
An Ontology to support Knowledge Management Solutions for
Human-Computer Interaction Design

Murillo Vasconcelos Henriques
Bittencourt Castro

murillo.castro@aluno.ufes.br
Ontology & Conceptual Modeling
Research Group (NEMO), Computer

Science Department, UFES
Vitória, ES, Brazil

Monalessa Perini Barcellos
monalessa@inf.ufes.br

Ontology & Conceptual Modeling
Research Group (NEMO), Computer

Science Department, UFES
Vitória, ES, Brazil

Ricardo de Almeida Falbo
Ontology & Conceptual Modeling
Research Group (NEMO), Computer

Science Department, UFES
Vitória, ES, Brazil

ABSTRACT
Developing interactive systems is a challenging task that involves
concerns related to the human-computer interaction (HCI), such as
usability and user experience. Therefore, HCI design is a core issue
to the quality of such systems. HCI design often involves people
with different backgrounds (e.g., Arts, Software Engineering, De-
sign). This makes knowledge transfer a challenging issue due to the
lack of a common conceptualization about HCI design, leading to
semantic interoperability problems, such as ambiguity and impreci-
sion when interpreting shared information. Ontologies have been
acknowledged as a successful approach to represent domain knowl-
edge and support knowledge-based solutions. Hence, in this work,
we propose to explore the use of ontologies to represent structured
knowledge of HCI design and improve knowledge sharing in this
context. We developed the Human-Computer Interaction Design
Ontology (HCIDO), which is part of the Human-Computer Interac-
tion Ontology Network (HCI-ON) and is connected to the Software
Engineering Ontology Network (SEON). By making knowledge
related to the HCI design domain explicit and structured, HCIDO
helped us to develop KTID, a tool that aims to support capturing and
sharing knowledge to aid in HCI design by allowing HCI designers
to annotate information about design choices in design artifacts
shared with HCI design stakeholders. Preliminary results indicate
that the tool can be particularly useful for novice HCI designers.

CCS CONCEPTS
• Software and its engineering→ Designing software.

KEYWORDS
HCI Design, User Interface, Knowledge Management, Ontology

ACM Reference Format:
Murillo Vasconcelos Henriques Bittencourt Castro, Monalessa Perini Barcel-
los, and Ricardo de Almeida Falbo. 2022. An Ontology to support Knowledge

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Management Solutions for Human-Computer Interaction Design. In Pro-
ceedings of The 21st Brazilian Symposium on Software Quality (SBQS 2022).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Designing quality interactive computer systems is a challenging
task, which involves addressing HCI aspects (e.g., usability, user ex-
perience, communicability, accessibility, among others) to support
users in achieving their goals through the interaction with the sys-
tem [8]. HCI design comprises practices, principles and knowledge
from multiple fields, such as Ergonomics, Cognitive Science, Sociol-
ogy, Human Factors and Computer Science [45]. Due to the diverse
body of knowledge involved in HCI design, interactive system de-
velopment teams are often multidisciplinary, joining people from
different backgrounds, with their own technical language, terminol-
ogy and knowledge. As a consequence, even the understanding of
the software product may be conflicting among different stakehold-
ers, which hampers communication and knowledge transfer [8]
[37]. Therefore, it is important to reach a consensual understanding
on the meaning of terms related to HCI design to avoid semantic
conflicts and facilitate knowledge sharing. For example, an HCI
designer may refer to the user interface as what is seen through the
graphical elements displayed on the screen, while a developer may
refer to the user interface as the portion of the code that produces
the graphical elements displayed in the screen.

Knowledge Management (KM) principles and practices can be
helpful to address knowledge-related and communication chal-
lenges in HCI design. There are some initiatives of using KM to
enable knowledge replicability and improve communication in the
HCI design context and, in most of them, KM has been used with the
ultimate purpose of improving software quality and design process
efficiency. However, KM solutions have been narrowly explored in
HCI design and have faced difficulties mainly related to the lack of
consensus on the understanding of HCI design aspects [12].

The use of ontologies contributes to capture and organize knowl-
edge to deal with knowledge-related and communication problems.
In the HCI context, they have been applied to aid knowledge rep-
resentation in some sub-domains (e.g., user interface) and support
interface adaptation, among others [17]. However, there is still a
need of properly understanding HCI design and its relation with
other aspects of the software engineering, so that designers and
developers can agree on the same conceptualization of the interac-
tive system under development and, thus, better communicate and
exchange knowledge with each other.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil Castro et al.

In view of the above, we advocate that ontologies are a promising
approach to aid in HCI design. Thus, we developed the Human-
Computer Interaction Design Ontology (HCIDO), a reference on-
tology that addresses mental (i.e., what is in the designer’s mind)
and materialized (i.e., the artifacts produced based on what is in
the designer’s mind) aspects of HCI design and connects them to
other aspects of the software engineering, providing an integrated
view of software development. Moreover, considering KM prin-
ciples that seek to transform individual and implicit knowledge
into organizational and explicit knowledge, we used HCIDO to
develop KTID (Knowledge Supporting Tool for Human-Computer
Interaction Design), a computational tool that provides support to
represent and share HCI design knowledge among stakeholders,
such as designers, developers and project managers. KTID was eval-
uated by two designers and the preliminary results indicate that
the tool can be particularly useful for novice designers, who need
to learn from previous experiences to create new designs. Experi-
enced designers, in turn, may prefer a more creative and individual
process, being more willing to record and share knowledge than to
reuse knowledge recorded in the tool.

The remainder of this paper is organized as follows: Section 2
regards the research method adopted in this work and highlights
the work contributions; Section 3 briefly presents the background
for the paper and discusses some related work; Section 4 introduces
HCIDO; Section 5 concerns KTID; and Section 6 concludes the
paper.

2 RESEARCH METHOD
The research method adopted in this work followed the Design
Science Research (DSR) paradigm [27]. It comprises the following
steps [35]: (i) Problem identification and motivation; (ii) Definition
of the objectives for a solution; (iii) Design and development; (iv)
Demonstration; (v) Evaluation, and (vi) Communication. These six
steps are associated with three cycles that characterize DSR as
an iterative process, as defined by [27]: Relevance Cycle, Design
Cycle and Rigor Cycle. The Relevance Cycle involves defining the
problem to be addressed, the research requirements, and the criteria
to evaluate research results, including steps (i) and (ii). The Design
Cycle involves developing and evaluating artifacts or theories to
solve the identified problem, comprising steps (iii), (iv) and (v).
Finally, the Rigor Cycle refers to using and generating knowledge,
consisting in step (vi) plus the use of knowledge and foundations
along the work.

In the "Problem identification and motivation" step, the problem
was first identified in practice by the first author when working
on the development of interactive systems as a software engineer
together with HCI designers. The author noticed problems to share
knowledge about HCI design decisions and difficulties to achieve a
harmonized view of the system from HCI designers’ and develop-
ers’ perspectives. Since they had different views of the interactive
system and different understandings of HCI design and its relation
to other aspects of software development, it was hard to establish
a consensual communication protocol and reuse knowledge from
developed HCI design solutions. Thus, an informal literature review
was performed to learn about the research topic. As a result, the
problem to be focused by this work was established as the need

to address difficulties to manage knowledge in the HCI design of
interactive systems.

Aiming to understand the subject in depth, we investigated
the state of the art about knowledge management in HCI design
through a systematic mapping [12]. The mapping results indicated,
among other results, that (i) the lack of a common conceptualiza-
tion about HCI design leads to communication problems between
the different actors involved in the HCI design process; and (ii) it
is necessary to take knowledge management solutions to practical
HCI design environments to reduce the gap between theory and
practice.

After that, to complement the mapping results and give us a
better understanding about knowledge management in HCI design
in practice, we carried out a survey with 39 HCI design profes-
sionals [13]. The survey results reinforced the lack of a consensual
conceptualization about HCI design as a challenge and indicated
that managing HCI design knowledge has been a concern that pro-
fessionals have tried to deal with by using informal ways or simple
tools.

Considering the identified problem, the gaps pointed by the sys-
tematic mapping, the survey results, and the capacity of ontologies
to contribute to semantic interoperability and knowledge manage-
ment solutions, in the step "Define the objectives for a solution", we
decided to develop a reference ontology about HCI design of in-
teractive systems and use it to develop a KM solution to aid HCI
design. We advocate that the use of ontologies to establish a com-
mon conceptualization could help deal with communication and
knowledge sharing problems in the HCI design context. However,
the survey results showed that practitioners are not very familiar
with ontologies. Therefore, we argue that the ontology-based KM
solution should abstract the ontology to final users.

As requirements to the reference ontology, we defined: (R1) the
ontology must cover main aspects regarding HCI design, including
not only the created artifacts but also mental aspects that precede
the creation of design artifacts (e.g., the choices made by the de-
signer regarding which elements will be used); (R2) to provide an
integrated view of HCI design into the software engineering as a
whole, the ontology must consider aspects related from both HCI
and Software Engineering (SE); (R3) the ontology must be modular;
(R4) the ontology must be formally rigorous; (R5) the ontology
must be grounded in a well-founded ontology; (R6) the ontology
must be developed by following an appropriate Ontology Engi-
neering method; and (R7) the ontology must be able to be used
to solve problems. These requirements were established based on
some characteristics of "beautiful ontologies". A beautiful ontology
is one that reflects an elegant and effective solution for modeling a
problem and it is at the same time good (in terms of formal qual-
ity), usable and practicable [20]. In addition to the requirements to
be met by the ontology, based on [21], we defined the following
criteria to evaluate it: (C1) the ontology elements (i.e., concepts,
relations and axioms) must be the ones sufficient and necessary to
cover the scope defined by means of competency questions; and
(C2) the ontology must be able to represent real-world situations.
Moreover, to evaluate the ontology use (i.e., R7), we defined that
(C3) the solution built based on the ontology must be feasible and
useful.

An Ontology to support Knowledge Management Solutions for Human-Computer Interaction Design SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil

During the "Design and development" step we developed the
HCI Design Ontology (HCIDO), the main artifact proposed in this
work. To address R1, HCIDO is based on HCI design literature,
standards and also in theories related to design in general. To meet
R2, HCIDO was developed as a networked ontology of HCI-ON
[17] and reuses concepts from SEON ontologies [39], particularly
from the Software Design Reference Ontology (SDRO) [10], which
was also developed in this work and reuses concepts from other
SEON ontologies. To satisfy R3, HCIDO is organized into two sub-
ontologies. To meet R4, we defined HCIDO by means of conceptual
models (represented in the Unified Modeling Language) and textual
descriptions. Concerning R5, we grounded HCIO in the Unified
Foundational Ontology (UFO) [23]. As for R6, we followed SABiO
(Systematic Approach for Building Ontologies) [21]. Then, in the
"Demonstration" step, we used HCIDO as a reference model in the
development of KTID, a tool that supports KM aspects in HCI design.
During the Evaluation step, to evaluate HCIDO considering C1 and
C2, we performed verification and validation activities, as suggested
in SABiO [21]. To evaluate HCIDO considering C3, we performed
a study in which two designers used and evaluated KTID.

Finally, the "Communication" step involves presenting the re-
search results to the Academic and Industry communities. The
results produced in this work were published in [9–13, 17]. The
main contribution of the work is HCIDO, a reference ontology pro-
viding a well-founded conceptualization about HCI design that can
be used to support interoperability and knowledge-related solu-
tions. There are also other relevant contributions: (i) the systematic
mapping that provides a panorama of the state of the art of KM
in HCI design [12]; (ii) the survey that consolidate evidence about
KM in HCI design practice [13]; (iii) SDRO, a reference ontology
about software design, which served as the basis to HCIDO and
is a contribution by itself, structuring knowledge about software
design which can be used in interoperability and knowledge-related
solutions in this context [10]; and (iv) KTID, a computational tool
based on HCIDO that supports KM in the HCI design of interactive
systems [11].

In this paper, our focus is on providing an overview of the re-
search and introducing HCIDO. Further information about the other
contributions can be found in [10–13].

3 BACKGROUND
3.1 HCI Design and Knowledge Management
HCI design focuses on how to design a system to support users to
achieve their goals through the interaction with that system [45].
It is concerned with usability, user experience and other important
attributes such as, accessibility and communicability. HCI design is
user-centered, hence it is said User-Centered Design (UCD) [14].
UCD focuses on the use and development of interactive systems,
with an emphasis on making products usable and understandable.
It puts human needs, capabilities and behavior first, then designs
the system to accommodate them. The term Human-Centered De-
sign (HCD) has been adopted in place of UCD to emphasize the
impact on all stakeholders and not just on those considered users
[28]. HCI design is as an intensive knowledge process, requiring
effective mechanisms to collaboratively create and support a shared
understanding of the users, the system, its purposes, context of use

and the design necessary for the user to achieve her goals. There-
fore, HCI design could take advantage of knowledge management
solutions.

According to [41], knowledge is a human specialty stored in peo-
ple’s minds, acquired through experience and interaction with their
environment. Knowledge Management (KM) aims to transform
tacit and individual knowledge into explicit and shared knowledge.
By raising individual knowledge to the organizational level, KM
promotes knowledge propagation and learning, making knowledge
accessible and reusable across the entire organization [32, 38, 41].
Knowledge helps software organizations to react faster and better,
supporting more accurate and precise responses, which contributes
to increasing software quality and client satisfaction [41].

When an organization implements KM, its experiences and
knowledge are recorded, evaluated, preserved, designed and sys-
tematically propagated to solve problems [41]. Thus, KM addresses
knowledge in its evolution cycle, which consists of creating, cap-
turing, transforming, accessing and applying knowledge [38, 41].
In the Software Engineering context, it has been common to focus
on KM solutions that deal with explicit knowledge and there is a
need to focus also on tacit knowledge [5]. Both tacit and explicit
knowledge are considered important for the Software Engineering
community. However, one of the main challenges is the conversion
of tacit knowledge into explicit knowledge [49].

3.2 Ontologies
An ontology is a formal and explicit specification of a shared concep-
tualization [44]. The conceptualization is an abstract and simplified
view of the world which is intended to be represented for some
reason. Every knowledge base, knowledge-based system or knowl-
edge agent is committed, either explicitly or implicitly, with one
conceptualization [43].

According to [40], ontologies can be organized in a three-layered
architecture: (i) foundational ontologies model the very basic and
general concepts and relations that make up the world (e.g., objects,
events, agents); (ii) core ontologies refine (i) by adding detailed con-
cepts and relations in a specific area (e.g., organization, software
process); and, (iii) domain ontologies describe a particular domain in
reality (e.g., software organization, software testing) by specializing
concepts from (i) or (ii).

Another important distinction differentiates ontologies as con-
ceptual models, called reference ontologies, from ontologies as com-
putational artifacts, called operational ontologies [24]. A reference
ontology is constructed with the goal of making the best possi-
ble description of the domain in reality, representing a model of
consensus within a community, regardless of its computational
properties. Operational ontologies, in turn, are designed with the
focus on guaranteeing desirable computational properties and, thus,
are machine-readable ontologies.

For large and complex domains, ontologies can be organized
in an ontology network (ON), which consists of a set of ontologies
connected to each other through relationships in such a way to
provide a comprehensive and consistent conceptualization [47].
Thus, an ON contributes to representing and growing knowledge
of a domain by connecting several subdomains inside the ON or
different domains, in a network of ONs. The ontology introduced

SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil Castro et al.

in this paper (HCIDO) is connected to two ONs. It is part of the
Human-Computer Interaction Ontology Network (HCI-ON) [17],
which contains ontologies addressing HCI subdomains (e.g., HCI
phenomenon, HCI Evaluation), and is connected to the Software
Engineering Ontology Network (SEON) [39], which includes on-
tologies addressing SE subdomains (e.g., Software Process, Software
System, Software Requirements, Software Testing).

In the literature, there are some works using ontologies to sup-
port aspects related to HCI design. According to Paulheim and
Probst [33], the main purposes for using ontologies in this context
have been improving: (i) user interface visualization capabilities,
(ii) user interface interaction possibilities, and (iii) user interface
development process. Proposals aiming at (i) and (ii), often employ
operational ontologies at run-time, sometimes combined with other
tools (e.g., reasoners), to change the user interface or the system
interaction (e.g., [29, 30]). On the other hand, approaches that aim
(iii) often use ontologies at design time and the end user does not
see the ontologies, nor interact with them. Examples are the use of
ontologies to support the creation of metamodels in model driven
approaches (e.g., [46]), or the annotation and classification of user
interface components in repositories (e.g., [25, 26]).

With regard to the scope addressed by ontologies used in the HCI
design context, they have usually focused either on the interaction
between user and system (e.g., [42]) or on the user interface and its
components (e.g., [34]). Hence, they have not focused on describing
the design of the human-computer interaction itself. The ontologies
that address the HCI design itself, have focused on HCI design in
specific contexts, such as web design [1, 2], design for haptic devices
[31] and design for gesture based interactions [15]. Therefore, none
of the ontologies we found by carrying out a systematic review of
the literature [16] provide a comprehensive conceptualization about
HCI design. Moreover, they are not concerned with representing
mental aspects of HCI design, which are very important to make
explicit the connection between the choices made when designing
the HCI of an interactive system and the resulting HCI design.
Lastly, none of them connect HCI design to other aspects of the
software engineering and, thus, do not provide an integrated view
of HCI design and software development.

4 THE HUMAN-COMPUTER INTERACTION
DESIGN ONTOLOGY (HCIDO)

The investigation of the state of the art [12] and the state of the
practice [13] about KM in HCI design indicated that the lack of a
common conceptualization about HCI design has been one of the
main challenges in applying KM to support HCI design of interac-
tive systems. The use of ontologies can help to address this chal-
lenge by providing a formal and explicit specification of a shared
conceptualization [44]. Hence, this section introduces the Human-
Computer Interaction Design Ontology (HCIDO), which aims at
establishing a common conceptualization of HCI design of interac-
tive systems, and that can be used for communication purposes as
well as to solve interoperability and knowledge-related problems.

HCIDO is a networked domain ontology of HCI-ON [17] and
reuses concepts related to HCI and SE by specializing other on-
tologies from HCI-ON and SEON [39], respectively. By doing that,

HCIDO connects HCI design to other aspects of the software engi-
neering (e.g., choices made in the HCI design are connected to the
software requirements that motivated them). Figure 1 presents an
overview of HCI-ON and SEON showing some of their ontologies
and positioning HCIDO and SRDO, the ontologies developed in
this work (they are highlighted by thicker black lines in the figure).
The ONs architecture follows the three-layers defined by Scherp
et al. [40] (see Section 3). As all the ontologies from SEON and
HCI-ON, HCIDO is grounded in UFO [23]. In the figure, each cir-
cle (network’s node) represents an ontology. Red arrows (directed
arcs) represent relationships between HCI-ON and SEON ontolo-
gies. Dependencies between HCI-ON and SEON core ontologies are
denoted by red solid arrows, while between domain ontologies are
denoted by red dotted arrows. A dependency relation between two
ontologies means that the source ontology reuses concepts from
the target ontology.

Figure 2 presents HCIDO architecture (as a UML package dia-
gram) by extracting from Figure 1 the ontologies directly reused by
HCIDO and detailing dependencies and modules. In the figure, red
double-dashed lines separate core and domain layers. For simplifi-
cation reasons, the grounding of HCIDO in UFO is not discussed in
this paper.

From SEON, we highlight the Software Design Reference Ontology
(SDRO) [10], which was also developed in this work and addresses
aspects of software design, connecting them to other SE aspects,
such as requirements, code and testing [7, 19]. SDRO describes
the mental and physical elements involved in the design of soft-
ware systems and the relations between them [10]. Here, the term
"physical" is borrowed from other works [3, 22, 36] referring to the
perception of something through the senses. However, consider-
ing that software is abstract, there are differences in the way it is
perceived when compared to physical objects like a chair or a car.

Hence, SDRO conceptualization helps highlight what makes soft-
ware and software design unique when compared to other fields
involving design: there is a large gap between what is produced as
the result of the design effort and what is perceived by the user in
his/her interaction experience [10]. The result of the design effort,
a software system constituted by code [19], does not interact di-
rectly with the user as does a car or a house, for example. It must
be loaded in a computer system and then executed, so the user
can interact with the result of this execution. Therefore, software
design methods, tools and languages should consider not only the
internal structural aspects of software but also its external charac-
teristics exhibited to the user. Traditionally, Software Engineering
research is more focused on the former, while the latter is relegated
to Human-Computer Interaction (HCI) studies [48]. To reduce the
gap between software design and user experience, it is essential to
have a holistic view of design and look at software and its construc-
tion as a whole. HCIDO aims to help reduce this gap by merging
design aspects from Software Engineering and HCI domains.

Considering that HCIDO addresses a particular type of software
design, it reuses the distinction between mental and physical as-
pects from SDRO. For that, it reuses concepts from SDRO such
as Software Designer, Software Design Choice, Software Design
Specification, Software Designer Mental Moment, among others.
Moreover, HCIDO is focused on characterizing specific aspects of

An Ontology to support Knowledge Management Solutions for Human-Computer Interaction Design SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil

Figure 1: Placement of HCIDO and SDRO in HCI-ON and SEON architectures.

Figure 2: Figure 2: HCIDO architecture.

design when designing HCI of interactive systems. Thus, it spe-
cializes SDRO to the HCI domain by reusing HCI concepts from
HCIO [17, 18], the Human-Computer Interaction Ontology, which
addresses this phenomenon considering the participation of the
user and the system. HCIO includes concepts such as User, Interac-
tive Software System, User Interface, among others. By specializing
SDRO and connecting the specialized concepts to HCIO concepts,
HCIDO connects the SE and HCI perspectives of HCI design.

In order to establish the ontology scope, we defined competency
questions, which are questions the ontology is intended to answer.
Some examples of competency questions defined to HCIDO are:
How does an HCI designer reason about the object being designed?

What is an HCI design specification? Which are the components of an
HCI design object? What is described in an HCI design specification?
What is the motivation for an HCI design choice? How can an HCI
design object be implemented from an HCI design specification?

A fragment of the HCIDO conceptual model is presented in
Figure 3. As shown in Figure 2, HCIDO is modularized into two sub-
ontologies: the Design Specification sub-ontology and the Design
Object sub-ontology. The former focuses on the artifacts created
to specify the design object, while the latter is devoted to the de-
sign object itself (i.e., the interactive system) and its components.
Both reuse mental and physical-related concepts from SDRO, in
the sense that both mental and physical aspects are involved in the
creation of the design specifications or the design object itself. Due
to space limitation, the figure does not include concepts related
to mental aspects. In the figure, the concepts are presented in the
same color used in Figure 2, indicating the ontologies to which they
belong. Blue lines indicate relationships between HCIDO and other
ontologies from the networks. After the figure, we present a brief
description of HCIDO concepts. In the model description, concepts
from HCIDO are written in bold, while concepts from SEON are
written in italics and from HCI-ON in underline italics. The com-
plete and detailed models and descriptions of HCIDO, including
mental aspects, a discussion about the grounding in UFO and the
specialization from other ontologies concepts, plus examples of the
concepts (i.e., instances) can be found in [9].

To better understand HCIDO concepts, it is necessary, first, to
understand some concepts from SEON [39]. A Person Stakeholder
is a person interested or affected by software development activ-
ities or their results. Software Artifacts are objects intentionally

SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil Castro et al.

Figure 3: Fragment of HCIDO conceptual model.

produced to serve a given purpose in the context of a software
project or organization. They can be classified according to their
nature. A Software Item is a piece of software, produced during the
software process, not necessarily a complete product (i.e., it can be
an intermediary result such as a system component). A Document,
in turn, is any written or pictorial, uniquely identified information
related to the software development, usually presented in a pre-
defined format (e.g., a requirements document). An Information
Item is a piece of relevant information for human use, produced or
used by an activity (e.g., a component description, a bug report). A
Software System (e.g., a system to buy airline tickets) is a subtype of
Software Item that is constituted of Programs. A Program, in turn, is
a Software Item not considered a complete Software System (e.g., the
system component to select available fights in a given date), which
aims at producing a certain result, in a particular way, through its
execution on a computer.

A Requirement is a goal to be achieved, representing a capacity
needed for the users (e.g., buy airline tickets). When a Requirement
is recorded in some kind of Software Artifact, there is a Requirement
Artifact describing that Requirement. A Requirement Artifact is an
Information Item responsible for keeping relevant information for
human use (e.g., a sentence stating that "the system must allow the
user to buy selected airline tickets").

In addition to concepts from SEON (i.e., related to SE), it is also
necessary to understand some HCI core concepts from HCI-ON
[17]. An Interactive Software System is a Software System constituted
(among others) of User Interface Programs, which are Programs that
handle the User Interface through their materialization as Loaded
User Interface Program Copies (i.e., copies of the program loaded
in the computer system memory). The User Interface comprises all
parts of the computer system that users have contact with, phys-
ically, perceptually or conceptually [4]. Users interact with the

system to achieve User Goals, which represent needs intended to
be satisfied by the system and are the propositional content of User
Intentions that inhere in a User.

In the context of HCI design, the HCI Designer is a Person
Stakeholder responsible for creating HCI Design Specifications,
which are Software Artifacts describing how anHCI Design Object
must be materialized (in terms of HCI aspects). In HCIDO, theHCI
Design Object is an Interactive Software System, i.e., the object
being designed is an interactive system. Thus, an HCI Design
Specification describes how a particular Interactive Software Sys-
tem should be. AnHCI Design Specification contains one or more
HCI Design Choices.

HCI Design Choices are Information Items that describe par-
ticular choices made by the HCI Designer concerning how the
human-computer interaction should be implemented, including
aspects related to the system’s appearance, the disposition of com-
ponents in space and time and their expected behaviors in response
to user actions (e.g., the fragment of a sketch showing the fields of
a form arranged in two columns; a sentence written in a document
describing the expected behavior after a form submission). Three
subtypes of HCI Design Specifications are defined in HCIDO:
Wireframes,Mockups and Functional Prototypes. As shown
in Figure 3, this is an incomplete generalization set (indicated in
the figure by {incomplete}), i.e., there are other types of HCI De-
sign Specifications besides the ones represented in the conceptual
model. AWireframe is a Document outlining the basic structure
of the interactive system’s user interface (e.g., how elements are
visually organized when displayed at the screen) in a low fidelity
sketch, which does not address specific details such as colors and
typography. AMockup, in turn, is a higher fidelity Document de-
picting how the interactive system should be presented to users,
similar to screenshots of the system’s future screens. Finally, a

An Ontology to support Knowledge Management Solutions for Human-Computer Interaction Design SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil

Functional Prototype is a piece of code (i.e., a Software Item) in-
tended to present basic functionality of an interactive system or of
its components. It is developed for early evaluation purposes and
cannot be considered the final implementation. In a design process,
it is common that low fidelity artifacts are used in initial steps and
are refined into higher fidelity artifacts as feedback is provided by
other stakeholders and the solution gets more mature.

HCIDesignChoices can bemotivated by previousHCIDesign
Choices (e.g., the selection of a certain set of colors to be used in
a screen can motivate the use of the same set of colors in other
screens) or by User Requirements Artifacts (e.g., user stories),
which are Requirement Artifacts that describe User Requirements.
For example, the decision of presenting a banner with new products
at the top of a screen can be motivated by the user story stating
that the user wants to be proactively informed about new products.
Hence, User Requirements, are Requirements that refer to User
Goals. It is important to highlight that the motivation for the HCI
Design Choices is not always explicit in real-world situations (e.g.,
when design choices are motivated by designer’s tacit knowledge).

An HCI Design Object is composed of HCI Design Compo-
nents, which are User Interface Programs that implement elements
that can be perceived or actioned by users through the User Inter-
face and are referred on HCI Design Choices. Each HCI Design
Component has its own structure, appearance and behavior and
usually is composed of other HCI Design Components (e.g., a
piece of code that implements the user interface of a "product" com-
ponent, which can be used both in a "list of products" component
and in a "shopping cart" component). HCI Design Components
can be classified into two types, considering the role they play in
the human-computer interaction. A Presentational HCI Design
Component (e.g., a text label) aims to present information that can
be perceived through user’s senses. An Interactive HCI Design
Component (e.g., a button), in turn, is expected to be actioned
(or not) in certain scenarios, according to the actions user perform
during the interaction with the interactive system. It is important
to notice that these two types are not disjoint, i.e., an HCI De-
sign Component can be both Presentational and Interactive. HCI
Design Components are materialized as Loaded HCI Design
Components, which are Loaded User Interface Program Copies (i.e.,
copies of programs that deal with user interface aspects loaded in
the memory of an interactive computer system).

As we explained before, although not shown in Figure 3, HCIDO
also addresses concepts related to mental aspects involved in HCI
design. For example, both the design object and its specification
exist in the designer’s mind before being materialized as the objects
and artifacts showed in Figure 3. In fact, there may be situations in
which the design choices and specifications are not materialized as
artifacts (i.e., they exist only in the designer’s mind).

By following SABiO [21], after developing HCIDO, to verify
if the ontology properly covers the intended domain and is able
to represent real-world situations, we performed verification and
validation activities using assessment by human and data-driven
approaches [9], as suggested in [6]. After that, we used HCIDO as
a basis to develop a tool to help knowledge capture and sharing in
HCI design.

5 KTID: A COMPUTATIONAL TOOL TO
SUPPORT KM CAPTURE AND SHARING IN
HCI DESIGN

As previously discussed, HCI design involves a lot of knowledge
that may not be easily accessed as it lies in the designer’s mind.
Considering previous experiences of one of the authors working
in a multidisciplinary team containing designers and developers
and, by analyzing real-world situations in the light of the HCIDO
conceptualization, we observed that sometimes it is not easy to
identify all design choices encoded in a design specification because
design specifications are often viewed as a whole and not as an
aggregation of several individual choices. This makes it difficult to
get knowledge about the decisions made until getting the design
specification as a whole and, as a consequence, hampers the reuse
of the knowledge behind these choices when creating other design
objects. This motivated us to develop KTID, a tool that supports
HCI designers to describe, share and retrieve knowledge related to
choices made when designing HCI aspects of interactive systems.

HCIDO contributed to KTID development mainly by (i) provid-
ing the understanding of the tool application domain (i.e., HCI
design); and (ii) serving as a basis to develop KTID conceptual
model. Concerning (i), HCIDO conceptualization allowed us to
spend less effort in KTID conception because the ontology pro-
vided knowledge about the domain of interest. As for (ii), by using
HCIDO to develop KTID conceptual model, we were able to create
a tool based on an HCI design general conceptualization instead of
on a particular application context (e.g., HCI design in a specific
organization). This way, KTID can be suitable for more diverse HCI
design situations. Moreover, we reused concepts and relations from
HCIDO conceptual model to create KTID structural model (making
some adjustments, such as adding properties to the classes and
creating a new class to record ratings), which demanded less effort
than to create the structural model from scratch.

KTID was developed using a template theme1 built over the
frameworks Laravel2 and Vue.js3. As main features, KTID allows
HCI designers to record design specifications and design choices
and inform the motivations (e.g., requirements or other choices)
that led them to make such choices (e.g., the designer can record the
chosen component (and related information) to be used, in order
to meet a certain requirement in a design specification created
for a particular interactive system). This feature aims to support
knowledge capture and structuring so that it can be accessed and
reused by others. Figure 4 illustrates the recording of a design choice
in KTID regarding a "register account form" component, which was
cropped from a mockup for a particular interactive system.

In the figure, the description of the choice aims to differentiate
the meaning of the information displayed inside each field of the
form. For example, the phone field contains an input mask, which
should be visible while the user is typing, while name and email
fields contain input placeholders, which provide examples of possi-
ble inputs to users and disappear as users start typing. Although
these pieces of information have different semantics, they are syn-
tactically represented in the same way in the mockup, relying on a

1https://coreui.io/vue-laravel/
2https://laravel.com/
3https://vuejs.org/

SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil Castro et al.

Figure 4: Recording a design choice in KTID.

shared and implicit understanding between who designed and who
reads the mockup to make the distinction between their meanings.
Hence, KTID aims at providing means to make this understanding
explicit and shared between HCI design stakeholders.

When creating an HCI design, designers can also search for
recorded design choices to reuse (or be inspired by) them. Designers
can also evaluate the design choices by indicating, in a five-star scale,
if they found them useful. These features aid in knowledge sharing.
Figure 5 shows the KTID page used to search for design choices.
Each column of the table can be filtered or sorted, making it easier
for designers to find relevant information considering their needs.
Developers can also use KTID to improve communication with
designers. For example, a developer implementing a design choice
can use the tool to retrieve design choice information to better
understand its details and the motivations that led the designer to
make it. Developers can also verify which design choices need to be
implemented to satisfy a certain requirement that should be met.

As a preliminary evaluation, we carried out a study in which
KTID was used by two designers (one novice and one experienced).
We provided the description of a particular interactive system, and
they were asked to create a wireframe to that system using KTID
to record and reuse knowledge about design choices. The novice
designer informed that the tool was useful and, since he reused
knowledge recorded in the tool, he was motivated to record knowl-
edge about the choices he made when he created the wireframe.
The experienced designer, in turn, said that he did not use knowl-
edge available in the tool because he did not need it to create the
aimed wireframe. He said that he could record his knowledge to
future use, but he pointed out that this may promote some kind

of standardization and prevent other designers from being more
creative. In summary, the feedback provided by the two designers
provides a preliminary indication that the tool is useful and its use
is feasible. However, it should be improved to be more user friendly.
Moreover, it seems that the tool may be more useful for novice
designers.

6 FINAL CONSIDERATIONS
In the work described in this paper, we explored the combina-
tion of ontologies and ontology networks with KM to potentialize
knowledge capture and reuse in the context of the HCI design of
interactive systems. The main objective of this work was to pro-
pose a well-founded conceptualization of HCI design to support
KM solutions to aid in HCI design of interactive systems. Thus, we
developed SRDO, which addresses software design by considering
both mental and physical aspects, and used it to develop HCIDO,
a reference ontology that provides a well-founded conceptualiza-
tion of HCI design. HCIDO reuses concepts from HCI-ON [17] and
SEON [39], connecting concepts from both areas and contributing
to address the knowledge intersection between them. By providing
a general conceptualization, HCIDO reduces semantic conflicts and
helps communication and knowledge sharing. Moreover, it can
be used to build semantic interoperability and knowledge-based
solutions.

This work provides contributions to both the state of the art
and the state of the practice. SDRO and HCIDO are contributions
to the state of the art since they structure knowledge of the soft-
ware design and HCI design domains, respectively. Besides physical

An Ontology to support Knowledge Management Solutions for Human-Computer Interaction Design SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil

Figure 5: Searching for design choices recorded in KTID.

aspects, they also address mental design aspects, which are rele-
vant to a better understanding of how ideas that come up in the
designers’ mind are materialized into artifacts produced during the
software development process (e.g., mockups, wireframes). The sys-
tematic mapping about KM in HCI design is also a contribution to
the state of the art, providing a panorama about the research topic.
Regarding the state of the practice, the survey carried out with
practitioners provides knowledge about the usage of KM in HCI
design practice. Furthermore, KTID also contributes as a practical
example of using HCIDO in the development of KM solutions to
support HCI design and can be evolved to support the creation of
a repository of HCI design decisions and components that can be
reused in future projects.

We used HCIDO in the development of KTID, a tool to support
capture and sharing of knowledge embedded in design choices
encoded in design specifications. The use of HCIDO facilitated KTID
development by providing the domain conceptualization, which
was used in the tool conception and to create its conceptual model.
By doing so, we did not need to spend much time to understand
the domain and create the tool structural model.

It is worthy clarifying that the KTID version referred in this paper
is not a complete KM solution (e.g., it does not provide a robust
curation to assess knowledge before making it available). In this
work, we decided to provide just a simple evaluation in a five-star
scale and focus on capturing and reusing knowledge to make KTID
a simple solution. KTID can be evolved to be a more robust solution
and help create a repository of HCI design components (associated
to their rationale) that can be reused in future design solutions.
Although ontologies have been used in several domains, their use
in HCI design needs to be further explored. This work gives a first
step towards a set of envisioned ontology-based solutions to aid in
HCI design. However, we also need to point out that HCI design
involves human aspects, thus the problem addressed in this work
may also be influenced by social, cultural, psychological and other
factors. Therefore, the combination of ontologies and KM principles

can contribute to solve knowledge sharing issues in HCI design, but
it should not be used as the only approach to handle that problem.

As future work, we plan to evaluate the tool in practical settings,
with a larger and heterogeneous population, in order to assess its ca-
pacity of supporting knowledge sharing and communication among
stakeholders with different backgrounds and to provide more gen-
eral and conclusive results. In the future studies, we also intend to
investigate the influence of using KTID on the creativity involved
in the design process. Furthermore, we intend to implement fea-
tures to assign requirements or design choices to developers and
integrate KTID with software development management tools to
provide integrated support to HCI design and software develop-
ment activities. By doing this, we will explore deeper the connection
between HCIDO and SEON, benefiting from the use of ontology
networks to cover activities from the HCI design to the delivery
of the interactive system to the client (e.g., involving implemen-
tation and test activities). As for HCIDO, we intend to explore its
use in other applications to aid in HCI design, such as semantic
documentation and semantic tools integration.

REFERENCES
[1] Maxim Bakaev and Tatiana Avdeenko. 2010. Ontology to Support Web Design

Activities in E-Commerce Software Development Process. August 2015 (2010).
https://doi.org/10.2316/P.2010.691-075

[2] M. Bakaev and M. Gaedke. 2016. Application of evolutionary algorithms in
interaction design: From requirements and ontology to optimized web interface.
In NW Russia Young Researchers in Electrical and Electronic Eng. Conf. 129–134.

[3] Alex Baker and André van der Hoek. 2006. Examining Software Design from a
General Design Perspective.

[4] D Benyon. 2013. Designing interactive systems: a comprehensive guide to HCI,
UX and interaction design.

[5] Finn Olav Bjørnson and Torgeir Dingsøyr. 2008. Knowledge management in soft-
ware engineering: A systematic review of studied concepts, findings and research
methods used. Information and Software Technology 50, 11 (2008), 1055–1068.

[6] Janez Brank, Marko Grobelnik, and Dunja Mladenić. 2005. A survey of ontology
evaluation techniques. In In In Proceedings of the Conference on Data Mining and
Data Warehouses (SiKDD 2005).

[7] Ana Christina de Oliveira Bringuente, Ricardo de Almeida Falbo, and Giancarlo
Guizzardi. 2011. Using a Foundational Ontology for Reengineering a Software
Process Ontology. Journal of Information and Data Management 2, 3 (2011),
511–526. https://doi.org/10.5753/jidm.2011.1424

https://doi.org/10.2316/P.2010.691-075
https://doi.org/10.5753/jidm.2011.1424

SBQS 2022, November 07–10, 2022, Curitiba, PR, Brazil Castro et al.

[8] John Millar Carroll. 2014. Human Computer Interaction (HCI) (2nd ed.). The
Interaction Design Foundation, Chapter 2, 21–61.

[9] Murillo Vasconcelos Henriques Bittencourt Castro. 2021. Knowledge Management
Solutions for Human Computer Interaction Design. Ph. D. Dissertation. Master
Thesis, Graduate Program in Informatics, Federal University of Espírito Santo
(UFES), Vitória - ES, Brazil.

[10] Murillo Vasconcelos Henriques Bittencourt Castro, Monalessa Perini Barcellos,
and Ricardo de Almeida Falbo. 2021. An Ontological View of Design in the
Software Context. In 14th Seminar on Ontology Research in Brazil (ONTOBRAS).
CEUR Workshop Proceedings.

[11] Murillo Vasconcelos Henriques Bittencourt Castro, Monalessa Perini Barcellos,
Ricardo de Almeida Falbo, and Simone Dornelas Costa. 2021. Using Ontologies
to aid Knowledge Sharing in HCI Design. In XX Brazilian Symposium on Human
Factors in Computing Systems (IHC’21). ACM, New York, NY, USA. https://doi.
org/10.1145/3472301.3484327

[12] Murillo Vasconcelos Henriques Bittencourt Castro, SimoneDornelas Costa, Mona-
lessa Perini Barcellos, and Ricardo de Almeida Falbo. 2020. Knowledge manage-
ment in human-computer interaction design: A mapping study. In 23rd Iberoamer-
ican Conference on Software Engineering, CIbSE 2020. in press.

[13] Murillo Vasconcelos Henriques Bittencourt Castro, SimoneDornelas Costa, Mona-
lessa Perini Barcellos, and Ricardo de Almeida Falbo. 2022. Investigating Knowl-
edge Management in Human-Computer Interaction Design. Journal of Soft-
ware Engineering Research and Development 10, SE-Review (Mar 2022), 4:1–4:20.
https://doi.org/10.5753/jserd.2021.1878

[14] Adriana Chammas, Manuela Quaresma, and Cláudia Mont’Alvão. 2015. A Closer
Look on the User Centred Design. Procedia Manufacturing 3 (2015), 5397–5404.
https://doi.org/10.1016/j.promfg.2015.07.656

[15] C Chera, W Tsai, and R Vatavu. 2012. Gesture ontology for informing Service-
oriented Architecture. In Int. Symposium on Intelligent Control. IEEE, 1184–1189.

[16] Simone Dornelas Costa, Monalessa Perini Barcellos, and Ricardo de Almeida
Falbo. 2021. Ontologies in Human-Computer Interaction: A Systematic Literature
Review. Applied Ontology 16, 4 (2021), 421–452. https://doi.org/10.3233/AO-
210255

[17] Simone Dornelas Costa, Monalessa Perini Barcellos, Ricardo de Almeida Falbo,
and Murillo Vasconcelos Henriques Bittencourt Castro. 2020. Towards an Ontol-
ogy Network on Human-Computer Interaction. In Conceptual Modeling, Gillian
Dobbie, Ulrich Frank, Gerti Kappel, Stephen W Liddle, and Heinrich C Mayr
(Eds.). Springer International Publishing, 331–341.

[18] Simone Dornelas Costa, Monalessa Perini Barcellos, Ricardo de Almeida Falbo,
Tayana Conte, and Káthia Marçal Oliveira. 2022. A core ontology on the Hu-
man–Computer Interaction phenomenon. Data & Knowledge Engineering 138
(2022). https://doi.org/10.1016/j.datak.2021.101977

[19] Bruno Borlini Duarte, Andre Luiz De Castro Leal, Ricardo De Almeida Falbo, Gian-
carlo Guizzardi, Renata S.S. Guizzardi, and Vítor E. Silva Souza. 2018. Ontological
foundations for software requirements with a focus on requirements at runtime.
Applied Ontology 13, 2 (2018), 73–105. https://doi.org/10.3233/AO-180197

[20] Mathieu d’Aquin and Aldo Gangemi. 2011. Is there beauty in ontologies? Applied
Ontology 6 (2011), 165–175. https://doi.org/10.3233/AO-2011-0093

[21] Ricardo de Almeida Falbo. 2014. SABiO: Systematic Approach for Building On-
tologies. In CEUR Workshop Proceedings (CEUR Workshop Proceedings, Vol. 1301).
CEUR-WS.org.

[22] Nicola Guarino. 2014. Artefactual Systems, Missing Components and Replaceability.
Springer International Publishing, 191–206. https://doi.org/10.1007/978-3-319-
00801-1_11

[23] Giancarlo Guizzardi. 2005. Ontological foundations for structural conceptual models.
Ph. D. Dissertation. Telematica Instituut / CTIT.

[24] Giancarlo Guizzardi. 2007. On Ontology, ontologies, Conceptualizations, Mod-
eling Languages, and (Meta)Models. In Proceedings of the 2007 conference on
Databases and Information Systems IV: Selected Papers from the Seventh Interna-
tional Baltic Conference DB&IS’2006. IOS Press, 18–39.

[25] Hans-Jörg Happel, Axel Korthaus, Stefan Seedorf, and Peter Tomczyk. 2006.
KOntoR: An Ontology-enabled Approach to Software Reuse. 349–354.

[26] Scott Henninger, Mohamed Keshk, and Ryan Kinworthy. 2004. Capturing and
Disseminating Usability Patterns with Semantic Web Technology. (2004).

[27] Alan R Hevner. 2007. A three cycle view of design science research. Scandinavian
journal of information systems 19, 2 (2007), 4.

[28] ISO. 2019. ISO 9241-210:2019(en) - Ergonomics of human-system interaction -
Part 210: Human-centred design for interactive systems. Int. Organization for
Standardization (2019).

[29] Andrea E Kohlhase and Michael Kohlhase. 2009. Semantic Transparency in User
Assistance Systems. In Proceedings of the 27th ACM International Conference on
Design of Communication (SIGDOC ’09). Association for Computing Machinery,
89–96. https://doi.org/10.1145/1621995.1622013

[30] Marina Kultsova, Anastasiya Potseluico, Irina Zhukova, Alexander Skorikov, and
Roman Romanenko. 2017. A Two-Phase Method of User Interface Adaptation
for People with Special Needs. In Creativity in Intelligent Tech and Data Science.
Springer, 805–821.

[31] Eirini Myrgioti, Nick Bassiliades, and Amalia Miliou. 2013. Bridging the HASM:
An OWL ontology for modeling the information pathways in haptic interfaces
software. Expert Systems with Applications 40, 4 (2013), 1358–1371.

[32] Daniel E O’Leary. 1998. Enterprise Knowledge Management. Computer 31, 3
(Mar 1998), 54–61. https://doi.org/10.1109/2.660190

[33] Heiko Paulheim and Florian Probst. 2010. Ontology-Enhanced User Interfaces: A
Survey. Int. J. Semantic Web Inf. Syst. 6 (2010), 36–59. https://doi.org/10.4018/
jswis.2010040103

[34] Heiko Paulheim and Florian Probst. 2013. UI2Ont—A Formal Ontology on User
Interfaces and Interactions. 1–24. https://doi.org/10.1007/978-1-4471-5301-6_1

[35] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee.
2007. A design science research methodology for information systems research.
Journal of management information systems 24, 3 (2007), 45–77.

[36] Paul Ralph and Yair Wand. 2009. A Proposal for a Formal Definition of the Design
Concept. In Design Requirements Eng.: A Ten-Year Perspective. Springer, 103–136.

[37] Yvonne Rogers, Helen Sharp, and Jenny Preece. 2011. Interaction Design: Beyond
Human-Computer Interaction (3rd ed.). John Wiley & Sons.

[38] I Rus and M Lindvall. 2002. Knowledge management in software engineering.
IEEE Software 19, 3 (May 2002), 26–38. https://doi.org/10.1109/MS.2002.1003450

[39] Fabiano Borges Ruy, Ricardo de Almeida Falbo, Monalessa Perini Barcellos, Si-
mone Dornelas Costa, and Giancarlo Guizzardi. 2016. SEON: A Software En-
gineering Ontology Network. In Knowledge Eng. and Knowledge Management.
Springer, 527–542.

[40] Ansgar Scherp, Carsten Saathoff, Thomas Franz, and Steffen Staab. 2011. Design-
ing core ontologies. Applied Ontology 6, 3 (2011), 177–221.

[41] Kurt Schneider. 2009. Experience and Knowledge Management in Software Engi-
neering (1st ed.). Springer Publishing Company, Incorporated.

[42] Thiago Rocha Silva, Jean Luc Hak, and MarcoWinckler. 2017. A Formal Ontology
for Describing Interactive Behaviors and Supporting Automated Testing on User
Interfaces. International Journal of Semantic Computing 11, 4 (Dec 2017), 513–539.
https://doi.org/10.1142/S1793351X17400219

[43] Steffen Staab and Rudi Studer. 2004. Handbook on Ontologies. Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-540-24750-0

[44] Rudi Studer, V Richard Benjamins, and Dieter Fensel. 1998. Knowledge engineer-
ing: Principles and methods. Data & Knowledge Engineering 25, 1 (1998), 161–197.
https://doi.org/10.1016/S0169-023X(97)00056-6

[45] Alistair G Sutcliffe. 2014. Requirements Engineering from an HCI Perspective (2
ed.). The Interaction Design Foundation, Chapter 13, 707–760.

[46] Pablo Ribeiro Suàrez, Bernardo Lula Jùnior, and Marcelo Alves de Barros. 2004.
Applying knowledge management in UI design process. In Proceedings of the 3rd
annual conference on Task models and diagrams - TAMODIA ’04, Pavel Slavik and
Philippe Palanque (Eds.). ACM Press, 113–120. https://doi.org/10.1145/1045446.
1045468

[47] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta, and Aldo
Gangemi. 2012. Ontology Engineering in a Networked World. Springer.

[48] Richard N Taylor and Andre van der Hoek. 2007. Software Design and Architec-
ture: The once and future focus of software engineering. In Future of Software
Engineering (FOSE ’07). IEEE, 226–243. https://doi.org/10.1109/FOSE.2007.21

[49] Shanmuganathan Vasanthapriyan, Jing Tian, and Jianwen Xiang. 2015. A Survey
on Knowledge Management in Software Engineering. In 2015 IEEE International
Conference on Software Quality, Reliability and Security - Companion. 237–244.
https://doi.org/10.1109/QRS-C.2015.48

https://doi.org/10.1145/3472301.3484327
https://doi.org/10.1145/3472301.3484327
https://doi.org/10.5753/jserd.2021.1878
https://doi.org/10.1016/j.promfg.2015.07.656
https://doi.org/10.3233/AO-210255
https://doi.org/10.3233/AO-210255
https://doi.org/10.1016/j.datak.2021.101977
https://doi.org/10.3233/AO-180197
https://doi.org/10.3233/AO-2011-0093
https://doi.org/10.1007/978-3-319-00801-1_11
https://doi.org/10.1007/978-3-319-00801-1_11
https://doi.org/10.1145/1621995.1622013
https://doi.org/10.1109/2.660190
https://doi.org/10.4018/jswis.2010040103
https://doi.org/10.4018/jswis.2010040103
https://doi.org/10.1007/978-1-4471-5301-6_1
https://doi.org/10.1109/MS.2002.1003450
https://doi.org/10.1142/S1793351X17400219
https://doi.org/10.1007/978-3-540-24750-0
https://doi.org/10.1016/S0169-023X(97)00056-6
https://doi.org/10.1145/1045446.1045468
https://doi.org/10.1145/1045446.1045468
https://doi.org/10.1109/FOSE.2007.21
https://doi.org/10.1109/QRS-C.2015.48

	Abstract
	1 Introduction
	2 Research Method
	3 Background
	3.1 HCI Design and Knowledge Management
	3.2 Ontologies

	4 The Human-Computer Interaction Design Ontology (HCIDO)
	5 KTID: A Computational Tool to Support KM Capture and Sharing in HCI Design
	6 Final Considerations
	References

