
Help! I need somebody. A Mapping Study about Expert
Identification in Software Development

Carlos Eduardo Correa Braga
carlos.braga@aluno.ufes.br

Ontology & Conceptual Modeling
Research Group (NEMO), Computer

Science Department
Federal University of Espírito Santo

Vitoria, ES, Brazil

Paulo Sérgio dos Santos Júnior
paulo.junior@ifes.edu.br

LEDS Research, Department of
Informatics

Federal Institute of Education,
Science, and Technology of Espírito

Santo
Serra, ES, Brazil

Monalessa P. Barcellos
monalessa@inf.ufes.br

Ontology & Conceptual Modeling
Research Group (NEMO), Computer

Science Department
Federal University of Espírito Santo

Vitoria, ES, Brazil

ABSTRACT
Context: Software development is a knowledge-intensive activity,
and its success in an organization relies deeply on knowledge shar-
ing. Knowledge management challenges are often increased in agile
environments, which involve a lot of tacit knowledge, commonly
acquired through experiences and hard to be made explicit. There-
fore, knowledge sharing among practitioners is crucial. However,
identifying suitable experts to share specific knowledge is not triv-
ial. It involves not only discovering the individuals with the desired
knowledge but also considering other factors that may improve the
expert responsiveness, such as social connections and availability.
Objective: Considering the important role experts play in knowledge
sharing, we decided to investigate approaches that help identify
experts that can share knowledge in software development. Our
goal is to provide a panorama of the existing approaches and shine
a light on research opportunities. Method: We carried out a system-
atic literature mapping and analyzed 17 publications. Results: The
results show that most approaches have relied on code repositories
as a source of evidence for identifying experts and, consequently,
focus on supporting developers and aiding in the codification activ-
ity. Additionally, expert identification has been mostly automated,
and factors beyond possessing the desired knowledge have often
been disregarded. Conclusion: Although there are several expert
identification approaches, there has been a lack of concern with fac-
tors that influence reaching the most suitable expert for a specific
situation (e.g., considering the characteristics of the person seeking
knowledge). Moreover, there is a need for deeper reflection on how
to better explore different artifacts as sources of expert evidence
and how to combine them to improve expert identification.

CCS CONCEPTS
• Software and its engineering → Software development pro-
cess management; • Information systems → Information
retrieval.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SBES 2023, September 25–29, 2023, Campo Grande, Brazil
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0787-2/23/09. . . $15.00
https://doi.org/10.1145/3613372.3613389

KEYWORDS
Expert Identification, Knowledge Sharing, Mapping Study
ACM Reference Format:
Carlos Eduardo Correa Braga, Paulo Sérgio dos Santos Júnior, andMonalessa
P. Barcellos. 2023. Help! I need somebody. A Mapping Study about Expert
Identification in Software Development. In XXXVII Brazilian Symposium
on Software Engineering (SBES 2023), September 25–29, 2023, Campo Grande,
Brazil. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3613372.
3613389

1 INTRODUCTION
Knowledge is a human specialty stored in people’s minds, acquired
through experience and interaction with their environment [42].
Historically, organizations’ knowledge has been often undocu-
mented, being represented through the skills, experience, and knowl-
edge of its professionals, typically tacit knowledge [40], which
makes its use and access limited and difficult [36].

Software development is a complex and knowledge-intensive
activity. Agile software development methods, with their focus
on tacit knowledge, have increased the importance of knowledge
resources and knowledge sharing. Sharing experiences and knowl-
edge can enhance teams’ ability to handle uncertain and ambiguous
situations, which is essential for the success of software projects
[46]. Considering the importance of knowledge sharing and that
there is a lot of knowledge available only in the minds of individuals,
identifying who possesses the desired knowledge is crucial.

The individual who possesses knowledge and displays exper-
tise in a specific domain is known as an expert. There are several
definitions for expert in the literature, such as an individual who
has skills in his domain of expertise [50]; an individual who has
a great deal of knowledge and displays comprehensive skills in a
specific area [23]; and a person who has the best knowledge and
experience in particular topic [32]. In this work, we consider that
experts are people who have knowledge of a subject and may have
different levels of expertise. Moreover, along the text we use the
term knowledge in a broad way, considering it a mix of theoretical
knowledge, expertise, skills, and other assets that are often stored
in people’s mind and are therefore difficult to codify [10][17].

Identifying experts in software organizations is a challenging
task, especially when it comes to the context of large-scale dis-
tributed software projects [25, 26, 43]. Individuals can seek out a
particular knowledge by asking people and following a trail of refer-
rals until they locate the appropriate expert [8]. This approach can

https://doi.org/10.1145/3613372.3613389
https://doi.org/10.1145/3613372.3613389
https://doi.org/10.1145/3613372.3613389

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Braga, et al.

incur significant costs, such as effort repeated by different people
looking for the same answers, and miscommunication that leads
to taking the advice of not-so-expert experts who happen to be
found quickly [8]. Moreover, knowledge possession is not the only
factor that influences expert responsiveness. Other factors are also
important, such as time availability [29], communication skills, and
interest in building reputation [49].

Considering the important role that experts play in software
development and also motivated by the difficulties faced by two of
the authors when looking for experts that could share knowledge of
some topics, we decided to investigate approaches that help identify
experts to share knowledge in the software development context.
Therefore, we performed the mapping study presented in this paper.
A mapping study is a secondary study designed to give an overview
of a research area through classification and counting contributions
in relation to the categories of that classification. It makes a broad
study on a topic of a specific theme and aims to identify available
evidence about that topic [38]. The panorama provided by a map-
ping study allows identifying issues in the research topic that could
be addressed in future research.

Before deciding to carry out our study, we searched the literature
looking for secondary studies investigating expert identification.
The one closest related to ours is the work by Husain et al. [17],
which investigated expert finding systems in general (i.e., regardless
the application domain). Other works, such as [23] and [6], studied
some expert identification methods by analyzing their underlying
algorithms and models (without adopting rigorous procedures of
systematic reviews to conduct publications search, selection, and
data extraction). Although the aforementioned studies address the
expert identification subject, none of them regards the software
development domain and, thus, do not address specific questions
of this context, such as software development activities and roles
supported by the approaches. Moreover, we are interested in works
presenting expert identification approaches and that to some degree
are concerned with knowledge sharing.

In our study, we analyzed 17 different expert identification ap-
proaches proposed to the software development domain. The results
revealed a predominance of automated approaches that use code
repositories as a source to identify experts aiming at helping de-
velopers with implementation issues. Although there have been
several approaches, factors beyond the knowledge possession itself
have not been a concern to reach the most suitable expert for a
specific situation. For example, the characteristics or context of the
person interested in the expert’s knowledge (i.e., the seeker) have
not been considered in most approaches. Moreover, there is a need
for deeper reflection to make the most of different artifacts that can
be sources of expert evidence.

This paper is organized as follows: Section 2 provides a brief
background for the paper; Section 3 presents the research protocol
used in our study; Section 4 summarizes the obtained results; Sec-
tion 5 discusses the results; Section 6 regards the limitations of the
study; and Section 7 presents our final considerations.

2 BACKGROUND
Knowledge is a mix of experience, values, contextual information,
and expert insight that provides a framework for evaluating and

incorporating new experiences and information [10]. It can be ex-
plicit or tacit. Explicit knowledge is structured and formal [44].
Consequently, it can be easily communicated and shared. On the
other hand, tacit knowledge is hard to formalize and communicate
to others since it is highly personal [34]. The interactions between
individuals enable the creation of new knowledge through a con-
tinuous conversion between tacit and explicit knowledge [34].

In order to effectively handle knowledge in an organization, a
knowledge management (KM) approach is necessary. KM is the
process of capturing, distributing, and effectively using knowledge
to achieve organizational goals. It involves creating an infrastruc-
ture and culture that supports the creation, sharing, and use of
knowledge by individuals [2]. In particular, knowledge sharing is
the process of transferring knowledge between individuals, groups,
or organizations [2]. Codification and personalization approaches
can support knowledge sharing. The former focuses on explicit
knowledge, aiming to systematize and store knowledge. The latter,
in contrast, focuses on tacit knowledge and involves creating a
repository of information on knowledge sources (e.g., yellow pages)
to facilitate knowledge sharing within the organization [14]. As the
name suggests, personalization approaches rely on personal inter-
action. They require identifying who has specific knowledge and
promoting knowledge sharing between the person who possesses
the desired knowledge (the expert) and the person interested in
that particular knowledge (the seeker).

Although nowadays there is a huge volume of data and informa-
tion available, people often need to consult an expert to determine
ways to solve their problems, i.e., people still seek the knowledge
and guidance of an expert, and require comprehensive information
regarding experts who can answer their questions [17]. This kind of
knowledge sharing depends on finding a suitable expert, i.e., who
possesses the desired knowledge and is willing to share it. Finding
experts is an important task and has attracted much attention [23].

In software development, developers often rely on past experi-
ences to recall similar tasks and identify the most knowledgeable
individual for help. However, as the amount of tasks and artifacts
increases, manually browsing this history becomes challenging.
Therefore, there is a need for efficient methods to leverage knowl-
edge and experience and support knowledge sharing in software
development contexts [24].

The data overload problem and the specific nature of the experts’
knowledge can hinder people from finding experts with the knowl-
edge they require. Expert finding systems have been proposed to
address this issue. They are information retrieval systems that iden-
tify candidate experts and rank them based on their expertise in a
given subject [6, 17]. In these systems, expertise is extracted from
evidence recorded in sources such as publications, reports, projects,
homepages, social networks [5], and source code repositories[4, 37].

3 RESEARCH PROTOCOL
Given the challenges involved in knowledge sharing, particularly
regarding the identification of suitable experts to share specific
knowledge, we decided to carry out a mapping study aiming to
investigate how experts have been identified in the software devel-
opment context. We followed the process defined in [20], which

Help! I need somebody. A Mapping Study about Expert Identification in Software Development SBES 2023, September 25–29, 2023, Campo Grande, Brazil

includes three phases: planning, when the research protocol is de-
fined with the purpose of supporting study replicability as well
as helping researchers to avoid bias when conducting the study;
conducting, when the protocol is executed and data are extracted,
analyzed and recorded; and reporting, when the results are recorded
and made available to potentially interested parties.

The study goal was to investigate approaches that help identify
suitable experts to share knowledge in the software development
context. For achieving this goal, we defined the research questions
presented in Table 1.

The search string adopted in the study contains three parts
joined with the operator AND. The first part includes terms re-
lated to expert identification joined with the operator OR to allow
synonyms. The second and third parts aim to restrict the scope
to knowledge sharing in the software development context. For
establishing the string, we performed tests using different terms,
logical connectors, and combinations among them, and we selected
the string that provided better results in terms of the number of pub-
lications and their relevance. More restrictive strings (for example,
some including "knowledge sharing" or "knowledge transfer" in the
second part or "software development" in the third part) excluded
important publications identified during the informal literature
review that preceded the study and that were used as control publi-
cations. More comprehensive strings (e.g., those separating terms
put together in the first part of the string) returned too many publi-
cations out of the scope of interest. We used two papers ([35, 45])
identified during the informal literature review that preceded the
systematic mapping as control publications to help us define the
string. The search string used in the study is the following: ("expert*
identification" OR "who knows what" OR "expert* retriev*" OR "ex-
pert* find*" OR "expert* locat*" OR "expert* recommend*" OR "expert*
discover*" OR "finding expert*") AND "knowledge" AND "software".

Scopus and Engineering Village digital libraries were used as
sources of publications. Scopus is amajor database of peer-reviewed
literature that indexes papers from other sources like IEEE, ACM,
and Science Direct. Engineering Village is also a citation indexing
platform, which indexes complementary sources.

Publication selection was performed in five steps. (S1) Pre-
liminary Selection and Cataloging: the search string was applied
in the search mechanism of each digital library considering the
title, abstract, and keywords. (S2) Duplications Removal: publica-
tions indexed in both databases were identified and duplications
were removed. (S3) Selection of Relevant Publications – 1st filter :
the abstracts were analyzed considering the following inclusion
(IC) and exclusion (EC) criteria: (IC1) the publication addresses
approach that helps identify experts to share knowledge in the
software development context; (EC1) the publication is a secondary
study, a tertiary study, an editorial, a summary, proceedings or a
short paper. (S4) Selection of Relevant Publications – 2nd filter: the
full text of the papers was analyzed considering IC1, EC1, and the
following additional criteria: (EC2) the publication is not written
in English; (EC3) the publication is an older version of a publica-
tion already considered; (EC4) it was not possible to have access
to the full text of the publication. (S5) Snowballing: as suggested in
[20], the references of publications selected in S4 were analyzed by
applying the first (S3) and second (S4) filters and, the publications

presenting results related to the research topic were included in the
study. This step was repeated until no new publication was found.

We used the StArt tool1 to support publication selection. To con-
solidate data and support data extraction, publications returned
in the publication selection steps were cataloged and stored in
spreadsheets. We defined an id for each publication and recorded
the publication title, authors, year, and vehicle of publication. Data
from publications returned in S4 were extracted and organized into
a data extraction table oriented to the research questions.

The first author performed publication selection and data ex-
traction. The second author reviewed both. Once data has been
validated, the first and the second authors carried out data inter-
pretation and analysis. Quantitative data was tabulated and used
in graphs and statistical analysis. The third author reviewed the
results. Discordances were discussed and resolved. Finally, the three
authors performed qualitative analysis considering the findings,
their relation to the research questions, and the study purpose.

4 DATA EXTRACTION AND SYNTHESIS
Searches were conducted for the last time in March 2023 and the
study considered papers published until 2022. The followed process
and the number of publications selected in each step are presented
in Figure 1.

Figure 1: Publications selection

In the 1st step (S1), we performed a search in Scopus and En-
gineering Village using the defined search string. As a result, 101
papers were identified. In the 2nd step (S2), 7 duplicated papers were
removed which represents a reduction of approximately 6.9% from
the initial number of papers. In the 3rd step (S3), we applied criteria
IC1 and EC1 considering the abstract. This reduced the number of
papers to 56, representing a reduction of approximately 40.4% from
the previous step. In the 4th step (S4), the selection criteria were
applied considering the full text, resulting in the identification of
15 relevant papers – which represents a reduction of approximately
73.2% from the 3rd step, and a total reduction of approximately
85% from the initial quantity of papers. Finally, in the 5th step,
we performed snowballing by checking the references of the 15
selected publications and identified two more publications, which
in total added up to 17 publications. Detailed information about the
selected publications, including a brief description and extracted
data, can be found in our study package [7].

It is important to emphasize that this study focuses on publica-
tions presenting approaches that support expert identification to
share knowledge in the software development context. Thus, publi-
cations presenting expert identification methods that not used on
the software development or did not mention knowledge sharing
1https://bit.ly/3bW3Mo6

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Braga, et al.

Table 1: Research questions and their rationale

ID Research Questions Rationale

RQ1 When and in which type of vehicle have the
papers been published?

Provide an understanding of when and where (journal/conference/workshop)
publications addressing expert identification in the software development con-
text have been published, to analyze if the research topic has been addressed
frequently and if it has been the target of mature or emergent research.

RQ2 What type of research has been done?
Investigate which type of research is reported in each selected paper, by consid-
ering the classification defined in [51]. This question, together with RQ1, helps
evaluate the maturity of the research topic.

RQ3 Which artifacts have been used as sources for
identifying experts?

Identify artifacts that have offered evidence that helps identify experts and
investigate the comprehensiveness of the set of artifacts used with that purpose.

RQ4 Have experts been identified automatically? Understand if there has been a concern with supporting expert identification
automatically or if the approaches have relied on manual effort.

RQ5

Have the approaches been concerned with
recommending the most suitable expert for
a particular user/situation? If so, have they
considered non-technical aspects?

Investigate if, besides identifying experts, the approaches have covered recom-
mending the most suitable ones for a situation and verify if they have considered
aspects such as proximity, seniority, availability, and willingness to answer,
among others.

RQ6 Which roles (e.g., developer, project manager)
have been supported by the approaches?

Identify which roles have been the seekers of experts in the proposed approaches
(i.e., the roles that need knowledge shared by experts) and investigate if some
roles have been predominant.

RQ7 Which processes/activities have been sup-
ported by the proposed approaches?

Verify if the approaches have been proposed to support the software life cycle
as a whole or if they have focused on specific processes/activities (e.g., planning,
implementation). In the last case, identify the processes/activities (taking [11]
as a reference) that have been the focus of the approaches and verify if some of
them have received more attention while others have not been considered.

RQ8
Have the approaches used any conceptual
ground (e.g., knowledge theory, taxonomy,
ontology)?

Investigate if the approaches have been grounded in any formal conceptualiza-
tion and the purpose of using it.

were not captured, even if they could be applied in that context.
For example, some works related to information retrieval address
expertise identification from data extraction and present algorithms
or models for this purpose. Works of this type were not the target
of our study, because although they are related to expertise identi-
fication, they do not address expert identification for knowledge
sharing in the software development context.

The selected publications are presented in Table 2. In the follow-
ing, we present the data synthesis for each research question.

Publication year and type (RQ1): Figure 2 presents the num-
ber of publications over the years and their vehicle of publication.
The main vehicle of publication has been conferences, with 10 pub-
lications (58.8%). Journals accounted for 4 publications (23.5%), and
workshop accounted for 3 publications (17.7%).

Research type (RQ2): Table 3 shows the number of publica-
tions considering their research type according to the classification
proposed in [51]. All the 17 selected publications propose a solu-
tion to a problem and argue its relevance, i.e., they are classified as
Proposal of Solution research. 12 of them (70.6%) present some kind
of evaluation. From these, six (35.3%) were evaluated in practice
(i.e., also classified as Evaluation Research) and six (35.3%) evaluated
characteristics of the solution not yet implemented in practical
settings (i.e., Validation Research).

Sources for identifying experts (RQ3): We identified eight
sources of evidence used to identify experts, as shown in Figure 3.

Figure 2: Publication year and vehicle

Code repository was used in 10 publications (58.8%), being the most
used source. It was followed by electronic documents and mailing
systems, used in four publications (23.5%) each. Ticket systems
and chats were used in two publications (11.8%) each, and online
forums, Question & Answering tools (e.g., Stack Overflow), and
employee database were used in only one publication (5.9%) each.
The sum of the values is greater than the number of investigated
publications because some of them use more than one source for
expert identification. Also, publication #5 does not inform the used
source, and #13 uses a different approach (manual assessment).

Help! I need somebody. A Mapping Study about Expert Identification in Software Development SBES 2023, September 25–29, 2023, Campo Grande, Brazil

Table 2: Selected publications

ID Brief Description Ref.

#1 Presents an approach based on a bot that identifies experts based on keywords (e.g., considering the number of times
that a keyword is mentioned, the number of sent messages including the keywords). [35]

#2 Presents an approach that uses data from Questions & Answers (Q&A) websites to profile users and recommends experts
for answering a question. [15]

#3 Uses knowledge models to help identity which developers (expert candidates) have more knowledge of specific elements
of software projects. [24]

#4 Proposes a collaborative network based on code review data retrieved from GitHub. To identify experts, it considers not
only the specific knowledge but also expertise in collaboration on the required topics. [41]

#5 Proposes a mobile application to support expert locations for global software development environments. [9]

#6 Proposes an expert recommendation method based on knowledge embedding, which recommends appropriate experts
for developers. [13]

#7 Presents a framework for identifying experts by eliciting developers’ expertise in software components using complexity
analysis of source code. [47]

#8 Presents an approach that combines natural language processing techniques, machine learning, statistical and search-
based techniques to find experts in the open-source software context. [31]

#9 Introduces the concepts of degree of knowledge (amount of expertise of candidate experts) and social relative importance
(the social factor between the candidate experts and a query issuer) to recommend suitable experts. [3]

#10 Introduces a degree-of-knowledge model that identifies experts by computing developer’s knowledge based on devel-
oper’s authorship and interaction data. [12]

#11 Uses the developers’ mailing list and source code history to support finding experts during coding. [30]
#12 Presents an approach that identifies experts based on the interaction of individuals with software artifacts. [19]

#13 Presents an approach that provides a list of experts to meet users requests. The list is based on manual assessment of
friendship and skill information. [45]

#14 Proposes an approach to build expert finder systems, supporting the adaptation of the search strategy according to the
organization’s needs. [16]

#15 Presents an approach for identifying experts by using sensitive data and preserving privacy. [1]
#16 Proposes a tool that allows identifying the most knowledgeable person related to a tool, language, and release version. [28]

#17 Proposes an approach that uses social structures on GitHub (following-followed, watching, and collaboration networks)
and programming behavior for identifying experts. [27]

Table 3: Research Type

Research Type Publications Total %
Proposal of Solution #5, #7, #8, #14, #15 5 29.4%
Proposal of Solution &
Evaluation Research #1, #4, #9, #10, #12, #16 6 35.3%

Proposal of Solution &
Validation Research #2, #3, #6, #11, #13, #17 6 35.3%

Automated Support (RQ4): There has been a predominance
of publications that identify experts automatically. 15 approaches
(88.2%) provide automated support. Only one approach (5.9%) re-
quires that the individuals manually report their expertise and
knowledge seekers input data evaluating expert candidates. One
publication (5.9%) does not make clear whether there is automated
support. Table 4 summarizes the publications considering the auto-
mated support aspect.

Use of non-technical aspects for recommending experts
(RQ5):Most publications (12, i.e., 70.6%) are concerned with identi-
fying experts and recommending the most suitable ones. However,

Figure 3: Sources for identifying experts

only three of them (17.6%) consider non-technical aspects (e.g., pre-
vious collaboration and friendship relations) for recommending
experts. Five publications (29.4%) identify experts but are not con-
cerned with recommending the most suitable one for the seeker’s
needs. Table 5 summarizes these results.

Supported Roles (RQ6): Seven approaches (41.2%) aim at iden-
tifying experts to satisfy developers’ needs (i.e., the developers
are the expert seekers). Two approaches (11.8%) address managers’

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Braga, et al.

Table 4: Automated support

Automated
support Publications Total %

Yes #1, #2, #3, #4, #6, #7, #8, #9, #10, #11,
#12, #14, #15, #16, #17 15 88.2%

No #13 1 5.9%
Undefined #5 1 5.9%

Table 5: Recommendation based on non-technical aspects

Use non-technical
aspects Publications Total %

Yes #6, #9, #13 3 17.6%

No #1, #2, #5, #7, #10, #11,
#14, #15, #16 9 53%

Do not recommend #3, #4, #8, #12, #17 5 29.4%

needs, while nine publications (52.9%) do not make explicit the sup-
ported roles. Some publications mention more than one supported
role. Table 6 indicates the roles supported by each publication.

Table 6: Supported roles

Role Publications Total %
Developer #6, #8, #9, #10, #11, #14, #16 7 41.2%
Manager #12, #16 2 11.8%
Undefined #1, #2, #3, #4, #5, #7, #13, #15, #17 9 52.9%

Supported processes/activities (RQ7): Table 7 presents the
processes/activities (based on [11]) supported by the approaches.
Most publications (14, corresponding to 82.4% of the total number)
are not focused on specific activities and can be used to support
the software process according to the seeker’s needs. The Imple-
mentation process is the target of two publications (11.8%). Human
Resource Management is the focus of one (5.9%). One publication
(5.9%) considers the use of experts to support Systems/Software
Requirements Definition. The total value in Table 7 is higher than
the number of investigated approaches because some of them are
related to more than one activity.

Table 7: Supported processes/activities

Process/Activity Publications Total %
Implementation #10, #16 2 11.8%
Human Resource Management #10 1 5.9%
Requirements Definition #8 1 5.9%

General

#1, #2, #3, #4, #5,
#6, #7, #9, #11,
#12, #13, #14, #15,
#17

14 82.4%

Use of conceptual ground (RQ8):Most approaches (14, cor-
responding to 82.4%) do not use any conceptual ground to help
structure knowledge or help identify experts. Ontology is used
in two approaches (11.8%) while taxonomy is considered in one
approach (5.9%). Table 8 summarizes these results.

Table 8: Conceptual ground

Conceptual
ground Publications Total %

Ontology #8, #14 2 11.8%
Taxonomy #5 1 5.9%

None #1, #2, #3, #4, #6, #7, #9, #10, #11,
#12, #13, #15, #16, #17 14 82.4%

5 DATA ANALYSIS AND DISCUSSION
In this section, we provide additional information about the ana-
lyzed approaches and discuss the obtained results.

Looking at when the studies were published (RQ1), we can notice
that the topic has been addressed for around 20 years but the num-
ber of publications per year is low (0.8 from 2002 to 2022) and there
is no publication on the subject in some years (2004-2006, 2009,
2011-2013, 2016, 2022). Although research on this topic has been
frequent in the last years, the big picture suggests that the topic
can be further explored. Concerning the research types (RQ1), there
is a low percentage of journal publications (23.5%), which generally
require more mature works. Therefore, this fact can be seen as a
reinforcement that research on this topic is not mature enough yet.

Results related to research type (RQ2) show that although around
70% of the works included some kind of evaluation, only half of
these proposals were used in practical settings (around one third
of all identified approaches). Several approaches were evaluated
using actual data from repositories to identify experts, but their
implications in real scenarios have not been explored yet. This
can be a sign of difficulty in applying the proposed approaches in
industry, which reinforces that research on this topic is not quite
mature enough yet and there seems to be a gap between theory
and practice that can be further explored.

Concerning the sources used to provide expert evidence (RQ3), code
repositories have been the one most used. This is not a surprise,
because every developer produces code, which is the main product
in the software development context. Also, especially in the context
of GIT repositories, additional information is provided through pull
requests comments and commit messages, which contributes to
obtaining information about the person who produced the code.
However, using data from code repositories introduces a concern
with the level of expertise. The existence of results produced by a
developer (e.g., code related to a specific library) is not enough to
state that that developer is an expert on the subject. The individual
can indeed have knowledge of that activity or technology, but may
not be an expert on that. Thus, using limited data to consider a
developer an expert contributes to identifying not-so-expert experts
and not meeting the seeker needs (or even propagating unsuitable
knowledge) [8]. Therefore, additional data and rationales should
be considered to reach an accurate expert identification.

Help! I need somebody. A Mapping Study about Expert Identification in Software Development SBES 2023, September 25–29, 2023, Campo Grande, Brazil

Electronic documents and mailing systems have been the sec-
ond most used sources of expert evidence. For example, in #14, a
database of internal technical reports is used, and a component is
responsible for establishing a link between documents and their
authors, ranking them according to metrics such as document age.
In #8, in turn, experts are identified by ranking the participants
engaged in a set of discussions in mailing lists according to their
intentions manifested by speech-acts. Some publications consider
not only documents from office suite applications (e.g., Microsoft
Word, LibreOffice Writer) as electronic documents, but also any
kind of textual information in other formats (e.g., pages in wikis).
Ticket systems have also been used. This kind of tool is commonly
used for registering requirements (e.g., user stories) and bugs, and
for tracking developers’ activity towards these items – e.g., assignee
developer, time spent, among other information. This information
helps expert identification and is often deeply related to the coding
activity (it is even possible to define explicit links between a user
story and a commit, for example). Question-answering systems,
chats, online forums and employee databases have also offered
evidence for expert identification.

Although different types of artifacts have been explored, the
predominance of code repositories suggests that the approaches
have preferred the use of artifacts that stores data in a structured
way and that contains a good amount of data. This certainly makes
it easier to capture and analyze data providing evidence of people’s
expertise. However, other sources could be deeper explored. For
example, due to the COVID-19 pandemic, organizations changed
the way people work and communicate. There was an increasing
use of tools such as mailing, chats (including message exchange
applications), and shared digital boards, among others. Although
the pandemic is over, some practices remain and will probably be
kept in the organizations. Thus, there is an opportunity to leverage
expert identification considering such artifacts. We also believe
that other sources can be more explored, such as post-mortem
documents, CI/CD logs, and incident management tools. For ex-
ample, incident management tools and post-mortem documents
gather valuable data about incidents: related infrastructure compo-
nents and applications, applied workaround, root cause, definitive
solution, and individuals who provided the workaround and the
definitive solution, among other data. Then, it would be possible
to relate/integrate these data and, when a critical incident occurs,
recommend key individuals (experts) for sharing knowledge of how
to mitigate its impact and provide a definitive solution. CI/CD logs,
in turn, record data about builds and deploys (failed or successful),
which could be used to identify individuals that usually fix breaking
builds and recommend them as CI/CD experts (or even recommend
an expert based on a specific error). Moreover, it is important to
consider more than one source, so that they can complement each
other and provide a more complete and accurate view of experts.
This is the case of works such as #3 and #11. In this context, it is
important to reflect on the weight of evidence provided by each
source. Furthermore, there must be a concern with how to properly
integrate evidence from different sources.

By analyzing how the approaches have identified experts (RQ4), we
noticed that only one (#13) relies on knowledge manually reported
by individuals and manual evaluation of experts. The approach

authors argue that even though asking users to provide skill in-
formation is a sensitive issue, most people are willing to perform
the extra work once they perceive they will benefit from expert
identification. All the other works identify experts automatically.
This result makes sense, considering that manual assessments are
burdensome and knowledge is quite dynamic and may be impacted
over time by many factors (e.g., forgetting and repetitions [21]).
Even so, manual assessments can be useful to alleviate the cold
start problem – e.g., when a recently hired individual has expertise
in a particular subject due to previous experiences, but has not
produced enough evidence in the organization context. External
sources can help to address this issue as well.

Concerning the use of non-technical aspects for recommending
experts (RQ5), first, we perceived that around one third of the ap-
proaches do not address expert recommendation. That means, al-
though these approaches identify experts, they do not recommend,
among the identified experts, which one would be more suitable for
the seeker’s needs. This is the case of approach #3, which uses the
degree of interaction among developers, and between developers
and artifacts, to measure developer knowledge and identify which
ones have more knowledge of elements of software development
projects. Only three out of the 12 approaches that recommend ex-
perts consider non-technical aspects. In #9, for example, a metric
called Social Relative Importance is proposed to quantify the social
distance between a knowledge seeker and an expert candidate aim-
ing at identifying the most suitable expert based on that aspect. In
#13, in turn, users rate each other using a scale between 0 (do not
know this person) and 5 (especially close). Based on this aspect, it is
possible that a close expert candidate with a lower expertise score
is recommended over an unknown expert with a higher expertise
score. The lack of approaches taking non-technical aspects into
account suggests an important gap. Identifying or recommending
experts considering only the knowledge and level of expertise they
possess may not be enough to ensure effective knowledge sharing.
Factors like lack of willingness to collaborate, limited time avail-
ability, lack of encouragement, and communication constraints can
lead people to fail in knowledge-sharing [18] and, thus, should be
considered when selecting experts to share knowledge.

As for the roles supported by the approaches (RQ6), there is a
predominance of developers. Considering that code repositories
have been the predominant source of expert evidence, this result
was indeed expected. Developers can need other people’s knowl-
edge and guidance to complete tasks on a daily basis, especially
when we consider the fast pace of technological evolution and the
wide range of different languages, frameworks, and patterns used in
software development. Experts can, thus, provide useful knowledge
to help developers improve the quality of the developed results (i.e.,
improve software quality) as well as increase performance when
producing them (i.e., process improvement). Managers were also
mentioned. Expert identification can help them develop the team by
boosting knowledge dissemination and identifying knowledge gaps.
Expert identification can also help managers define teams and hire
the most suitable candidate for a position. One could expect that
publications using code repositories as a source of expert evidence
would support developers. However, we noticed that this is not
always the case. For example, approaches #12 and #16 use data from
code repositories to support managers. Moreover, other sources

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Braga, et al.

can also be used to identify experts and help developers (e.g., #8
uses online forums).

Many publications do not make explicit the roles supported for
the proposed approach and, in these cases, we understand that they
can be used to support several roles.We believe that this happens be-
cause such approaches do not refer to any specific knowledge or do
not use sources of evidence addressing specific subjects. For exam-
ple, if we consider electronic documents as the source of evidence,
it is possible to extract knowledge related to different subjects, de-
pending on the document content. For instance, if the document
addresses requirements, it can provide information about experts
in requirements and, thus, support requirement engineers. On the
other hand, if the document concerns risk management, it can pro-
vide information about risk management experts and, therefore,
help managers.

Regarding processes/activities supported by approaches (RQ7),
most of the investigated approaches are not devoted to specific
processes or activities. They do not limit the domain knowledge
and, thus, aim to support the software process according to the
seeker’s needs. As a consequence, these approaches can be used
regardless of the specific knowledge being sought. In this way, they
can support a wide range of activities in software organizations.
For example, approach #1 uses keywords to identify experts. Thus,
it can be used to support different activities, depending on the
knowledge the keywords refer to.

Some approaches focus on specific processes/activities. These
approaches are important because they might better support pro-
cesses/activities by considering their particularities, which can in-
troduce the need for new requirements when identifying experts.
For example, if one is interested in knowledge sharing to support
requirements elicitation, the expert identification approach could
consider roles related to the business domain (e.g., business stake-
holders) in addition to the ones directly related to software devel-
opment (e.g., requirements engineer, developer). Given that expert
identification deals with satisfying knowledge needs and addresses
discovering the link between desired knowledge and candidate ex-
pert, it was expected that some approaches would support Human
Resource Management activities, such as identifying knowledge
gaps, acquiring the desired knowledge, and developing the team.
This is the case of the approach presented in #10, which consists of
a case study involving a mentoring situation in which an experi-
enced developer (expert) is identified to help a new team member
get knowledge of and become familiar with the project source code.

One approach (#8) is devoted to Requirements Definition, which
uses speech-acts combinations to discover knowledge related to
requirements expressing feature requests and bugs. Also, two ap-
proaches focus on the Implementation process. When relating this
result with the ones from RQ6, we noticed that developers appear
more in RQ6 than Implementation in RQ7. This occurs because
some publications do not limit the processes/activities supported
and, as we explained before, they could be used to support several
processes (including the implementation process).

Finally, concerning the use of conceptual ground (RQ8), more
than 80%s of the approaches do not consider any conceptual foun-
dation. Only a few are grounded in taxonomy or ontology. In #5, a
taxonomy is used as a foundation to formalize software develop-
ment and testing terms. In #8, in turn, a communication ontology

is extended and used to support a more robust and faster design of
expert finding systems. The small number of works committed with
a formal conceptualization suggests a lack of concern with semantic
issues, which can lead to conflicts whenever the same information
item is given divergent interpretations, a situation that may not
even be detected [48]. Neglecting these semantic conflicts can lead
to solutions that fail in achieving their purposes [39]. Given that
expert identification may involve different sources, artifacts, tools,
and technologies, a shared conceptualization could support, for
example, structuring knowledge, defining the solution conceptual
architecture, and helping extract and integrate data from different
sources [33]. In this way, expert identification approaches could
benefit from the use of ontologies, taxonomies, and other concep-
tual grounds.

Based on the panorama provided by the study results, in sum-
mary, we can say that, in general, expert identification approaches
that support knowledge sharing in the software development con-
text have been automated and based mainly on data stored in source
repositories (although other artifacts have also been used). More-
over, although the approaches have supported software develop-
ment, they have not been devoted to specific roles or activities.
There has been a lack of concern with semantics and non-technical
aspects when identifying experts. The former may result in misun-
derstanding data and information considered to identify experts as
well as in difficulties to integrate knowledge from different sources.
The latter may result in the identification of experts that possess
the desired knowledge but are not the most suitable ones to share
it with a particular seeker.

6 LIMITATIONS OF THE STUDY
Even though the goal of a systematic mapping is to summarize all
relevant research in an area, different sets of publications can be
obtained considering the number of decisions and judgments taken
[52]. As any study, our study has limitations that must be consid-
ered together with the results. In addition, some challenges can
reach the researchers during a systematic mapping, such as how to
select a comprehensive and relevant source of publications, how to
consistently apply the inclusion/exclusion criteria, how to classify
data, and how to interpret them. In this study, we experienced these
challenges and carried out some actions aiming at minimizing their
influence on the results. In this section, we discuss some of the
study limitations and some challenges we faced.

One limitation refers to the subjectivity embedded in publica-
tion selection and data extraction.Publication selection and data
extraction were performed by the first author. The second author
performed the same steps and the results of each reviewer were then
compared. We performed an analysis of the degree of concordance
in publications selection to measure the level of agreement between
the results obtained from the researchers in the selection process.
For this, we calculated the kappa coefficient [22] and obtained the
value 0.8, which, according to Landis and Koch [22], means sub-
stantial agreement. Discordance and possible biases were discussed
until we reached a consensus.

Another limitation refers to the sources and adopted search
string. Terminological problems in the search string may have led
to missing publications. In order to minimize these problems, we

Help! I need somebody. A Mapping Study about Expert Identification in Software Development SBES 2023, September 25–29, 2023, Campo Grande, Brazil

performed previous simulations in the selected databases. Even
though we have used several terms, there are still synonyms that
we did not use (e.g., specialist). Therefore, relevant publications may
not have been captured in our study. Concerning the sources, we
decided not to search any specific conference proceedings, journals,
or grey literature. Thus, we have just worked with publications
indexed by the selected electronic databases. The exclusion of these
other sources makes the review more repeatable, but possibly some
valuable studies may have been left out of our analysis. To minimize
this limitation we performed backward snowballing. The fact that
we did not carry out forward snowballing (i.e., look for relevant
publications by analyzing the ones citing the publications selected
in the study) has to be considered as a limitation that can cause
relevant publications not to be captured. Moreover, we could not
reach the full text of six publications that required payment to
access the paper. We contacted the authors asking for the papers
but we did not receive them.

The classification schemas for categorizing data in some research
questions also have some limitations. Some of them were based
on classifications previously proposed in the literature (e.g., type
of research [51] and software process activities [11]). Others were
established during data extraction (e.g., expert sources), based on
data provided by the selected publications. Determining the cate-
gories and how publications fit them involves a lot of judgment.
Therefore, other researchers could obtain different results.

Lastly, data interpretation also involves tacit knowledge and judg-
ment, which may lead different people to get different conclusions.
Aiming to minimize this threat, two of the authors represented the
results using charts and tables, and interpretation was performed
by the three authors iteratively, considering the research questions.
In this way, complementary interpretations were combined and
different interpretations were discussed.

7 FINAL CONSIDERATIONS
The increasing use of agile approaches and the changes in the way
people work and communicate in software organizations involve a
lot of tacit knowledge and have grown the need for knowledge shar-
ing. Therefore, identifying people who have knowledge of specific
subjects and can share it with others is of paramount importance.

In this paper, we presented a mapping study that investigated ap-
proaches for identifying experts to share knowledge in the software
development context. A total of 101 publications were considered
and 17 of themwere selected. Eight research questions were defined
to investigate the following facets: (i) distribution of the selected
publications over the years and the type of vehicle; (ii) research
type; (iii) artifacts used as sources for identifying experts; (iv) exis-
tence of automated support; (v) use of non-technical aspects; (vi)
supported roles; (vii) supported processes and activities; and (viii)
use of conceptual grounds. The study contributes by providing a
panorama of research related to the topic. In summary, there is a
predominance of automated solutions based mainly on data stored
in source repositories. The approaches have supported software
development as a whole (only a few are devoted to specific roles or
activities) and there has been a lack of concern with semantics and
non-technical aspects when identifying experts.

From the panorama revealed by the study, we can highlight some
issues that can be further investigated in future research. First, al-
though the subject is relevant, it seems to exist a gap between
theory and practice. Thus, it is important to get closer to practical
settings to better understand the practitioners’ needs and the con-
straints that may impact the proposed solutions. Only by taking the
proposals to the software industry it will be possible understand
what really works and what needs to be improved.

Another point is related to the artifacts used as sources of expert
evidence. Although several artifacts have been used, we believe
that there are opportunities to better explore them by considering
new artifacts (to leverage the full range of knowledge evidence)
and combining them. In this context, data and information integra-
tion issues need to be taken into account. Moreover, it would be
interesting to investigate which sources can be more suitable for
different knowledge needs and how to make the most of them.

The limited set of specific roles and processes supported by the
approaches indicates that the approaches have been general. On one
hand, this is good because does not limit the solutions to a particu-
lar problem. On the other hand, specific needs and requirements
related to certain roles and processes may have been neglected.
This suggests the need for further investigation of the approaches’
comprehensiveness and of their effectiveness to support different
roles and processes. Also, knowledge needs of specific roles and
processes could be identified in order to be properly met by expert
identification approaches.

The lack of concern with non-technical aspects and conceptual
ground indicates an important gap. Identifying experts based only
on the possessed knowledge may work in some contexts, but when
is the case of knowledge sharing, other important aspects should
be taken into account because they will influence directly in knowl-
edge sharing effectiveness. Therefore, further investigation on non-
technical aspects would be welcome. As for conceptual grounds, as
expert identification deals much with knowledge representation,
the use of ontologies, taxonomies, thesaurus, and others could be
helpful. For example, they could be used to provide a common
conceptualization to support mapping knowledge evidence (par-
ticularly when using multiple sources) and achieve a finer-grained
understanding of knowledge evidence.

In conclusion, expert identification has become more and more
necessary to support people perform software-related activities.
There are several proposals on this subject and advances have been
achieved in the last years. However, there are still some issues to
be addressed, such as the ones aforementioned. As future work,
to complement the panorama provided by the mapping study, we
intend to carry out a survey with software professionals aiming
to investigate how they have shared knowledge and how experts
have been identified. This will enable us to compare results from
the literature and practice and get insights on how to contribute to
both, researchers and practitioners.

ARTIFACT AVAILABILITY
The study package (study protocol, results from the publications
selection and data extraction procedures) is available in [7].

SBES 2023, September 25–29, 2023, Campo Grande, Brazil Braga, et al.

ACKNOWLEDGMENTS
This research is funded in part by the Espírito Santo Research and
Innovation Support Foundation (FAPES).

REFERENCES
[1] Eytan Adar, Rajan Lukose, Caesar Sengupta, Josh Tyler, and Nathaniel Good.

2003. Shock: Aggregating information while preserving privacy. 5 (2003).
[2] Maryam Alavi and Dorothy E. Leidner. 2001. Knowledge Management and

Knowledge Management Systems: Conceptual Foundations and Research Issues.
25 (2001).

[3] Mohammad Y. Allaho and Wang-Chien Lee. 2014. Increasing the Responsiveness
of Recommended Expert Collaborators for Online Open Projects.

[4] Daniel Atzberger, Nico Scordialo, Tim Cech, Willy Scheibel, Matthias Trapp, and
Jürgen Döllner. 2022. CodeCV: Mining Expertise of GitHub Users from Coding
Activities.

[5] Krisztian Balog, Leif Azzopardi, andMaarten de Rijke. 2009. A language modeling
framework for expert finding. Information Processing & Management 45, 1 (2009).

[6] Krisztian Balog, Yi Fang, Maarten de Rijke, Pavel Serdyukov, and Luo Si. 2012.
Expertise Retrieval. (2012).

[7] Carlos Eduardo Correa Braga, Paulo Sérgio dos Santos Júnior, and Monalessa P.
Barcellos. 2023. Supplementary material of the study "Help! I need somebody.
A Mapping Study about Expert Identification in Software Development". https:
//doi.org/10.5281/zenodo.8154833

[8] Christopher S. Campbell, Paul P. Maglio, Alex Cozzi, and Byron Dom. 2003. Ex-
pertise Identification Using Email Communications. Association for Computing
Machinery, New York, NY, USA.

[9] Luis Guillermo Cordova-Moras, Oscar Mario Rodriguez-Elias, and Maria Trinidad
Serna-Encinas. 2017. Expert Location Tool for Global Software Development
Environments Based on Knowledge Profile Management: A Mobile Application
Approach. Mérida.

[10] Thomas H. Davenport and Laurence Prusak. 1998. Working knowledge: how
organizations manage what they know. Harvard Business School Press, Boston,
Mass.

[11] Int. Organization for Standardization, Int. Electrotechnical Commission, Institute
of Electrical, and Electronics Engineers. 2017. ISO/IEC/IEEE 12207: 2017(E) First
Edition 2017-11: ISO/IEC/IEEE Int. Standard - Systems and Software Engineering –
Software Life Cycle Processes.

[12] Thomas Fritz, Gail C. Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily
Hill. 2014. Degree-of-Knowledge: Modeling a Developer’s Knowledge of Code.
23, 2 (2014).

[13] Chenbo Fu, Mingming Zhou, Qi Xuan, and Hong-Xiang Hu. 2017. Expert recom-
mendation in oss projects based on knowledge embedding. In 2017 Int. Workshop
on Complex Systems and Networks (IWCSN). IEEE, Doha, 149–155.

[14] Morten T. Hansen, N. Nohria, and Tom Tierney. 1999. What’s your strategy for
managing knowledge? Harvard business review 77 2 (1999), 106–16, 187.

[15] Chaoran Huang, Lina Yao, Xianzhi Wang, Boualem Benatallah, and Xiang Zhang.
2020. Software expert discovery via knowledge domain embeddings in a collabo-
rative network. 130 (2020).

[16] Gareth Hughes and Richard Crowder. 2003. Experiences in Designing Highly
Adaptable Expertise Finder Systems. In Volume 1: 23rd Computers and Information
in Engineering Conf., Parts A and B. ASMEDC, Chicago, Illinois, USA, 451–460.

[17] Omayma Husain, Naomie Salim, Rose Alinda Alias, Samah Abdelsalam, and
Alzubair Hassan. 2019. Expert Finding Systems: A Systematic Review. (2019).

[18] John Israilidis, Evangelia Siachou, and Stephen Kelly. 2020. Why organizations
fail to share knowledge: an empirical investigation and opportunities for im-
provement. Information Technology & People ahead-of-print (09 2020).

[19] Andrea Janes, Alberto Sillitti, and Giancarlo Succi. 2008. Non-invasive Soft-
ware Process Data Collection for Expert Identification. In Int. Conf. on Software
Engineering and Knowledge Engineering.

[20] B Kitchenham and S Charters. 2007. Guidelines for performing systematic litera-
ture reviews in software engineering. Technical Report. Technical report, EBSE
Technical Report EBSE-2007-01.

[21] Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.
2018. Do You Remember This Source Code?. In Proc. of the 40th Int. Conf. on Soft-
ware Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing
Machinery, New York, NY, USA, 764–775.

[22] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agree-
ment for Categorical Data. Biometrics 33, 1 (March 1977), 159.

[23] Shuyi Lin, Wenxing Hong, Dingding Wang, and Tao Li. 2017. A survey on expert
finding techniques. Journal of Intelligent Information Systems 49 (10 2017).

[24] Edson M. Lucas, Toacy C. Oliveira, Daniel Schneider, and Paulo S. C. Alencar.
2020. Knowledge-Oriented Models Based on Developer-Artifact and Developer-
Developer Interactions. 8 (2020).

[25] Vitor Mangaravite, Rodrygo L. T. Santos, Isac S. Ribeiro, Marcos Andre Gonçalves,
and Alberto H. F. Laender. 2016. The LExR Collection for Expertise Retrieval in

Academia. Proc. of the 39th Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval (2016).

[26] David W. McDonald and Mark S. Ackerman. 1998. Just Talk to Me: A Field Study
of Expertise Location. Association for Computing Machinery.

[27] Wenkai Mo, Beijun Shen, Yuming He, and Hao Zhong. 2015. GEMiner: Mining
Social and Programming Behaviors to Identify Experts in Github. Proc. of the 7th
Asia-Pacific Symposium on Internetware (2015).

[28] A. Mockus and J.D. Herbsleb. 2002. Expertise Browser: a quantitative approach
to identifying expertise. In Proc. of the 24th Int. Conf. on Software Engineering.
ICSE 2002. 503–512.

[29] Roziah Mohd Rasdi and Gangeswari Tangaraja. 2022. Knowledge-sharing be-
haviour in public service organisations: determinants and the roles of affective
commitment and normative commitment. 46 (2022).

[30] Alan Moraes, Eduardo Silva, Cleyton da Trindade, Yuri Barbosa, and Silvio Meira.
2010. Recommending experts using communication history.

[31] Itzel Morales-Ramirez, Matthieu Vergne, Mirko Morandini, Anna Perini, and
Angelo Susi. 2015. Exploiting Online Discussions in Collaborative Distributed
Requirements Engineering. In Int. i* Workshop.

[32] Muhammad Naeem, Muhammad Bilal Khan, and Muhammad Tanvir Afzal. 2013.
Expert Discovery: A web mining approach. Journal of AI and Data Mining 1
(2013), 35–47.

[33] Julio Cesar Nardi, Ricardo de Almeida Falbo, and João Paulo A. Almeida. 2013.
Foundational Ontologies for Semantic Integration in EAI: A Systematic Litera-
ture Review. In Collaborative, Trusted and Privacy-Aware e/m-Services, Christos
Douligeris, Nineta Polemi, Athanasios Karantjias, andWinfried Lamersdorf (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 238–249.

[34] Ikujirō Nonaka and Hirotaka Takeuchi. 1995. The knowledge-creating company:
how Japanese companies create the dynamics of innovation. Oxford University
Press, New York.

[35] Ignacio Nuñez Norambuena and Alexandre Bergel. 2021. Building a bot for
automatic expert retrieval on discord. In Proc. of the 5th Int. Workshop on Machine
Learning Techniques for Software Quality Evolution. ACM, Athens Greece, 25–30.

[36] D.E. O’Leary. 1998. Enterprise knowledge management. 31 (1998).
[37] Johnatan Oliveira, Maurício Souza, Matheus Flauzino, Rafael Durelli, and Eduardo

Figueiredo. 2022. Can Source Code Analysis Indicate Programming Skills? A
Survey with Developers. Vol. 1621. Cham.

[38] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
(2015).

[39] Stanislav Vassilev Pokraev. 2009. Model-driven semantic integration of service-
oriented applications. Ph. D. Dissertation. University of Twente.

[40] I. Rus and M. Lindvall. 2002. Knowledge management in software engineering.
19 (2002).

[41] Vinicius Schettino, Vitor Horta, Marco Antonio P. Araujo, and Victor Stroele. 2019.
Towards Community and Expert Detection in Open Source Global Development.
IEEE.

[42] Kurt Schneider. 2009. Experience and Knowledge Management in Software Engi-
neering. Springer Berlin Heidelberg, Berlin, Heidelberg.

[43] Dawit Yimam Seid and Alfred Kobsa. 2003. Expert-Finding Systems for Organi-
zations: Problem and Domain Analysis and the DEMOIR Approach. Journal of
Organizational Computing and Electronic Commerce 13 (2003), 1 – 24.

[44] Eva. Semertzaki. 2011. Special libraries as knowledge management centres / Eva
Semertzaki. Chandos Oxford. xxii, 314 p. ; pages.

[45] N. Sadat Shami, Y. Connie Yuan, Dan Cosley, Ling Xia, and Geri Gay. 2007. That’s
what friends are for: facilitating ’who knows what’ across group boundaries. In
Proc. of the 2007 Int. ACM Conf. on Conf. on supporting group work - GROUP ’07.
ACM Press, Sanibel Island, Florida, USA, 379.

[46] Amitoj Singh, Vinay Kukreja, and Munish Kumar. 2023. An empirical study to
design an effective agile knowledge management framework. Multimedia Tools
and Applications 82, 8 (March 2023), 12191–12209.

[47] Ralf Teusner, Christoph Matthies, and Philipp Giese. 2017. Should I Bug You?
Identifying Domain Experts in Software Projects Using Code Complexity Metrics.
In 2017 IEEE Int. Conf. on Software Quality, Reliability and Security (QRS). IEEE,
Prague, Czech Republic, 418–425.

[48] Holger Wache, Thomas Vögele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard
Schuster, H. Neumann, and S. Ubner. 2002. Ontology-Based Integration of In-
formation - A Survey of Existing Approaches. Proc. of the IJCAI’01 Workshop on
Ontologies and Information Sharing, Seattle, Washington, USA, Aug 4-5 (08 2002).

[49] Wasko and Faraj. 2005. Why Should I Share? Examining Social Capital and
Knowledge Contribution in Electronic Networks of Practice. 29 (2005).

[50] David Weiss and James Shanteau. 2003. Empirical Assessment of Expertise.
Human factors 45 (02 2003), 104–16. https://doi.org/10.1518/hfes.45.1.104.27233

[51] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. 2006. Require-
ments engineering paper classification and evaluation criteria: A proposal and a
discussion. Requir. Eng. 11 (March 2006), 102–107.

[52] ClaesWohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-
ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

https://doi.org/10.5281/zenodo.8154833
https://doi.org/10.5281/zenodo.8154833
https://doi.org/10.1518/hfes.45.1.104.27233

	Abstract
	1 Introduction
	2 Background
	3 Research Protocol
	4 Data Extraction and Synthesis
	5 Data Analysis and Discussion
	6 Limitations of the Study
	7 Final Considerations
	Acknowledgments
	References

