures, tutorials, knowledge repositories, guild implementations).
AO.26 The (agile) development process is aligned to the organization’s business and this is perceived

by the value delivery to the customer and her/his satisfaction with the delivered product.

Table 30 – Continuous Integration Stage‘s Statements.

Statement
CI.01 The software architecture is modular in order to allow automated testing.
CI.02 The software architecture is modular in order to allow automated builds.
CI.03 Code is constantly and automatically integrated.
CI.04 Tests are automatically executed periodically (e.g., whenever new code is integrated), in a

testing environment, to verify code quality (e.g., coverage, correctness).
CI.05 Automated tests are used to assess whether the implemented software meets established

requirements.
CI.06 Builds occur frequently and automatically.
CI.07 Builds are canceled if one or more tests fail.
CI.08 There is version control of software artifacts (e.g., code, tests, scripts, etc.) in a repository.
CI.09 Good check-in practices are applied in the development trunk (e.g., use of tools like GitFlow).
CI.10 There are practices that allow organizations or individuals external to the project to contribute

to the product implementation (i.e., produce and integrate code into the product being
developed).

CI.11 Data is collected for metrics that allow evaluation of the continuous integration process (e.g.,
number of canceled builds, number of code integrations performed).

CI.12 Data produced in continuous integration environments (e.g., build dates, number of tests
executed, and percentage of coverage) are stored in one (or more) data repository.

CI.13 The continuous integration process (including automated testing) is continuously evaluated
and improved.

CI.14 Data stored in the data repository(ies) are used to improve the product and the continuous
integration process.

CI.15 The organization adopts practices for sharing knowledge related to continuous integration
(e.g., internal lectures, tutorials, knowledge repositories, guild implementations).

Table 31 – Continuous Deployment Stage‘s Statements.

Statement
CD.01 The main customers/consumers are identified and participate in the development process,

influencing the functionalities that will be produced and delivered.
CD.02 There is a clear flow of information between Development and Operation, allowing that new

functionality developed to go live automatically.
CD.03 The delivery of new functionalities is performed automatically and through releases.

APPENDIX A. Zeppelin 209

Table 31 – Continued from previous page

Statement
CD.04 There is a clear flow of information between Operation and Business, allowing new cus-

tomer/consumer needs and business opportunities to be identified from the delivery of new
functionality.

CD.05 The software architecture allows the delivery (deployment) of functionalities independently.
CD.06 Consumers receive new functionalities frequently, including in shorter cycles than the

time-box typically established in the development process.
CD.07 Clients can test the product as soon as new functionalities are deployed.
CD.08 The organization’s business model is constantly evaluated and revised (when necessary)

based on customer/consumer information.
CD.09 Marketing strategies are constantly evaluated and revised (when necessary) based on lead

customers’ information (customers/consumers most relevant to the organization).
CD.10 Sales strategies are constantly evaluated and revised (when necessary) based on lead cus-

tomers’ information (customers/consumers most relevant to the organization).
CD.11 Alignment between product development and the organization’s business is maintained

through continuous checks, in short cycles.
CD.12 Alignment between product development and the organization’s business is maintained

through continuous checks in short cycles, based on data.
CD.13 Data is collected for metrics that evaluate the continuous delivery process (e.g., number of

releases, defect density in releases).
CD.14 Data produced in continuous deployment environments (e.g., release dates and software

version delivered) are stored in one (or more) data repositories.
CD.15 The continuous deployment process is continuously evaluated and improved.
CD.16 Data stored in the data repository is used to improve the product and the continuous

deployment process.
CD.17 The organization has practices to share knowledge related to continuous deployment (e.g.,

internal lectures, tutorials, knowledge repositories, guild implementation).

Table 32 – R&D as Innovation System Stage‘s Statements.

Statement
RD.01 Feedbacks (data and opinions) from customers/consumers are captured and stored in a

customer/consumer data repository.
RD.02 Feedbacks (data and opinions) from customers/consumers are continuously and automatically

captured.
RD.03 Feedbacks (data and opinions) from customers/consumers are used to improve products

(enhance existing features and identify new ones).
RD.04 The organization identifies new business opportunities based on automatically captured

customer/consumer feedbacks.
RD.05 Feedbacks (data and opinions) from customers/consumers are used for experimentation and

innovation.
RD.06 Experiments (e.g., A/B tests) are conducted with customers/consumers to improve products.
RD.07 Technologies (e.g., cloud technologies) are adopted to enhance experimentation.
RD.08 The organization continually experiments new technologies and methodologies.

APPENDIX A. Zeppelin 210

Table 32 – Continued from previous page

Statement
RD.09 The organization has a clear information flow between the strategic level and the development

area, allowing customer/consumer data to be used in an aligned way in making technical
and business decisions.

RD.10 Data from the customer/consumer data repository is used in decision making by the software
development area.

RD.11 Data from the customer/consumer data repository is used in decision making by the business
area.

RD.12 Alignment between product development and the organization’s business is maintained
through continuous checks, in short cycles and based on customer/consumer data.

RD.13 Knowledge management practices are adopted based on data from the customer/consumer
data repository.

	From Continuous Software Engineering Reference Ontologies to the Integration of Data for Data-Driven Software Development
	Title page

	8c1c2b2b63acce317a3234b018300f2be39c863ea0c14af46413c8469ee5a7a3.pdf
	SantosJr.DefesaDoutoradoAprovacao
	From Continuous Software Engineering Reference Ontologies to the Integration of Data for Data-Driven Software Development
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Context and Motivation
	Research Hypothesis
	Objectives
	Research Method
	Relevance Cycle
	Design Cycle
	Rigor Cycle

	Organization of this Thesis

	Background
	Continuous Software Engineering (CSE)
	Agile Development and Scrum
	Continuous Integration (CI)
	Continuous DElivery (CDE) and Continuous Deployment (CD)

	Ontology and Ontology Network
	Unified Foundational Ontology (UFO)
	Software Engineering Ontology Network (SEON)
	SPO, EO, and SysSwO
	Configuration Management Process Ontology (CMPO)
	Reference Ontology on Software Testing (ROoST)
	Quality Assurance Process Ontology (QAPO)
	Reference Ontology of Software Defects, Errors, and Failures (OSDEF)

	Reference Software Requirements Ontology (RSRO)

	Semantic Integration
	Federated Information Systems
	Final Considerations

	Continuum - A Continuous Software Engineering Ontology (sub)Network
	Continuum Overview
	Scrum Reference Ontology (SRO)
	Scrum Process subontology
	Scrum Stakeholders Subontology
	Scrum Stakeholders Participation Subontology
	Product and Sprint Backlog Subontology
	Scrum Deliverables Subontology
	Evaluation

	Continuous Integration Reference Ontology (CIRO)
	Extension of the Configuration Management Process Ontology (CMPO)
	Continuous Integration Process Subontology
	Continuous Build Process Subontology
	Continuous Test Process Subontology
	Continuous Inspection Process Subontology
	Evaluation

	Continuous Deployment Reference Ontology (CDRO)
	Continuous Delivery Activity Subontology
	Continuous Deployment Process Subontology
	Evaluation

	Related Work
	Final Considerations

	Learning Iterations Towards Immigrant
	Learning Iterations
	First Learning Iteration: Towards an Ontology-Based Approach to Integrate Data Application
	Execution and Results
	What did we learn?

	Second Learning Iteration: California
	Theoretical Background
	Execution and Results
	Threats to Validity to the Study Results
	What did we learn?

	Third Learning Iteration: Zeppelin
	Execution and Results
	Threats to validity to study results
	What did we learn?

	Final Considerations

	Immigrant
	Immigrant Overview
	The use of an Ontology Network and Federated Information Systems in The Band
	Journey: The Band Development Process
	The Band Architecture
	Application Integration Layer
	Internal Data Communication Layer
	Federated Ontology-based Service Layer
	Federated Data Access Layer

	Implementing The Band
	The Band as FIS
	Using Immigrant
	Related work
	Final Considerations

	Final Learning Iteration: Applying Immigrant in a Software Organization
	Context
	Study Planning
	Study Execution, Data Collection, and Results
	Identifying Information Needs from Zeppelin
	Applying California to complement the Information Needs
	Identifying the Available Sources
	Defining Measures
	Providing Integrated Data using The Band
	Getting Feedback about Immigrant

	Discussion
	Threats to Validity
	What did we learn?
	Final Considerations

	Final Considerations
	Summary of the Research
	Research Contributions
	Research Limitations
	Perspectives of Future Works

	Bibliography
	Appendix
	Zeppelin
	Diagnostic Questionnaire

